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ABSTRACT

Self-supervised learning (SSL) is a powerful representation learning paradigm that
leverages an auxiliary task, such as identifying different augmentations, extracts, or
modalities of a common sample. Recent methods, e.g. SimCLR, CLIP and DINO,
have made significant strides, yielding representations that achieve state-of-the-art
results on multiple downstream tasks. A number of discriminative SSL approaches
have been proposed, e.g. instance discrimination, latent clustering and contrastive
learning. Although they often seem intuitive, a theoretical understanding of their
underlying mechanisms eludes. Meanwhile, representations learned by generative
methods, such as variational autoencoders (VAEs), fit a specified latent variable
model and have principled appeal, but lag significantly in terms of performance.
We analyse several discriminative self-supervised methods and propose a graphical
model to reflect the assumptions they implicitly make in latent space, providing a
unifying theoretical framework for these methods. We show that fitting this model
(SimVAE) to the data improves representations over other VAE-based methods
on several common benchmarks (MNIST, FashionMNIST, CIFAR10, Celeb-A),
narrows the gap to discriminative methods on standard classification tasks and even
outperforms them on task that require more stylistic information to be captured.

1 INTRODUCTION

Self-supervised learning (SSL) has become a prominent approach to unsupervised representation
learning. Under this paradigm, a model is trained to perform an auxiliary task without annotated
labels, such that representations of the data are learned in the process that generalize to a range of
downstream tasks. Recently, contrastive SSL approaches have achieved remarkable performance
and garnered significant attention, exemplified by algorithms such as InfoNCE (Oord et al., 2018),
SimCLR (Chen et al., 2020), SWaV (Caron et al., 2020) and CLIP (Radford et al., 2021). These
methods exploit semantically related observations, such as different parts (Oord et al., 2018; Mikolov
et al., 2013), augmentations (Chen et al., 2020; Misra & Maaten, 2020), or modalities/views (Baevski
et al., 2020; Radford et al., 2021; Arandjelovic & Zisserman, 2017) of the data, that share latent content
information and differ in style. A variety of SSL methods has arisen based on a range of intuitive but
heuristic strategies and design choices (Balestriero et al., 2023). Previous works have analysed SSL
methods (Wang & Isola, 2020; Zimmermann et al., 2021; Tian, 2022), but a principled, mathematical
mechanism justifying their performance remains unclear, limiting confidence in their reliability, their
interpretability and the development of improved algorithms. Meanwhile, representations can be
learned from more principled approaches, such as using variational inference to learn parameters of a
latent variable model (Kingma & Welling, 2014), but tend to underperform SSL representations.

To address this, we consider the relationship between discriminative and generative representation
learning and the correspondence between an encoder f :X →Z , that maps data samples x∈X to
representations z∈Z , and the posterior p(z|x) under a generative model. From this perspective, we
analyse the implicit latent structure induced by several discriminative self-supervised algorithms,
including the popular InfoNCE objective adopted by numerous SSL models (e.g. Chen et al., 2020;
Radford et al., 2021). We show that those methods reflect a common hierarchical latent variable
model for the data (Figure 2), under which semantically related samples are generated from the same
cluster in the latent space, giving them common content. We also show that discriminative losses may
“collapse” these clusters, potentially losing distinguishing style information that a downstream task
may require (e.g., object location). This effectively prioritises some downstream tasks over others,
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Figure 1: Qualitative assessment of representation information: images reconstructed from repre-
sentations learned by generative unsupervised learning (VAE), generative SSL (our SimVAE) and
discriminative SSL (SimCLR, VicReg). Datasets: MNIST (l), Fashion MNIST (r), original images in
left columns. Style information (i.e., position & orientation) is lost through discriminative learning.

limiting the generality of representations. We therefore propose SimVAE, a generative approach
to self-supervised learning that explicitly models the latent structure we identify as implicit in
discriminative methods.1 We derive the associated evidence lower bound (ELBO) as the SimVAE
training objective, providing a principled approach to self-supervised representation learning. Notably,
where discriminative methods propose a variety of ways to avoid representations “collapsing”, the
reconstruction aspect of SimVAE prevents that automatically since to reconstruct distinct samples
requires their representations to be distinct.

Figure 2: Graphical
model for SSL with
J related samples.

Generative methods are, however, generally more challenging to train than their
discriminative counterparts, not least because probability distributions must be
well modelled, hence we do not expect to immediately bridge the performance
gap between these paradigms. Encouragingly though, our results show that
SimVAE is competitive with, and even outperforms, popular discriminative
methods on downstream classification accuracy on simple datasets (MNIST,
FashionMNIST), suggesting that SimVAE is a promising approach if distribu-
tions can be well modelled. On more complex datasets (CIFAR10, Celeb-A),
SimVAE is less competitive for content classification, but consistently outper-
forms discriminative methods on tasks requiring stylistic information. On all
tasks, SimVAE significantly outperforms (>15%) other VAE-based generative
models.

