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Abstract

In federated learning (FL) environments, biometric authentication systems encounter a dis-
tinct challenge: safeguarding user privacy without sacrificing the precision necessary for
identity confirmation. Although previous FL privacy research has primarily addressed
broad-spectrum protections, this paper concentrates on the particular weaknesses of bio-
metric authentication models, especially those susceptible to gradient inversion and deep
gradient leakage (DGL) attacks. We introduce an innovative privacy-preserving framework
specifically designed for federated biometric authentication. Our approach employs a dual
strategy: (1) an authentication model that is trained on both original and modified biometric
samples to maintain resilience against input perturbations, and (2) a client-side obfuscation
technique that alters biometric data prior to gradient computation, efficiently preventing
reconstruction attempts. The obfuscation is adaptive and privacy-aware, selectively pre-
serving critical biometric features necessary for authentication while discarding nonessential
components to reduce input size and improve accuracy. Simultaneously, this process in-
creases the gradient distance between the original and shared data, enhancing protection
against reconstruction. Additionally, block-wise shuffling is employed to disrupt the seman-
tic structure, ensuring that any reconstructed image lacks meaningful visual content. To
validate its practical use, our framework is tested in a multibiometric context using facial and
fingerprint information. The blockwise transformation strategy ensures superior authenti-
cation efficiency while reducing privacy risks. Experiments conducted in various adversarial
FL settings reveal that our method significantly enhances defenses against reconstruction
attacks, outperforming traditional measures.

1 Introduction

Federated Learning (FL) |Rodriguez-Barroso et al.[(2023]) has emerged as an important framework for decen-
tralized machine learning, enabling collaborative model training across multiple devices while keeping raw
data local. This approach is particularly beneficial for applications involving sensitive biometric informa-
tion, such as facial recognition and fingerprint matching. However, recent studies have highlighted significant
privacy concerns within FL systems. Specifically, shared gradients may inadvertently expose sensitive infor-
mation, allowing attackers to recreate the original inputs and their detailed biometric traits |Geiping et al.
(2020); [Zhu et al.| (2019); |Zhao et al.| (2020); Melis et al.| (2019); |Shokri et al.| (2017)).

Recent advances in gradient inversion attacks have underscored the severity of these privacy risks. As
demonstrated by Wu et al.| (2023), simple adaptive attacks can effectively compromise current defenses,
revealing the inadequacies of existing privacy-preserving strategies in Federated Learning (FL). Additionally,
Dimitrov et al.| (2024]) introduced SPEAR, an approach capable of accurately reversing gradients for batches
exceeding a single instance, questioning the notion that increasing batch sizes inherently improves privacy.

In response to these challenges, we present a novel FL architecture tailored to maintain privacy within
biometric authentication systems. This framework is composed of two separate modules: one is a client-side
perturbation technique that utilizes saliency-aware obfuscation on the original biometric data, and the other
is an authentication model refined to authenticate individuals using these perturbed images. By retaining
raw biometric data on the client device, this architecture significantly reduces the risk of data breaches
associated with shared gradients.
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Unlike traditional methods that adjust each pixel separately, our perturbation technique employs block-level
transformations guided by saliency maps, enabling efficient and targeted obfuscation of non-essential features.
This method preserves significant identity information while enhancing computational performance, making
it suitable for resource-constrained devices.

We evaluate the effectiveness of our privacy-preserving technique by applying it to the three most commonly
used model architectures for classification tasks, ResNet He et al.| (2015), Vision Transformer (ViT) Dosovit-
skiy et al.| (2021)), and Jigsaw ViT |[Chen et al.| (2023). In our implementation each model is combined with
ArcFace [Sun et al.| (2019)) embeddings to make the model compatible for authentication task and provide
robust identity representation for various biometric inputs.

Our approach begins by empirically generating saliency maps through experiments that assess how mod-
ifying different segments of biometric images impacts authentication accuracy. This process allows us to
identify the most critical regions that contribute to reliable authentication. Building on these insights, we
create new perturbed images by combining the highly crucial segments from two different biometric sam-
ples while removing less important areas. This selective mixing not only boosts authentication accuracy
by preserving key identity features but also effectively destroys the semantic meaning of the reconstructed
images, increasing the privacy protection. To further maximize the difference between the gradients of the
original and obfuscated data, we apply a shuffling technique inspired by Jigsaw ViT [Chen et al.| (2023),
which rearranges image patches to disrupt spatial coherence. Our perturbation methods are additionally
guided by frameworks such as PuzzleMix [Kim et al.| (2020) and InstaHide [Huang et al.| (2020), ensuring a
strong balance between privacy and utility.

1.1 Related Work

Gradient perturbation methods protect user data by altering the gradients exchanged during training, typi-
cally through adding noise to the gradient |[Zhu et al.| (2019)); |Sun et al.| (2020). Although these methods can
reduce the danger of recovering the original inputs from the gradients, recent research Huang et al.| (2021));
Yang et al.[(2022)) indicates that effective protection against gradient inversion attacks (such as deep gradient
leakage (DGL) |Zhu et al| (2019))) requires extensive gradient perturbation. This often results in reduced
model accuracy, especially in biometric authentication tasks where fine details are crucial to precision. For
instance, Huang et al.| (2021]) showed that noise addition, sufficient to prevent inversion attacks, considerably
reduces recognition accuracy.

Differential privacy (DP) improves the perturbation of gradients by mathematically determining the noise
added, aiming to minimize any reduction in accuracy [Bonawitz et al.| (2016); McMahan et al.| (2017)). While
DP-based federated learning (FL) has gained significant popularity, it introduces specific noise that could
potentially affect authentication performance Liu et al.| (2023). Balancing privacy and accuracy is an ongoing
challenge, particularly when high precision is required.

