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Abstract

We introduce networked communication to mean-field control (MFC) - the coopera-1
tive counterpart to mean-field games (MFGs) - and in particular to the setting where2
decentralised agents learn online from a single, non-episodic run of the empirical sys-3
tem. We adapt recent algorithms for MFGs to this new setting, as well as contributing4
a novel sub-routine allowing networked agents to estimate the global average reward5
from their local neighbourhood. We show that the networked communication scheme6
allows agents to increase social welfare faster than under both the centralised and in-7
dependent architectures, by computing a population of potential updates in parallel and8
then propagating the highest-performing ones through the population, via a method that9
can also be seen as tackling the credit-assignment problem. We prove this new result10
theoretically and provide experiments that support it across different classes of coop-11
erative game (coordination and anti-coordination), as well as exploring the empirical12
finding that smaller communication radii can benefit convergence in anti-coordination13
games while still outperforming agents learning entirely independently. We provide14
numerous ablation studies and additional experiments on numbers of communication15
round and robustness to communication failures.16

1 Introduction17

Multi-agent reinforcement learning (MARL) can struggle to scale computationally as the number of18
agents N increases. The mean-field game (MFG) framework (Lasry & Lions, 2007; Huang et al.,19
2006) has been used to address this scaling difficulty; it models a representative agent as interacting20
not with the rest of the population on a per-agent basis, but instead with a distribution over the other21
agents, known as the mean field. The framework analyses the limiting case when the population con-22
sists of an infinite number of symmetric and anonymous agents, that is, they have identical reward23
and transition functions which depend on the mean-field distribution rather than on the actions of24
specific other players. The MFG is a non-cooperative scenario where each agent seeks to maximise25
its individual return, and the solution to the game is a mean-field Nash equilibrium (MFNE), which26
can be used as an approximation for the Nash equilibrium (NE) in a finite-agent game, with the error27
in the solution reducing as N tends to infinity (Yardim et al., 2024). Alternatively we can consider28
a cooperative scenario called a mean-field control (MFC) problem, where the population seeks to29
maximise a social welfare criterion such as the average return received by agents.30

Since MFC problems can be interpreted as optimisation problems from the perspective of a social31
planner, classical approaches to MFC involve centralised methods whereby a central learner updates32
a policy that is assumed to be passed automatically to the population (Laurière et al., 2022a). Often33
the empirical mean field of the actual population is not used, with the central learner updating an34
estimate of the mean field based on its own policy (Carmona et al., 2019; Angiuli et al., 2022;35
2023). However, recent works on MFGs, as in other areas of multi-agent research, have recognised36
that reliance on a central coordinator represents a bottleneck for computation and communication,37
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and a vulnerable single point of failure of the system (Yardim et al., 2023; Benjamin & Abate, 2023;38
2024). These works also argue that, in order to be applicable to real-world, embodied problems,39
other desirable qualities for mean-field algorithms include: learning from the population’s empirical40
mean field (i.e. this distribution is generated only by the agents’ policies, rather than being updated41
by the algorithm itself or an external oracle/simulator); learning online from a single, non-episodic42
system run (i.e. similar to above, the population is not arbitrarily reset by an external controller);43
model-free learning; and function approximation to allow high-dimensional observations.44

Some recent MFC works have considered decentralisation, but Bayraktar & Kara (2024) requires45
that decentralised agents optimise for learnt models of the system dynamics (and is only fully inde-46
pendent when the population is large but finite rather than infinite), while Cui et al. (2023c) presents47
a model-free deep learning algorithm that gives decentralised execution but requires centralised,48
episodic training. This latter work stipulates that decentralised training can be achieved if all agents49
can directly observe the mean-field distribution and use the same seed to correlate their actions50
(though they only provide empirical results for the centralised scenario). However, assuming decen-51
tralised agents have access to this global information is unrealistic, and Benjamin & Abate (2024) in52
the non-cooperative MFG setting has shown that networked communication between decentralised53
agents allows agents to estimate the global mean field from a local neighbourhood. They also show54
that proliferating high-performing policies through the population via decentralised communication55
(in a manner reminiscent of distributed embodied evolutionary algorithms (Hart et al., 2015)) im-56
proves training time and avoidance of local optima, particularly over the case of agents learning57
entirely independently, but often also over populations with a single central learner.58

Inspired by this non-cooperative MFG work, we introduce networked communication to MFC for59
the first time, where populations arguably have even more incentive to communicate. This allows us60
to present a model-free deep learning algorithm that fulfils all of the proposed desiderata, including61
learning online from a single non-episodic run of the empirical system, and decentralised training62
without needing to observe global information: we contribute a novel sub-routine for estimating the63
global average reward from local communication, in addition to the existing sub-routine for esti-64
mating the global mean field from Benjamin & Abate (2024). We contribute theoretical proofs that65
decentralised policy communication allows networked populations to learn faster than both the inde-66
pendent and the centralised alternatives in the MFC setting in different classes of cooperative game67
(coordination and anti-coordination). We also demonstrate this finding empirically in numerous68
games, as well as contributing an empirical study of the algorithms’ robustness to communication69
failures, along with several ablation studies. In summary, our contributions include:70

• We provide the first algorithms for decentralised model-free training in MFC, as well as the first71
MFC algorithms for online learning from a single, non-episodic run of the empirical system.72

• We prove theoretically that in this context, decentralised networked communication can improve73
learning speed over the independent and centralised alternatives.74

• We further contribute a novel sub-routine allowing decentralised agents to estimate the global75
average reward via networked communication, and incorporate an existing sub-routine used in76
MFGs for estimating the global mean field via local communication.77

• We provide extensive experiments supporting our theoretical results, and give ablation studies of78
various parts of our algorithms, as well as a study of robustness to communication failures.79

We give preliminaries in Sec. 2, and our algorithms in Sec. 3. We present theoretical results in Sec.80
4, and experiments in Sec. 5. A more detailed comparison to related work is in Appx. G.81

2 Preliminaries82

Solving the MFC problem involves finding the single policy that, when given to all agents in the83
infinite population, maximises the population’s expected return. We give two ways to conceive84
of our work, illustrated in Fig. 2 (Appx. A), making more explicit the motivations underpinning85
other MFC works (Cui et al., 2023c; Dayanikli et al., 2024; Zaman et al., 2024; Bayraktar & Kara,86
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2024). Firstly, we contribute algorithms that allow the solution to a MFC problem to be learnt using87
the empirical distribution of a decentralised finite population, without needing to make unrealistic88
assumptions about access to an oracle for the infinite population. Note that empirically it may be89
impractical to assume that the decentralised agents always follow a single identical policy.90

Alternatively, we may have originally been interested in solving a cooperative problem for a large,91
finite population, but, due to the scalability issues of learning approaches like MARL, forced to turn92
to the MFC framework to find a policy that gives an approximate solution to the finite-population93
problem. We contribute algorithms that allow the deployed finite population to find the MFC solu-94
tion that in turn approximately solves the original problem, without unrealistic assumptions about95
centralised training. Under this framing, it may matter less whether all agents follow a single policy96
in practice (Yardim et al. (2023); Benjamin & Abate (2023; 2024) follow a similar logic in MFGs).97

We use the following notation. N is the number of agents in a population, with S andA representing98
the finite state and common action spaces. The set of probability measures on a finite set X is99
denoted ∆X , and ex ∈ ∆X for x ∈ X is a one-hot vector with only the entry corresponding to x100
set to 1, and all others set to 0. For time t ≥ 0, µ̂t = 1

N

∑N
i=1

∑
s∈S 1sit=ses ∈ ∆S is a vector of101

length |S| denoting the empirical categorical state distribution of the N agents at time t. For agent102
i ∈ {1 . . . N}, i’s policy πi ∈ Π depends on its observation oit. We give different forms that this103
observation can take, and relatedly a more formal definition of the policy, after the following.104

Definition 1 (N-player stochastic cooperative control problem with symmetric, anonymous agents).105
This is given by the tuple ⟨N , S, A, P , R, γ⟩, where A is the action space, identical for each agent,106
S is the identical state space of each agent, such that their initial states are {si0}Ni=1 ∈ SN sampled107
from some initial distribution µ0 ∈ ∆S , and their policies are {πi}Ni=1 ∈ ΠN . P : S × A × ∆S →108
∆S is the transition function and R : S × A × ∆S → [0,1] is the reward function, both identical109
to all agents, and which map each agent’s local state and action and the population’s empirical110
distribution to transition probabilities and bounded rewards, respectively, i.e. ∀i ∈ {1, . . . , N}:111
sit+1 ∼ P (·|sit, ait, µ̂t) and rit = R(sit, a

i
t, µ̂t).112

For the joint policy π := (π1, . . . , πN ) ∈ ΠN , an individual agent’s discounted return is given by:113

Definition 2 (Individual expected discounted return). For all i, j ∈ {1, . . . , N}, i’s return is114

V i(π, µt̄) = E

[∑∞
t=t̄ γ

tR(sit, a
i
t, µ̂t)

∣∣∣∣ sj
t̄
∼µt̄

aj
t∼πj(ojt)

sjt+1∼P (·|sjt ,a
j
t ,µ̂t)

]
.115

However, the maximisation objective for this cooperative problem is:116

Definition 3 (Population-average expected discounted return). For i, j ∈ {1, . . . , N} the return is117

V pop(π, µt̄) =
1
N

∑N
i V i(π, µt̄) = E

[
1
N

∑∞
t=t̄

∑N
i γtR(sit, a

i
t, µ̂t)

∣∣∣∣ sj
t̄
∼µt̄

aj
t∼πj(ojt)

sjt+1∼P (·|sjt ,a
j
t ,µ̂t)

]
.118

That is, the solution to the control problem is π∗ = argmaxπ∈ΠN V pop(π, µt̄). At the limit as119
N → ∞, the infinite population of agents can be characterised as a limit distribution µ ∈ ∆S ; the120
infinite-agent setting is termed a MFC problem. The so-called ‘mean-field flow’ µ is given by the121
infinite sequence of mean-field distributions s.t. µ = (µt)t≥0.122