We believe that these results justify further research in this challenging direc-
tion given the benefits that generative representation learning offers, such as: a
measure of uncertainty given by the posterior, the ability to generate synthetic
samples as a bi-product, and the ability to qualitatively assess the informa-
tion captured in representations by inspecting their regenerations (Figure 1).
Perhaps most importantly for learning general purpose representations, rather
than learning invariant representations that lose information (typically style,
e.g. object location), a generative approach aims to preserve information, with even the prospect
of disentangling it (Higgins et al., 2017). Our generative SimVAE model also connects SSL to
latent variable models of other learning paradigms, such as fully unsupervised learning (VAEs) and
supervised learning (Variational Classification, Dhuliawala et al., 2023), which may enable them to
be combined in a principled and unified learning regime. Our main contributions are as follows:

• we provide theoretical insight into the representations learned by a number of popular self-
supervised learning algorithms and propose a unifying latent variable model (Figure 2);

• we introduce SimVAE, a generative approach to self-supervised representation learning inspired
by our analysis of discriminative methods (§4.2);

• we demonstrate SimVAE’s performance at prediction tasks on standard datasets, showing a clear
improvement (e.g., +15% on CIFAR10) over previous VAE-based representations, including one
adapted to SSL (Sinha & Dieng, 2021) (§6);

• we show qualitatively (Figure 1) and quantitatively (Figure 3) that SimVAE captures more style
information relative to several discriminative methods.

1So-named because it can be viewed as encoding the latent structure of SimCLR (Chen et al., 2020) in the
prior of a variational auto-encoder (VAE) (Kingma & Welling, 2014).
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2 BACKGROUND AND RELATED WORK

Representation Learning: We consider methods where an encoder function f : X →Z learns to map
data x∈X to a (typically lower-dimensional) representation z=f(x)∈Z that should perform well
in place of x in downstream tasks. Representation learning is not well defined since the downstream
task can be arbitrary and a representation that performs well on one may perform poorly on another
(Zhang et al., 2022). For instance, unsupervised image representations are commonly evaluated
by predicting unseen class labels, but a downstream task might be to detect lighting, position or
orientation, which a representation good at class prediction may not capture. This suggests that
general unsupervised representations should capture as much information about the data as possible.
Recent works support this by assessing an variety of downstream tasks (Balažević et al., 2023).
Self-Supervised Learning (SSL) leverages unsupervised auxiliary tasks to learn representations and
spans many approaches (Balestriero et al., 2023). We categorise the classes we address below.
Instance Discrimination (e.g. Dosovitskiy et al., 2014; Wu et al., 2018) treats each data sample xi,
and any of its augmentations, as a distinct class i and trains a softmax classifier to predict the “class”,
with encoder outputs used as representations.
Contrastive Learning encourages representations of semantically related data (positive samples) to
be “close” relative to pairs sampled at random (negative samples). Some early SSL approaches use an
energy-based loss (Chopra et al., 2005; Hadsell et al., 2006). The word2vec algorithm (W2V, Mikolov
et al., 2013) probabilistically predicts words that co-occur over a text corpus, and its embeddings
learn to factorise the pointwise mutual information (PMI) between words (Levy & Goldberg, 2014),
known to cause semantic properties in the embeddings (Allen & Hospedales, 2019). InfoNCE (Sohn,
2016; Oord et al., 2018) adapts W2V to other domains, e.g. x, x′ can be image patches or sound clips.
The InfoNCE loss for x, positive sample x+ and negative samples X−={x−

l }Ll=1 is defined:

LNCE(x, x
+, X−) = log

exp sim(z, z+)

exp sim(z, z+) +
∑

x−∈X− exp sim(z, z−)
, (1)

where z is the representation of x and sim(·, ·) is a similarity function, e.g. dot product. Equation 1 is
minimised if sim(z, z′) = PMI(x, x′) + c, where c is a constant (that can vary with x) (Oord et al.,
2018). Many works build on InfoNCE, e.g. SimCLR (Chen et al., 2020) uses synthetic augmentations
and CLIP (Radford et al., 2021) other modalities as positive samples; DIM (Hjelm et al., 2019) uses
different encoder parameters as representations; and MoCo (He et al., 2020), BYOL (Grill et al.,
2020) and VicReg (Bardes et al., 2022) propose novel strategies to avoid negative sampling.
Latent Clustering methods cluster representations during training (for an assumed cluster number),
which both identifies clusters and encourages them to form. Early examples apply K-means or similar
clustering to the hidden layer of a deterministic auto-encoder (Song et al., 2013; Xie et al., 2016; Yang
et al., 2017). DeepCluster (Caron et al., 2020) iteratively clusters ResNet representations by K-means,
and predicts cluster assignments as “pseudo-labels”. DINO (Caron et al., 2021), a transformer-based
model, can be interpreted as performing clustering in the latent space (Balestriero et al., 2023).
Other SSL approaches (that we do not address) include methods that reconstruct data samples from
perturbations, such as randomly masked patches (He et al., 2022; Xie et al., 2022); and methods that
predict details of an applied perturbation, such as rotation angle (Gidaris et al., 2018).
Variational Auto-Encoder (VAE): Assuming a latent generative model Z→X , parameters θ of a
model pθ(x)=