Homomorphic encryption (HE) allows for processing encrypted data without disclosing the original infor-
mation (Cheon et al.| (2017). This approach maintains privacy by ensuring that raw biometric data is never
exposed to potential attackers. Despite its privacy benefits, HE is burdened by significant computational
and communication overhead, making it challenging for use in real-time biometric authentication [Ma et al.
(2022).

Various strategies prioritize the obfuscation of raw images before training models to minimize privacy
breaches. InstaHide Huang et al.| (2020) achieves this by combining several images with random trans-
formations to mask sensitive elements. Likewise, PuzzleMix |[Kim et al.| (2020) and SaliencyMix [Uddin et al.
(2022) merge important and unimportant sections from different images, resulting in augmented samples
that enhance generalization and robustness. These mixing techniques improve model training by merging
image features, which involves integrating pixel-level or patch-level data from multiple images to form new
training samples. Although these augmentations can somewhat obscure data, they are mainly tailored for
centralized training and are susceptible to sophisticated gradient inversion attacks |Carlini et al.| (2021)) as
they do not modify the gradient structures that adversaries exploit.

Recent studies focus on safeguarding feature representations instead of raw inputs or gradients. For instance,
Chen et al.|[ (2024)) adjusts data augmentations to reshape the loss landscape, thereby obstructing inversion
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attacks while maintaining accuracy. |Schwethelm et al.| (2025)) employ diffusion-based reconstruction attacks
to expose weaknesses in differential privacy protections, stressing the necessity for defenses that consider
actual image priors. However, these methods often apply globally or uniformly across all features, potentially
leading to a loss of essential identity information or causing significant computational demands.

Table [3| (see Appendix|A]) provides an overview of the principal characteristics of existing privacy-preserving
approaches, analyzed in terms of privacy effectiveness, computational expense, and effect on authentication
accuracy for deployment within biometric federated learning contexts.

To overcome these limitations, our study introduces a selective obfuscation method (see figure [1)) at the
feature level aimed at isolating and hiding repetitive, basic features that are particularly vulnerable to
inversion attacks, while maintaining the identifying information crucial for authentication precision. This
obfuscation is applied locally on the client device before gradient calculations, eliminating the necessity of
sharing either raw data or heavily altered gradients, thereby decreasing computational load and privacy
risks. Additionally, our approach uses blockwise localized changes instead of pixelwise noise, keeping the
feature structure intact and enhancing defense against recognized threats such as Deep Gradient Leakage
|Zhu et al.| (2019) and model inversion |Geiping et al.| (2020). This specific obfuscation effectively balances
privacy protection with high authentication accuracy, making it appropriate for federated biometric scenarios
in the real world.
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Figure 1: Overview of the proposed privacy-preserving pipeline. The architecture integrates saliency-aware
feature selection, randomized data augmentation (e.g., erasing, noise, block swapping), and multi-biometric
fusion with fingerprint patches. During training, the model leverages local data masking and federated
updates to enhance resistance to gradient inversion attacks while preserving authentication accuracy.

2 Preliminaries

In federated learning architecture, we focus on biometric authentication through the use of facial images
as input. Bach image is characterized by z € RE*W*C where H, W, and C denote the image’s height,
width, and the number of channels, respectively. The identity label associated with each image is denoted
as y € ). The authentication model, denoted by fo(z) with parameters 6, is developed cooperatively by
clients. FL framework ensures that raw data remains on local devices, thus preserving data locality and
reducing potential privacy risks.

Although in federated learning, a significant threat is posed by gradient inversion attacks. These occur
when an adversary captures gradients Vgfl(fg(x),y) exchanged during the training phase and uses them to
reconstruct the input data x. The attacker solve the equation:

& = argmin | V. 0(fo ('), y) = GII°,

with G being the intercepted gradient. Such attacks exploit the strong correlation between gradients and
inputs, particularly in structured datasets like facial images.
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2.1 Augmentation as Defense

To mitigate the risk of inversion attacks, we introduce a customized biometric data augmentation technique
that obscures input samples while preserving essential attributes for authentication. Our method initiates
with a mix-up strategy |Pang et al. (2020) and then evolves into a spatially adaptive and more expressive
enhancement.

In Classic Mixup, Given two samples (zg, o) and (x1, y1), the standard mixup creates a convex combination

as follows:
Z=1-Nzo+Az1, §=1—Nyo+ Ay,

The parameter A is calculated from a Beta distribution, specifically Beta(a, «), to introduce randomness into
the mixing process. However, this uniform approach (i.e. every pixel is mixed the same way, regardless of its
meaning) does not account for the semantic layout of the data. The hyperparameter @ determines the shape
of the distribution: when a < 1, extreme X values close to 0 or 1 are favored, leading to a predominance of
one image in the mix. In contrast, when a > 1, the A\ values cluster closer to 0.5, promoting a more even
mix. Typically, « is set between 0.2 and 0.4 to allow one image to have greater influence. However, this
pixel-based uniform mixing inadequately reflects the importance of semantic regions in structured data, such
as facial images, where particular areas (like the eyes and nose) are more crucial to identity.

2.2 Saliency-Guided Obfuscation

We enhance the mixup methodology by presenting a saliency-based spatial augmentation specifically for
biometric images. Consider xg as a face image and z; as another biometric input, such as a different face or
a fingerprint. We implement a saliency mask z € [0, 1]#*W to direct spatial blending:

2=(1-2)0x0+20 1,

where © signifies element-wise multiplication. The saliency mask z is influenced by a saliency map S(z¢) €
[0, 1]7>W " indicating the importance of each pixel in facial authentication processes. This map is empirically
learned by moving a spatial window over the image and observing the decrease in authentication accuracy
when obscuring that section; areas that cause a more significant dip in accuracy receive higher saliency
values. To determine z, we optimize it to reduce the saliency loss:

Lsaliency (2; 5, 7) = Z (S(x0)i; - 2ij —7)°.
i,
The threshold 7 is an adjustable parameter defining the obfuscation range: larger values T promote a higher
degree of masking of the salient sections, while lower values retain them. The loss function encourages z; ;
to be minimal in areas of high saliency (to conserve critical regions of identity) and maximal where saliency
is low (to boost privacy through perturbation).