Definition 4 (Induced mean-field flow). We denote by I(π) the mean-field flow µ induced when all123
the agents follow π, where this is generated from π by µt+1(s

′) =
∑

s,a µt(s)π(a|ot)P (s′|s, a, µt).124
The snapshot of this induced flow at t is given by I(π)t.125

Definition 5 (Social welfare). When all agents follow policy π giving mean-field flow µ = I(π),126

π’s social welfare is W (π; I(π)) = E
[∑∞

t=t̄ γ
t(R(st, at, I(π)t))

∣∣∣∣ st̄∼µt̄

at∼π(·|ot)
st+1∼P (·|st,at,I(π)t)

]
.127

Definition 6 (Social optimum). The solution to the MFC problem is a social optimum policy π∗ ∈ Π128
that maximises the social welfare function in Def. 5, i.e. π∗ = argmaxπ∈Π W (π; I(π)).129

Remark 1. Previous works showed that the MFC social optimum π∗ gives a good approximation130
for the harder-to-solve finite-agent problem (i.e. if π = (π∗, . . . , π∗)), with the error characterised131
by O( 1√

N
) (Gu et al., 2021; Mondal et al., 2022; Cui et al., 2023b;c; Bayraktar & Kara, 2024).132
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When the distribution is the same for all t, i.e. µt = µt+1 ∀t ≥ 0, we say the mean-field flow133
is stationary, giving a stationary MFC problem. Non-stationary problems require the policy to134
depend on the mean field such that oit = (sit, µ̂t), whereas the observation in the stationary case135
can be simplified to oit = sit. However, classical approaches to the MFC problem that conceive of136
a central planner trying to guide the population to a distribution that maximises the expected return137
might have policies that depend on the mean field even in the stationary case (Laurière et al., 2022a;138
Carmona et al., 2023; Cui et al., 2023c). Therefore we use mean field-dependent policies for the139
sake of generality, but show through our ablation studies that in practice our algorithms require140
only πi(a|oit) = πi(a|sit) in our experimental tasks, which have stationary solutions.141

Furthermore, it is unrealistic to assume that decentralised agents with a possibly limited commu-142
nication radius would have perfect observability of the global mean field µ̂t. Therefore we allow143
agents to form a local estimate ˜̂µi

t which can be improved by communication with neighbours, using144
Alg. 3 (from Alg. 3 in Benjamin & Abate (2024) for the MFG setting). We thus have oit = (sit,

˜̂µi
t).145

Formally we can now say that when oit = (sit, µ̂t) or (sit, ˜̂µ
i
t), we have the set of policies defined as146

Π = {π : S ×∆S → ∆A}, and the set of Q-functions denoted Q = {q : S ×∆S ×A → R}.1 The147
communication graph of the decentralised population is given by:148

Definition 7 (Time-varying communication network). The time-varying graph (Gcomm
t )t≥0 is given149

by Gt = (N , Et), where N is the set of vertices each representing an agent i = {1, . . . , N}, and the150
edge set Et ⊆ {(i,j) : i,j ∈ N } is the set of undirected links present at time t. A network’s diameter151
dGt

is the maximum of the shortest path lengths between any pair of nodes.152

3 Learning and estimation algorithms153

We adapt recent algorithms for the MFG setting, where networked communication is used 1) to form154
local estimates of the global empirical mean field, and 2) to allow agents to adopt better-performing155
policy updates from neighbours to accelerate learning (Benjamin & Abate, 2024). We adapt these156
algorithms for cooperative MFC, where decentralised agents must optimise the population-average157
return instead of their individual one (the decentralised agents may not always follow a common158
policy while training unless we make strong assumptions on the communication network as in Sec.159
4, so we do not directly optimise social welfare from Def. 5).160

It is unrealistic to assume that decentralised agents have access to the global average reward, so we161
find a third use of the communication network in 3) allowing agents to estimate the global average162
reward r̂t from a local neighbourhood. We contribute a novel algorithm Alg. 1 for this purpose163
(Sec. 3.1), and we describe our main learning method Alg. 2 in Sec. 3.2. Meanwhile Alg. 3 for164
estimating the mean field, which is taken from Alg. 3 in Benjamin & Abate (2024) for the MFG165
setting, is described in Appx. C.3. Our policy communication algorithm Alg. 4 is also based on that166
in Benjamin & Abate (2024) for the MFG setting, but since it is key to our novel theoretical results167
that we contribute for the MFC setting, we give a description of Alg. 4 in the main text in Sec. 3.3.168

3.1 Sub-routine for networked estimation of global average reward169

Our novel Alg. 1 (Appx. C.1) involves agents using the communication network Gcomm
t to locally170

estimate the global population-average reward received after a given step in the environment; max-171
imising the average reward ensures agents are solving the cooperative MFC problem instead of the172
non-cooperative MFG. Agents broadcast their received reward with a unique ID to ensure each re-173
ward is only counted once (Line 1). They collect those received from neighbours, and repeat the174
process of broadcasting and expanding their collections for a further Cr − 1 rounds, so as to receive175
rewards from agents more than one hop away on the network (Lines 2-6). They finally set their176
estimate of the global average to the average of the rewards they have collected (Line 7).177

1When oit = sit, we instead have Π = {π : S → ∆A} and Q = {q : S ×A → R}.
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3.2 Main learning algorithm178

Our novel Alg. 2 (Appx. C.2), adapted from non-cooperative Alg. 1 in Benjamin & Abate (2024),179
contains the core method for online MFC learning using the empirical mean field in a non-episodic180
system run. It is based on Munchausen Online Mirror Descent (for further background see Appx.181
B). Each agent i approximates its Q-function Q̌θi

k
(o, ·) with its own neural network parametrised182

by θik. Agent i’s policy is determined by πθi
k
(a|o) = softmax

(
1
τq
Q̌θi

k
(o, ·)

)
(a) - we denote this as183

πi
k(a|o) for simplicity when appropriate. Each agent maintains a buffer (with size M ) of collected184

transitions of the form
(
oit, a

i
t,
˜̂rit, o

i
t+1

)
, where ˜̂rit is i’s local estimate of the global average reward185

obtained by running Alg. 1 (Line 7). At each iteration k, agents empty their buffer (Line 3) before186
collecting M new transitions (Lines 4-9). Each decentralised agent then trains its Q-network Q̌θi

k
187

via L updates (Lines 10-14) as follows.188

For stability, i also maintains a target network Q̌
θi,′
k,l

with the same architecture but parameters θi,
′

k,l189

copied from θik,l less regularly than θik,l themselves are updated, i.e. only every ν learning iterations190
(Line 13). At each iteration l, the agent samples a random batch Bi

k,l of |B| transitions from its191
buffer (Line 11). It then trains its Q-network using stochastic gradient descent to minimise the loss192
in Def 10, Appx. C.2 (Line 12). The trained Q-network determines i’s updated policy (Line 16).193

3.3 Sub-routine for communicating and refining policies194

Alg. 4 (Appx. C.4, based on Alg. 1 in Benjamin & Abate (2024) for the MFG setting) uses the195
communication network Gcomm

t to spread policy updates that are estimated to be better performing196
through the population, allowing faster learning than in the independent and even centralised cases.197

Alg. 4 is run after agents have independently updated their policies according to their newly trained198
Q-networks at each iteration k of the main learning algorithm (Line 17, Alg. 2). In Alg. 4, agents199
obtain an approximation of their individual discounted expected return {V i(π, µt)}Ni=1 (Def. 2,200
i.e. not the population-average return, which would not give differentiation between the different201
updated policies). They do so by collecting individual rewards for E steps, and calculating the202
discounted sum of rewards over these finite steps, setting this value to σi

k+1 (Lines 1-7). We can203

characterise this approximation of the infinite-step return as {σi
k+1}Ni=1 = {V̂ i(πk+1, µt;E)}Ni=1.204

They then broadcast their Q-network parameters along with σi
k+1 (Line 9). Receiving these from205

their neighbours J i
t on the communication network, agents select which set of parameters to adopt206

by taking a softmax over their own and the received estimate values σj
k+1 ∀j ∈ J i

t , defined as fol-207

lows: adoptedi ∼ Pr
(
adoptedi = j

)
=

exp (σj
k+1/τ

comm
k )∑

x∈Ji
t
exp (σx

k+1/τ
comm
k ) (Lines 10-12). They can repeat this208

broadcast and adoption process for Cp rounds (distinct from the Cr and Ce communication rounds209
for the other sub-routines). We theoretically prove the benefits of this method in the following.210

4 Theoretical results211

To demonstrate the networked architecture’s benefits, we compare it with the results of modified ver-212
sions of our algorithm for centralised and independent learners. In the centralised case, as in similar213
MFG and MFC works, only arbitrary central agent i = 1 updates a Q-network and automatically214
pushes this to all other agents, and the true global mean-field distribution is always used in place of215
the local estimate i.e. ˜̂µi

t = µ̂t. In the independent case, there are no links in Gcomm
t , i.e. Ecomm

t = ∅.216
We now prove theoretically that the policy communication and adoption scheme allows networked217
agents to increase their returns faster than the centralised and independent architectures. Rem. 2218
(Appx. D) suggests informal reasons for our formal results, to aid intuitive understanding.219

We give the theoretical analysis separately for two important subclasses of cooperative game usu-220
ally found in MFC, which have different reward structures and therefore require different population221

5



Under review for CoCoMARL 2025

behaviour, namely: 1) coordination games, where the social welfare is increased by agents align-222
ing their strategies, such as in consensus/synchronisation/rendezvous tasks; 2) anti-coordination223
games, where the social welfare is increased by the population exhibiting diverse policies, such as224
in exploration, coverage or task allocation games. The phenomenon of diversity being desirable in225
cooperative anti-coordination games is an artifact of having a finite, albeit large, population: the226
benefit of diversity will decrease as the empirical population tends to infinity, until the single social227
optimum policy must be followed by all agents. While it is intuitive that adopting policies from228
neighbours via the communication scheme would be beneficial in coordination games, we show229
theoretically and empirically that the scheme also benefits populations in anti-coordination games.230

