
RoboMP2: A Robotic Multimodal Perception-Planning Framework with
Multimodal Large Language Models

Qi Lv 1 2 3 Hao Li 1 Xiang Deng † 1 Rui Shao 1 Michael Yu Wang 2 Liqiang Nie † 1

RoboMP2.github.io

Abstract
Multimodal Large Language Models (MLLMs)
have shown impressive reasoning abilities and
general intelligence in various domains. It in-
spires researchers to train end-to-end MLLMs
or utilize large models to generate policies with
human-selected prompts for embodied agents.
However, these methods exhibit limited gener-
alization capabilities on unseen tasks or sce-
narios, and overlook the multimodal environ-
ment information which is critical for robots to
make decisions. In this paper, we introduce a
novel Robotic Multimodal Perception-Planning
(RoboMP2) framework for robotic manipulation
which consists of a Goal-Conditioned Multimodal
Preceptor (GCMP) and a Retrieval-Augmented
Multimodal Planner (RAMP). Specially, GCMP
captures environment states by employing a tai-
lored MLLMs for embodied agents with the
abilities of semantic reasoning and localization.
RAMP utilizes coarse-to-fine retrieval method to
find the k most-relevant policies as in-context
demonstrations to enhance the planner. Exten-
sive experiments demonstrate the superiority of
RoboMP2 on both VIMA benchmark and real-
world tasks, with around 10% improvement over
the baselines.

1. Introduction
Multimodal Large Language Models (MLLMs) (GPT, 2023;
Liu et al., 2024) have exhibited remarkable intelligence in
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Figure 1: (a) The detection results of the yellow block with the
complex spatial reference using different methods; (b) Different
plans for different environment, even if the same instruction.

various vision and language tasks. Inspired by the impres-
sive performance, many efforts (Ahn et al., 2022; Huang
et al., 2022b) have been made on using large models to
empower embodied agents with human-like intelligence.
These approaches mainly use large models to train end-to-
end policies (Driess et al., 2023; Brohan et al., 2023b;a) or
generate plans with human-selected prompts (Liang et al.,
2023; Huang et al., 2023b). However, end-to-end policies
and human-selected prompts lack generalization and flexi-
bility on unseen tasks.

Environment perception and task planning are two fun-
damental components for embodied agents to complete a
task (Ahn et al., 2022; Sarch et al., 2023). Most of the ex-
isting work typically employs mainstream vision models as
environment perceptors, such as YOLOv5 (Yue et al., 2022)
and CLIP (Radford et al., 2021)). These models work well
in simple scenarios where the categories of the objects are
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pre-defined or the relationships among objects are easy to be
captured. However, they lack the capability to identify and
locate objects in unseen scenarios or objects with intricate
spatial relationships. For instance, as illustrated in Fig-
ure 1(a), the task entails picking up the “yellow block in the
middle of the blue blocks”. The existing perceptors struggle
to accurately identify and locate the specified yellow block
since these models cannot understand the semantic infor-
mation of the complex referring expression. Therefore, it
necessitates the development of robot perceptors with mul-
timodal understanding and reasoning capabilities. In light
of this, we turn to MLLMs as environment perceptors since
they have shown remarkable semantic understanding and
vision perception abilities in various tasks (Liu et al., 2024).
We accordingly propose a MLLM-based Goal-Conditioned
Multimodal Perceptor (GCMP) with an advanced ability
to detect objects with a given semantic-complex reference
goal. As shown in Figure 1(a), GCMP enables robots to
accurately identify and locate referred objects while the per-
ceptors adopted in the existing embodied frameworks fail.

In addition to the multimodal environment perceptor, the
planning for subsequent execution is also critical. The ex-
isting policies mainly include end-to-end models (Brohan
et al., 2023b) and prompt-based approaches (Huang et al.,
2023b). The end-to-end policy integrates the perception
and planning into a single model, thus requiring closed-loop
robot data. However, in the real world, the closed-loop
data is very limited due to the expensive human labor for
collection. Consequently, these models are proven to overfit-
ting (Ahn et al., 2022; Jiang et al., 2023) the data-collection
scenario and show limited generalization in unseen envi-
ronments or on new tasks. On the other hand, current
prompt-based methods rely on manually designed and se-
lected prompt templates to prompt LLMs to generate plans
for a given task. They inherently lack generalization (Are-
nas et al., 2023; Huang et al., 2023a) in diversities of tasks
that are highly different from the tasks given in the demon-
strations of the prompt templates. To cover different types
of tasks, these methods adopt large amounts of templates,
which results in in-context attention distraction. Liu et al.
(2022) have also demonstrated that redundant in-context ex-
amples fail to offer effective guidance, which is detrimental
to the ability of the model (Liu et al., 2022). More impor-
tantly, these approaches (Huang et al., 2022b; Vemprala
et al., 2023) typically generate plans based solely on the text
instruction, overlooking critical environmental information.
For example, as shown in Figure 1(b), even for the same
instruction, different environments lead to different plans.
To address these issues, we propose a retrieval-augmented
method which prompts MLLMs to generate plans via adap-
tively choosing the most relevant policies as demonstrations.

In this paper, we aim to explore how to sufficiently lever-
age both multimodal information in an environment and

the general intelligence in large models to enhance the per-
ception and reasoning capabilities of embodied robots. We
propose a novel Robotic Multimodal Perception-Planning
framework (RoboMP2) which is composed of a Goal-
Conditioned Multimodal Perceptor (GCMP) and a Retrieval-
Augmented Multimodal Planner (RAMP). Specifically, to
endow the embodied model with semantic reasoning and
localization capabilities, we propose GCMP to comprehen-
sively perceive environmental information through the in-
tegration of a tailored MLLM. Meanwhile, to enhance the
generalization of policy planning, we devise RAMP to adap-
tively find the k most-relevant policies as in-context demon-
strations with dedicated coarse retriever, fine reranker. Our
main contributions are as followed:

• Different from the existing robot perceptors that can
only identify objects with pre-defined classes or sim-
ple references, we introduce a taiored MLLM as the
environment perceptor, i.e., GCMP, which owns the
comprehension abilities to perceive targeted objects
with complex references.