2.3 Block-wise Obfuscation and Permutation

To boost diversity and introduce non-linearity in the transformation process, we implement a block-wise
mixing technique combined with permutation. Let xy be the original face image, and x; be an auxiliary

biometric sample (e.g., a face or fingerprint from a different identity). We divide each image into N dis-

tinct, non overlapping blocks, labeled as {xgk) N | and {xg’“)}{j:l, with corresponding saliency-aware masks

{z(M}N_ applied to each block.
To enhance obfuscation, we apply block-level permutation using transport matrices Ily and II;, which ran-
domly shuffle the blocks in zg and x1, respectively. The final augmented image is computed as:

N

T = Z [(1 — Zk) ® (Hoa?o)k + zF ® (Hlﬂjl)k} .

k=1
This strategy increases spatial variability and conceals the spatial arrangement of features, making it signif-
icantly harder for inversion attacks to reconstruct the original structures.
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2.4 Training Objective

In our federated learning paradigm, the global model is trained with perturbed images as described above.
Each client aims to reduce classification loss for the masked inputs while also refining the perturbation
parameters. The objective is formulated as:

e B o) o) D Bavaen) [£(F (1= Mo + Ay 0)]

Here, D denotes the data distribution over input-label pairs (z,y), £(-) is the classification loss (e.g., cross-
entropy), 0 represents the global model parameters, z(®) are the local saliency masks used by client k, and
IIy, IT; are the spatial block permutations applied to inputs xg and z1, respectively. The mixing coefficient
A is sampled from a symmetric Beta distribution ¢(A\) = Beta(a, o).

In order to enhance defense against gradient based inversion attacks, we apply a jigsaw puzzling permutation
to image segments. This method generates spatial disruption, increasing the gradient gap between & and
the original z, consequently decreasing the comprehensibility of any reconstructed images.

2.5 Privacy Impact

Within the framework of federated learning, our augmentation method injects uncertainty into the gradi-
ent space. By introducing perturbed inputs Z, we produce gradients that diverge significantly from those
calculated with the original inputs zg, thus reducing the success of gradient inversion attacks. We utilize
three metrics: the Learned Perceptual Image Patch Similarity (LPIPS)|Zhang et al|(2018]), which evaluates
perceptual similarity through deep feature activations from pre-trained neural networks (where lower scores
signify greater perceptual similarity); the Mean Squared Error (MSE), a conventional metric for pixel-wise
differences (where lower values are preferable); and the Peak Signal-to-Noise Ratio (PSNR) Keles et al.
(2021)), which measures the ratio of signal to noise in pixel intensities (where higher scores indicate superior
visual fidelity). These metrics are widely used in the evaluation of gradient inversion attacks, including
Inverting Gradients (IG) |Geiping et al.| (2020)), Fishing Wen et al,| (2022), and GIAS |Jeon et al.| (2021),
and therefore provide a consistent basis to compare the effectiveness of our defense. Our augmentation
process is deliberately irreversible, applied in shuffled spatial segments, and varies between samples. This
disrupts spatial and semantic consistency, invalidating reconstruction algorithms’ assumptions of alignment
and locality, thus boosting privacy without compromising the model’s authentication accuracy.

3 Methods

Our approach advances biometric authentication within federated learning by integrating perturbation-based
privacy methods with the merging of various biometric characteristics. We employ a dual-model system: one
model, focused on perturbation, generates saliency-enhanced inputs, while the authentication model ensures
dependable identification even when data is obscured. For the primary biometric image zq, typically a facial
photograph, and the secondary biometric 1, such as a fingerprint from the same individual, we first derive
feature representations from each using a shared encoder fy(-). This encoder, possibly based on a ResNet
He et al.| (2015) or Vision Transformer |Chen et al.| (2021) framework, transforms the inputs into spatial
embeddings fo = fo(xo) and f1 = fo(x1), which are subsequently used in fusion processes.

To achieve spatially adaptive perturbation, the input image is divided into a 3 x 3 grid, following the patch
layout from [Dosovitskiy et al.| (2021)), producing 9 spatially organized segments for each image. For every

index ¢ where 1 < ¢ < 9, each pair of spatial blocks (m(()i),mgi)), from the face and fingerprint modalities,

is processed by a compact encoder gy, resulting in semantic embeddings eéi) and egi). The cosine simi-
larity s = cosine(eél),egl)) quantifies the semantic alignment between the modalities within that block.
Only blocks corresponding to the same spatial location ¢ are compared and combined; no mixing or sub-
stitution occurs between different locations. This restriction ensures spatial coherence and avoids semantic

misalignment, which could impair the clarity and functionality of the combined representation.

A threshold 7 is learned to decide whether to keep the face block or substitute it with the fingerprint block.
If s) < 7, indicating unreliable or sensitive information in the face block, it is replaced; otherwise, it is
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preserved. Here, unreliable or sensitive blocks are those with low semantic alignment between face and
fingerprint embeddings, implying either privacy risks from identifiable facial features or diminished quality
due to noise, justifying replacement with fingerprint data for improved privacy and reliability.

This strict masking strategy may be softened to a learnable mix, where each block is combined using a

weight 3(9) = U(W[eéi); egi)]). Here, the matrix W serves as a learnable weight of a linear layer that converts
the concatenated embeddings [eél); egl)] into a scalar, which is then passed through a sigmoid function o,

creating a blending coefficient between 0 and 1.

