
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CROSS-LINGUAL LONG-TAILED ENTITY ALIGNMENT
IN KNOWLEDGE GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Entity alignment (EA) models rely mostly on triples and structural information
of Knowledge Graphs (KGs), but underperform on sparsely connected long-tailed
entities. We address this gap by proposing a model, ContrastEA, that leverages
pre-trained Language Models (LM), e.g. me5, to generate entity representations,
followed by a novel contrastive learning approach that incorporates hard-negative
mining strategies with top-k negatives per entity, alongside NT-Xent loss to sep-
arate challenging entity pairs. In addition, to address the under-representation of
long-tailed entities in benchmark datasets, we curate a new dataset from DBpe-
dia comprising long-tailed entities per language – Arabic, German, Portuguese,
Italian, Hindi, Russian, and Japanese, each aligned to English (a total of 154,296
cross-lingual entity pairs). Our results demonstrate that ContrastEA outperforms
the classic EA models on three benchmark datasets, improving Hits@1 by 6–20
percentage points, and achieves SOTA on the curated dataset over the long-tailed
EA models.

1 INTRODUCTION

A Knowledge Graph (KG) is a structural network of relational facts stored in the form of triples
⟨head entity, relation, tail entity⟩ and serves as the backbone of various applications, including se-
mantic search (Bast et al., 2016), question answering (Yasunaga et al., 2021), and recommender
systems (Xian et al., 2019). Most KGs are created from single sources designed for specific pur-
poses, representing niche domain knowledge, and therefore also with limited coverage. This limita-
tion is further amplified in multilingual KGs (Kaffee et al., 2023), where the same entity may have
more facts in one language than in another. The same entity may exist in different KGs in different
forms. For example, dbr:Albert Einstein in DBpedia (Lehmann et al., 2015) and wd:Q937 in Wiki-
data (Vrandečić & Krötzsch, 2014) refer to the same entity Albert Einstein. Therefore, integrating
multiple KGs is the key to completeness and knowledge fusion for better inference and reasoning,
as different KGs contain complementary knowledge.

Entity alignment (EA) is the core task of KG integration by finding entities across different KGs
that refer to the same (real-world) entity. However, a principal challenge is the heterogeneity of
the underlying schemas across different KGs. KG embedding based methods have proved to be an
effective approach for EA (Chen et al., 2018; 2017; Pei et al., 2019a;b; Guo et al., 2019; Sun et al.,
2020) and can be summarized into two categories: (i) the KG embedding model encodes the source
and target KGs into two separate embedding spaces, and trains an alignment method with aligned
initial seeds to learn the mapping between the same entities across KGs (Chen et al., 2018; 2017;
Pei et al., 2019a); (ii) an alignment model is trained to embed the two KGs into one unified space
using initial seed alignment (Li et al., 2018; Sun et al., 2017; 2018; Trisedya et al., 2019; Wang et al.,
2018; Zhu et al., 2017). These models leverage the relational and structural information of the en-
tities, assuming the KGs are strongly connected and equivalent entities have similar neighbourhood
structures in different KGs. However, KGs are inherently sparse, with approximately 50% of the
entities being long-tailed, having three connections or less to other entities (Guo et al., 2019). For
instance, 54.7% of the entities in English DBpedia and 61.5% in the German DBpedia appear fewer
than three times.

Although embedding-based EA models can potentially mitigate the challenge of heterogeneity, they
inherently struggle with insufficient structural and neighbourhood information. This raises the open
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question How can we align long-tailed entities across KGs with fewer or no connections to their
neighbouring entities? In this work, we propose a novel long-tailed EA model ContrastEA, that
harnesses pretrained Language Models (LMs) to generate entity name representations, followed by
a contrastive learning framework to align the same entities across different KGs. A hard-negative
mining strategy is proposed to select the most informative top-k negatives per entity, ensuring the
model to learn to differentiate between entities that are deceptively similar to the actual target entity.
ContrastEA also includes the NT-Xent loss, which ensures the closeness of the positive pairs (i.e.,
same entities in different KGs) while pushing away the negative pairs in the embedding space.

Recent work (Guo et al., 2019) also uncovers that existing EA benchmark datasets fail to reflect
the sparsity of the real-world KGs. To this end, the SRPRS benchmark (Guo et al., 2019) was
introduced, with a more pronounced presence of long-tailed entities. However, entities with zero
connections to other entities are not included in the SRPRS dataset. To address this and truly reflect
the sparseness of KGs, we curate a multilingual EA benchmark dataset, LT-EA-25K, from DBpedia
containing both long-tailed entities and entities with no links at all.