To define formally the two types of game, we first introduce the following two functions. b : Π →231
R≥0 is a ‘base return function’ that quantifies a policy’s inherent ability to receive rewards regardless232
of how many other agents follow the same strategy.2 I[·] is the indicator function, which equals 1 if233
the condition inside is true and 0 otherwise.234

Definition 8 (Coordination game). fc : N → R>0 is a ‘coordination scaling function’. It has235
minimum fc(1) > 0, and increases monotonically with the number of agents whose policies match236
i’s. A coordination game is one where the agents’ return can be decomposed as follows, ∀i, j ∈237

{1, . . . , N}: V i(π, µt̄) = h
(
b(πi), fc

(∑
j∈{1,...,N} I

[
πi = πj

]))
, where h : R≥0×R>0 → R≥0238

is a function that composes b(·) and fc(·) and is monotonic in both arguments, i.e. an increase in239
either the policy’s intrinsic ability to attain rewards, or the extent to which it is aligned with other240
agents’ policies, results in a higher return.241

Definition 9 (Anti-coordination game). fd : N → R>0 is an ‘anti-coordination scaling function’.242
It has minimum fd(N) > 0, and increases monotonically with the number of agents whose policies243
are different from that of i. An anti-coordination game is one where the agents’ return can be de-244

composed as follows, ∀i, j ∈ {1, . . . , N}: V i(π, µt̄) = h
(
b(πi), fd

(∑
j∈{1,...,N} I

[
πi = πj

]))
,245

where h : R≥0 × R>0 → R≥0 is a function that composes b(·) and fd(·) and is monotonic in both246
arguments, i.e. an increase in either the policy’s intrinsic ability to attain rewards, or the extent to247
which it is different from other agents’ policies, results in a higher return.248

For simplicity of the theory, we make several assumptions giving conditions under which networked249
agents do outperform centralised ones (for reasons of space these are detailed fully in Ass. 1-6 of250
Appx. E). These assumptions do not always hold in practice, which explains why networked agents251
may not always outperform centralised ones, though they do in the majority of our experiments.252

Recall that at each iteration k of Alg. 2, after independently updating their policies in Line 16, the253
population has the policies {πi

k+1}Ni=1. Ass. 5 assumes that after the Cp policy exchange rounds in254
Lines 8-15 (Alg. 4), the networked population is left with a single policy. Call this consensus policy255
πnet
k+1. Recall that the centralised case is where the updated Q-network of arbitrary agent i = 1 is256

automatically pushed to all the others instead of the policy evaluation and exchange in Lines 1-15257
(Alg. 4); this is equivalent to a networked case where policy consensus is reached on a random one258
of the policies {πi

k+1}Ni=1. Call this policy arbitrarily given to the whole population πcent
k+1 .259

Theorem 1. In coordination and anti-coordination games where Ass. 1, 2, 3, 4, 5 and 6 (Appx.260
E) apply, we have E[W (πnet

k+1, I(π
net
k+1))] > E[W (πcent

k+1, I(π
cent
k+1))] (i.e. in expectation networked261

agents will increase their returns faster than centralised ones). Full proof in Appx. F.1.262

We now give results showing why learning can be faster in the networked than the independent case.3263
However, since we cannot expect independent agents to share a single policy πk+1 after the update264
in each iteration, it is not possible to extract a solution to the MFC problem from the independent265
policies (a further weakness of the independent case). We therefore give these results in terms of the266
population-average return (Def. 3) instead of the social welfare (Def. 5) as before. We say the joint267

2For example, if agents are rewarded for agreeing on one of a number of targets at which to meet, then policies that visit
none of the designated targets will have lower returns than those that do, whether agents are aligned or not.

3Here we replace Ass. 1 with Ass. 7, Appx. E.2. To prove the benefit of the networked case over the independent case in
anti-coordination games, we use an additional Ass. 8, Appx E.2.1.
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policy in the networked case after communication round c is πnet
k+1,c =

(
π
(1,net)
k+1,c , . . . , π

(N,net)
k+1,c

)
,268

and the joint policy in the independent case is πind
k+1 =

(
π
(1,ind)
k+1 , . . . , π

(N,ind)
k+1

)
.269

Theorem 2. In a coordination game, given Ass. 2, 3, 4 and 7 (Appx. E), even a single round270
of communication in the networked case improves on the independent case, i.e. for c = 0,271

E
[
V pop(πnet

k+1,c+1, µt)
]
> E

[
V pop(πind

k+1, µt)
]
. Full proof in Appx. F.2.272

Theorem 3. In an anti-coordination game, given Ass. 2, 3, 4, 7 and 8 (Appx. E), even a single273
round of communication in the networked case improves on the independent case, i.e. for c = 0,274

E
[
V pop(πnet

k+1,c+1, µt)
]
> E

[
V pop(πind

k+1, µt)
]
. Full proof in Appx. F.3.275

5 Experiments276

5.1 Experimental setup277

We present experiments from grid worlds, following the gold standard in similar works on MFGs278
(Laurière et al., 2022a). We give results from six tasks similar to those found in prior works, defined279
by the agents’ reward/transition functions and relating to agents’ positions relative to other agents.280
Two (cluster; target selection) are coordination games and four (disperse; target coverage; beach281
bar; shape formation) are anti-coordination games, where in each case the reward function reflects282
a coordination/anti-coordination (fc/fd) element alongside other elements that may be crucial for283
receiving reward, reflected in the policies’ base quality b(π) (Sec. 4). Appx. H.1 has full technical284
descriptions of the tasks. In these spatial environments, Gcomm

t is determined by the physical dis-285
tance from i; we show plots for various broadcast radii, given as fractions of the maximum distance286
in the grid. We evaluate our experiments according to a finite-step approximation of the discounted287
population-average return (Def. 3) over M steps within each outer k loop, i.e. V̂ pop(πk, µt;M).288

5.2 Results and discussion289

We present results in Fig. 1 for our standard experimental settings involving 500 agents each with290
their own Q-network. When networked agents communicate, they have only a single communication291
round. See Appx. H.3 for additional experiments with more communication rounds, a study of ro-292
bustness to failures in the communication network, and ablation studies for our various sub-routines.293
The ablation studies of Algs. 1 (estimating global average reward) and 3 (estimating global empirical294
mean field) suggest that in our experimental settings the policy communication scheme (Alg. 4) is295
the dominant factor in the better performance of networked populations over the other architectures.296

Fig. 1 shows that in all of our games, networked populations of all broadcast radii significantly297
outperform independent (orange) agents, which hardly appear to increase their returns, if at all.298
Networked populations of all broadcast radii also significantly outperform the centralised (blue)299
agents in all but the two coordination games, where only networked agents of the smaller radii300
(green, 0.2; red, 0.4; purple, 0.6) underperform them. Indeed, in the anti-coordination games the301
centralised populations perform similarly to purely independent ones in hardly appearing to increase302
their returns, performing even worse than independent ones in the ‘shape formation’ game. The303
centralised populations also have markedly higher variance than networked ones in several games304
(‘target selection’, ‘disperse’, ‘beach bar’). This reflects our theoretical analysis in Sec. 4 that305
the centralised learner pushes an arbitrary updated policy to the whole population regardless of its306
quality, leading to large fluctuations in performance, whereas our communication scheme biases307
networked populations towards better performing updates.308

In the four anti-coordination games, and most notably in the ‘target coverage’ game, networked309
agents of smaller broadcast radii often outperform those of larger radii, i.e. the ordering is reversed310
from that of the coordination games. This reflects the fact that our strong theoretical Ass. 8 (namely311
that an increase in the base return function must outweigh a decrease in the population’s policy312
diversity in anti-coordination games) only applies to a certain extent in practice, explained below.313
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(a) ‘Cluster’ game. (b) ‘Target selection’ game.

(c) ‘Disperse’ game. (d) ‘Target coverage’ game.

(e) ‘Beach bar’ game. (f) ‘Shape formation’ game.

Figure 1: Standard settings with Ce = Cr = Cp = 1. In almost all games networked agents of all
broadcast radii significantly outperform the centralised (blue) and independent (orange) agents.

The fact that a single round of communication improves return over the independent case in anti-314
coordination games reflects Ass. 8 holding for Thm. 3, in that for all networked populations the315
increase in average base policy quality outweighs the decrease in diversity. However, the different316
communication radii lead to different degrees of consensus after a single round, and hence different317
decreases in diversity. Beyond a certain point, maintaining some diversity does in fact outweigh the318
benefit of all agents using the policy that has the best base quality for a given iteration. Some policy319
sharing is better than none, but too much may be a disadvantage in anti-coordination games. The320
ultimate choice of consensus level might depend on whether one is using the empirical population321
as a practical way of learning the social optimum for a MFC problem (Def. 6), where a single policy322
π∗ is desired to be given to an infinite population, or whether one is solving the MFC problem323
to approximate the solution to a finite-agent control problem (Def. 3) involving the same number324
of agents as the empirical population from which one is learning. In the latter case some policy325
diversity may be accepted/desired if it affords a better approximation to the N -agent solution.326

6 Conclusion327

We provided the first algorithms for decentralised training in MFC, as well as the first for online328
learning in MFC from a single non-episodic run of the empirical system. We did so by modifying329
existing algorithms for the MFG setting, and contributing a novel algorithm for estimating the global330
average reward via local communication. We proved theoretically that networked communication331
accelerates learning over both independent and centralised architectures. We supported this with332
extensive numerical results, accompanied by ablation studies and discussion of the empirical effects333
of communication radii. For future work, see Appx. I.334
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A Diagram for two possible conceptions of our work470

See Fig. 2.471

MFC solution for
infinite population Finite population ... used to give empirical

distribution for learning ...