The combined block is calculated as z(?) = (1 — (®) oxéz) +3® ~x(11). The weight 8 is derived by applying
a sigmoid function to a trained linear transformation of the concatenated embeddings [e((f); egl)], allowing
the model to dynamically adjust the blend ratio for each block according to their semantic similarity. This
flexible blending approach offers subtle control over privacy preservation and preservation of informative
content, facilitating a gradual blend rather than a fixed choice. This method allows the model to selectively

protect or reveal information with spatial awareness.

Our authentication system utilizes a Vision Transformer (ViT) structure |Chen et al.| (2021)), specifically the
Jigsaw-ViT |Chen et al.| (2023)) variant, which is adapted to tolerate spatial interruptions resulting from our
augmentation techniques. Throughout the training phase, the model is exposed to both original and obfus-
cated (augmented) images, allowing it to authenticate accurately even with spatially altered or perturbed
inputs. The data sets used for training include CASTA-WebFace, CelebA, FaceScrub, and the FVC2004 fin-
gerprint database, all of which are elaborated on in subsequent sections. For evaluation, the model is tested
exclusively on obfuscated images to confirm its robustness in handling privacy-preserving transformations.

The Jigsaw-ViT operates by segmenting each input image & into several non-overlapping blocks, embedding
these blocks, and then passing them through transformer layers that utilize multi-head self-attention. During
training, a jigsaw-style loss prompts the model to leverage global context instead of exact pixel patterns,
allowing it to perform well in biometric authentication even with spatially shuffled inputs. The ultimate
identity prediction is determined by the transformer’s class token output.

The training approach aims to simultaneously refine the perturbation mechanism and the authentication
model by minimizing an integrated loss function composed of two parts: a cross-entropy loss for ensuring
precise identity classification and a regularization term that influences the perturbation method. Formally,
the objective can be expressed as ming ¢.w E(zo.40), (1,51 [E(fauth(f)wo) AT (50 — 7')2}. Here, ¢ rep-
resents the cross-entropy loss between the predicted outcome and the actual label yy, with A adjusting the
regularization term’s weight. The regularization component Z?:l(s(z) —7)? discourages similarities between
blocks s from aligning with the threshold 7, promoting the model to confidently decide on maintaining
or altering each block. This dual-purpose objective ensures robust recognition while promoting privacy-
conscious perturbation patterns.

In order to succinctly explain our privacy-preservation framework, Algorithm [1}is introduced, which outlines
the complete training process. This begins at the client level, where each biometric image is divided into
spatial segments and processed through a saliency-based obfuscation technique. Each segment is evaluated
with a binary decision, retain the face content as is or replace it, guided by semantic equivalence with a
different biometric modality, like a fingerprint. The obfuscated image may then optionally undergo block
permutation for added randomization prior to being used in federated training. On the server side, the
authentication model is adapted to handle these altered inputs, incorporating a regularization loss that
ensures effective feature masking. This algorithm illustrates the modular nature of our system, emphasizing
the integration of block-level augmentation, biometric incorporation, and federated learning to ensure both
secure authentication and improved privacy.

4 Model Architecture and Experimental Setup

4.1 Model Architecture

The proposed framework for federated biometric authentication consists of two integrated components, shown
in Figures |§| and [L0| (see Appendix . The local component, located on client devices, handles raw biometric
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Algorithm 1 Privacy-Preserving Federated Biometric Authentication

Require: Biometric images ¢ (face), 1 (fingerprint), labels yo, y1
Ensure: Obfuscated input  and trained authentication model fuutn

1: Client-Side: Local Obfuscation

2: Compute saliency map S(zo)

3: for each spatial block CU(()i), mgi) ina 3 x 3 grid do

4 Extract embeddings egi) = g¢(x((]i)), egi) = g¢(x§i))

5: Compute semantic similarity s(*) = cosine(egi), egi))

6 if s() < 7 then ‘

7 Replace: &) « z{" > Sensitive region obfuscated
8 else '

9 Retain: #() «+ :c(()z)

10: end if

11: end for

12: Concatenate blocks: & = U?:l Q)

13: Optional: Randomize blocks with transport matrices Ilj, II;
14: T Zf\;l[(]‘ — Z(i)) © (H()l'())(i) + Z(i) O] (Hlxl)(l)]

15: Server-Side: Authentication Model Training

16: Compute class prediction: § < fautn(Z)

17: Compute loss:

9
£ = 0(y0) A (s — )
=1

18: Update model parameters 6, obfuscation module ¢, and blending weights W using federated averaging

19: Repeat across clients and rounds until convergence

data like facial images or fingerprints. It applies particular methods to obscure sensitive information while
preserving essential identity features. This strategy guarantees that raw biometric data stays on the user’s
device, significantly enhancing privacy. In contrast, the global module functions on the server side by
collecting gradient updates from various client devices. It uses a unique data set that includes both original
and obfuscated biometric images, allowing the global model to learn features and their relations. The focus
on these modified images helps to assess the significance of features, enabling accurate authentication purely
with these privacy-protected data during evaluation. This dual-level strategy successfully harmonizes privacy
with authentication accuracy in federated learning settings.

In our assessment of approaches aimed at protecting privacy in identity recognition, we implemented and
examined three core architectures for biometric authentication (i.e. Global model): ResNet18 |He et al.
(2015), Vision Transformer (ViT) [Chen et al.| (2021)); [Dosovitskiy et al. (2021)), and Jigsaw ViT [Chen et al.
(2023).

ResNet18 serves as a traditional convolutional model, consisting of 17 convolutional layers with residual
connections. These connections facilitate the learning of more complex representations. The final fully
connected layer offers class probabilities for predicting identities.