Prior works on long-tailed EA have used the latent representation of entity names derived from pre-
trained word embeddings as an additional signal to the structural information (Zeng et al., 2020),
while classical EA models used entity name embeddings to initialize the feature matrices for struc-
tural representations (Wu et al., 2019a;b; Xu et al., 2019). In contrast, our proposed model Con-
trastEA uses only entity names, without depending on structural or relational information. We show
that ContrastEA achieves state-of-the-art results on both the existing benchmarks as well as our cu-
rated dataset, ensuring its robustness for entities with varying connectivity. Our main contributions
are:

• We propose a novel contrastive learning based EA approach ContrastEA that incorporates
hard-negative mining strategies with top-k negatives per entity. It also exploits the NT-Xent
loss to separate challenging entity pairs.

• We propose a multilingual long-tailed EA benchmark dataset LT-EA-25K, which com-
prises 25,000 long-tailed entities per language – Arabic, German, Portuguese, Italian, Rus-
sian, and Japanese, each aligned to English (a total of 154,296 cross-lingual entity pairs)
and 4,296 aligned pairs of Hindi–English 1.

• Our detailed evaluation demonstrates that ContrastEA is robust for popular, long-tailed and
entities with zero connectivity. Our results show that ContrastEA outperforms the classic
EA models on three benchmark datasets, improving Hits@1 by 6–20 percentage points, as
well as on the curated dataset by 10 percentage points on Hits@1 over the long-tailed EA
models.

2 METHODOLOGY

Preliminaries Given a KG G = (E,R), where E and R are the set of entities and relations,
respectively, the notation < s, p, o >∈ T represents a triple belonging to the set of triples T in the
KG, where (s, o) ∈ E are the head and tail entities, and p ∈ R represents the relation between them.
Additionally, the entities in a KG are related to facts that are literals in the form of text, images,
numbers, etc. Given a source KG G1 = (E1, R1), a target KG G2 = (E2, R2) and T1 and T2 are
the sets of triples in the source and target KG, respectively. For training, the seed entity pairs are
given by S = {(s, t) | s ∈ E1, t ∈ E2, s ↔ t}, where ↔ denotes equivalence, designating s and t
as being the same entity (Zhao et al., 2020).

Problem Statement We consider the task of long-tailed EA as a supervised contrastive learning
problem. Given a training set D = {(si, ti)}Ni=1 of N aligned seed entities, where si and ti are
the ith source and target entity, respectively. The goal is to learn a parametrised encoder fθ : X →
Rd to generate a d−dimensional vector for the entity names of both si and ti and subsequently
train a contrastive learning model for EA. The training objective of the alignment model serves to
encourage fθ(si) to be similar to fθ(ti) and dissimilar to fθ(ti), for i ̸= j.

1The data is made available in the supplementary folder
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2.1 ENTITY REPRESENTATIONS

As mentioned earlier, EA models that use structural, relational, or neighbourhood information of
the entities are ill-suited for aligning long-tailed entities across KGs, as they frequently lack such
information. Therefore, we focus on the most consistent and omnipresent feature: entity names.
Entity descriptions and attributes are often unavailable for less connected entities, but names are
informative and often sufficient to identify an entity (Yaghoobzadeh et al., 2018; Yaghoobzadeh &
Schütze, 2017). We use a transformer encoder fθ to map entity names to d-dimensional vectors.
For an input text x, the encoder returns the hidden states H ∈ Rm×L×d, where L is the length after
padding/truncation, and m is the batch size. To obtain a single representation of the entity name,
masked mean pooling is used where M ∈ {0, 1}m×L and the pooled embedding of the ith entity is:

ei =

∑
j Mi,jHi,j∑

j Mi,j
∈ Rd

Leveraging entity embeddings for EA instead of simple string matching enables effective cross-
lingual entity alignment. These representations are crucial when the entity names differ across
languages with different vocabularies, overcoming challenges of translation and transliteration.

2.2 CONTRASTIVE LEARNING

Our proposed ContrastEA model focuses on pulling together similar entities while pushing apart
hard-to-distinguish entities, i.e., misleading similar entities, aiming for a more discriminative yet
robustly aligned space. In prior work, during the training of the alignment module of the EA models,
for each anchor entity e, the set of negative samples is sampled uniformly from the data without
accounting for their informativeness with regard to the corresponding anchor entity. Studies show
that informative negative samples can guide the training phase, as they are intuitively the ones that
are mapped in close proximity, but instead should be far apart (Robinson et al., 2021; Chen et al.,
2020). The proposed model consists of three variants of contrastive loss: (i) contrastive loss with
top-k hard negatives, (ii) contrastive loss with aggregated top-k hard negatives, and (iii) In-batch
NT-Xent loss, where all the negatives are used. Let fθ(x) ∈ Rd be the encoder output, i.e., the
entity embeddings. Before computing similarities, the embeddings of the source and target entities
are normalised: zsi = fθ(si)

||fθ(si)|| , z
t
i =

fθ(ti)
||fθ(ti)|| .