MFC solution for
infinite population Finite population

... used to give empirical
distribution for learning ...

... used to give approximate
solution for ...

Figure 2: Two possible ways to conceive of our work regarding the relationship between the infinite-
and finite-population control problems, described in Sec. 2. Note that using the finite empirical pop-
ulation to learn the single-policy MFC social optimum π = (π∗, . . . , π∗) for the infinite population
(Def. 6) is not the same as directly finding π∗ = argmaxπ∈ΠN V pop(π, µt̄) = (π1, . . . , πN ), i.e.
the tuple of individual policies that maximises the expected finite population-average return in Def.
3, a problem known to be hard (Cui et al., 2023c; Bernstein et al., 2002).

B Preliminaries on Munchausen Online Mirror Descent472

Recent works have solved MFGs from non-episodic runs of the finite empirical system using a form473
of policy iteration called Online Mirror Descent (OMD) (Benjamin & Abate, 2024); we adapt this474
to learn a social optimum in the MFC setting. OMD involves beginning with an initial policy π0,475
and then at each iteration k, evaluating the current policy πk with respect to its induced mean-field476
flow µ = I(πk) to compute its Q-function Qk+1. To stabilise the learning process, we then use477
a weighted sum over this and past Q-functions, and set πk+1 to be the softmax over this weighted478

sum, i.e. πk+1(·|o) = softmax
(

1
τq

∑k+1
κ=0 Qκ(o, ·)

)
. τq is a temperature parameter that scales the479

entropy in Munchausen RL (see below) (Vieillard et al., 2020); this is a different temperature to the480
one agents use when communicating policies, denoted τ comm

k and discussed in Sec. 3.3.481

If the Q-function is approximated non-linearly, it is difficult to compute this weighted sum. The482
Munchausen trick addresses this by computing a single Q-function that mimics the weighted sum483
using implicit regularisation based on the Kullback-Leibler (KL) divergence between πk and πk+1484
(Vieillard et al., 2020). Using this reparametrisation gives Munchausen OMD (MOMD), detailed in485
Sec. 3.2 (Laurière et al., 2022b; Wu et al., 2024). MOMD does not bias policies, and has the same486
convergence guarantees as OMD (Hadikhanloo, 2017; Perolat et al., 2021; Wu et al., 2024).487
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C Algorithms488

C.1 Sub-routine for networked estimation of global average reward489

See Alg. 1, discussed in Sec. 3.1.490

Algorithm 1 Average reward estimation and communication

Require: Time-dependent communication graph Gcomm
t , rewards {rit}Ni=1, number of communica-

tion rounds Cr

1: ∀i : Initialise reward sets R̂i
t ← {(IDi, rit)}

2: for cr in 1, . . . , Cr do
3: ∀i : Broadcast R̂i

t,cr

4: ∀i : J i
t ← {j ∈ N : (i, j) ∈ Ecomm

t }
5: ∀i : R̂i

t,(cr+1) ← R̂
i
t,cr ∪

⋃
j∈Ji

t
R̂j

t,cr
6: end for
7: ∀i : ˜̂rit ← 1

|R̂i
t,Cr

|

∑
(ID,r)∈R̂i

t,Cr

r

8: return Estimates of average reward
{
˜̂rit

}N

i=1

C.2 Main learning algorithm491

See Alg. 2, discussed in Sec. 3.2.492

Definition 10 (Q-network empirical loss). The training loss to be minimised is given by L̂(θ, θ′) =493
1

|B|
∑

transition∈Bi
k,l

∣∣∣Q̌θi
k,l
(ot, at)− T

∣∣∣2 , where494

T = ˜̂rt +

[
τq lnπθi,′

k,l

(at|ot)
]0
cl

+ γ
∑
a∈A

π
θi,′
k,l

(a|ot+1)

(
Q̌

θi,′
k,l

(ot+1, a)− τq lnπθi,′
k,l

(a|ot+1)

)
.

For cl < 0, [·]0cl is a clipping function used in Munchausen RL to prevent numerical issues if the495
policy is too close to deterministic, as the log-policy term is otherwise unbounded (Vieillard et al.,496
2020; Wu et al., 2024).497

C.3 Sub-routine for networked estimation of global empirical mean-field498

Networked agents use Alg. 3 (this is Alg. 3 from Benjamin & Abate (2024) for the MFG setting) to499
locally estimate the global empirical mean field, to serve as an observation input for their Q-/policy-500
networks. To do so, we say that the population exhibits the following visibility graph, in addition to501
its communication network.502

Definition 11 (Time-varying state-visibility graph). The time-varying state visibility graph503
(Gvist )t≥0 is given by Gvist = (S ′, Evist ), where S ′ is the set of vertices representing the environ-504
ment states S, and the edge set Evist ⊆ {(m,n) : m,n ∈ S ′} is the set of undirected links present at505
time t, indicating which states are visible to each other.506

This graph applies in the subclass of environments which can most intuitively be thought of as507
those where agents’ states are positions in physical space, which include those in our experiments.508
Benjamin & Abate (2024) additionally contains a graph and algorithm for more general settings.509

In our experiments in spatial environments, the visibility graph Gvist is determined by the physical510
distance from agent i, as with the communication network Gcomm

t . In the independent architecture,511
we assume there are no links in Gvist , i.e. Evist = ∅.512

Alg. 3 involves agents using the visibility graph Gvist to count the number of agents in locations that513
fall within the visibility radius (Line 2). For Ce communication rounds, agents can supplement this514
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Algorithm 2 Decentralised MFC learning from non-episodic system run

Require: loop parameters K,M,L,E,Ce, Cr, Cp, learning parameters γ, τq, |B|, cl, ν,
{τ comm

k }k∈{0,...,K−1}
Require: initial states {si0}Ni=1; t← 0

1: ∀i : Randomly initialise parameters θi0 of Q-networks Q̌θi
0
(o, ·), and set πi

0(a|o) =

softmax
(

1
τq
Q̌θi

0
(o, ·)

)
(a)

2: for k = 0, . . . ,K − 1 do
3: ∀i: Empty i’s buffer
4: for m = 0, . . . ,M − 1 do
5: {oit}Ni=1 ← EstimateMeanFieldAlg. 3

(
Gvist ,Gcomm

t , {sit}Ni=1

)
6: Take step ∀i : ait ∼ πi

k(·|oit), rit = R(sit, a
i
t, µ̂t), s

i
t+1 ∼ P (·|sit, ait, µ̂t); t← t+ 1

7: {˜̂rit}Ni=1 ← EstimateAverageRewardAlg. 1
(
Gcomm
t , {rit}Ni=1

)
8: ∀i: Add

(
oit, a

i
t,
˜̂rit, o

i
t+1

)
to i’s buffer

9: end for
10: for l = 0, . . . , L− 1 do
11: ∀i : Sample batch Bi

k,l from i’s buffer
12: Update θ to minimise L̂(θ, θ′) as in Def. 10
13: If l mod ν = 0, set θ′ ← θ
14: end for
15: Q̌θi

k+1
(o, ·)← Q̌θi

k,L
(o, ·)

16: ∀i : πi
k+1(a|o)← softmax

(
1
τq
Q̌θi

k+1
(o, ·)

)
(a)

17:
(
{πi

k+1}i, {sit}i, t
)
← CommunicatePolicyAlg. 4

(
Gcomm
t , {πi

k+1}i, {sit}i, t
)

18: end for
19: return policies {πi

K}Ni=1

local count with those received from neighbours over the communication network Gcomm
t , in order515

to count agents that do not fall within the visibility radius (Lines 3-7). We assume agents know516
the population’s total size N , and therefore can distribute the uncounted agents uniformly over the517
states that remain unaccounted for after the communication rounds (Lines 8-10). Agents now have a518
vector containing a true or estimated count for every state; this is converted to an estimated empirical519
mean field by dividing all counts by N (Lines 11-12).520

C.4 Sub-routine for communicating and refining policies521

See Alg. 4, described in Sec. 3.3.522

D Informal intuitions regarding formal results523

Remark 2. Like many cooperative learning paradigms, both the independent and centralised ver-524
sions of our core learning algorithm (Alg. 2) may suffer from the credit-assignment problem, in that525
it is not clear how agents’ local state sit and local action ait contributed to the (locally estimated)526
average reward ˜̂rit (Li & Li, 2024; Cazenille et al., 2025). Agents may receive low individual reward527
rit by taking action ait given oit, but would nevertheless learn that doing so was ‘good’ if the rest528
of the population took highly rewarded actions at the same step giving high average reward ˜̂rit. By529
drawing spurious relations, an agent’s updated policy πi

k+1(a|o) may negatively impact (or simply530
not advance) the goal of maximising social welfare. While including the (estimated) empirical mean531
field in the observation oit = (sit,

˜̂µi
t) might mitigate this slightly by indicating which mean fields532

gave high average rewards, this does not solve the issue of allowing learners to distinguish between533
helpful or unhelpful local actions ait, whether centralised or not. By spreading policies through the534
population which are expected to have a higher individual return, despite this being a cooperative535
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Algorithm 3 Mean-field estimation and communication for environments with Gvist

Require: Time-dependent visibility graph Gvist , time-dependent communication graph Gcomm
t ,

states {sit}Ni=1, number of communication rounds Ce

1: ∀i, s : Initialise count vector υ̂i
t[s] with ∅

2: ∀i, ∀s′ ∈ S ′ : (sit, s′) ∈ Evist : υ̂i
t[s

′]←
∑

j∈1,...,N :sjt=s′ 1

3: for ce in 1, . . . , Ce do
4: ∀i : Broadcast υ̂i

t,ce

5: ∀i : J i
t = i ∪ {j ∈ N : (i, j) ∈ Ecomm

t }
6: ∀i, s and ∀j ∈ J i

t : υ̂
i
t,(ce+1)[s]← υ̂j

t,ce [s] if υ̂j
t,ce [s] ̸= ∅

7: end for
8: ∀i : counted_agentsit ←

∑
s∈S:υ̂i

t[s]̸=∅ υ̂
i
t[s]