• Different from the existing code planners that simply
generate code based solely on a text instruction with
manually selected templates, we propose RAMP that
integrates multimodal environment information into
the code generation process, and develops a retrieval-
augment strategy to mitigate the interference of redun-
dant in-context examples.

• Extensive experiments show that our proposed
RoboMP2, which is composed of GCMP and RAMP,
outperforms the baselines by around 10% on both
VIMABench and real-world tasks.

2. Related Work
MLLMs for Robotic Manipulation. Robotic manipula-
tion aims to complete a specific task by interacting with the
environment. In recent, imitation learning (Brohan et al.,
2023b;a; Chi et al., 2023) has achieved a great success
in robotic learning. However, due to the task complexity,
it needs large amounts of data to train a robot agent to
achieve strong generalization capability (Fang et al., 2023a;
Vuong et al., 2023; Shridhar et al., 2022), which is time-
consuming and computational-unfriendly. Therefore, many
efforts (Huang et al., 2023a;b; Xu et al., 2023) have been
made on prompting LLMs to generate policies in a zero-
shot manner to control robot agent. Liang et al. (2023)
proposed using programs as the policy to control robots
by generating calls to perception APIs and control APIs.
It has been proven that the prompt is crucial when using
LLMs to generate text in a zero-shot manner (Liu et al.,
2022). Thus, many approaches (Arenas et al., 2023; Vem-
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    drag0_obj_loc = GCMP(image, "red and green strip hexagon")
    drag1_obj_loc = GCMP(image, "pallet)
    base0_obj_loc = GCMP(image, "the object at south of drag0 object ")
    ...
    info = RobotExecution(action=action)
    return info

Input Perception

Figure 2: Overview of our proposed RoboMP2 framework. The three parts in grey/blue/green represent the input data, planning and
perception, respectively. The modules highlighted are trainable, including fusion module and LoRA.

prala et al., 2023; Singh et al., 2023) explored the construc-
tion of the text prompt, including descriptions of the task
details, robotic API libraries, environment feedback (Sarch
et al., 2023). One constraint of previous studies is that they
merely utilized the textual information to prompt LLMs,
ignoring the significant multimodal information of the envi-
ronment. Moreover, it would confuse the model if there are
too many prompt templates in-context examples, resulting
in a wrong execution plan. Thus, in order to alleviate these
problems, we introduce a retrieval-augmented multimodal
planner which sufficiently leverages the multimodal infor-
mation and most relevant demonstrations for task planning.

Retrieval Augmented Generation with MLLMs. Re-
trieval augmented generation (RAG) was first introduced
to serve as more informative inputs to unlesh the extensive
knowledge of LLMs (Lewis et al., 2020; Liu et al., 2022).
Due to its effectiveness, it was subsequently introduced
to the multimodal domain. It assists models generate an-
swers by retrieving contents related to the original input as
supplement context. RETRO (Borgeaud et al., 2022) intro-
duced additional retrieval encoders to train a GPT model
from scratch (Radford et al., 2019). Atlas (Izacard et al.,
2023) incorporated similar retrieval encoders to continually
finetune T5 model (Raffel et al., 2020). In addition, KNN-
based retrieval methods (Fan et al., 2021) and cross modal
semantic-based retrieval methods (Zhou et al., 2022) are
commonly used to gather information from different modal-
ities, aiming to generate more satisfied text by providing
evidence. Considering the plans for robotic manipulation
tasks are predominantly involved in the executed actions
and target objects, we incorporate a task rewriting module.

This module is introduced to extract essential textual infor-
mation from task instructions. By integrating this module
with a coarse-to-fine retrieval method, we adaptively select
policies that exhibit semantic similarity as demonstrations,
aiming to unveil the inherent capabilities of MLLMs.

Task and Motion Planning. It (Garrett et al., 2021; Silver
et al., 2023; Kaelbling & Lozano-Pérez, 2011) selects the
sequence of high-level actions (Fikes & Nilsson, 1971; Nau
et al., 1999) that the robot should take, the hybrid parameter
values that determine how the action is performed, and the
low-level motions (LaValle, 2006) that safely execute the
action. Traditionally, these approaches build on research
through optimization (Toussaint, 2015) or symbolic reason-
ing (Kumar et al., 2022), but more recently machine learning
has been applied to aspects of the problem via learned rep-
resentations (Silver et al., 2023; Eysenbach et al., 2019; Xu
et al., 2018; 2019; Shah et al., 2021), learned task primitives,
and more. Some works utilize language for planning and
grounding (Huang et al., 2022a;b; Ahn et al., 2022; Kollar
et al., 2010; Tellex et al., 2011). Others have approached the
problem through hierarchical learning (Nair & Finn, 2019;
Xia et al., 2020; Shah et al., 2021; Hafner et al., 2022). In
this work, we leverage MLLMs and their semantic knowl-
edge to find feasible plans.

3. Framework
In this section, we present a robotic multimodal perception-
planning framework (RoboMP2) that utilizes a Goal-
Conditioned Multimodal Perceptor (GCMP) and a Retrieval-
Augmented Multimodal Planner (RAMP) to enhance the
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perception and planning abilities of embdied agents. The
framework of RoboMP2 is shown in Figure 2.

3.1. Goal-Conditioned Multimodal Perceptor

3.1.1. ENVIRONMENT PERCEPTION FOR
MANIPULATION

Robotic manipulation involves various types of tasks, im-
posing different requirements on the perceptor of the robot.
For example, when a task entails picking up “an apple”,
the robot perceptor needs to have the ability to identify and
locate the apple for robot execution. While the perceptors
in the existing studies can work well in recognizing this
kind of simply referred objects, e.g., pre-defined classes of
objects, they struggle to identify semantic-complex referred
objects. For instance, when the task involves picking up “the
two green apples on the left of the yellow cup”, the existing
perceptors fail, since they cannot understand the instruction
semantics or the spatial relationships among different ob-
jects. In practice, these complex references about objects
widely exist in different tasks. We provide three types of
commonly used reference expressions that can hardly be
handled by the existing perceptors, i.e., referring objects
based on attributes, spatial relationships, and knowledge
reasoning:

(1) Object Perception Based on Attributes: Many tasks
require robots to manipulate objects with specific attributes.
As shown in Figure 3(b), the robot is asked to manipulate
“all the objects with the same color of the blue cube”. It
involves one-to-many perception, where a single attribute
pertains to many objects. This kind of manipulation requires
the perceptor to have a powerful attribute-aware perception
ability for not leaving out any of the referred objects.