ViT (Vision Transformer) utilizes an attention mechanism that focuses on image patches to grasp the
global interactions across various parts of the image. The image is divided into fixed-size patches, which
are subsequently embedded into a transformer encoder. Inside this encoder, self-attention layers facilitate
the depiction of contextual relationships. This model is particularly sensitive to structured obfuscations and
patch-level augmentations.

Jigsaw ViT is a modified Vision Transformer aimed at improving accuracy in machine learning. It includes
a jigsaw mechanism that randomly rearranges patch positions during both the training and testing stages.
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This disrupts spatial continuity while maintaining the semantic meaning, thus protecting against gradient
inversion attacks while still allowing for identity discrimination |(Chen et al.| (2023]).

Recently, DNNs have seen extensive application in face recognition tasks. The work of |Schroff et al.| (2015))
employed a Triplet loss to enhance performance on challenging facial recognition datasets. Subsequently,
Liu et al| (2016) proposed an enhancement to the traditional Softmax loss, known as L-Softmax loss. It
encourages intra-class compactness and separation between classes in the learned embedding features. |Liu
et al.| (2017) introduced the idea of combining an angular margin loss with the standard Softmax function.
The approach of Wang et al.| (2018), which involved replacing Softmax with a Cosine margin loss in relation
to the target logit, resulted in superior performance compared to prior methods. ArcFace Deng et al.|(2019)
utilized a geodesic distance on a hypersphere, leading to better discriminative capabilities and a more stable
training process. Additionally, Kim et al| (2022)) argued that optimizing ArcFace based on each sample’s
quality, as judged by the embedding norm, results in considerable improvements. Their newly proposed
loss achieved state-of-the-art outcomes on both challenging low-quality and high-quality datasets |[Kim et al.
(2022). We implemented all three model architectures with backbone of Arcface for increasing accuracy in
authentication task.

4.2 Datasets

We tested our models using three commonly employed face recognition datasets:

FaceScrub: This dataset, accessible to the public, contains over 100,000 aligned and cropped images from
500 celebrity identities. It offers moderate class variability and is widely used in privacy research [Harvey
(2021)).

CelebA: Featuring more than 200,000 images across 10,177 unique identities, this dataset includes extensive
attribute labels and exhibits a wide array of facial expressions, poses, and lighting conditions|Liu et al.| (2015)).
CASIA-WebFace: With over 490,000 images of 10,575 individuals, this set presents notable variability and
challenging intra-class differences, making it ideal for testing model robustness|Cao et al.[(2018). Utilizing the
FV(C2004 Fingerprint Verification Competition| (2004) database, consisting of grayscale fingerprint images
obtained under various conditions, we gathered fingerprint data. In the preprocessing phase for multi-
biometric fusion, these fingerprint images were resized and combined with the low-saliency parts of facial
images.

4.3 Training and Evaluation Protocol

In order to train models, multi-class identity classification was conducted using cross-entropy loss. Within
federated learning frameworks, the data was distributed across 20 clients, each carrying out local training
on their allocated data segment through several communication rounds.

The model’s training hyperparameters were chosen via empirical tuning to optimize between performance and
resource utilization. Initially, we used parameters frequently applied in the latest face authentication systems
and adjusted them through preliminary trials to assess authentication accuracy and convergence stability
within our perturbation pipeline. Pretrained weights from AdaFace Kim et al.| (2022) were employed to
initialize our models, as they offer a robust foundation for identity classification tasks. We followed their
recommended training configuration as a baseline, modifying batch size, learning rate, and training time to
integrate the increased complexity presented by our jigsaw and perturbation modules.

Training specifics: We utilized the Adam optimizer with a learning rate of 1 x 10~%, and a batch size of
64. The training was conducted over 50 epochs, which corresponds to approximately 500 communication
rounds in the federated learning setup. To enhance generalization and robustness, we applied a variety of
data augmentations, including random cropping, flipping, random erasing, Gaussian noise, and mixup.

A batch refers to a subset of the training dataset that is handled simultaneously during a single for-
ward /backward pass in model training. Utilizing batches aids in balancing both computational efficiency
and the stability of convergence.

After conducting tuning experiments aimed at optimizing accuracy, we set the batch size to 64 to ensure
both efficient training duration and manageable GPU memory consumption. Comparable batch sizes have
been used in other face recognition studies, like |Kim et al.| (2022), from which we also utilized pretrained
parameters to enhance initialization.
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In privacy-preserving experiments involving random block swapping and biometric fusion, the augmentations
helped improve model robustness and generalization by exposing it to diverse variations of the input data.
The test set used for identity classification evaluation comprised approximately 20% of the full dataset.
All models were implemented using PyTorch and trained on GPUs from Compute Canada. To ensure
reproducibility, experiments were repeated across three different random seeds.

4.4 Metrics

We evaluated model performance and privacy protection using the following metrics:

Accuracy (Acc) — measures the correctness rate of identity authentication.

PSNR (Peak Signal-to-Noise Ratio), LPIPS (Learned Perceptual Image Patch Similarity),
MSE (Mean Squared Error), and Cosine Similarity — assess the similarity between original and
reconstructed images in gradient inversion attacks, following prior work such as|Zhu et al.| (2019)); [Yin et al.|
. Improved privacy corresponds to lower PSNR and cosine similarity values, and higher LPIPS and
MSE values.

4.5 Data Augmentation Techniques

Our model training leveraged multiple augmentation methods to enhance feature invariance and robustness
as shown in figure (see @

Mixup, Generates convex combinations of pairs of training samples and labels, encouraging the model to
behave linearly between training examples [Pang et al. (2020). CutMix, Combines patches from different
images, forcing the model to rely on local discriminative features [Yun et al| (2019). PuzzleMix, Applies
a saliency-guided mixing of image blocks, promoting robustness to spatial perturbations Kim et al| (2020).
Random Block Swapping, Randomly rearranges blocks within images to obscure spatial correlations,
enhancing resistance to inversion attacks.