∫
z
pθ(x|z)pθ(z) can be learned by maximising the evidence lower bound (ELBO):∫

x

p(x) log pθ(x) ≥
∫
x

p(x)

∫
z

qϕ(z|x) log pθ(x|z)
qϕ(z|x) + log p(z)

.
= ELBO (2)

By maximising Eq. 2, the model approximates the data distribution p(x), and qϕ(z|x) approximates
the (typically intractable) posterior pθ(z|x). A VAE (Kingma & Welling, 2014) implements the
ELBO as a training objective with pθ and qϕ modelled as Gaussians parameterised by neural networks.
Latent variables provide a natural representation of the data (discussed further in §3). The β-VAE
(Higgins et al., 2017) weights the entropy and prior terms of Eq. 2 to improve disentanglement
of latent dimensions. More relevant to SSL, CR-VAE (Sinha & Dieng, 2021) minimises a KL
divergence between posteriors of semantically related samples to Eq. 2 to bring their latent variables,
or representations, together.

VAEs have been extended in many ways to model more complex generative processes. In particular,
hierarchical VAEs (e.g. Valpola, 2015; Ranganath et al., 2016; Rolfe, 2017; He et al., 2018; Sønderby
et al., 2016; Edwards & Storkey, 2016) model hierarchical latent variable structure, which our
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SimVAE model falls under. In particular, Edwards & Storkey (2016) propose a graphical model
similar to Figure 2 where a context variable c applies to a data set (equivalent to our y). A notable
difference is in how the posteriors are factorised, which is critical to allowing representations to
be inferred independently of related data. Wu et al. (2023) and Sinha et al. (2021) combine loss
components from VAEs and contrastive learning but do not propose a general hierarchical latent
variable model for self-supervised learning; and Nakamura et al. (2023) look to explain various SSL
methods via the ELBO, but using a second model of the posterior distribution rather than a generative
model.
Variational Classification (VC): Dhuliawala et al. (2023) present a latent variable model for clas-
sification, p(y|x)=

∫
z
q(z|x)p(z|y)p(y)p(z) for labels y, generalising softmax neural network classifiers

and interpreting them as an encoder f :X →Z parameterising q(z|x); and a softmax layer encoding
p(y|z) by Bayes’ rule. For a softmax classifier, the optimal q∗(z|x) for all x of a given class are
shown to be a common delta distribution, meaning that representations of a class are collapsed
together, despite the distribution p(z|y) encoded in the softmax layer (in practice, constraints such
as l2 regularisation arbitrarily restrict the optimum being reached). Any discrepancy between the
distribution that representations follow “q(z|y)” vs that anticipated p(z|y) is seen to have negative
consequences, e.g. miscalibration, and is relevant to SSL methods involving softmax (e.g. instance
discrimination).

Several works look to provide a latent interpretation of SSL (Tian, 2022; Nakamura et al., 2023;
Sansone & Manhaeve, 2022), however none proposes a unifying latent variable model (Fig. 2).

3 CONTRASTIVE VS GENERATIVE REPRESENTATION LEARNING

Representation learning approaches can be discriminative or generative. Many recent self-supervised
approaches are discriminative and train an encoder under a loss function that induces intuitively
desirable properties in the representation space Z , e.g. representations of semantically related data
samples being “close” relative to random samples. Meanwhile, a generative latent variable model
p(x) =

∫
z
p(x|z)p(z) can be interpreted as first sampling a latent variable z∼p(z) that defines the

underlying characteristics of a data point; then sampling x∼p(x|z) to obtain a manifestation of those
properties. Hence, the posterior p(z|x), which effectively reverses the generative process to infer z,
and so the semantic properties of x, naturally provides a semantically meaningful representation of
x. Since we often require a single succinct representation, cf dimensionality reduction, the mean of
p(z|x), often parameterised by an encoder, is a natural choice and the distribution can be interpreted
as a measure of uncertainty (more generally the posterior could be used in a fully Bayesian manner).