(2) Object Perception Based on Spatial Relationships:
Robots often receive instructions to manipulate objects at
specific positions. For example, in Figure 3(c), there are two
orange blocks, and the instruction is to manipulate “the or-
ange block at the bottom of the purple block”. This requires
the perceptor to have spatial-aware perception capabilities.

(3) Object Perception Based on Knowledge Reasoning:
Robot manipulation also face situations where knowledge
reasoning is needed to determine the operational target
based on instructions. As illustrated in Figure 3(d), sup-
posing the television stops working, people ask the robot for
handing him an object capable of repairing the television.
It requires the robot to have high-level understanding and
reasoning abilities.

The existing studies (Liang et al., 2023; Huang et al., 2023a)
which employ Yolov5 or CLIP can locate objects with the
basic object name or simple semantics, such as the example
in Figure 3(a). However, they lack the ability of perceiving
objects with complex referential expressions, such as the

the above three kinds of expressions. To address this issue,
we built a Goal-Conditioned Multimodal Perceptor (GCMP)
upon a MLLM that have both semantic understanding and
vision perception abilities.

3.1.2. TRAINING OF MULTIMODAL PERCEPTOR

To learn a tailored multimodal perceptor for embodied
agents, we formulate robotic data into instruction-tuning for-
mat, namely {image, ref exp, coordinates} triplets,
where the input consists of an image and a referential ex-
pression (ref exp), and the output is the corresponding coor-
dinates for manipulation. An example is shown in Figure 4.
For model architecture, we adopt the ViT (Dosovitskiy et al.,
2020) and flan-t5-xl (Chung et al., 2024) as our embodied
vision encoder and language encoder. Then, we connect
these two encoders through a MLP layer. In addition, we
introduce a LoRA module (Hu et al., 2021) to tune the LLM
efficiently and effectively.

During instruction tuning, we employ the natural lan-
guage formulation of all question-answer pairs as the input
(xI,xT) and output yT. The answer is also uniformly for-
mulated as natural language and we adopt the autoregressive
training paradigm to tune the model. The learning objective
is as followed:

L = −
∑
k

logP (yTk+1|yTi<k, (x
I,xT); θ), (1)

where the θ denotes the learnable weights of the model and
xI denotes the environment image.

3.2. Retrieval-Augmented Multimodal Planner

Planning is critical for embodied agents to complete tasks.
Exiting approaches typically prompt LLMs to generate plans
according to a textual task instruction and a manually se-
lected prompt template. However, they suffer from two
issues: (1) utilizing human selected templates for a given
instruction while hardly generalizing to new tasks; (2) only
using text information while ignoring multimodal environ-
ment information. To address these challenges, we introduce
RAMP which is composed of a coarse retriever, a instruction
and a fine reranker to adaptively find the k most-relevant
policies as in-context demonstrations, thereby boosting the
generalization of the policy planning.

3.2.1. COARSE RETRIEVER

To cover diversities of tasks, a prompt typically includes
many in-context examples as demonstrations to prompt
LLMs to generate task plans. However, this also leads
to attention diffusion across these examples, which hurts
the quality of the generated plan. To address this issue, we
propose a coarse retriever to find the most relevant policies
from a codebase. Specifically, we initially assemble a code-
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Type Object Name Attribute Spatial Relationship Knowledge Reasoning

Manipulated  Object the blue cube all objects with the same
color of the blue cube

the orange cube at the 
bottom of the purple cube

the object  which has 
ability to repair a TV

Location [136, 167, 164, 138]
[51, 205, 81, 175]
[195, 28, 218, 6]

[212, 188, 236, 163]  
[232, 153, 286, 139] [242, 37, 323, 15]

Visualization

(a) (b) (c) (d)

Figure 3: Examples of manipulated objects with four different referential relationships types.

Scene: You are a powerful robot who is performing 
manipulations based on instructions.

Description: Upon receiving a task, your first step is 
to extract the atomic actions involved in the textual 
instructions. You need to proceed step by step, starting 
with understanding the natural language instructions, 
then eliminating interference from object names and other 
factors, and finally generating atomic actions.

Example:
    Instruction: Put the red swirl block into the purple 
container.

Action: Put the {object1} into the {object2}.

Instruction: <Insert your instruction>
Ref_exp: the coordinate of the object to the 
right of the green plate, second from the right
Coordinates: [300, 66, 324, 88]

Figure 4: An example of training data for the GCMP.

base comprising over 50 programs gathered from 10 diverse
sources (Arenas et al., 2023; Xu et al., 2023; Liang et al.,
2023). Given the textual query xque of a task instruction, the
coarse retriever aims to recall K programs {xC

i }Ki=1 from
codebase C, where N represents the number of target can-
didates. We adopt the two-tower architecture f (·) which
extracts the information of xque and xC

i separately. The
score between task instruction query xque and candidate xC

i

is as followed:

Vque = f(xque), VC
i = f(xC

i ), (2)

ScoreCR
i = Vque ◦VC

i , (3)

where ◦ represents the dot product operation.

We adopt TF-IDF (Aizawa, 2003) to compute the simi-
larity. Meanwhile, extensive experiments are conducted
to compare this metric and other two classic metrics, i.e.,
BM25 (Robertson et al., 2009) and SentenceBERT (Reimers
& Gurevych, 2019). The details of similarity computations
and the experimental comparison can be seen in Appendix A
and Section 4.5.

3.2.2. FINE RERANKER

Despite relevant code snippets could be recalled through the
coarse retriever, there remains an issue of the order among

candidates. In the planning generation phase, large models
are highly sensitive to the sequence of demonstrations. Con-
sequently, we introduce a rewriting module and a reranker
module respectively to extract its core of the task instruction
and order these relevant demonstrations. Finally, we only
use the k most relevant programs as the in-context examples.