9: ∀i : uncounted_agentsit ← N − counted_agentsit
10: ∀i : unseen_statesit ←

∑
s∈S:υ̂i

t[s]=∅ 1

11: ∀i, s where υ̂i
t[s] is not ∅ : ˜̂µi

t[s]←
υ̂i
t[s]
N

12: ∀i, s where υ̂i
t[s] is ∅ : ˜̂µi

t[s]←
uncounted_agentsit

N×unobserved_statesit
13: return {(states sit, mean-field estimates ˜̂µi

t)}Ni=1

Algorithm 4 Policy communication and selection

Require: Time-dependent communication graph Gcomm
t , loop parameters E,Cp, learning parame-

ters γ, {τ comm
k }k∈{0,...,K−1}

Require: policies {πi
k+1}Ni=1; states {sit}

N
i=1; t

1: ∀i : σi
k+1 ← 0

2: for e = 0, . . . , E − 1 evaluation steps do
3: {oit}Ni=1 ← EstimateMeanFieldAlg. 3

(
Gvist ,Gcomm

t , {sit}Ni=1

)
4: Take step ∀i : ait ∼ πi

k(·|oit), rit = R(sit, a
i
t, µ̂t), s

i
t+1 ∼ P (·|sit, ait, µ̂t)

5: ∀i : σi
k+1 ← σi

k+1 + γe · rit
6: t← t+ 1
7: end for
8: for Cp rounds do
9: ∀i : Broadcast σi

k+1, π
i
k+1

10: ∀i : J i
t ← {j ∈ N : (i, j) ∈ Ecomm

t }

11: ∀i : Select adoptedi ∼ Pr
(
adoptedi = j

)
=

exp (σj
k+1/τ

comm
k )∑

x∈Ji
t
exp (σx

k+1/τ
comm
k ) ∀j ∈ J i

t

12: ∀i : σi
k+1 ← σadoptedi

k+1 , πi
k+1 ← πadoptedi

k+1

13: {oit}Ni=1 ← EstimateMeanFieldAlg. 3
(
Gvist ,Gcomm

t , {sit}Ni=1

)
14: Take step ∀i : ait ∼ πi

k(·|oit), rit = R(sit, a
i
t, µ̂t), s

i
t+1 ∼ P (·|sit, ait, µ̂t); t← t+ 1

15: end for
16: return (policies {πi

k+1}Ni=1, states {sit}
N
i=1, t)

problem, we reduce the credit-assignment problem by replicating policies that should contribute536
positively to the population-average return, and filtering out those that do not.537

Moreover, even if we assumed credit assignment were not a problem, there is randomness in the Q-538
network update: agents have stochastic policies and thus may collect a wide variety of transitions to539
add to their individual buffers, from which they sample randomly when training Q-networks. There540
may therefore be considerable variance in the quality of their estimated Q-functions, leading in541
turn to variance in the quality of policy updates. At each iteration of the centralised algorithm, in542
expectation the central learner will by definition have an average-quality update, and its updated543
policy will be pushed to the entire population whether or not it performs well. Our decentralised544
networked approach permits beneficial parallelisation in place of this centralised method, by gener-545
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ating a whole population of possible updates, from which the one(s) estimated to be best-performing546
can be selected via a process akin to the comparison of fitness functions in evolutionary algorithms.547

E Theoretical assumptions548

Recall that at each iteration k of Alg. 2, after independently updating their policies in Line 16, the549
population has the policies {πi

k+1}Ni=1. There is randomness in these independent policy updates,550
stemming from the random sampling of each agent’s independently collected buffer. In Lines 1-7551
of Alg. 4, agents approximate their infinite discounted individual returns {V i(π, µt)}Ni=1 (Def. 2)552
of their updated policies by computing {σi

k+1}Ni=1: the E-step discounted return with respect to the553
empirical mean field generated when agents follow policies {πi

k+1}Ni=1 (i.e. they do not at this stage554
all follow a single identical policy).555

E.1 General assumptions556

Assumption 1. Assume that Algs. 1 and 3 allow networked agents to obtain accurate estimations557
of the true population-average rewards and global empirical mean field respectively, i.e. ∀i ˜̂µi

t = µ̂t558
and ˜̂rit = r̂.4559

Assumption 2. Assume that {σi
k+1}Ni=1 are sufficiently good approximations so as to respect the or-560

dering of the true infinite discounted individual returns {V i(πk+1, µt)}Ni=1,i.e. ∀i, j ∈ {1, . . . , N}561
σi
k+1 > σj

k+1 ⇐⇒ V i(πk+1, µt) > V j(πk+1, µt).562

Assumption 3. Assume that directly after the policy updates in Line 16 (Alg. 2), before any policy563
transfer as in the networked or centralised algorithms, all policies are different (due to the random-564
ness in these updates). This means we have the minimum possible value of the fc function and the565
maximum possible value of the fd function. Assume also that each policy has a distinct return, such566
that ∀i, j ∈ {1, . . . , N} πi

k+1 ̸= πj
k+1, V

i(πk+1, µt) ̸= V j(πk+1, µt), σ
i
k+1 ̸= σj

k+1.567

Assumption 4. Say that τ comm
k ∈ R≥0, such that the softmax adoption scheme (Line 11, Alg. 4)568

gives non-uniform probabilities of policies being adopted as they are exchanged among neighbours.569

Assumption 5. Assume that after the Cp rounds in Lines 8-15 (Alg. 4), in which agents exchange570
and adopt policies from neighbours, the networked population is left with a single policy such that571
∀i, j ∈ {1, . . . , N} πi

k+1 = πj
k+1.5572

Assumption 6. We have two different policies that could be shared by the whole population such573
that πx = (πx, . . . , πx) and πy = (πy, . . . , πy). We assume that:574

V pop(πx, µt) > V pop(πy, µt) ⇐⇒ W (πx, I(πx)) > W (πy, I(πy)).

E.2 Assumptions for outperformance of the independent case575

Assumption 7. Assume the estimated global mean field and average reward are the same in the576
networked and independent cases, i.e. ∀i, j ˜̂µ

(i,net)
t = ˜̂µ

(j,ind)
t and ˜̂r

(i,net)
t = rit.

6577

4In other words, we assume for simplicity that the only difference between the networked and centralised cases is the
networked policy communication scheme. In practice, our ablation studies indicate that this is empirically the dominant
factor in our experimental settings anyway.

5Most simply we can think of Ass. 5 holding if 1) τcomm
k → 0 ∀k, such that the softmax essentially becomes a max

function, and 2) the communication network Gcomm
t is static and connected during the Cp communication rounds, where

Cp is equal to the network diameter dGcomm
t

. Under these conditions, previous results on max-consensus algorithms show
that all agents in the network will converge on the highest σmax

k+1 value (and hence the unique associated πmax
k+1 ) within a

number of rounds equal to the diameter dGcomm
t

(Nejad et al., 2009; Benjamin & Abate, 2023). However, policy consensus
as in Ass. 5 might be achieved even outside of these conditions, including if the network is dynamic and not connected at
every step, given appropriate values for Cp and τcomm

k ∈ R>0.
6In other words, we assume for simplicity that the only difference between the networked and independent cases is the

networked policy communication scheme. In practice, the networked estimates will be better due to communication, giving
an additional performance increase over the independent case.
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E.2.1 Assumption for outperformance of the independent case in anti-coordination games578

Assumption 8. Assume that an increase in the base return function outweighs a decrease in the579
population’s policy diversity, namely h(b+∆b, fd −∆fd) > h(b, fd), ∀∆b > 0,∆fd > 0.580

F Proofs581

Ass. 5 assumes that after the Cp policy exchange rounds in Lines 8-15 (Alg. 4), the networked582
population is left with a single policy. Call this consensus policy πnet

k+1, and its associated finitely583
approximated return σnet

k+1. Recall that the centralised case is where the Q-network update of ar-584
bitrary agent i = 1 is automatically pushed to all the others instead of the policy evaluation and585
exchange in Lines 1-15 (Alg. 4); this is equivalent to a networked case where policy consensus is586
reached on a random one of the policies {πi

k+1}Ni=1. Call this policy arbitrarily given to the whole587
population πcent

k+1 , and its associated finitely approximated return σcent
k+1 .588

F.1 Proof of Thm. 1589

Theorem 1. In coordination games and anti-coordination games where Ass. 1, 2, 3, 4, 5 and590
6 apply, we have E[W (πnet

k+1, I(π
net
k+1))] > E[W (πcent

k+1, I(π
cent
k+1))] (i.e. in expectation networked591

agents will increase their returns faster than centralised ones).592

Proof. Recall that before the communication rounds in Line 8 (Alg. 4), the randomly updated poli-593
cies {πi

k+1}Ni=1 have associated approximated returns {σi
k+1}Ni=1. Denote the mean and maximum594

of this set σmean
k+1 and σmax

k+1 respectively. Since πcent
k+1 is chosen arbitrarily from {πi

k+1}Ni=1, it will595
obey E[σcent

k+1] = σmean
k+1 ∀k, though there will be high variance. Conversely, the softmax adoption596

probability (Line 11, Alg. 4) for the networked case means by definition that policies with higher597
σi
k+1 are more likely to be adopted at each communication round. Thus the consensus πnet

k+1 that598
gets adopted by the whole networked population will obey E[σnet

k+1] > σmean
k+1 (if τ comm

k+1 → 0, it will599
obey E[σnet

k+1] = σmax
k+1 ∀k). As such:600

E[σnet
k+1] > E[σcent

k+1]. (1)

Refer to the agent whose update originally gave rise to πnet
k+1 and σnet

k+1 as agent601
(i,net); we equivalently also have the arbitrary agent (j, cent). Prior to consen-602
sus being attained in each case, the joint policy can be written as π(i,net;j,cent) :=603
(π1, . . . , πi−1, π(i,net), πi+1, . . . , πj−1, π(j,cent), πj+1, . . . , πN ).604