Contrastive loss with top-k hard negatives The embedding of the source entity is considered
as the query, and the set of target embeddings in the batch as keys. This loss selects top-k hardest
negatives for each query (source entity) and employs a softmax over the positive and k negatives.
Let the similarity matrix be,

Ai,j = zsi
T · ztj , i ̸= j

To ensure that the positive target is not selected as a negative, the diagonal is masked by setting its
entries to −∞. For each row i in Ai,j , we compute the set Ni of k indices with the largest value
of Ai,j , where j ̸= i. The top-k hardest negatives are selected Ni = TopK(Ai,j | j ̸= i), where
Ni = {j1, ..., jk}. Then we compute the logits

Li =
1

τ
[Ai,i, Ai,j1 , ...., Ai,jk ] ∈ R(1+k),

where τ is the temperature. Next, the per-sample top-k cross-entropy loss is obtained as

ℓTopK
i,j = − log

exp(sim(zsi
T , zti)/τ)

exp(sim(zsi
T , zti)/τ) +

∑
j∈Ni

exp(sim(zsi
T , ztj)/τ)

and the corresponding batch loss is 1
m

∑m
i,j=1 ℓi,j , i ̸= j, where m is the batch size.

Contrastive loss with aggregated top-k hard negatives In this loss function, for each source en-
tity (query), after selecting the relevant top-k hard negative samples as described above, we compute
their mean similarities to obtain a single aggregated negative score per entity. This is mathematically
given by

negi =
1

k

∑
j∈Ni

Ai,j

3
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where negi is the aggregated negative score for source entity i, k is the number of negatives, and Ni

is the list of top-k hardest negatives for the entity i.

NT-Xent loss with in-batch negatives Our contrastive learning approach also explores a diverse
sample of negatives for a given anchor entity using the NT-Xent loss with in-batch negatives (Chen
et al., 2020). The goal of this loss is to maximise the similarity between positive pairs (true source
entity – target entity pair) and minimise the similarity between negative pairs (incorrect source entity
– target entity pair). Given a batch of m normalised pairs of source and target entities {zsi , zti}mi=1,

a similarity matrix Ai,j of logits is generated, where A ∈ Rm×m with entries Ai,j =
zs
i
T .zt

j

τ , i ̸= j,
where τ is the temperature. Here, all pairs of cosine similarity are scaled by a temperature value
before computing the cross-entropy loss. For each query i (source entity), the positive key (target
entity) is j = i, and for each source entity, the cross-entropy loss is given by

ℓNT-Xent
i,j = − log

exp(Ai,i)∑m
j=1 exp(Ai,j)

= −Ai,i + log

 m∑
j=1

Ai,j

 ,

where m is the batch size, and the batch loss is given by 1
m

∑m
i,j=1 ℓi,j , i ̸= j.

Here, the embedding of the source entity is considered for each input, and we then compute the
cosine similarity between every pair of target entity vectors. Since each entity in the source KG
is similar to exactly one other entity in the target KG (positive pair), it can be considered as a
classification task where similarity scores correspond to the probability distribution, in which the
correct targets approach 1.0 and the rest will be close to 0.0.

Why Hard Negatives Matter? For the NT-Xent loss, the partial derivative of ℓNT-Xent
i with respect

to sim(zsi , z
t
n−) for a specific negative n− is proportional to a softmax weight

∂ℓNT-Xent
i,j

∂sim(zsi , z
t
n−)

α
exp(sim(zsi , z

t
n−)/τ)∑

i ̸=a exp(sim(zsi , z
t
a−)/τ)

Therefore, negatives with larger similarity (hard negatives) will have larger gradients; however, the
collective impact of many easy negatives might overpower the impact of a few hard negatives in the
training. Therefore, restricting the denominator to only the hard negatives Ni, as demonstrated in
ℓTopK
i,j , will explicitly increase the influence of the negatives with large similarity by concentrating

the gradients.

3 EXPERIMENTS AND RESULTS

3.1 DATASETS

Benchmark Datasets The most commonly used cross-lingual EA benchmark datasets are
DBP15K (Sun et al., 2017), SRPRS (Guo et al., 2019), and DBP5L (Chakrabarti et al., 2022)
(detailed statistics are provided in Table 1). Although they are sampled from the real-world KGs
DBpedia, Wikidata and YAGO, their entity distributions do not reflect the actual distributions in
the original KGs. These real-world KGs typically follow a power-law degree distribution with more
than 50% of the entities having degrees less than 3. In contrast, the DBP15K dataset, which contains
aligned entities from three language pairs ZH–EN, JA–EN, and FR–EN, within which 21% to 43%
of the entities have a degree less than or equal to 3. Similarly, in DBP5L, 33–56% of entities have
a degree less than or equal to 3. This over-representation of the connectivity of the entities in the
DBP15k dataset is rectified in SRPRS dataset, in which only 77–85% of entities have degrees less
than or equal to 3. The detailed degree distribution of the entities in these benchmarks datasets is
shown in Figure 3 and in Table 7 in Appendix A.1.