Instruction Rewriter. The robotic policy is mainly re-
lated to the action type and manipulation objects. Thus,
we introduce a instruction rewriting module to eliminate
distracting expressions from the task description, obtain-
ing its core robotic operation instructions. Specifically, we
combine the raw textual task query xque and a soft prompt
template to rewrite x̂que. The formula is as followed:

x̂que = Rewritter(xque, Tsoft), (4)

where we use the GPT4 as the rewritter and Tsoft de-
notes the soft prompt template which consists of Scene,
Description, Example and Instruction. The first
two primarily provide premises and requirements for the
robot scenarios, while the latter two consist of concrete
examples and the corresponding task instructions. More
details can be seen in Appendix B.

Semantic Reorder. In the plan generation stage, the order
of the examples is crucial. Due to the design of positional en-
coding in the transformer architecture, researchers (Li et al.,
2023; Rubin et al., 2022) have found that model generation
tends to primarily focus on the content at the beginning and
the end of the paragraph. Therefore, we introduce a reorder
module with the aim of sorting the retrieved candidate code
snippets{xC

i }Ki=1. A straightforward solution is to simply
concatenate it at the beginning of the whole candidate.

Hi = SentenceBERT([x̂que,xC
i ]), (5)

ScoreFRi = Sigmoid(Hi). (6)

In the end, the coarse-grained ranking scores and fine-
grained ranking scores would be applied for the comprehen-
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sive ranking as followed:

Scorei = λ · ScoreCR
i + (1− λ) · ScoreFRi , (7)

∝ p(x[cls]|xque, x̂que,xC
i ). (8)

Equation 8 illustrates the relationship between the Scorei
and (xC ,xque

i , x̂que
i ), when SentenceBERT is employed for

both the coarse retriever and the fine reranker.

3.2.3. MULTIMODAL GENERATION MODULE

After adaptively selecting k most relevant examples
{xC

i }ki=1 through the coarse-to-fine retrieval method, we
combine them with a template to construct the complete
prompt, including the third-party libraries, function defini-
tions, and the task instruction. It should be noted that we
arrange the examples in reverse order based on relevance,
meaning the most-relevant examples are placed towards the
end. Compared with the pure textual generator, the multi-
modal information of current environment is crucial. Hence
we use the GPT4V as the multimodal generator with the in-
put {xque,xI,xC

i }ki=1 and full prompt template. Examples
of full template are presented in Appendix D.

4. Experiment
4.1. Data and Evaluation Metrics

We employ VIMA (Jiang et al., 2023) as the test benchmark
which encompasses 17 tasks ranging from L1-level to L4-
level difficulty. In the zero-shot real-world experiment, we
construct 7 tasks including 4 sim-to-real tasks and 3 gener-
alization tasks. We measure the performance of different
methods through the Success Rate (SR) metrics. Please
refer to Appendix C for more details.

4.2. Baselines

We compare our method with the following two types of
baselines:

End-to-end models: (1) Gato (Reed et al., 2022) introduces
a decoder-only architecture which is prompted with the
observation and action subsequence; (2) Flamingo (Alayrac
et al., 2022) embeds a variable number of prompt images
into a fixed number of tokens as Perceiver and an additional
robot action heads; (3) VIMA (Jiang et al., 2023) leverages
the multimodal prompt and x-attention block to fuse the
instruction and observation information; (4) RT-2 (Jiang
et al., 2023) trains a large robotic model by stacking multi-
transformer decoder blocks via autoregressive generation.

Prompt-based methods: (5) VisProg (Huang et al., 2023a)
generates python-like modular programs, which are then
executed to get both the solution and a comprehensive and
interpretable rationale. (6) CaP (Liang et al., 2023) gener-
ates the code as policies to manipulate the robot given the

textual instruction. (7) I2A (Huang et al., 2023a) follows
the code policy style while introducing the off-the-shelf
SAM (Kirillov et al., 2023) and CLIP (Radford et al., 2021)
to obtain coordinates of target objects.

4.3. Implementation Details

For GCMP in our proposed RoboMP2, we adopt the
EVA-CLIP/g (Fang et al., 2023b) as the visual encoder
of our perceptor. Regarding the LLM, we investigate the
encoder-decoder architecture model flan-t5-xl (Chung
et al., 2024). During training, the vision encoder and the
LLM are frozen, only learning the weight of the fusion
module and the LoRA module. We set the epoch to 10,
the batch size to 128, the learning rates of the fusion mod-
ule and LoRA module to 3e-5 and 1e-4, respectively. We
adopt the AdamW optimizer and the cosine decay learning
schedule. The overall training time is around 24 hours on a
8*A100-80G-SXM4 platform.

For RAMP in the proposed RoboMP2, we adopt the
GPT4/GPT3.5 and GPT4V as the text-only rewritter and
the multimodal generator. The number of the most-relevant
examples during coarse retriever and fine reranker is set to
5 and 2, respectively.

4.4. Results

Experimental Results on VIMABench. The task diffi-
culty of VIMABench ranges from L1 level to L4 level, with
tasks at L1-L3 levels being seen, while tasks at L4 level are
unseen. As shown in Table 1, our RoboMP2 outperforms
other methods by a large extent, surpassing the VIMA base-
line around 10% on the average performance of success
ratio. This demonstrates the effectiveness of RoboMP2 for
robotic manipulation.

Compared with the other baselines, the average performance
improvements of RoboMP2 range from 4% to 8% on seen
tasks (L1-L3), while a comprehensive improvement of ap-
proximately 20% on unseen tasks (L4). The reason is that
end-to-end models tend to overfit to the training tasks due
to the small amount of closed-loop data, resulting in limited
generalization abilities on unseen tasks. The other prompted-
based methods use fixed human-selected in-context exam-
ples in the prompt, thus lacking adaptability on diverse
unseen tasks. In contrast, the proposed RoboMP2 shows
a much better generalization ability on unseen tasks since
RAMP in RoboMP2 can adaptively find the most relevant
policies as their demonstrations to prompt the generator
according to the task.

Real-world Experimental Results. We conduct experi-
ments on 6 real-world tasks, comparing the performance
of RoboMP2 with that of I2A. This is due to that both of
them can be transferred from simulation to reality, without
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L1 L2 L3 L4 Avg.