Discriminative and generative paradigms are, in fact, closely related since a discriminatively trained
encoder f :X →Z can be interpreted as a posterior (delta-)distribution pf (z|x)

.
= δz−f(x). Together

with the data distribution p(x), this gives a joint distribution that implicitly defines a latent distribution
pf (z)

.
=

∫
x
pf (z|x)p(x), and likelihood pf (x|z) by Bayes’ rule. Hence spatial properties imposed on

representations by a discriminative loss function implicitly impose distributional properties in pf (z).
Thus, fitting a latent variable model to the data with a prior p∗(z) might be attempted: generatively,
by maximising the respective ELBO (Eq. 2); or discriminatively, by designing a loss function that
imposes spatial constraints on representations such that the (optimised) encoder induces the chosen
prior, i.e. pf (z) = p∗(z). Our central premise is that various deterministic SSL methods induce a
similar distributional structure in the latent space, which we identify and approach generatively.

In practice, training a generative model under the ELBO is often more challenging than optimising
a discriminative loss as p(x|z) must also be learned and the ELBO may have multiple solutions,
particularly when using flexible distributions parameterised by neural networks, whereby latents z
are only identifiable up to certain symmetries, e.g. rotation (Khemakhem et al., 2020; Locatello et al.,
2019). On the other hand, generative approaches offer a principled basis for representation learning,
an uncertainty estimate over representations (i.e. the posterior), the ability to generate synthetic data,
and qualitative insight into the features representations capture by considering their regenerations.

Given the interplay between generative and discriminative SSL, we investigate the latent structure
induced by several discriminative methods, including InfoNCE (Oord et al., 2018), which underpins
popular methods such as SimCLR and CLIP (§4). We posit a latent variable model to formalise the
latent structure we intuit that those methods induce, and derive the respective ELBO as a principled
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training objective to fit that model to the data. Lastly, we train representations under this generative
approach, named SimVAE, and compare their performance on downstream tasks (§5).

4 SELF-SUPERVISED REPRESENTATION LEARNING

We first consider what it means for a subset of data Xi = {xj
i}Jj=1 ⊂ X to be semantically related.

We interpret this to imply a relationship between latent variables {zji }Jj=1 that respectively define
properties of xj

i ∈Xi. Specifically, we assume zji ∼p(z|y) are independent samples from a common
distribution conditioned on another latent random variable y (continuous or discrete), distributed p(y),
where y indexes the latent property that xj

i share, termed semantic content. To motivate this, note that
if conditionals p(z|y) are concentrated relative to the variance of p(z), representations of semantically
related data are clustered, mirroring contrastive methods that “pull together” representations of
related samples (§2). For a dataset X =

⋃N
i=1 Xi, of N subsets of semantically related data, e.g.

augmentations or extracts from larger data samples, this latent structure can be formalised by the
hierarchical latent variable model in Figure 2. The marginal probability and ELBO for a single data
sample is given by (for continuous y, the discrete case is analogous):

pθ(x) =

∫
z,y

pθ(x|z)pθ(z|y)pθ(y) (3)

log pθ(x) ≥
∫
z

qϕ(z|x) log pθ(x|z)
qϕ(z|x) +

∫
z

qϕ(z|x)
∫
y

qϕ(y|z) log pθ(z|y)pθ(y)
qϕ(y|z) (4)

Note that equation 4 extends the standard ELBO (Equation 2) used to train a VAE by replacing
the log prior with a lower bound: log pθ(z) ≥

∫
y
q(y|z) log pθ(z|y)p(y)

q(y|z) . Note also that the semantic
content represented by y may be instance-level (a specific dog), class-level (any dog), in between (a
particular dog breed) or beyond (an animal). If y is discrete, the prior pθ(z) =

∑
y pθ(z|y)pθ(y) is a

mixture model and the exact posterior pθ(y|z) can be computed analytically by Bayes’ rule. The EM
algorithm can then be used to fit parameters of a discrete mixture model, e.g. by K-means, hence
optimising Equation 4 for discrete y, is comparable to training an auto-encoder while clustering the
latent space. Methods taking this approach (Song et al., 2013; Xie et al., 2016; Yang et al., 2017)
can therefore be considered to approximate the latent structure in Figure 2 (for J = 1). Note that the
model so far is fully unsupervised, we next consider self-supervised methods.