LT-EA-25k dataset Although the SRPRS dataset includes low-degree entities, it is restricted to
only two languages – German and French – and their corresponding alignment to English, limiting
its usage in the evaluation of extensive cross-lingual EA. Moreover, the connectivity and complete-
ness of the KGs vary from language to language. For instance, English or German DBpedia is denser
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Table 1: Statistics of the benchmark datasets DBP15k, SRPRS, and DBP5L
Dataset Lang. Entities Relations Rel. Triples Attr. Triples
DBP15K
(ZH-EN)

ZH 19,388 1,701 70,414 379,684
EN 19,572 1,323 95,142 567,755

DBP15K
(JA-EN)

JA 19,814 1,299 77,241 354,619
EN 19,780 1,153 93,484 497,230

DBP15K
(FR-EN)

FR 19,661 903 105,998 528,665
EN 19,993 1,208 115,722 576,543

SRPRS
(EN-DE)

EN 15,000 222 38,363 62,715
DE 15,000 120 37,377 142,506

SRPRS
(EN-FR)

EN 15,000 221 36,508 70,750
FR 15,000 177 33,532 56,344

DBP-5L

EN 13,996 831 80,167 –
FR 13,176 178 49,015 –
ES 12,382 144 54,066 –
JA 11,805 128 28,774 –
EL 5,231 111 13,839 –

compared to Hindi or Arabic DBpedia. Therefore, a dataset with more languages would also change
the proportion of the degree distribution of the entities. Also, none of these benchmark datasets
consider dangling entities in the KGs, i.e., entities with no connections to other entities.

To address these limitations, we introduce a new cross-lingual long-tailed entity alignment dataset
LT-EA-25k comprising seven languages – Arabic, German, Hindi, Italian, Japanese, Portuguese,
and Russian and their corresponding alignment with English curated from DBpedia. The proportion
of entities with a degree ≤ 3 varies between 42% and 81% depending on the language, reflecting
the sparsity and heterogeneity of multilingual KGs. To curate the proposed dataset, we follow these
steps for each language-specific KG:

• We perform degree profiling for all the entities – i.e., we compute the outdegree, indegree,
and the total degree of each entity.

• We divide the entities into 6 buckets based on their degree values, i.e. {1, 2, 3, 4, 5, >5}.

• Next, we select entities from each bucket using a stratified random sampling to ensure a
true representative distribution of the entities in each language edition of DBpedia, and
thereby avoiding high connectivity bias as observed in the DBP15k and DBP5L datasets.

• The corresponding aligned entities from English DBpedia are extracted by exploiting the
owl:sameAs links using SPARQL queries.

We also include smaller language editions of DBpedia, namely Hindi. Therefore, LT-EA-25k con-
tains only 4,296 aligned entities between Hindi and English while maintaining the degree distribu-
tion of the entities. The Arabic edition of DBpedia is also very sparse, as evidenced in our dataset,
which contains 11,617 entities with degree 1. We also incorporated ∼1,400 dangling entities from
the Arabic DBpedia. A detailed statistics of our dataset is provided in Table 2 and the degree dis-
tribution in Figure 1 and in Table 8 of Appendix A.1. Unlike prior works, we also include medium
and low-resource language KGs in our dataset, instead of merely high-resource language-specific
KGs that are well-connected. Overall, we provide a robust dataset mirroring the real-world KGs by
considering multilinguality, heterogeneity, and sparsity.

3.2 EXPERIMENTAL SETUP

Implementation In our experiments, we use the mE5-base 2 encoder (Wang et al., 2024) to pro-
duce normalised text embeddings for entity names. The model is initialised with XLM-RoBERTa-
base model, has 12 layers, and the embedding dimensionality is 768. It supports ∼100 languages,
which is crucial for cross lingual EA. For robust training of ContrastEA, we perform a hyperparam-
eter search for the following values. For the learning rate: {0.00001, 0.00002, 0.00003, 0.00004,

2https://huggingface.co/intfloat/multilingual-e5-base
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Table 2: Statistics of proposed long-tailed EA dataset, LT-EA-25k

Lang. Pairs Aligned Entities Triples
Source Lang.

Triples
Target Lang.

Attr.
Source Lang.

Attr.
Target Lang.