Diverse augmentations are utilized on both the pixel and feature levels to enhance input variability, assisting
the model in learning more generalizable features. Within our training framework, we have implemented
various methods like Mixup, CutMix, PuzzleMix, and Random Block Swapping to expand the dataset
and mimic realistic distortions and occlusions. These enhancements are applied separately or in a combined
scheduling throughout the training batches to strike a balance between regularization and specific learning for
the task. By embedding these augmentation techniques into the training process, the model is introduced to a
broad spectrum of spatial and semantic variations, which ultimately boosts its robustness and generalization
capabilities.

Puzzle mix (z only)

Swapping blockwise

Figure 2: Visualization of the data augmentation techniques used in our experiments. First column : Input 1
and Input 2 (original samples), Input Mixup (pixel-wise interpolation), Puzzle Mix (just pixel level mixing),
and Swapping Blockwise (spatial patch swapping). Bottom row: CutMix (region replacement), Puzzle
Mix Full (both pixel and feature level mixing), and Swapping High Level (semantic region exchange). These
augmentations aim to increase the diversity of training samples and provide regularization against overfitting
and privacy attacks.

We offer further evidence validating the efficacy of our proposed privacy-preserving strategies through a
qualitative analysis of images reconstructed using gradient inversion attacks. Figure [3] displays attempts
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to reconstruct augmented single-biometric (face) images, in which our obfuscation techniques significantly
impair the clarity and recognizability of the images. Figure[d]displays attempts to reconstruct multi-biometric
(face, fingerprint) perturbed images. we can see that our obfuscation techniques significantly impair the
clarity and recognizability of the images. The optimization attack can only reconstruct the input and not
the accurate prediction results. Within the jigsawVIT configuration, each image is initially jumbled, as
illustrated in figure 2} and this jumbled formation is not integrated into the primary model. Consequently,
for jigsawVIT, the attack reconstructs merely the mixed-up image rather than the images in their correct
sequence, since arranging them correctly is part of the solution.

Figure 3: Visualization of gradient inversion attack reconstructions from augmented face images. Each
column corresponds to a different data augmentation method applied prior to the attack. First column,
Original face images without augmentation—reconstructions are visibly sharp and identifiable. Second col-
umn (top and bottom), Mixup (pixel-wise interpolation) and block-level swapping (between two images of
the same person)—show moderate privacy gain via reduced visual clarity. Third column (top and bottom),
CutMix (region replacement) and PuzzleMix (feature level mixing). Fourth column, important feature win-
dow swapping, produces highly distorted reconstructions, offering the best resistance to identity inference.
These results illustrate how augmentation methods, especially spatially and semantically aware ones, effec-
tively degrade inversion quality and enhance privacy protection.

Original image

Our Method

Figure 4: Comparison of augmentation methods in biometric fusion for privacy protection. Top-left: Original
image is divided into 9 blocks (3x3). Top-right: Mixup interpolation introduces pixel-level blending of face
and fingerprint blocks. Bottom-left: CutMix directly replaces regions with fingerprint patches. Bottom-
right: Our proposed method uses saliency-aware block replacement, selectively inserting fingerprint patches
only in low-saliency (less important) regions.
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To clearly demonstrate our proposed augmentation and authentication workflow, we include a detailed dia-

gram showcasing the entire procedure, accompanied by visual examples of various augmentation techniques
in Appendix [A]

5 Experiments

Through our experiments, we verify the effectiveness of our saliency-aware obfuscation method and its ro-
bustness against gradient inversion attacks. We assess how various augmentation techniques, multi-biometric
fusion, and targeted masking affect authentication accuracy and privacy. Additionally, we introduce per-
ceptual and reconstruction-focused evaluation metrics, including PSNR, LPIPS, MSE, and cosine similarity,
to quantify privacy protection levels. To begin, we assessed the importance of different facial regions by
methodically obscuring areas with high and low salience in a 3 x 3 grid pattern. Blocking low-salience parts
like the forehead and cheeks led to a minimal impact on accuracy, whereas covering high-salience regions such
as the eyes, nose, and mouth significantly decreased authentication performance. This evidence supports
our design choice of preserving high-salience features while hiding low-salience areas to maintain accuracy
and ensure privacy.

In order to further investigate spatial robustness, we executed experiments with both random and controlled
block-swapping. When low-important (such as background textures or skin regions) semantic regions were
interchanged between two pictures of the same person, the model’s performance was hardly affected, indicat-
ing that the model generalizes beyond redundant textures. However, exchanging highly important semantic
regions (such as the eyes, nose, or mouth) between images of different individuals caused a significant drop
in performance, highlighting their importance for identity representation.

Considering these findings, we devised a multi-biometric fusion approach that replaces less significant facial
regions with fingerprint sections. This unified representation is crafted via the following masking procedure:

hzo,x1,2) = (1 —2) ®x0+2 O 1,

where z( represents the facial image, x; denotes the fingerprint image, and z signifies a learned binary mask.
This fusion strategy preserves areas vital to identity while embedding biometric noise in less important zones,
complicating the reconstruction of adversarial features.