4.1 DISCRIMINATIVE SELF-SUPERVISED LEARNING

Here, we consider several approaches to discriminative self-supervised learning, how they relate to
one another and the generative latent variable model in Figure 2.
Instance Discrimination (ID) (Dosovitskiy et al., 2014; Wu et al., 2018) trains a classifier using the
index i∈ [1, N ] as the “label” for each sample xi and its augmentations (if any). From Variational
Classification (VC, Dhuliawala et al., 2023, §2) the softmax cross-entropy loss can be viewed from a
latent perspective under the latent variable model i → z → x (cf Figure 2):

log p(i|xj
i ) ≥

∫
z

qϕ(z|xj
i ) log p(i|z) (5)

where, j indexes augmentations (including identity). VC shows that by maximising Equation 5
for mutually exclusive classes (as samples and their augmentations are typically assumed to be),
representations of each “class” i, defined by optimal distributions qϕ(z|xj

i ), “collapse” together
and distinct classes spread apart. Since classes are defined as samples varying in style, ID learns
representations invariant to those differences (“transformation invariant”, Dosovitskiy et al., 2014).
Deep Clustering (DC) (Caron et al., 2020) repeatedly performs K-means clustering on representations
from a ResNet encoder (for a large fixed number of clusters), which is found to cluster semantically
related samples due to the inductive bias of a ResNet. Current cluster assignments are used as pseudo-
labels to train a softmax layer with constraints to balance class assignments. While semantically
related samples are defined differently, this approach induces clustering as in ID, and the use of a
softmax classifier will again collapse together representations in a cluster.
Contrastive Learning is exemplified by the InfoNCE objective (Eq 1), equivalent to instance
discrimination by softmax classification but normalising over a mini-batch rather than all “classes”
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(instances); and having “non-parametric” similarity functions of embeddings rather than class-specific
parameters (Wu et al., 2018). The InfoNCE objective is known to be optimised if embeddings can
satisfy sim(z, z′) = PMI(x, x′) + c (§2). However, using the popular bounded cosine similarity
cossim(z, z′) = z⊤z′

∥z∥∥z′∥ ∈ [−1, 1] (e.g. Chen et al., 2020) means that optimal embeddings of
semantically related data (PMI > 0) have the same orientation, cossim(z, z′) = 1, and otherwise
(PMI=−∞) be spread apart, cossim(z, z′)=−1.2 (for a fuller discussion see Appendix A.1)

In summary, we consider discriminative SSL methods with a range of different loss functions,
spanning instance discrimination, latent clustering and contrastive learning, and find that they all
cluster representation of semantically related data. This suggests that the induced latent distributions
pf (z) can be formalised by the common hierarchical latent variable model in Figure 2, where y reflects
common semantic content and representations z|y of semantically related data, i.e. conditioned on
the same y, are clustered together. Furthermore, semantically related data are not simply clustered in
these methods, but are collapsed together, losing information that differentiates them, that might be
important for a downstream task. This, in effect, gives primacy to content over style and prioritises
certain downstream tasks over others, which seems antithetical to general representation learning.
Indeed, style information is important for many real-world tasks, e.g. detecting facial expression,
voice sentiment, or the surroundings of an RL agent; and is of central importance in other branches
of representation learning (Higgins et al., 2017; Karras et al., 2019). In essence, by preserving
content at the expense of other information, contrastive methods may over-fit representation
learning to style-agnostic tasks. In supervised settings, discriminatively learned representations also
give over-confident, or miscalibrated predictions (Dhuliawala et al., 2023) because, as well as style
information, the relative probability of different samples is discarded. This information will similarly
be lost in discriminative SSL methods, despite again being of potential use in downstream tasks. To
try to avoid these pitfalls, we consider a generative SSL approach to learning representations under
the identified latent variable model.

4.2 GENERATIVE SELF-SUPERVISED LEARNING (SIMVAE)

Having intuited that the various discriminative SSL methods considered in §4.1 induce comparable
latent structure described by the graphical model in Figure 2, we now consider a generative approach
to achieving the same. For J semantically related samples x={xj} we have:

p(x) =

∫
z,y

(∏
j

p(xj |zj)
)(∏

j

p(zj |y)
)
p(y) (6)

log p(x) ≥
∑
j

∫
zj

q(zj |xj) log p(xj |zj)
q(zj |xj) +

∫
z

q(z|x)
∫
y

q(y|z)
[∑

j

log p(zj |y)
q(y|zj) + log p(y)

]
(7)

where z= {zj} and the approximate posterior is assumed to factorise q(z|x) ≈
∏

q(zj |xj).3 A
derivation of Equation 7 is given in Appendix A.2. In simple terms, the proposed SimVAE model
can be considered a VAE with a mixture model prior p(z) =

∫
y
p(z|y)p(y), and semantically related

samples are conditioned on the same y. While other choices can be made, we assume all p(z|y) are
Gaussian with y-dependent mean and common fixed variance σ2 that is low relative to the variance of
p(z). Hence representations of semantically related samples are “pinched together” in latent space. As
in Eqs. 3 and 4, y can be discrete or continuous, e.g. DeepCluster assumes a finite number of discrete
clusters. If y is discrete, each p(z|y) must be parameterised, which can be memory intensive for a
large number of clusters; and computing the sum over all values of y is computationally expensive
unless hard cluster assignment is assumed, q(y|zi) = δy−i, as in K-means. If y is continuous,
there are effectively an infinite number of clusters, but if p(y) is assumed Gaussian or uniform
(over a suitable region) y can be analytically integrated out efficiently. Unlike most discriminative
methods, that contain pairwise similarity functions of representations, e.g. cosine similarity, Eq. 7
accommodates any number of related samples J to be processed efficiently. Algorithm 1 summarizes
the computational steps required to optimise Equation 7, for continuous y and p(y) uniform.