End-to-end models

Gato† 58.1 53.2 43.5 12.4 41.8
Flamingo† 47.5 46.0 40.8 12.1 36.6
VIMA† 81.6 81.5 79.0 48.9 72.7
RT-2 72.8 70.3 66.8 47.0 64.2

MLLM Planners

CaP 71.2 70.0 42.8 44.7 57.2
VisualProg 49.7 47.7 69.9 52.2 54.9
I2A† 77.0 76.2 66.6 49.8 65.0
RoboMP2 89.0 (+7.4) 85.9 (+4.4) 86.8 (+7.8) 68.0 (+19.1) 82.4 (+9.7)

Table 1: The results on the VIMA Benchmark. † denotes the cited result.

Task Name I2A RoboMP2

Basic Task

Visual Manipulation 85.0 90.0
Same Shape 45.0 90.0
Same Color 40.0 90.0

Challenging Task

Manipulate Old Neighbor 0.0 70.0
Pick in Order then Restore 65.0 80.0
Interfering Manipulation 0.0 55.0

Avg. Success Ratio (%) 39.2 79.2

Table 2: The results on the real-world tasks.

Visual
manipulate Rotate Rearrange Rearrange

then restore
Scene

understanding
Pick in order

then restore Avg.

I2A 63.5 3.4 0.0 0.0 2.9 8.4 13.0
RoboMP2 92.0 52.0 84.0 88.0 60.0 28.0 67.3

Table 3: The results on the enriched test set.

requiring to collect data for additional training. As illus-
trated in Table 2, our RoboMP2 outperforms I2A by 40% in
terms of the overall average success ratio. It can be seen that
I2A performs well in the task visual manipulation.
However, it struggles to complete the manipulation tasks of
objects with specific attributes such as same shape, let
alone challenging tasks. In comparison, RoboMP2 shows
consistent improvements across these two tasks.

It is noted that, on the tasks requiring to recognize objects
with the same attribute or a specific relationship such as
manipulate old neighbor, the performance of I2A
drops significantly, even to zero. The reason is that the
SAM+CLIP perceptor in I2A is unable to simultaneously
identify multiple instances and is hardly handle the detection
of objects with complex relationships. Benefiting from our
proposed Goal-Conditioned Multimodal Perceptor (GCMP),
RoboMP2 demonstrates a strong capability in dealing with
such challenges.

4.5. Ablation Study

Effects of the Coarse-to-fine Retriever. We conduct abla-
tion experiments to valid the performance of RoboMP2 with
different settings of the retriever-augmented module. In
particular, we compare 4 different implementations: (1) w/o
CR removes the coarse retriever, directly using the rewriting
module to order all programs in the codebase; (2) w/o IR re-
moves the rewriting module, remaining the coarse retriever
and semantic reorder; (3) w/o SR removes the reorder mod-
ule, unsorting the retrieved demonstrations; (4) w/o RAMP
removes the whole retriever, and takes k programs from the
codebase randomly as prompt examples. As depicted in
Table 4, without either of these components, the average
performance drops significantly. The reason is that when

the context is composed of irrelevant examples, it is difficult
for the planner to generate execution plans successfully.

CR IR SR L1 L2 L3 L4 Avg.

RoboMP2 ! ! ! 89.0 85.9 86.8 68.0 82.4
RoboMP2

w/o CR % ! ! 14.4 16.0 19.6 8.0 14.5
RoboMP2

w/o IR ! % ! 87.7 86.1 86.7 49.0 77.4
RoboMP2

w/o SR ! ! % 81.9 80.6 82.7 65.0 77.5
RoboMP2

w/o RAMP % % % 10.5 9.5 11.6 3.0 8.7

Table 4: The performance of RoboMP2 variants with removing
different retriever components on VIMABench.

λ=0 λ=0.25 λ=0.5 λ=0.75 λ=1

TF-IDF 74.1 82.4 72.4 72.6 73.9
BM25 42.8 43.1 42.7 42.8 41.8
S-BERT 35.9 33.9 35.7 35.9 34.2

Table 5: The comparison results regarding different values of λ
and similarity metrics on the VIMABench dataset.

In addition, λ in RAMP balances the contributions between
the similarity score of the coarse retriever and the fine
reranker. We investigate its effects with different values
ranging from 0 to 1, as well as different similarity calcu-
lation methods for the coarse retriever, including TF-IDF,
BM25, and SentenceBERT. As illustrated in Table 4, it
achieves the best performance when λ is set to 0.25 and TF-
IDF performs consistently better than the other similarity
calculation methods for the coarse retreiver. Since the input
for the fine reranker is derived from candidates provided
by the coarse retriever, the distinctions among these candi-
dates are minimal. Consequently, it is essential to assign a
higher weight to the fine reranker to ensure its significant
impact during the reranking process. On the other hand,
instructions for the same task often contain representative
keywords on VIMABench. Therefore, the TF-IDF similar-
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First put red and green stripe hexagon onto the pallet then put the object that was previously at its south into the same pallet.VIMABench

Sim to Real

Put the yellow block at the bottom of the blue block into the green pan.Generalization

initial environment t=0
pickplace(“hexagon”, “pallet”)

t=1
pickplace(“the object at south 

of hexagon”, “pallet”)

t=0
pickplace(“hexagon”, “pallet”)

t=1
pickplace(“the object at south 

of hexagon”, “pallet”)

t=0
pickplace(“hexagon”, “pallet”)

t=1
pickplace(“the object at south 

of hexagon”, “pallet”)

t=0
None

t=1
None

t=0
pickplace(“purple block”, “pan”)

t=1
None

t=0
pickplace(“purple block”, “pan”)

t=1
pickplace(“the object at east 

of purple block”, “pan”)

t=0
None

t=1
None

t=0
distract(“blue block”)

t=1
pickplace(“the yellow block in the 

middle of blue blocks”, “pan”)

t=0
None

t=1
None

RoboMP2

Task Type

initial environment

initial environment

correct

wrong
VIMA Baseline Instruct2Act

First put the purple block into the green pan then put the object that was previously at its east into the same pan.

Figure 5: Visualization of robot planning and execution on VIMABench, zero-shot sim-to-real and generalization tasks.

ity calculation method which is based on keyword frequency
matching could achieve excellent results.

To investigate the robustness of RoboMP2, we construct an
extensive test set by enriching the original instructions using
GPT4. Subsequently, we conduct experiments to evaluate
the impact of this augmentation. As shown in Table 3, the
results demonstrate the outstanding semantic understanding
capability of our approach. In comparison to I2A, RoboMP2

is not confined to processing text instructions with fixed pat-
terns. On the contrary, it possesses stronger generalization
and robustness.