Given Eq. 1, and by Ass. 2, we know that directly after the policy update in Line 16 (Alg. 2), prior605
to the consensus being reached, we have:606

E
[
V (i,net)(π

(i,net;j,cent)
k+1 , µt)

]
> E

[
V (j,cent)(π

(i,net;j,cent)
k+1 , µt)

]
. (2)

We now need to show that this ordering is maintained in the case that each policy is given to the607
whole population.608

By Ass. 3 we know that straight after the random policy updates there is no alignment among poli-609
cies, i.e. in a coordination game we have f

(i,net)
c = f

(j,cent)
c = min fc, and in an anti-coordination610

game we have f
(i,net)
d = f

(j,cent)
d = max fd. Therefore if Eq. 2 pertains, by Def. 8 it must be611

because:612
E[b(π(i,net))] > E[b(π(j,cent))], (3)

i.e. because the base policy quality is higher for π(i,net) than for π(j,cent).613

By Ass. 5 know that in the networked and centralised cases the joint policies respectively become614
πnet := (πnet, πnet, πnet, . . . ) and πcent := (πcent, πcent, πcent, . . . ). We therefore end up with615
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maximum alignment in both cases, such that fnet
c = f cent

c = max fc in a coordination game, and616
fnet
d = f cent

d = min fd in an anti-coordination game. Due to this, along with Eqs. 2 and 3, we have617

E
[
V i(πnet

k+1, µt)
]
> E

[
V j(πcent

k+1, µt)
]
. (4)

In turn we have:618
E
[
V pop(πnet

k+1, µt)
]
> E

[
V pop(πcent

k+1, µt)
]
, (5)

which by Ass. 6 gives619

E[W (πnet
k+1, I(π

net
k+1))] > E[W (πcent

k+1, I(π
cent
k+1))],

namely the result.620

F.2 Proof of Thm. 2621

Theorem 2. In a coordination game, given Ass. 2, 3, 4 and 7, even a single round of communication622

in the networked case improves on the independent case, i.e. for c = 0, E
[
V pop(πnet

k+1,c+1, µt)
]
>623

E
[
V pop(πind

k+1, µt)
]
.624

Proof. The softmax adoption scheme (Line 11, Alg. 4), which according to Ass. 3 and 4 gives non-625
uniform adoption probabilities, is such that some policies are more likely to be adopted than others.626
Thus the number of distinct policies in the population is expected to decrease. Say for simplicity627
that during the first communication round a π

(j,net)
k+1,c is replaced by π

(i,net)
k+1,c , such that for c = 0628

πnet
k+1,c =

(
π
(1,net)
k+1,c , . . . , π

(i,net)
k+1,c , . . . , π

(j,net)
k+1,c , . . . π

(N,net)
k+1,c

)
,

629

and πnet
k+1,c+1 =

(
π
(1,net)
k+1,c+1, . . . , π

(i,net)
k+1,c+1, . . . , π

(i,net)
k+1,c+1, . . . π

(N,net)
k+1,c+1

)
.

For this to have occurred, we know that630

E[σ(i,net)
k+1,c ] > E[σ(j,net)

k+1,c ],

and therefore by Ass. 2 that631

E
[
V (i,net)(πnet

k+1,c, µt)
]
> E

[
V (j,net)(πnet

k+1,c, µt)
]
. (6)

By Ass. 3 we know that straight after the random policy updates there is no alignment among632
policies, i.e. in a coordination game we have f

(i,net)
c = f

(j,net)
c = min fc. Therefore if Eq. 8633

pertains, by Def. 8 it must be because:634

E[b(π(i,net))] > E[b(π(j,net))], (7)

i.e. because the base policy quality is higher for π(i,net) than for π(j,net). For this reason635

we have, for c = 0: E
[
V pop(πnet

k+1,c+1, µt)
]

> E
[
V pop(πnet

k+1,c, µt)
]
. Additionally, replac-636

ing π
(j,net)
k+1,c with a second copy of π

(i,net)
k+1,c will increase the alignment (fc) of π

(i,net)
k+1,c such that637

E
[
V (i,net)(πnet

k+1,c+1, µt)
]
> E

[
V (i,net)(πnet

k+1,c, µt)
]
, accelerating the improvement even further.638

These steps apply similarly if more than one policy is replaced.639

Since the independent case is equivalent to the networked case when Cp = 0, we can say that640
πind

k+1 = πnet
k+1,0. This gives the result, i.e.641

E
[
V pop(πnet

k+1,c+1, µt)
]
> E

[
V pop(πind

k+1, µt)
]
.

642
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F.3 Proof of Thm. 3643

Theorem 3. In an anti-coordination game, given Ass. 2, 3, 4, 7 and 8, even a single round644
of communication in the networked case improves on the independent case, i.e. for c = 0,645

E
[
V pop(πnet

k+1,c+1, µt)
]
> E

[
V pop(πind

k+1, µt)
]
.646

Proof. The proof begins similarly to that for a coordination game. The softmax adoption scheme647
(Line 11, Alg. 4), which according to Ass. 3 and 4 gives non-uniform adoption probabilities, is such648
that some policies are more likely to be adopted than others. Thus the number of distinct policies in649
the population is expected to decrease. Say for simplicity that during the first communication round650
a π

(j,net)
k+1,c is replaced by π

(i,net)
k+1,c , such that for c = 0651

πnet
k+1,c =

(
π
(1,net)
k+1,c , . . . , π

(i,net)
k+1,c , . . . , π

(j,net)
k+1,c , . . . π

(N,net)
k+1,c

)
,

652

and πnet
k+1,c+1 =

(
π
(1,net)
k+1,c+1, . . . , π

(i,net)
k+1,c+1, . . . , π

(i,net)
k+1,c+1, . . . π

(N,net)
k+1,c+1

)
.

For this to have occurred, we know that653

E[σ(i,net)
k+1,c ] > E[σ(j,net)

k+1,c ],

and therefore by Ass. 2 that654

E
[
V (i,net)(πnet

k+1,c, µt)
]
> E

[
V (j,net)(πnet

k+1,c, µt)
]
. (8)

By Ass. 3 we know that straight after the random policy updates there is no alignment among655
policies, i.e. in the anti-coordination game we have f

(i,net)
d = f

(j,net)
d = max fd. Therefore if Eq. 8656

pertains, by Def. 8 it must be because:657

E[b(π(i,net))] > E[b(π(j,net))], (9)

i.e. because the base policy quality is higher for π(i,net) than for π(j,net).658

Ass. 8 assumes that any increase in the base quality of the policy will outweigh the decrease in659
diversity that will come from having more than one agent following π

(i,net)
k+1,c+1. Therefore we have,660

for c = 0:661
E
[
V pop(πnet

k+1,c+1, µt)
]
> E

[
V pop(πnet

k+1,c, µt)
]
.

These steps apply similarly if more than one policy is replaced.662

Since the independent case is equivalent to the networked case when Cp = 0, we can say that663
πind

k+1 = πnet
k+1,0. This gives the result, i.e.664

E
[
V pop(πnet

k+1,c+1, µt)
]
> E

[
V pop(πind

k+1, µt)
]
.

665

G Extended comparison with related work666

We discuss here the works most closely related to our present work, focusing on decentralisation667
and networked communication, and clarifying the differences with prior methods and settings. We668
refer the reader to Laurière et al. (2022a) for a broader survey of MFC.669

Numerous works claiming to study decentralisation in MFC take this to mean only that agents do670
not have access to the specific states of all other agents, and have policies depending on their local671
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state and possibly the mean field, which we take as a given in our work. They nevertheless rely672
on a central learner or coordinator that provides global information to all agents, a reliance which673
we remove in our work. This applies, for example, to Grammatico et al. (2016) - where a ‘central674
population coordinator’ broadcasts a common signal to all agents - and Tajeddini et al. (2017), which675
presents a leader-follower setting where a ‘central population coordinator’ estimates the mean-field676
trajectory. Farzaneh et al. (2020) requires a central coordinator, and presents a non-cooperative677
scenario so does not actually fall under MFC despite being referred to as such.678

Bayraktar & Kara (2024) considers independent, ‘online’ learning for MFC in a setting that is differ-679
ent to ours. Crucially, their method involves agents first estimating a model (reward and transition680
functions) of the system by conducting ‘online’ updates using samples collected while following681
exploration policies. Only once having done so do they compute execution policies that are opti-682
mal with respect to the estimated model. We argue that having a dedicated exploration phase is683
infeasible for many real-world applications, and instead present a fully model-free online learning684
algorithm. Moreover, their setting only permits independent learning if N is large but finite. For685
infinite populations, a central coordinator is required to supply common noise to aid exploration686
during the initial phase, and if the optimal policy for the estimated model is not unique, centralised687
coordination is required to allow the agents to agree on which policy to execute. Our algorithms688
require no such special considerations. Finally, their work is purely theoretical, whereas we provide689
extensive empirical results.690

In Cui et al. (2023c), decentralisation applies only during execution, and they offer a centralised-691
training decentralised-execution method (as also in Cui et al. (2023a)). They say that decentralised692
training could be achieved if the global mean field is observable and all agents use the same seed to693
correlate their actions - we do not require either assumption for our decentralised training algorithm.694
They also train episodically whereas we learn online from a single run of the system. Finally, their695
experiments focus only on coordination games, whereas we additionally explore empirical effects696
resulting from decentralised training in anti-coordination games, where agents gain higher rewards697
by diversifying their behaviour.698

Angiuli et al. (2022; 2023) provide algorithms for MFC learning from a single run, but here it is a699
single run only of a ‘representative’ player that estimates the mean field, rather than a single run of700
the empirical population as in our work. Their algorithms are thus inherently centralised, as well as701
involving two time-scales for updating the mean-field estimate, which we argue is unlikely to be a702
practical paradigm for training in complex real-world systems such as robotic swarms.703