2We note that Wang & Isola (2020) suggest a similar conclusion but less comprehensively since components
of the InfoNCE objective were considered independently and the relationship to PMI not considered.

3Expected to be a reasonable assumption for zj that carry high information w.r.t. xj , such that observing a
related xk or its representation zk provides negligible extra information, i.e. p(zj |xj , xk) ≈ p(zj |xj).
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Algorithm 1 SimVAE

Require: data {xk}Mk=1; batch size N ; data dimension D; augmentation set T ; latent dimension L;
number of augmentations J ; encoderfϕ; decoder gθ; prior p(z|y) variance, σ2;
for randomly sampled mini-batch {xk}Nk=1 do
{tj}Jj=1 ∼ T ; # augment mini-batch
{xj

k}Jj=1 = {tj(xk)}Jj=1;

{(µj
k,Σ

j
k) = fϕ(x

j
k)}Jj=1; # forward pass : z ∼ p(z|x), x̃ ∼ p(x|z)

{zjk ∼ N (µj
k,Σ

j
k)}Jj=1;

{x̃j
k = gθ(z

j
k)}Jj=1;

Lk
rec =

1
D

∑J
j=1 ||x

j
k − x̃j

k||22 # compute & minimize loss terms

Lk
H = 1

2

∑J
j=1 log(|Σ

j
k|)

µ∗
k = 1

J

∑J
j=1 z

j
k

Lk
prior =

1
2

∑J
j=1 ||(z

j
k − µ∗

k)/σ||22
min(L = 1

N

∑N
k=1 Lk

rec + Lk
H + Lk

prior) w.r.t. ϕ,θ by SGD;
end for
return ϕ,θ;

5 EXPERIMENTAL SETUP

Datasets and Evaluation Metrics We evaluated SimVAE on four benchmark datasets including two
with natural images: MNIST (LeCun, 1998), FashionMNIST (Xiao et al., 2017), Celeb-A (Liu et al.,
2015) and CIFAR10 (Krizhevsky et al., 2009). We augment images following the SimCLR (Chen
et al., 2020) protocol which includes cropping and flipping as well as color jitter for natural images.
We evaluate representations’ utility for downstream classification tasks using a linear probe, a non-
linear MLP probe, and k-nearest neighbors (kNN) (Cover & Hart, 1967) trained on the pre-trained
frozen representations using image labels (Chen et al., 2020; Caron et al., 2020). Additionally, we
conducted a fully unsupervised evaluation by fitting a Gaussian mixture model (GMM) to the frozen
features for which the number of clusters was set to its ground-truth value. Downstream performance
is measured in terms of classification accuracy (CA). A model’s generative quality was evaluated
using the FID score (Heusel et al., 2017) and reconstruction error (see appendix A.4). For further
experimental details and clustering scores please see appendices A.3.1, A.3.2, A.3.5 and A.4.

Baselines methods We compare SimVAE to other VAE-based models including the vanilla VAE
(Kingma & Welling, 2014), β-VAE (Higgins et al., 2017) and CR-VAE (Sinha & Dieng, 2021), as
well as to state-of-the-art self-supervised discriminative methods including SimCLR (Chen et al.,
2020), VicREG (Bardes et al., 2022), and MoCo (He et al., 2020). As a lower bound, we also provide
results obtained for randomly initialized embeddings. To ensure fair comparison, the augmentation
strategy, representation dimensionality, batch size, and encoder-decoder architectures were kept
invariant across methods. To enable a qualitative comparison of representations, decoder networks
were trained for each discriminative baseline on top of frozen representations using the reconstruction
error. See appendices A.3.3 and A.3.4 for further details on training baselines and decoder models.