AR–EN 25,000 66,613 166,740 29,293 91,672
DE–EN 25,000 107,418 117,647 146,926 94,519
HI–EN 4,296 30,921 31,425 4,960 8,600
IT–EN 25,000 106,589 126,566 87,206 83,034
JA–EN 25,000 115,373 130,072 56,408 69,939
PT–EN 25,000 111,742 111,902 75,660 101,007
RU–EN 25,000 101,047 132,867 60,343 85,219

Figure 1: Degree Distribution of the proposed LT-EA-25k dataset

0.00005, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.001, 0.002, 0.003, 0.004, 0.005}, batch size:
{16, 32, 64}, epochs: {3, 5, 10, 15, 20}, warmup ratio: {0.1, 0.5, 0.8}, top-k (for hard negatives
in contrastive learning): {3, 5, 10, 15}, weight decay: {0.1, 0.01, 0.001, 0.0001}, and temper-
ature:{0.1, 0.01, 0.001, 0.0001}. The selected settings are: learning rate: 2e-5, batch size: 32,
epochs: 5, warmup ratio: 0.1, top-k: 5, weight decay: 0.01, and temperature: 0.1. We also fix the
random seed at 42 for reproducibility. Topk = 5 indicates that during training for each source entity,
the most similar 5 target entities are selected as negative samples. We use 30% of the aligned entities
as the training set and the remaining 70% as the test set. Following the convention, we report results
for Hits@1 and Hits@10 for all three benchmark datasets – DBP15k, SRPRS, and DBP5L, as well
as our curated dataset LT-EA-25k.

3.3 RESULTS

As shown in Tables 3 and 4, our proposed model ContrastEA achieves SOTA results in both SR-
PRS and DBP15k datasets for both Hits@1 (exact match) and Hits@10. On the SRPRS dataset, for
Hits@1 ContrastEA achieves a steep improvement of 20 percentage points for EN–FR language pair,
and ∼10 percentage points for EN–DE over the previous best method, DAT. The DAT Zeng et al.
(2020) model focuses on the alignment of long-tailed entities and uses entity names as a feature,
together with the neighbourhood information of entities. Since Hits@1 is equivalent to precision,
this result highlights that most of the entities are correctly aligned at the highest rank by the Con-
trastEA model. On the other hand, Hits@10 reaches 0.978 (EN–FR) and 0.99 (EN–DE), indicating
that the majority of the correct alignments are captured within the top 10 candidates, demonstrating
robust recall. Although all baseline models use the structural and relational information of the enti-
ties, our empirical results demonstrate that the entity representations obtained from the pre-trained
LM coupled with the contrastive objectives are more effective. Similarly, in the DBP15k dataset,
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Table 3: Results on SRPRS dataset
Methods EN-FR EN-DE

Hits@1 Hits@10 Hits@1 Hits@10
MTransE 0.251 0.551 0.312 0.586
IPTransE 0.255 0.557 0.313 0.592
BootEA 0.313 0.629 0.442 0.701
RSNs 0.348 0.637 0.497 0.733
MuGNN 0.131 0.342 0.245 0.431
KECG 0.298 0.616 0.444 0.707
TransEdge 0.4 0.675 0.556 0.753
GCN 0.155 0.345 0.253 0.464
JAPE 0.256 0.562 0.32 0.599
RDGCN 0.675 0.769 0.783 0.884
HGCN 0.67 0.77 0.763 0.86
GM-Align 0.627 – 0.677 –
DAT 0.758 0.899 0.876 0.95
ContrastEA 0.96 0.978 0.97 0.99

Table 4: Results on DBP-15k dataset.
Methods ZH-EN JA-EN FR-EN

H@1 H@10 H@1 H@10 H@1 H@10
MTransE 0.308 0.614 0.279 0.575 0.244 0.556
IPTransE 0.406 0.735 0.367 0.693 0.333 0.685
JAPE 0.412 0.745 0.363 0.685 0.324 0.667
AlignE 0.472 0.792 0.448 0.789 0.481 0.824
GCN-Align 0.413 0.744 0.399 0.745 0.373 0.745
SEA 0.424 0.796 0.385 0.783 0.400 0.797
RSN 0.508 0.745 0.507 0.737 0.516 0.768
MuGCN 0.494 0.844 0.501 0.857 0.495 0.870
GCN 0.487 0.790 0.507 0.805 0.508 0.808
GAT 0.418 0.667 0.446 0.695 0.442 0.731
R-GCN 0.463 0.734 0.471 0.754 0.469 0.758
AliNet 0.539 0.826 0.549 0.831 0.552 0.852
ContrastEA 0.602 0.778 0.774 0.879 0.96 0.992

Table 5: Results on DBP5L dataset.
LangPair AlignKGC RAGA RNM RDGCN ContrastEA
EL-EN 0.838 0.758 0.749 0.713 0.89
EL-ES 0.833 0.798 0.794 0.747 0.88
EL-FR 0.821 0.691 0.724 0.727 0.85
EL-JA 0.748 0.644 0.683 0.644 0.79
JA-EN 0.765 0.591 0.645 0.582 0.856
JA-ES 0.743 0.583 0.65 0.6 0.827
JA-FR 0.739 0.645 0.706 0.602 0.813
ES-FR 0.895 0.809 0.849 0.871 0.939
ES-EN 0.933 0.857 0.88 0.878 0.977
EN-FR 0.905 0.77 0.812 0.832 0.945