We assess the privacy resilience of our approach against gradient inversion attacks, using the techniques
outlined in |Zhu et al.| (2019); Yin et al. (2021). To evaluate the reconstructed images, we utilize four metrics
widely used in previous studies for image recovery assessment: PSNR (Peak Signal-to-Noise Ratio), LPIPS
(Learned Perceptual Image Patch Similarity), MSE (Mean Squared Error), and cosine similarity. These
metrics evaluate both the pixel-level precision and the perceptual likeness of the images. More precisely,
low PSNR and cosine similarity values together with high LPIPS and MSE values suggest a decline in
reconstruction quality, thus indicating enhanced privacy protection. These same metrics were also applied
in |Geiping et al.| (2020)); |Zhao et al| (2020)); Bai et al.| (2024) to evaluate the efficiency of inversion attacks
and related defensive strategies, ensuring both fair and consistent comparisons.

Table 1: Privacy metrics for different augmentation and fusion strategies. Higher LPIPS and MSE, and
lower cosine similarity indicate stronger privacy protection.

Method PSNR | LPIPSt MSE 1 Cosine Sim. |
Original (No Mask) 34.2 0.141 0.0018 0.98
Random Block Swapping 31.8 0.157 0.0023 0.79
CutMix 28.7 0.194 0.0035 0.82
Mixup 30.2 0.200 0.0030 0.73
PuzzleMix 30.8 0.159 0.0032 0.80
Biometric Fusion (Ours) 26.3 0.245 0.0048 0.68

The result table [I] shows that our saliency-focused augmentation and fusion method achieves a beneficial
compromise between authentication accuracy and resistance to gradient inversion attacks. By integrating
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fingerprint data into low-saliency regions, the complexity of reconstruction is significantly increased, offering
an effective defense mechanism for federated identity recognition systems compared to just PuzzleMix on
face biometric.

Moreover, we evaluate the accuracy of authentication methods across different techniques to ensure that
improvements in privacy do not negatively impact performance.

Table 2: Authentication accuracy across different augmentation methods.

Method Authentication Accuracy (%)
Original (No Mask) 98.5

Random Block Swapping 83.2

CutMix 50.7

Mixup 85.3 [Pang et al.| (2020
PuzzleMix 8.7

Biometric Fusion (Ours) 89.8

Our approach to biometric fusion displays enhanced accuracy in authentication and privacy improvements,
outperforming other augmentation methods in maintaining this balance.

6 Conclusion

Our experimental findings indicate that strategically blurring facial areas based on their importance sig-
nificantly enhances privacy while only slightly impacting identity recognition effectiveness. Through com-
prehensive testing, we discovered that hiding low-importance regions (such as the forehead and cheeks)
had negligible effects on authentication accuracy, suggesting these areas provide redundant or less vital
information for identity verification. Conversely, preserving high-importance regions (like the eyes, nose,
and mouth) was crucial for maintaining accuracy. This targeted obfuscation approach achieved an optimal
balance, allowing the model to offer robust privacy protection with minimal compromise in authentication
accuracy.

Our framework’s resilience was enhanced by integrating multi-biometric fusion, where fingerprint data is
embedded in non-critical regions of facial information. This method increased the complexity for adver-
saries using gradient-based reconstruction and expanded the variety of biometric characteristics available
for authentication. Consequently, our fusion technique made reconstruction more difficult, as evidenced
by significant declines in reconstruction quality measures like PSNR and cosine similarity, accompanied by
increases in distortion measures such as LPIPS and MSE.

The customized Jigsaw ViT model, which includes random patch swapping in its training process, showed
excellent performance in undermining the spatial consistency that attackers rely on for successful gradient
inversion. Unlike traditional ViT or ResNet models, the Jigsaw ViT maintained high performance even
under considerable spatial confusion. This underscores its suitability for federated learning environments,
where the danger of gradient leakage is a significant security concern. Our method reliably outperformed
existing privacy-preserving techniques such as random erasing, Gaussian noise addition, and conventional
mixup approaches.
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A Appendix

To further support our findings and demonstrate how augmentations can preserve user privacy while im-
pacting model performance, we offer additional figures. These figures analyze the effects of occluding both
low-level and high-level features and assess semantic consistency via feature swapping.

Figure [f] presents several augmentations implemented during the training and testing stages using images
from the CelebA dataset. The left column showcases examples of three key methods: random square masking,
eye masking, and the implementation of synthetic noise around the eye area. These augmentations include
removing low-level details (random black squares), applying high-level semantic masking (eye coverage), and
adding perceptually structured perturbations (colored noise). The middle and right columns show graphs
indicating the effect of each augmentation on face authentication accuracy at various similarity thresholds.
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Our analysis shows that implementing augmentations during the training phase helps the model retain decent
recognition skills, albeit with some reduction in performance. Conversely, applying augmentations only at
the testing stage (illustrated in the right plots) leads to a more substantial drop in performance, particularly
with noise-based methods and semantic eye masking. This contrast suggests that consistent augmentation
at both training and testing phases is vital for maintaining effectiveness. Additionally, out of the techniques
assessed, high-level semantic masking (such as covering the eyes) leads to a more stable and understandable
performance trajectory, whereas random square masking causes more irregular results. This underscores
that strategic, region-specific masking techniques offer better privacy protection than random occlusion.

Figure [6] explores the importance of semantic attributes by analyzing the impact of swapping facial features
either within the same person or with different individuals. The plots in the top left emphasize the results
of exchanging eye regions across different individuals. Utilizing this method on both training and testing
datasets results in a significant decline in accuracy, highlighting the essential role the eye region plays in
identifying individuals.

Interestingly, swapping eyes with the same individual results in minimal disruption, suggesting that despite
changes, structural consistency maintains model predictions. The right side of the figure explores the out-
comes of replacing random image patches, both within the same individual and across different identities.
While exchanging patches between different individuals causes a moderate reduction in performance, doing
so within the same individual (bottom right) leads to a noticeable and inconsistent decrease in accuracy.
These findings reinforce the idea that disrupting semantic coherence, either through component misalignment
or arbitrary alterations, significantly impairs the model’s capacity to recognize identities.