Implementation Details We use MLP and Resnet18 (He et al., 2016) network architectures for
simple and natural image datasets respectively. We fix the dimension of representations z to 10 for
MNIST, FashionMNIST, and to 64 for Celeb-A and CIFAR10 datasets. For all generative approaches,
we adopt Gaussian posteriors, q(z|x), priors, p(z), and likelihoods, p(x|z), employing diagonal
covariance matrices (Kingma & Welling, 2014). For SimVAE, we adopt Gaussian likelihoods p(z|y),
q(y|zi) = δy−i and consider y to be continuous and uniformly distributed. The covariances of
the likelihood distributions are tuned and fixed. SimVAE conveniently allows for the simultaneous
incorporation of sets of related observations. After tuning, we fix the number of augmentations to 6
and 2 (see Figure 6 for an ablation) for simple and natural datasets respectively. For baselines, all
sensitive hyperparameters were tuned independently for each dataset and method. Further details
regarding hyperparameters can be found in appendices A.3.3 and A.3.4.
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LP-CA MP-CA KNN-CA GMM-CA

Random 39.7 ± 2.4 38.1 ± 3.8 46.1 ± 2.5 42.2 ± 1.2

SimCLR 98.6 ± 0.1 98.7 ± 0.0 98.8 ± 0.1 97.2 ± 0.6

VicReg 96.5 ± 0.2 96.6 ± 0.1 96.7 ± 0.1 80.0 ± 2.3

MoCo 88.6 ± 1.7 94.6 ± 0.4 94.6 ± 0.3 70.5 ± 4.0

VAE 97.2 ± 0.2 97.8 ± 0.1 98.0 ± 0.1 96.3 ± 0.4

β-VAE (β = 1.2) 97.4 ± 0.1 97.8 ± 0.0 98.0 ± 0.1 96.3 ± 0.6

CR-VAE 96.6 ± 0.1 97.2 ± 0.2 97.6 ± 0.0 81.3 ± 2.2

MNIST

SimVAE 97.6 ± 0.1 97.9 ± 0.1 97.8 ± 0.1 97.0 ± 0.0

Random 51.2 ± 0.6 49.8 ± 0.8 66.5 ± 0.4 48.6 ± 0.2

SimCLR 77.4 ± 0.2 79.0 ± 0.1 79.3 ± 0.1 63.6 ± 2.2

VicReg 70.7 ± 0.9 72.6 ± 0.6 76.0 ± 0.2 57.7 ± 0.8

MoCo 65.0 ± 1.3 71.2 ± 0.1 76.9 ± 0.2 56.6 ± 1.1

VAE 77.0 ± 0.5 80.2 ± 0.3 83.7 ± 0.2 57.9 ± 0.8

β-VAE (β = 1.2) 77.2 ± 0.1 79.7 ± 0.2 83.5 ± 0.4 57.5 ± 0.2

CR-VAE 77.7 ± 0.4 80.1 ± 0.1 84.0 ± 0.2 67.5 ± 1.2

Fashion

SimVAE 78.6 ± 0.0 81.1 ± 0.1 84.0 ± 0.0 69.9 ± 0.0

Random 64.4 ± 0.9 65.3 ± 1.0 62.0 ± 0.9 59.2 ± 0.3

SimCLR 94.2 ± 0.2 92.7 ± 0.4 92.0 ± 0.3 71.6 ± 0.6

VicReg 94.3 ± 0.3 94.7 ± 0.1 92.7 ± 0.4 53.9 ± 0.2

VAE 81.5 ± 1.0 87.7 ± 0.5 79.6 ± 0.7 58.8 ± 0.2

β-VAE (β = 1.2) 81.9 ± 0.2 86.7 ± 0.4 79.8 ± 0.1 59.5 ± 0.6

CR-VAE 81.6 ± 0.3 87.7 ± 0.4 79.6 ± 0.6 58.9 ± 0.4

Celeb-A

SimVAE 87.1 ± 0.3 91.6 ± 0.4 85.2 ± 0.1 58.4 ± 0.6

Random 15.7 ± 0.9 16.3 ± 0.4 13.1 ± 0.6 28.2 ± 0.2

SimCLR 65.2 ± 0.2 67.8 ± 0.2 65.2 ± 0.2 49.8 ± 2.8

VicReg 68.8 ± 0.2 69.6 ± 0.2 68.2 ± 0.4 54.3 ± 0.7

MoCo 53.3 ± 1.3 56.4 ± 1.6 54.0 ± 2.0 35.0 ± 2.8

VAE 24.7 ± 0.4 30.3 ± 0.4 25.6 ± 0.5 23.4 ± 0.7

β-VAE (β = 1.2) 24.4 ± 0.4 29.8 ± 0.2 25.1 ± 0.4 23.8 ± 0.4

CR-VAE 24.7 ± 0.4 30.4 ± 0.1 25.4 ± 0.4 23.9 ± 0.8

CIFAR10

SimVAE 36.4 ± 0.0 45.5 ± 0.2 42.8 ± 0.0 34.7 ± 0.5

Table 1: Top-1% self-supervised CA (↑) for MNIST, FashionMNIST, CIFAR10, and Celeb-A (gender
classification) using a linear probe (LP), MLP probe (MP), k-Nearest Neighbors (KNN), and Gaussian
Mixture Model (GMM) classification methods; We report mean and standard errors over three runs;
Bold indicate best scores in each method class: generative (blue), discriminative methods (red).