Effectiveness of Multimodal Planner. To assess the in-
fluence of multimodal information on plan generation, we
replaced the planning generator from GPT4V, which accepts
both text and images as the input, with GPT3.5 and GPT4,
both of which rely solely on the text input. The results
on the VIMA Benchmark are illustrated in Table 6. It can
be seen that the performance partially decreases when the
visual input is absent. Upon analyzing the generated code
plans, we found GPT4 fails to detect these anomalies, when
there are disturbances in the environment without explicit
mention in the task, as illustrated in Figure 1(b). In contrast,
with the assistance of visual information, GPT4V can effec-
tively perceive environmental factors, enabling it to make
correct decisions.

Text Image L1 L2 L3 L4 Avg.

RoboMP2
w/ GPT4V ! ! 89.0 85.9 86.8 68.0 82.4

RoboMP2
w/ GPT4 ! % 87.8 79.6 77.8 65.0 77.6

RoboMP2
w/ GPT3.5 ! % 67.2 73.2 70.7 53.9 66.2

Table 6: The performance of multimodal and text-only planners.

Comparison of Multimodal Perceptors. To validate the
capabilities of GCMP for intricate relationship references,
we construct a perception test set. This set contains funda-
mental perception tasks that detect objects by names, and
complex perception tasks that requires understanding com-
plex referential expressions as illustrated in Section 3.1.1.
Since the traditional visual perceptors used in the robotic
manipulation, such as YOLO, cannot take the referential
expressions to perceive objects, we compare our embodied
perceptor GCMP with SAM+CLIP in I2A, and the general
MLLM, i.e., Shikra (Chen et al., 2023). It can be seen from
Table 7 that our GCMP outperforms the two models on both
simple and complex referential perception by a large margin.
Neither SAMP+CLIP or Shikra can work on the complex

Simple Perception Complex Perception

mAP0.3 mAP0.5 mAP0.75 mAP0.3 mAP0.5 mAP0.75

SAMH+CLIPH 78.9 74.1 64.1 0 0 0
Shikra 63.6 18.2 0 0 0 0
GCMP 99.1 94.0 89.2 99.0 97.7 78.0

Table 7: The performance of multimodal perceptors.
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referential perception. The reason is that SAM+CLIP does
not have a ability to understand the complex semantic refer-
ence and the general model Shikra struggles to generalize
to complex embodied perception tasks.

4.6. Qualitative Results

We further present qualitative results in Figure 5, illustrating
the planning and execution steps of RoboMP2 in compari-
son to other methods across three different kinds of tasks.
It can be observed that only RoboMP2 successfully accom-
plishes all tasks. While all three methods perform well on
VIMABench tasks, the end-to-end policy fails to generalize
to real-world scenarios due to differences in the robot arm.
Furthermore, SAM+CLIP schema is shown to unable to rec-
ognize referential objects with complex relationships. This
leads I2A to only complete pick-and-place tasks for simple
objects, resulting in failure in the second step of sim-to-real.
In the generalization scenario, other methods are unable to
complete the instruction. Only RoboMP2, leveraging its
robust language understanding and multimodal perception
capabilities, successfully identify objects with intricate rela-
tionships. It adaptively generates action strategies based on
the current environment, ultimately completing the task.

5. Conclusion
In this paper, we have proposed a novel Robotic Perception
and Planning framework (RoboMP2) that consists of the
Goal-Conditioned Multimodal Perceptor (GCMP) and the
Retrieval-Augmented Multimodal Planner (RAMP). GCMP
is introduced to capture multimodal environment informa-
tion by incorporating a tailored MLLM. RAMP employs a
coarse-to-fine retrieval-augmented approach to adapatively
select the k most-relevant policies as in-context demonstra-
tions to enhance the generalization. Extensive experiments
demonstrate that RoboMP2 outperforms the baselines by a
large margin on both VIMABench and real-world tasks.

Impact Statement
Inspired by the great successes of multimodal large language
models (MLLMs), we propose RoboMP2 that leverages
both multimodal information in an environment and the
general intelligence in MLLMs to enhance the perception
and reasoning capabilities of embodied robots. To this end,
this technology is expected to advance smart robots that can
free human beings from some tedious work. There are many
potential societal consequences of developing smart robots,
none which we feel must be specifically highlighted here.
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A. Similarity Computation Method
(1) TF-IDF: It is a numerical statistic to evaluate the importance of a word within a document relative to a collection of
corpus. We obtain the term frequency (TF) and the inverse document frequency (IDF), then multiplying them to compute
the the TF-IDF score as followed:

TF(ti, q) =
nti,q∑l

k=1 ntk,q

, (9)

IDF(ti, Cj) = log

(
|C|

nti,Cj
+ 1

)
, (10)

ScoreTF−IDF(q, Cj) =
∑

IDF(ti, Cj)× TF(ti, q), (11)

where ti, q, Cj represents the term word, query, and program in codebase C. nti,q means the number of times term ti appears
in query q while |C| denotes its total number.

(2) BM25: This is an extension of TF-IDF, particularly effective in dealing with long documents. It improves the calculation
of IDF and simultaneously enhances the weighting of TF, instead of the original TF. The computation procedure is as
followed:

W(ti, q, C) =
TF(ti, q) · (k1 + 1)

TF(ti, q) + k1 · (1− b+ b · |q|
Lavg(C) )

, (12)

IDF(ti, Cj) = log(
|C| − nti,Cj + 0.5

nti,Cj
+ 0.5

+ 1), (13)

ScoreBM25(q, Cj) =
∑

IDF(ti, Cj) · W(ti, q), (14)

where W means the weight of each term ti in query q, and Lavg denotes the average length of codebase C.

(3) SentenceBERT: Different from keyword similarity computation methods, it embeds the sentence to a vector via a
pretrain language model, and then use the cosine similarity to compute their scores.

hq = Encoder(q) (15)
hCj

= Encoder(Cj) (16)
ScoreSBERT = hq ◦ hCj

(17)

B. Rewriting Prompt
As shown in Figure 6, we construct a rewritter soft template which consists of robotic scene, description, example and
instruction. The first two primarily provide premises and requirements for the robot scenarios, while the latter two consist of
concrete examples and the corresponding task instruction.