Our work is also closely related to Benjamin & Abate (2023) and Benjamin & Abate (2024), which704
introduce networked communication to the non-cooperative MFG setting. By adapting their commu-705
nication scheme and learning algorithm, we introduce networked communication to the cooperative706
MFC setting, where it is arguably more applicable due to broader incentives for communication of707
policies. Their works focus on coordination games to justify the sharing of policies (though Ben-708
jamin & Abate (2024) does demonstrate empirically that networked agents outperform independent709
agents in a non-cooperative anti-coordination game, indicating that self-interested agents do nev-710
ertheless have incentive to communicate), whilst we provide extensive theoretical and empirical711
results on the benefits of policy sharing in MFC for both coordination and anti-coordination games.712
We integrate Alg. 3 from Benjamin & Abate (2024) for estimating the global mean field from a local713
neighbourhood, but additionally contribute novel Alg. 1 for estimating the global average reward714
from a local neighbourhood for the MFC setting.715

H Experiments716

Experiments were conducted on a Linux-based machine with 2 x Intel Xeon Gold 6248 CPUs (40717
physical cores, 80 threads total, 55 MiB L3 cache). We use the JAX framework to accelerate and718
vectorise our code. We run five trials with different random seeds for each experiment, and plot719
the mean and standard deviation of the mean across the seeds. Random seeds are set in our code720
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in a fixed way dependent on the trial number to allow easy replication of experiments. We discuss721
hyperparameters in Appx. H.2.722

H.1 Games723

We conduct numerical tests with six games. In all cases, rewards are normalised in [0,1] after they724
are computed.725

Cluster. This game is also used in Benjamin & Abate (2023; 2024). Agents are encouraged to726
gather together by the reward function R(sit, a

i
t, µ̂t) = log(µ̂t(s

i
t)). That is, agent i receives a727

reward that is logarithmically proportional to the fraction of the population that is co-located with it728
at time t. We give the population no indication where they should cluster, agreeing this themselves729
over time.730

Agree on a single target. This game is also used in Benjamin & Abate (2023; 2024). Unlike in731
the above ‘cluster’ game, the agents are given options of locations at which to gather, and they must732
reach consensus among themselves. If the agents are co-located with one of a number of specified733
targets ϕ ∈ Φ (in our experiments we place one target in each of the four corners of the grid), and734
other agents are also at that target, they get a reward proportional to the fraction of the population735
found there; otherwise they receive a penalty of -1. In other words, the agents must coordinate736
on which of a number of mutually beneficial points will be their single gathering place. Define737
the magnitude of the distances between x, y at t as distt(x, y). The reward function is given by738
R(sit, a

i
t, µ̂t) = rtarg(rcoord(µ̂t(s

i
t))), where739

rtarg(x) =

{
x if ∃ϕ ∈ Φ s.t. distt(sit, ϕ) = 0

−1 otherwise,
740

rcoord(x) =

{
x if µ̂t(s

i
t) > 1/N

−1 otherwise.

Disperse. This game is also used in Benjamin & Abate (2024) and is similar to the ‘exploration’741
tasks in Laurière et al. (2022b); Wu et al. (2024) and other MFG works. In our version agents are742
rewarded for being located in more sparsely populated areas but only if they are stationary, to avoid743
trivial random policies. The reward function is given by R(sit, a

i
t, µ̂t) = rstationary(− log(µ̂t(s

i
t))),744

where745

rstationary(x) =

{
x if ait is ‘remain stationary’
−1 otherwise.

Target coverage. The population is rewarded for spreading across a certain number of targets, as746
long as agents are stationary at the target. As in the ‘target selection’ game, we have targets ϕ ∈ Φ,747
where in our experiments we place one target in each of the four corners of the grid. Again define748
the magnitude of the distances between x, y at t as distt(x, y). The reward function is given by749

R(sit, a
i
t, µ̂t) = rstationary

(
rtarg

(
− log(µ̂t(s

i
t))

))
,

where rstationary and rtarg are as defined above.750

Beach bar. Such games are very common in MFG works (Perrin et al., 2020; Laurière et al.,751
2022a; Cui et al., 2023a; Wu et al., 2024). Agents are rewarded for being stationary in sparsely752
populated locations as close as possible to a target ϕb, located in the centre of the grid. The maximum753
possible distance from the target is denoted maxDist. The reward is given by754

R(sit,a
i
t, µ̂t) =

rstationary
(
maxDist− distt(s

i
t, ϕb)− log(µ̂t(s

i
t))

)
,

where rstationary is as defined above.755
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Shape formation. The population is rewarded for spreading around a ring shape, accomplished756
by encouraging agents to be a distance of 3 (chosen arbitrarily to fit the grid) from a centre point ϕc.757
The reward is given by758

R(sit, a
i
t, µ̂t) = rstationary

(
rring

(
− log(µ̂t(s

i
t))

))
,

where rstationary is as defined above, and759

rring(x) =

{
x if distt(sit, ϕc) = 3

−1 otherwise.

H.2 Hyperparameters760

See Table 1 for our hyperparameter choices. We can group our hyperparameters into those control-761
ling the size of the experiment, those controlling the size of the Q-network, those controlling the762
number of iterations of each loop in the algorithms and those affecting the learning/policy updates763
or policy adoption.764

As in the related works on networked communication in the MFG setting by Benjamin & Abate765
(2023; 2024), in our experiments we generally want to demonstrate that our communication-based766
algorithms outperform the centralised and independent architectures by allowing policies that are es-767
timated to be better performing to proliferate through the population, such that convergence occurs768
within fewer iterations and computationally faster, even when the Q-function is poorly approxi-769
mated and/or the mean field is poorly estimated, as is likely to be the case in real-world scenarios.770
Moreover we want to show that there is a benefit even to a small amount of communication, so that771
communication rounds themselves do not excessively add to time complexity. As such, we gener-772
ally select hyperparameters at the lowest end of those we tested during development, to show that773
our algorithms are particularly successful given what might otherwise be considered ‘undesirable’774
hyperparameter choices.775

H.3 Additional experiments and ablations776

We provide numerous additional experiments and ablation studies. We list these below, but please777
find the full discussion of results in the caption for each figure.778

• Robustness to communication failure - Fig. 3.779

• Increased communication rounds - Figs. 4 and 5.780

• Ablation study with population-independent policies - Fig. 6.781

• Ablation study of Alg. 3 for estimating the empirical mean field - Fig. 7.782

• Ablation study for observation of true/estimated average reward (agents only see their individual783
reward) - Fig. 8.784

• Ablation study for Alg. 1 for estimating the true global average reward (all agents receive true785
global average reward) - Fig. 9.786

• Ablation study of the choice of τ comm
k - Fig. 10.787

I Future work788

We leave more general theoretical results, such as proofs of convergence and sample complexity, for789
future work. Future work also includes experiments in other types of game, including more realistic790
environments and ones where the transition function also depends on the mean field. Our algorithms791
contain numerous inner loops and thus require synchronisation between communicating agents. Our792
ablation studies of the sub-routines and our experiment on robustness to communication failures793
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Table 1: Hyperparameters

Hyperparam. Value Comment
Trials 5 We run 5 trials with different random seeds for each experiment. We plot the mean and standard

deviation of the mean for each metric across the seeds.
Gridsize 20x20 -
Population 500 We chose 500 for our demonstrations to show that our algorithm can handle large populations,

indeed often larger than those demonstrated in other mean-field works, especially for grid-world
environments, while also being feasible to simulate wrt. time and computation constraints (Yang
et al., 2018; Subramanian & Mahajan, 2019; Ganapathi Subramanian et al., 2020; 2021; Cui &
Koeppl, 2021; Yongacoglu et al., 2022; Subramanian et al., 2022; Cui et al., 2023a; Guo et al.,
2023; Benjamin & Abate, 2023; 2024; Wu et al., 2024). For example, the MFC work in Carmona
et al. (2019) uses 10 agents; the work on decentralised execution for MFC by Cui et al. (2023c) uses
200 agents.

Number of
neurons in
input layer

440 The agent’s position is represented by two concatenated one-hot vectors, indicating the agent’s row
and column. The mean-field distribution is a flattened vector of the same size as the grid. As such,
the input size is [(2× dimension) + (dimension2)].

Neurons
per hidden
layer

256 We draw inspiration from common rules of thumb when selecting the number of neurons in hidden
layers, e.g. it should be between the number of input neurons and output neurons / it should be
2/3 the size of the input layer plus the size of the output layer / it should be a power of 2 for
computational efficiency. Using these rules of thumb as rough heuristics, we select the number of
neurons per hidden layer by rounding the size of the input layer down to the nearest power of 2.
The layers are all fully connected.

Hidden lay-
ers

2 We achieved sufficient learning speed with 2 hidden layers, but further optimising the number of
layers may lead to better results.

Activation
function

ReLU This is a common choice in deep RL.

K 150 K is chosen to be large enough to see convergence in most networked cases.
M 20 We tested M in {20,50,100} and found that the lowest value was sufficient to achieve convergence

while minimising training time. It may be possible to converge with even smaller choices of M .
L 20 We tested L in {20,50,100} and found that the lowest value was sufficient to achieve convergence

while minimising training time. It may be possible to converge with even smaller choices of L.
E 20 We tested E in {20,50,100}, and choose the lowest value to show the benefit to convergence even

from very few evaluation steps. It may be possible to reduce this value further and still achieve
similar results.

Cp 1
(10/50)

As in Benjamin & Abate (2023; 2024), we choose a value of 1 for most experiments to show
the convergence benefits brought by even a single communication round, even in networks that may
have limited connectivity. We also conduct additional studies to show the effect of additional rounds
(Sec. H.3).

Ce 1
(10/50)

Similar to Cp, we choose this value to show the ability of our algorithm to appropriately estimate the
mean field even with only a single communication round, even in networks that may have limited
connectivity. We also conduct additional studies to show the effect of additional rounds (Sec. H.3).