the large improvement in the FR-EN language pair shows that our proposed model is better suited
for cross-lingual alignment of closely related languages, confirming the effectiveness of the entity
embeddings. For both JA-EN and ZH-EN, ContrastEA outperforms the second best model AliNet,
by 22.5 and 6 percentage points, respectively, indicating that the model can overcome linguistic
barriers such as different scripts. For Hits@10, ContrastEA achieves comparable results for ZH-
EN language pair while outperforming for JA-EN and FR-EN. The GCN based models achieve
high performance for Hits@10 but not for Hits@1, indicating the structural information of the enti-
ties is alone insufficient to distinguish between similar deceptive entities, while contrastive learning
ensures language separation. Table 5 shows that ContrastEA also achieves the SOTA for all the
language pairs in DBP5L dataset. While RDGCN (Wu et al., 2019a) leverages the relational in-
formation, AlignKGC (Chakrabarti et al., 2022), RAGA (Zhu et al., 2021a), and RNM (Zhu et al.,
2021b) includes textual information. This dataset consists of several European languages, and the
results confirm that ContrastEA is capable of capturing the fine-grained semantic characteristics of
closely-related languages. The model also achieves the best results for the distant language pairs,
namely, JA-FR, JA-ES and JA-EN. These language pairs are most challenging due to their linguis-
tic differences as well as the scripts. ContrastEA shows an improvement of 5-9 percentage points
over the existing best baseline model, AlignKGC. Therefore, it can be concluded that ContrastEA
is robust across different language pairs with linguistic variations. Intuitively, it can be presumed
that the KG embedding based or GNN-based EA models rely mostly on the structural information,
precisely the local neighbourhood, and therefore fail to capture the true representations when enti-
ties are sparse or noisy. Furthermore, the topk hard negative contrastive learning plays a vital role in
separating the true pairs from the deceptive ones. Further results are available in Appendix A.2.

The results in Table 6 highlight a clear performance gap between ContrastEA and DAT across al-
most all language pairs. DAT has relatively very low, with Hits@1 ≤ 1.44 for all language pairs,
suggesting that it has trouble successfully aligning entities on this dataset. We trained our dataset on
the DAT 3 model as it is focused on long-tailed entities, and also, as shown in Table 3, it achieves the
second-best performance after ContrastEA. As mentioned in Section 3.1, the proposed LT-EA-25k

3https://github.com/DexterZeng/DAT
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Table 6: Results for the LT-EA-25k dataset
Model/
Language Pair

ContrastEA DAT
Hits@1 Hits@3 Hits@10 Hits@1 Hits@10

AR-EN 81.42 88.39 92.67 1.44 4.78
HI-EN 86.17 92.82 95.55 1.36 6.56
IT-EN 95.72 96.91 97.67 0.75 3.93
RU-EN 90.12 94.10 96.09 0.56 2.68
JA-EN 53.33 59.73 65.95 0.97 3.40
PT-EN 96.11 97.84 98.38 1.05 4.60
DE-EN 97.31 98.49 99.05 0.59 3.39

Figure 2: Results of ContrastEA on LT-EA-25k dataset w.r.t. degree distribution

dataset includes a large proportion of long-tailed entities with connectivity less than 3. Since the
existing models, including DAT, rely heavily on the neighbourhood connection, the models are inca-
pable of handling sparse KG; therefore do not produce entity embeddings that are well represented.
Moreover, the language pair AR-EN is particularly challenging as it contains 1400 dangling entities,
for which there is no neighbourhood information. Despite this, ContrastEA achieves a high Hits@1
(81.42%), whereas DAT achieves a low Hits@1. The hardest language pair for ContrastEA appears
to be JA-EN, which is due to the linguistic differences, besides a larger number of long-tailed en-
tities. Similar observation has also been made in general for JA-EN, also in DBP15K datasets, as
illustrated in Table 4. However, the alignment of the European languages IT, PT, DE, and RU with
English achieves stronger results, indicating higher language similarities and effective separation of
dissimilar entities from the similar ones. Another advantage of ContrastEA is that no training is
required to generate the entity embeddings.

We report the ablation studies of ContrastEA on the degree distribution of the entities in the LT-
EA-25k dataset, as shown in Figure 2. We reported results on Hits@1, Hits@3 and Hits@10 across
degrees (1, 2, 3, 4, 5, >5). The model achieves remarkable performance on Hits@1 with Degree =
1,2, with HI and PT achieving the highest values 0.9165 (for Deg=1), and 0.8924 (for Deg=2) and
0.9844 (for Deg=1), 0.9863 (for Deg=2), respectively. These values show that the model is robust
with sparsely connected entities and also agnostic towards their linguistic differences. We observe
that with Hits@1 and Hits@3, the performance of the model drops a little across most of the lan-
guages, with entities having degrees more than 5. However, this is an aggregated performance of the
model for all entities. Overall, high values of Hits@1 and Hits@10 across different degrees indicate
that ContrastEA is consistent with high precision and recall. Since a major proportion of the curated
LT-EA-25k dataset is sparse, replicating the entity distribution of real-world KGs, we infer from
the ablation studies that ContrastEA is capable of learning ambiguous (learning deceptive entities
in TopK loss) entity patterns in sparse settings. Also, since no training is required to generate the
entity representations, and it also does not consider the neighbourhood or the relational information
of the entities, the model is scalable to larger multilingual KGs comprising long-tailed entities and
low-resource languages, as well as with popular entities and high-resource languages.
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4 RELATED WORK