Scene: You are a powerful robot who is performing manipulations based on instructions.

Description: Upon receiving a task, your first step is to extract the atomic actions involved in the textual instructions. You need to 
proceed step by step, starting with understanding the natural language instructions, then eliminating interference from object names 
and other factors, and finally generating atomic actions.

Example:
    Instruction: Put the red swirl block into the purple container.

Action: Put the {object1} into the {object2}.

Instruction: <Insert your instruction>

Figure 6: The soft template of instruction rewritter.

C. Dataset
C.1. VIMABench

VIMABench (Jiang et al., 2022) introduces a comprehensive four-level evaluation protocol designed to progressively
increase in difficulty, challenging trained agents. The protocol comprises four levels, each testing different aspects of the
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agent’s capabilities.

• Level 1 (L1) - Placement Generalization: Randomizing the placement of target objects is required in this level, testing
the agent’s ability to adapt to varying configurations.

• Level 2 (L2) - Combinatorial Generalization: Generating new combinations of target materials and object descriptions
challenges the agent’s adaptability to diverse scenarios.

• Level 3 (L3) - Novel Object Generalization: Assessing the agent’s capacity to generalize to unfamiliar materials and
objects, gauging its ability to handle the unknown.

• Level 4 (L4) - Novel Task Generalization: Requiring agents to ground and execute tasks that have not been encountered
before, pushing the boundaries of the agent’s problem-solving capabilities.

The tasks, presented in the order of their corresponding task index, align with the structure of VIMABench:

1. Visual Manipulation: Select a designed object and place it into a specific container.
2. Scene Understanding: Recognize a specific object in a provided image and place it into a designed container.
3. Rotate: Rotate a specific object by a designated degree.
4. Rearrange: Target objects in the current state into the scene pattern based on a provided image.
5. Rearrange then Restore: Complete the Rearrange task, then restore objects to their initial placement.
6. Novel Adjectives Understanding: Recognize novel adjectives by comparing object images provided in the VIMABench

prompt.
7. Novel Nouns: Recognize novel nouns similar to the above.
8. Novel Nouns and Adjectives: Combine novel adjectives and nouns effectively.
9. Novel Concept Understanding: Recognize degrees indicated in the prompt and rotate a specific object accordingly.

10. Follow Motion: Manipulate objects corresponding to given frames in the VIMABench prompt.
11. Stack the Blocks: Similar to the above, involving stacking blocks.
12. Sweep Without Exceeding: Manipulate specific objects without exceeding a constraint.
13. Sweep Without Touching: Manipulate specific objects without touching a constraint.
14. Same Texture: Recognize objects with the same texture and manipulate them into a specific container.
15. Same Shape: Recognize objects with the same shape and manipulate them into a specific container.
16. Manipulate the Old Neighbor: Place an object into a specific container, then place an object in the direction of its

original location into the same container.
17. Pick in Order then Restore: Manipulate one object into different containers sequentially, and finally restore it to the

initial container.

C.2. Real-world Tasks

In the real-world setting, a robotic arm with a gripper is utilized. A camera is positioned parallel to the robotic arm for
optimal viewing. Real task experiments focus on object localization, object attribute recognition, complex scenes, complex
reasoning, and contextual memory.

Additional tasks in the real-world setting include:

1. Visual Manipulation: It is the same as the VIMABench.
2. Same Shape: It is the same as the VIMABench.
3. Same Color: Recognize objects with the same color and manipulate them into a specific container.
4. Manipulate Old Neighbor: It is the same as the VIMABench.
5. Interfering Manipulation: There is a disturbance object in the environment and the robot need recognize the state. First

distract the interfered object, then execute the following instruction.
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D. Planning Template
We construct a template to prompt multimodal generator to generate planning. An example of complete prompt is shown in
Figure 7. By combining the specific in-context sample, the length of the whole input tokens would be approximately 8k.

E. Supplementary Result
The VIMABench contains 17 tasks of L1-L4 levels. We present the detailed experimental result in Table 8.

Method 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 Avg

L1 Level

Gato 79.0 68.0 91.5 57.0 44.5 54.0 74.0 - 18.0 - 61.0 88.5 - - 83.5 33.5 2.5 58.1
Flamingo 56.0 58.5 63.0 48.5 38.0 48.5 62.5 - 3.5 - 66.5 86.0 - - 40.0 43.5 2.5 47.5
GPT 62.0 57.5 41.0 55.5 45.5 47.5 54.5 - 8.5 - 77.0 81.5 - - 41.0 38.0 0.5 46.9
VIMA 100.0 100.0 99.5 100.0 56.5 100.0 100.0 - 18.0 - 77.0 93.0 - - 97.0 76.5 43.0 81.6
RT-2 100.0 98.0 97.0 58.0 30.0 98.0 97.0 14.0 84.0 79.0 93.0 52.0 47.0 72.8

CaP 90.0 80.8 96.0 65.3 61.3 80.0 84.7 - 38.0 - 68.0 60.0 - - 67.3 58.0 76.0 71.2
VisualProg 92.0 27.0 9.0 29.0 90.0 38.0 87.0 - 21.3 - 65.3 30.7 - - 92.0 36.7 28.7 49.7
I2A 91.3 81.4 98.2 78.5 72.0 82.0 88.0 - 42.0 - 72.0 68.0 - - 78.0 64.0 85.2 77.0
RoboMP2 100.0 89.3 100.0 92.7 95.3 86.0 96.0 - 55.3 89.3 71.3 - - 86.0 98.7 96.7 89.0