Together, these experiments emphasize the contrast between altering low-level and high-level characteristics.
High-level, semantic augmentations like eye masking or identity swapping prove more effective in preserving
privacy and impairing model inference than basic, unstructured techniques such as random blocking. These
visual and numerical results not only validate our proposed augmentation strategy but also reveal which
facial traits are crucial for face authentication systems. The consistent decline in performance with specific
augmentations highlights the effectiveness of our approach in protecting biometric privacy while maintaining
a fair trade-off with model utility.

Train tim

Figure 5: Effect of various augmentations (random square occlusion, eye masking, and eye noise) on recog-
nition performance at train and test time.

To better grasp how different data augmentation techniques affect security and reconstruction quality across
various architectures (e.g., ResNet, ViT, and Jigsaw ViT), we present a heatmap visualization in Figure

Each cell in heatmap [7| displays the normalized measurement of metrics such as Security (Distance), PSNR
(dB), LPIPS, and MSE for particular block configurations. Enhanced performance is indicated by higher
security and PSNR scores along with reduced LPIPS and MSE values. This visualization serves as a valuable
tool for illustrating the trade-offs between improving security and preserving visual fidelity.
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Figure 6: Impact of semantic feature swapping (eyes and patches) across same and different identities.

Heatmap of Security and Reconstruction Metrics
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Figure 7: Normalized heatmap of Security(Distance of reconstructed image from original image) and Recon-
struction Quality Metrics across different augmentation strategies and model types.

Table 3: Summary of Privacy-Preserving Techniques in Distributed Learning

Technique Strengths ‘Weaknesses
Gradient Perturbation[Zhu et all Simple to implement; reduces di- Requires heavy noise or gradient
(2019); Huang et al|(2021); Yang| rect data leakage truncation; lowers accuracy

et al.| (2022)
Differential Privacy [Bonawitz7l Formal privacy guarantees; Adds noise impacting model per-

et al| (2016); McMahan et al| widely studied formance, especially in biomet-
(2017) rics

Homomorphic Encryption Allows computations on en- High computational and commu-
(Cheon et al.| (2017) crypted data; strong data confi- nication overhead; latency issues

dentiality
InstaHide Huang et al| (2020); Obfuscates raw inputs; easy to Vulnerable to adaptive recon-
(Carlini et al.| (2021) apply pre-training struction attacks; limited FL
suitability

Mixup, PuzzleMix ; Improves robustness and gener- Not designed to prevent gradient
Kim et al.| (2020) alization leakage; may remove key biomet-

ric features
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Figure 8: Detailed pipeline illustrating feature extraction, saliency and similarity assessment, block-wise
division, and weighted mixing for biometric fusion. The output is processed by the authentication model.
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Figure 9: Local model architecture on the client device. The local model directly processes raw biometric
data and applies perturbations to obscure sensitive features while preserving the critical identity information
required for authentication. (Google Cloud Skills Boost| (2024)

For enhanced clarity and comprehension of our methodology, we have added additional visual aids illustrating
our suggested pipeline along with an array of augmentation techniques.

Figure [§] illustrates the sequential phases of our suggested biometric authentication system. First, the
input biometric data, comprising the face (z¢) and fingerprint (x1), undergo a feature extraction process to
identify unique and identity-specific attributes. The resulting features are divided into nine spatial blocks and
combined using a saliency-focused, weighted blending method with established thresholds. This generates a
fused biometric profile used for authentication.

In Figure [[I} we display a range of augmentation techniques applied to biometric data. This includes
traditional methods such as Mixup, CutMix, and Puzzle Mix, alongside our novel block-level fusion technique.
Unlike standard methods, our approach integrates segments of fingerprints into facial images, striking a
balance between enhanced privacy and maintained recognition accuracy.

A.1 Limitations and Discussion

While our proposed framework demonstrates promising results in preserving authentication accuracy and
enhancing privacy through feature-level obfuscation, some limitations remain. Our study largely relied
on specific datasets, which may not fully represent the diverse variations present in real-world scenarios.
Therefore, further assessment is necessary to ascertain if our approach can be successfully applied to datasets
with differing characteristics. Although the framework is designed to be efficient, employing localized block-

18



Under review as submission to TMLR

Combined

. model
Initial
model

Figure 10: Global model architecture on the server. The global model aggregates gradients from client
devices and leverages a separate dataset composed of original and perturbed biometric images. It learns to
authenticate users based solely on perturbed biometric inputs by understanding feature importance from
training, thereby enhancing privacy during authentication |Google Cloud Skills Boost| (2024]).

Input 1

Figure 11: Examples of different augmentation strategies applied to biometric data: Mixup, CutMix, Puzzle
Mix (early and full), and our block-based fusion method. Our method strategically combines fingerprint and
facial regions, balancing security and authentication accuracy.

wise transformations introduces additional computational demands on client devices. This added burden
may be significant for devices with limited processing capabilities, possibly affecting the user experience.

We have tested our defense mechanism against several recognized gradient-based attacks. However, given the
rapid development of adversarial techniques, our approach might not be immune to every type of complex
attack, especially those exploiting new vulnerabilities. The framework assumes that client devices are free
from malware and secure. Should this assumption be false, the privacy assurances provided by our approach
could be jeopardized.

Overcoming these constraints can open new avenues for future research. Expanding evaluations to encom-
pass a wider range of datasets will help assess the method’s generalizability. Improving the computational
efficiency of transformations might make the framework more suitable for resource-constrained devices. Addi-
tionally, deploying adaptive strategies to counteract new adversarial threats will enhance system robustness.
Exploring methods to protect the integrity and security of client devices will strengthen privacy assurances.
Finally, using a broader set of evaluation metrics will offer deeper insights into the practical implications of
our framework.
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