Recent research on entity alignment (EA) broadly falls into two categories: semantic matching-
based models and graph neural network (GNN)-based models (Zeng et al., 2021; Sun et al.).

Semantic matching-based models aim to embed entities in a low-dimensional space such that se-
mantically similar entities are close together. Early approaches like MTransE (Chen et al., 2017),
IPTransE (Zhu et al., 2017), rely on translational embeddings (e.g., TransE) and linear transfor-
mations for alignment. Models such as JAPE (Sun et al., 2017) incorporate attributes or textual
descriptions, semi-supervised or iterative frameworks like BootEA (Sun et al., 2018), to improve
alignment accuracy. Recent methods, e.g., BERT-INT (Tang et al., 2021), leverage pre-trained lan-
guage models to encode entity names and descriptions.

GNN-based models exploit the graph structure of knowledge graphs, encoding nodes based on
neighbour information to capture local and global structural patterns. GCN-Align (Xu et al., 2019)
pioneered this direction, followed by models like RDGCN (Wu et al., 2019a), which include rela-
tional information. HMAN (Yang et al., 2019) further integrates entity attributes, textual descrip-
tions, and pre-trained embeddings within GNN frameworks. Other models include AttrGNN (Liu
et al., 2020), and REA (Pei et al., 2020), which collectively improve alignment by leveraging graph
topology and semantics. Recent works (Zeng et al., 2020) have also used entity names as features
together with structural and neighbourhood information.

5 CONCLUSION

In this paper, we introduce a novel cross-lingual entity alignment method, ContrastEA, which
achieves state-of-the-art across the three widely used benchmark datasets and our proposed LM-
EA25k dataset. The experimental results demonstrate consistent and robust performance across en-
tities with varying degrees - popular and under-represented entities in a KG, namely long-tailed, and
dangling entities. By leveraging the multilingual LM, the model achieves high precision (Hits@1)
across diverse language pairs with linguistic differences, including different scripts, word order, and
typologically distant languages from different language families. Therefore, it can be concluded
that our model does not overfit to the language-specific structures and thereby improves the gener-
alizability of our approach, advancing the knowledge fusion on a broader spectrum. Our proposed
dataset would also pave the way for future research in long-tailed and dangling entity alignment
across different KGs.

In the future, we intend to focus on incorporating a short description of the entities in the model,
which would help us disambiguate between highly correlated yet deceptive entities. As KGs are
inherently sparse and are continuously evolving, our focus would be on multilingual KG completion
with the help of cross-lingual EA.
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A APPENDIX

A.1 DEGREE DETAILS

Table 7: Node outdegree distribution across different datasets and languages.
Dataset / Lang Outdeg=1 Outdeg=2 Outdeg=3 Outdeg=4 Outdeg=5 Outdeg>5

SRPRS
DBP 3834 5527 2898 1172 646 923
WD 5155 5319 1765 784 493 1484

SRPRS
DBP 6679 4005 1816 988 618 894
YG 6687 4000 1480 832 536 1465

SRPRS
EN 5101 4285 2227 1384 818 1185
DE 6675 3670 1534 1063 636 1422

SRPRS
EN 5816 4464 1804 1102 696 1118
FR 5889 5229 1702 839 498 843

DBP-15K
FR 1126 1265 1105 1221 1359 8924
EN 967 1062 1053 1102 1228 9588

DBP-15K
JA 1385 1618 2016 2173 2457 5351
EN 1059 1363 1493 1718 2233 7134

DBP-15K
ZH 1704 2227 2499 2334 1776 4460
EN 954 1501 1742 1805 1760 7238

DBP5L Dataset
EL 836 695 450 376 350 830
EN 1097 1465 1524 1322 1175 5691
ES 1165 1216 889 867 695 4046
FR 841 1236 994 720 670 3834
JA 1181 871 604 510 374 2152

A.2 RESULTS
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Figure 3: Degree distribution of all the benchmark datasets DBP15k (source-target), DBP5L
(source-target), SRPRS (source-target)
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Table 8: Degree Distribution of the proposed LT-EA-25k dataset
Lang Pairs Outdegree Distribution Indegree Distribution