L2 Level

Gato 56.5 53.5 88.0 55.5 43.5 55.5 53.0 - 14.0 - 63.0 90.5 - - 81.5 33.0 4.0 53.2
Flamingo 51.0 52.5 61.5 49.5 38.5 47.5 55.5 - 5.5 - 70.5 82.0 - - 42.0 39.0 3.0 46.0
GPT 52.0 52.0 49.5 54.5 45.5 52.5 51.0 - 11.0 - 76.5 84.0 - - 43.0 38.0 0.5 46.9
VIMA 100.0 100.0 99.5 100.0 54.5 100.0 100.0 - 17.5 - 77.0 93.0 - - 98.5 75.0 45.0 81.5
RT-2 100.0 96.0 97.0 56.0 27.0 95.0 97.0 10.0 84.0 83.0 92.0 43.0 34.0 70.3
CaP 90.0 79.3 96.0 64.7 60.0 74.6 85.3 - 37.3 - 66.7 62.7 - - 66.0 52.7 74.7 70.0
VisualProg 84.0 26.0 11.3 38.7 87.3 30.0 80.7 - 20.0 - 71.3 22.0 - - 94.7 24.0 30.0 47.7
I2A 91.5 80.8 97.8 74.9 69.5 81.0 86.0 - 44.0 - 70.5 65.0 - - 80.0 66.0 84.0 76.2
RoboMP2 99.3 78.7 100.0 91.3 91.3 82.0 92.0 - 36.0 92.0 68.7 - - 91.3 96.7 96.7 85.9

L3 Level

Gato 51.0 58.0 84.5 56.5 35.5 53.5 49.0 - 15.0 - 65.0 - - - 52.0 33.0 0.0 43.5
Flamingo 49.0 50.0 66.5 47.0 35.0 47.5 50.0 - 4.0 - 66.0 - - - 30.5 43.5 0.5 40.8
GPT 52.0 51.0 55.0 49.5 40.0 46.0 50.5 - 5.0 - 82.0 - - - 37.0 38.0 1.5 42.3
VIMA 99.0 100.0 100.0 97.0 58.0 100.0 99.0 - 17.5 - 90.5 - - - 97.5 46.0 43.5 79.0
RT-2 96.0 94.0 96.0 52.0 31.0 95.0 93.0 11.0 97.0 93.0 40.0 3.0 66.8
CaP 90.0 79.3 95.3 63.3 60.0 74.0 84.7 - 37.3 - 66.0 - - - 64.3 51.3 72.0 69.8
VisualProg 83.3 25.3 13.3 27.3 62.0 32.0 80.7 - 17.3 - 70.0 - - - 73.3 24.0 39.7 45.7
I2A 91.8 80.2 97.4 81.8 65.8 79.0 89.0 - 38.0 - 71.0 - - - 78.0 62.0 82.0 76.3
RoboMP2 100.0 83.3 100.0 86.0 86.0 78.7 95.3 - 40.7 - 92.0 - - - 89.3 98.0 92.7 86.8

L4 Level

Gato - - - - - - - 20.5 - 0.0 - - 0.0 29.0 - - - 12.4
Flamingo - - - - - - - 21.0 - 0.0 - - 0.0 27.5 - - - 12.1
GPT - - - - - - - 20.5 - 0.5 - - 0.0 36.0 - - - 14.3
VIMA - - - - - - - 100.0 - 0.0 - - 0.0 95.5 - - - 48.9
RT-2 - - - - - - - 98.0 - 0.0 - - 0.0 90.0 - - - 47.0
CaP - - - - - - - 74.0 - 28.0 - - 0.0 76.7 - - - 44.7
VisualProg - - - - - - - 52.0 - 64.0 - - 0.0 92.7 - - - 52.2
I2A - - - - - - - 84.0 - 35.0 - - 0.0 80.0 - - - 49.8
RoboMP2 - - - - - - - 76.7 - 98.7 - - 0.0 96.7 - - - 68.0

Table 8: The full result of all tasks on VIMABench. “-” denotes that the task is excluded from this level.
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THIRD PARTY TOOLS:
------
You have access to the following tools:

# Libraries
from PIL import Image
import numpy as np
import scipy
import torch
import cv2
import math
from typing import Union

IMPLEMENTED TOOLS:
------
You have access to the following tools:

# First Level: File IO
templates = {} # dictionary to store and cache the multi-modality instruction
# possible keys in templates: "scene", "prompt_images"
# NOTE: the word in one instruction inside {} stands for the visual part of the instruction and will be obtained with get 
operation
# Example: {scene} -> templates.get('scene')
BOUNDS = {} # dictionary to store action space boundary

def GetObsImage(obs, view='top') -> Image.Image:
"""Get the current image to start the system. The default view is top view.
Examples:
image = GetObsImage(obs)
"""
pass

…

# Second Level: Core Modules
## Perception Modules
class GCMP:
def generate(image: np.ndarray, query: str) -> list:
"""Generate the coordinate of query objects according to the image"""
pass

def PickPlace(pick: np.ndarray, place: np.ndarray, bounds: np.ndarray, yaw_angle_degree: float = None, tool: str = 
"suction") -> str:
"""Pick and place the object based on given locations and bounds"""
pass

…

Examples:
------
Use the following examples to understand tools:
## Example 1
# Instruction: Put the {object1} into the {object2}.
def main_1() -> dict:
"""Execute the given instructions of placing the object1 into the object2"""
image = GetObsImage(obs)
drag_obj_loc = GCMP.generate(image=image, query='object1')
base_obj_loc = GCMP.generate(image=image, query='object2')
action = PickPlace(pick=drag_obj_loc, place=base_obj_loc, bounds=BOUNDS)
info = RobotExecution(action=action)
return info

## Example 2
# Instruction: Put the {texture1} object in {scene} into the {texture2} object.
def main_2() -> dict:
"""Execute the given instructions of placing texture1 object in scene into the texture2 object"""
image = GetObsImage(obs)
image_scene = GetPromptImage(templates.get('scene'))
obs_obj_dict = GCMP.generate(image=image, query='all objects in the scene')
scene_obj_dict = GCMP.generate(image=image_scene, query='all objects in the scene')
drag_obj_loc = SelectFromScene(obs_obj_dict=obs_obj_dict, scene_obj_dict=scene_obj_dict, 'texture1')
base_obj_loc = GCMP.generate(image=image, query='the texture2 object')
action = PickPlace(pick=drag_obj_loc, place=base_obj_loc, bounds=BOUNDS)
info = RobotExecution(action=action)
return info

Begin to execute the task:
------
Please solve the following instruction step-by-step. You should ONLY implement the main() function and output in the 
Python-code style. Except the code block, output fewer lines.

Instruction: dark yellow and blue polka dot squre is blicket than yellow and blue polka dot squre. Put the {adv} blicket 
{object1} into the {object2}. 

Figure 7: An example of complete template for the prompt multimodal generator.
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