6 RESULTS

Content classification Table 1 reports the downstream classification and clustering accuracy across
datasets. For Celeb-A, the only multi-attribute dataset, we report values for gender prediction.
Table 1 shows that SimVAE is comparable to or outperforms generative baselines on supervised and
unsupervised learning metrics on simple datasets. This is amplified when moving towards natural
image data where we observe a significant improvement in performance over all VAE methods
including the self-supervised approach, CR-VAE (+4% for Celeb-A, +15% for CIFAR10).

Table 1 also allows for the comparison of SimVAE with representations learned through popular
discriminative methods. While a significant gap remains to be bridged between SimVAE and VicReg
or SimCLR, the proposed method materially reduces the gap (∆) by approximately half for both
Celeb-A (∆ = 7% → ∆ = 3.1%) and CIFAR10 (∆ = 39.2% → ∆ = 24.1%).

Stylistic classification We further analyse the learned representations by predicting multiple different
attributes from the same representation. We leverage the broad range of Celeb-A facial attributes
and evaluate attribute classification of SimVAE and baseline models across 20 tasks. Figure 3 shows
that, on average, SimVAE outperforms all generative and discriminative baselines across these tasks,
with a performance increase of more than 3% and 15% over generative and discriminative baselines,
respectively, for individual tasks such as hair color prediction. This quantitatively supports our
hypothesis that discriminative methods lose stylistic information (since embeddings that share the
same content are collapsed together), which may be important for some downstream tasks.
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LP-CA MP-CA

Random 51.2 ± 0.1 52.9 ± 0.4

SimCLR 66.8 ± 0.2 65.3 ± 0.1

VicReg 64.2 ± 0.5 59.4 ± 0.3

VAE 72.1 ± 0.3 78.2 ± 0.5

β-VAE 67.6 ± 0.4 72.5 ± 0.7

CR-VAE 67.2 ± 0.4 75.9 ± 0.4

SimVAE 75.1 ± 0.3 80.9 ± 0.5

Figure 3: (left) Celeb-A hair color prediction (mean and std err for 3 runs). (right) Celeb-A multi-
attribute prediction using MP: we show the average performance gap (∆) between SimVAE and
baselines across 20 attribute prediction tasks and 3 random seeds. On average, SimVAE outperforms
all other models (∆ < 0), in particular discriminative SSL methods (SimCLR, VicReg).

A detailed analysis for each individual task is reported in appendix A.4. These findings support the
observations made in Figure 1. We visualise image reconstructions for MNIST and FashionMNIST
using VAEs’ decoder and decoder networks trained post-hoc on frozen features learned through
discriminative methods. This qualitatively suggests that more stylistic information (i.e., object
position & size) is discarded by discriminative approaches that generative frameworks, such as
SimVAE, are able to retain.

Image Generation While the focus of our work is not the generative quality relateive to prior
work, rather to improve representational quality through a generative framework, we show randomly
generated images using SimVAE as well as generative quality metrics in appendix A.4. We observe
minor but significant FID score and reconstruction error improvements when using SimVAE with
respect to other VAE-based methods for FashionMNIST, Celeb-A and CIFAR10 datasets.

7 DISCUSSION

We introduce the SimVAE training objective, based on the ELBO for a graphical model that embodies
the assumptions implicit in a variety of discriminative self-supervised methods. Our results validate
the assumptions in this latent variable model and demonstrate the efficacy of SimVAE relative to
previous generative VAE-based approaches, including CR-VAE that aims for comparable latent
structure. SimVAE demonstrably reduces the performance gap to discriminative self-supervised
objectives, including those based on the InfoNCE objective.

SimVAE offers a more principled approach to modeling sets of semantically related observations,
facilitating the simultaneous representation of both content and style information, and taking a
positive step towards fully task-agnostic representations. Additionally, the posterior provides an
estimate of uncertainty, which may be important for critical downstream tasks, and the prior allows for
explicit design choices, offering the future prospect of separating latent factors to achieve disentangled
representations.

While we consider SimVAE to be a positive advancement in representation learning, challenges
remain in bridging the gap between generative and discriminative methods. Previous research shows
that leveraging more complex model architectures, e.g. NVAE (Vahdat & Kautz, 2020), StyleGAN
(Karras et al., 2019), and CR-VAE (Sinha & Dieng, 2021), can significantly enhance the ability of
generative models. In this work, we hold the model architecture constant for fair comparison of the
loss functions, but the additional complexity of generative methods and the increased information that
representations are required to retain, may require more expressive architectures (e.g. Dosovitskiy
et al. (2020)). Further, we note an increased number of augmentations tend to improve discriminative
methods but not necessarily generative approaches (e.g. see appendix A.4), suggesting a direction for
future investigation.
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