Deg=1 Deg=2 Deg=3 Deg=4 Deg=5 Deg>5 Deg=1 Deg=2 Deg=3 Deg=4 Deg=5 Deg>5
ar en 11,617 4,654 2,557 1,986 1,438 2,748 2,578 1,341 574 341 252 1,192
hi en 890 544 363 239 212 2,048 68 55 15 10 8 31
de en 4,231 4,224 4,197 4,185 3,943 4,220 3,601 3,585 3,577 3,575 3,323 3,590
pt en 3,210 4,052 4,285 4,214 4,308 4,931 3,720 3,683 3,336 3,005 2,677 3,698
it en 4,368 4,433 4,034 4,001 3,816 4,348 3,647 3,644 3,585 3,528 2,776 3,607
ru en 4,267 4,067 4,131 4,065 3,973 4,497 3,708 3,652 3,585 3,372 2,401 3,623
ja en 3,405 3,826 4,098 4,485 3,576 5,610 4,033 3,879 3,094 2,539 1,626 3,850

Table 9: ContrastEA results across different benchmarking datasets and language pairs.
Dataset / Pair Hits@1 Hits@3 Hits@10 Accuracy

DBP5L Dataset
el en 0.8865 0.9451 0.9682 0.8865
el es 0.8844 0.9396 0.9570 0.8844
el fr 0.8508 0.9043 0.9416 0.8508
el ja 0.7880 0.8520 0.8962 0.7880
en fr 0.9459 0.9663 0.9742 0.9459
es en 0.9778 0.9908 0.9956 0.9778
es fr 0.9396 0.9618 0.9737 0.9396
ja en 0.8569 0.9154 0.9500 0.8569
ja es 0.8278 0.8907 0.9272 0.8278
ja fr 0.8134 0.8707 0.9097 0.8134

SRPRS Dataset
en de 0.9777 0.9869 0.9909 0.9777
en fr 0.9612 0.9729 0.9786 0.9612

DBP-15K Dataset
fr en 0.9607 0.9842 0.9921 0.9607
ja en 0.7748 0.8398 0.8796 0.7748
zh en 0.6017 0.6962 0.7786 0.6017

Table 10: Results on DBP15k dataset with mE5 + MUSE.
method src lang tgt lang train size Hits@1 Hits@5 Hits@10 Hits@1 Hits@5 Hits@10

unsupervised fr en 30 95.183 98.502 98.941 97.243 99.370 99.609
unsupervised fr en 50 94.594 98.371 98.812 96.916 99.292 99.559
unsupervised fr en 70 93.486 98.155 98.644 96.243 99.289 99.511
unsupervised fr en 90 91.933 98.067 98.467 95.000 99.333 99.600
unsupervised ja en 30 70.309 81.840 84.564 79.365 87.960 90.071
unsupervised ja en 50 67.997 80.349 83.159 77.944 87.016 89.194
unsupervised ja en 70 65.194 78.583 81.431 75.847 85.580 87.755
unsupervised ja en 90 58.883 73.284 76.447 70.390 82.100 84.455
unsupervised zh en 30 51.129 67.151 72.020 64.999 78.592 82.456
unsupervised zh en 50 48.265 65.054 70.159 63.071 77.288 81.469
unsupervised zh en 70 45.767 63.301 68.684 61.269 76.368 80.612
unsupervised zh en 90 45.839 62.886 67.718 61.745 75.168 80.537
supervised fr en 30 94.868 98.388 98.884 97.310 99.351 99.599
supervised fr en 50 94.180 98.211 98.745 97.010 99.279 99.573
supervised fr en 70 92.752 97.977 98.577 96.398 99.266 99.533
supervised fr en 90 90.600 97.800 98.467 95.133 99.267 99.533
supervised ja en 30 68.803 80.190 83.193 79.672 87.903 90.061
supervised ja en 50 65.067 77.944 81.196 77.769 86.788 89.073
supervised ja en 70 59.206 74.322 78.157 75.196 85.064 87.464
supervised ja en 90 51.884 67.362 71.669 68.977 80.686 83.917
supervised zh en 30 49.713 64.980 70.107 65.850 78.295 82.265
supervised zh en 50 44.955 61.624 67.279 63.701 77.087 81.187
supervised zh en 70 38.687 57.405 63.815 61.068 75.854 80.121
supervised zh en 90 37.852 54.631 60.805 60.067 74.698 78.993
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Table 11: Results on DBP15k dataset on experiments that uses me5 to generate the embeddings
followed by MUSE alignment

method src lang tgt lang Hits@1 Hits@10 Hits@1 Hits@10
unsupervised fr en 95.183 98.941 97.243 99.609
unsupervised ja en 70.309 84.564 79.365 90.071
unsupervised zh en 51.129 72.020 64.999 82.456
supervised fr en 94.868 98.884 97.310 99.599
supervised ja en 68.803 83.193 79.672 90.061
supervised zh en 49.713 70.107 65.850 82.265
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