Cr 1
(10/50)

Similar to Cp, we choose this value to show our algorithm’s ability to appropriately estimate the
average reward even with only a single round, even in networks that may have limited connectivity.
We conduct additional studies to show the effect of additional rounds (Sec. H.3).

γ 0.9 Standard choice across RL literature.
τq 0.03 We follow Vieillard et al. (2020) and Benjamin & Abate (2024), which tested a range of values.
|B| 32 This is a common choice of batch size that trades off noisy updates and computational efficiency.
cl -1 We use the same value as in Vieillard et al. (2020); Benjamin & Abate (2024).
ν L− 1 We follow Benjamin & Abate (2024), which is similar to Laurière et al. (2022b).
Optimiser Adam As in Vieillard et al. (2020), we use the Adam optimiser with initial learning rate 0.01.
τ comm
k cf.

com-
ment

We follow Benjamin & Abate (2024), where τ comm
k increases linearly from 0.001 to 1 across the

K iterations. Further optimising the annealing process may lead to better results; we provide an
ablation study in Appx. H.3.
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(a) ‘Cluster’ game. (b) ‘Target selection’ game.

(c) ‘Disperse’ game. (d) ‘Target coverage’ game.

(e) ‘Beach bar’ game. (f) ‘Shape formation’ game.

Figure 3: All communication links suffer a 90% probability of failure, including in the centralised
case, where the link between the central learner and the rest of the population may fail. Ce = Cr =
Cp = 1. The centralised population, which in the standard setting matched networked performance
only in the ‘cluster’ game, now learns slower even in this game, due to suffering from the single
point of failure. Our networked scheme appears robust to the failures in all games, with only small
differences to performance in the standard setting. In fact, several broadcast radii perform better in
the ‘shape formation’ game with these failures than without, probably because they permit greater
diversity policies while still having an advantage over purely independent learners (as discussed in
Sec. 5.2). However, the smallest broadcast radius (green, 0.2) does drop in performance in this
game, which might be expected given it now acts similarly to the independent case. Networked
populations appear to have less variance in this setting than in the standard setting, at least in the
first four games. This is likely because the communication failures prevent both particularly high
and particularly low performing policies from spreading fast in the population, preventing large
performance fluctuations and smoothing learning progress. Meanwhile a centralised population still
has large variance even with communication failures, due to enforcing the adoption of an arbitrarily-
chosen consensus policy - in some games variance is higher in this setting (though in some it may be
marginally lower). This points to an additional benefit of our networked scheme over the centralised
case.

(Fig. 3) indicate that this is not necessarily a problem in practice, but future work nevertheless lies794
in simplifying the nested loops of our algorithms.795
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(a) ‘Cluster’ game. (b) ‘Target selection’ game.

(c) ‘Disperse’ game. (d) ‘Target coverage’ game.

(e) ‘Beach bar’ game. (f) ‘Shape formation’ game.

Figure 4: Standard algorithms but Ce = Cr = Cp = 10. As is expected, in the coordination
games the networked agents with lower broadcast radii now receive returns almost as high as those
with larger radii, albeit at the cost of greater variance (as there may be some noise in the quality
of the policy that gets spread to the whole population as a result of more communication rounds).
In the ‘target selection’ game, now all networked populations outperform the centralised agents.
In the anti-coordination ‘target coverage’ game, the smaller broadcast radii (green, 0.2; red, 0.4;
purple, 0.6) receive slightly lower returns than before, since the additional communication rounds
now make policy alignment more likely, reducing fd as per Def 9. The same is true of the smallest
radius population (green, 0.2) in the ‘shape formation’ game, which receives a lower return than
before. Nevertheless, all networked populations receive higher returns than the independent agents
in all games, and also than the centralised population in all but the ‘cluster’ game. This shows that in
our experimental settings there is a very large benefit to a single communication round, with limited
benefit to increasing the algorithms’ time complexity with additional communication rounds.
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(a) ‘Cluster’ game. (b) ‘Target selection’ game.

(c) ‘Disperse’ game. (d) ‘Target coverage’ game.

(e) ‘Beach bar’ game. (f) ‘Shape formation’ game.

Figure 5: Standard algorithms but Ce = Cr = Cp = 50. Having 50 communication rounds
does not appear to significantly change networked performance compared to 10 rounds (Fig. 4),
with most increases or decreases in average return appearing within the margin of error. Most
notably, the largest broadcast radius (pink, 1.0) receives slightly lower return now than with 10
rounds in the ‘disperse’ game, while pink (1.0), brown (0.8) and green (0.2) receive lower returns
and have higher variance now in the ‘beach bar’ game. As in the case of Ce = Cr = Cp = 10,
additional communication rounds make policy alignment more likely, reducing fd as per Def 9.
Nevertheless, all networked populations receive higher returns than the independent agents in all
games, and also than the centralised population in all but the ‘cluster’ game. This shows that in
our experimental settings there is a very large benefit to a single communication round, with limited
benefit to increasing the algorithms’ time complexity with additional communication rounds.
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(a) ‘Cluster’ game. (b) ‘Target selection’ game.

(c) ‘Disperse’ game. (d) ‘Target coverage’ game.

(e) ‘Beach bar’ game. (f) ‘Shape formation’ game.

Figure 6: Ablation study on population-independent policies. No agents, including centralised and
networked ones, observe the empirical mean field, and all receive a vector of zeros in its place (so
as to keep the neural networks the same size as in the standard setting). Cr = Cp = 1. In our
stationary games, networked populations do not appear to perform substantially differently to the
standard population-dependent setting, though some radii (red, 0.4; pink, 1.0) appear to perform
slightly better in the ‘shape formation’ game. On the other hand, in the coordination games, and
particularly the ‘target selection’ game, the centralised population receives a significantly lower
return in this setting.
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(a) ‘Cluster’ game. (b) ‘Target selection’ game.

(c) ‘Disperse’ game. (d) ‘Target coverage’ game.

(e) ‘Beach bar’ game. (f) ‘Shape formation’ game.

Figure 7: Ablation study of Alg. 3 for estimating the empirical mean field - all agents, including
independent ones, directly receive the true global empirical mean field. Cr = Cp = 1. This does
not appear to change performance in the networked populations (apart from greater variance here in
the ‘shape formation’ game), nor does it help independent agents. This may be evidence that Alg.
3 enables networked agents to accurately estimate the global mean field from local observations.
However, our ablation study on population-independent policies (Fig 6) suggests that not observing
the mean field does not markedly disadvantage agents in our experimental settings in any case (apart
from for the centralised populations in the coordination games). Therefore further evidence is re-
quired in settings that require population-dependent policies to confirm the efficacy of Alg. 3.
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(a) ‘Cluster’ game. (b) ‘Target selection’ game.

(c) ‘Disperse’ game. (d) ‘Target coverage’ game.

(e) ‘Beach bar’ game. (f) ‘Shape formation’ game.

Figure 8: Ablation study for observation of true/estimated global average reward r̂/˜̂rit, where all
agents, including centralised ones, only have access to rit, where in the centralised case i = 1.
Ce = Cp = 1. The greatest effect of this is on the centralised (blue) case, which performs much
worse in the ‘target selection’ game, and with higher variance in the ‘cluster’ and ‘beach bar’ games.
The networked agents appear more robust, though do experience a slight performance decrease,
mostly among populations with the largest broadcast radii (pink, 1.0; brown, 0.8), i.e. those most
similar to the centralised case in terms of ˜̂rit, as might be expected. In particular, note the greater
variance of pink (1.0) in the ‘target selection’ game; slower learning and higher variance of pink
(1.0) and brown (0.8) in the ‘beach bar’ game; lower returns for pink (1.0) and brown (0.8) in the
‘shape formation’ game; and slower learning and convergence of the smallest radii (green, 0.2; red,
0.4) in the ‘target coverage’ game. This all demonstrates the usefulness and efficacy of our novel
Alg. 1.
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(a) ‘Cluster’ game. (b) ‘Target selection’ game.

(c) ‘Disperse’ game. (d) ‘Target coverage’ game.

(e) ‘Beach bar’ game. (f) ‘Shape formation’ game.

Figure 9: Ablation study for Alg. 1 for estimating the true global average reward. All agents,
including both networked and independent ones, directly receive the true global average reward such
that ˜̂rit = r̂. Access to the true average reward does not help networked (or independent) agents to
improve their returns, demonstrating that our novel Alg. 1 already affords networked populations
robustness against the lack of access to this global information (having this global information would
be an unrealistic assumption in practice). In fact, networked populations’ performance actually
seems to be worse with this global information in the ‘shape formation’ game, particularly in the
case with the smallest broadcast radius (green, 0.2), but perhaps not by a statistically significant
amount.
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(a) ‘Cluster’ game. (b) ‘Target selection’ game.

(c) ‘Disperse’ game. (d) ‘Target coverage’ game.

(e) ‘Beach bar’ game. (f) ‘Shape formation’ game.

Figure 10: Ablation study of the choice of τ comm
k . Here ∀k τ comm

k = 1e-18 (i.e. τ comm
k → 0),

rather than linearly increasing from 0.001 to 1 across the K iterations as in all other experiments
(see Table 1). Ce = Cr = Cp = 1. In this setting, networked agents continue to outperform the
centralised (blue) and independent (orange) populations in all games (except the ‘cluster game’),
but otherwise generally appear to receive lower average returns and with greater variance. This is
because Ass. 2 on the quality of the finite-step approximations {σi

k+1}Ni=1 = {V̂ i(πk+1, µt;E)}Ni=1

does not always apply in practice, meaning the policy estimated to perform the best may not actually
be a good update, such that enforcing the adoption of this policy can lead to noisy, unstable learning.
Using a higher temperature value smooths out this noise. Moreover, using τ comm

k → 0 effectively
enforces consensus on a single policy for the finite population in the networked case, which in anti-
coordination games may also reduce the average return. This all provides empirical evidence for our
scheme for τ comm

k , but further optimising the choice might lead to additional performance increase.
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