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Abstract

Generative models are trained with the simple objective of imitating the conditional
probability distribution induced by the data they are trained on. Therefore, when
trained on data generated by humans, we may not expect the artificial model to
outperform the humans on their original objectives. In this work, we study the
phenomenon of transcendence: when a generative model achieves capabilities that
surpass the abilities of the experts generating its data. We demonstrate transcendence
by training an autoregressive transformer to play chess from game transcripts, and
show that the trained model can sometimes achieve better performance than all
players in the dataset.1 We theoretically prove that transcendence can be enabled
by low-temperature sampling, and rigorously assess this claim experimentally.
Finally, we discuss other sources of transcendence, laying the groundwork for future
investigation of this phenomenon in a broader setting.

1 Introduction

Generative models (GMs) are typically trained to mimic human behavior. These humans may be
skilled in their various human objectives: answering a question, creating art, singing a song. The
model has only one objective: minimizing the cross-entropy loss with respect to the output distribution,
thereby adjusting it to match the distribution of human labels2. Therefore, one might assume the model
can, at best, match the performance of an expert on their human objectives. Is it possible for these
models to surpass—to transcend—their expert sources in some domains?

1To play with our models, code, and data, please see our website at https://transcendence.eddie.win.
2Although chatbots are subject to a variety of post-training tuning methods, e.g., RLHF, we restrict our scope

by assuming that the specialized knowledge and capacities are already provided by cross-entropy loss.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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Figure 1: Ratings of our autoregressive decoder-only transformer, ChessFormer, over several different temperatures.
We refer to our models as “ChessFormer <Maximum Glicko-2 rating seen during training>" to easily distinguish
between different models in subsequent sections. Each model is trained only on games with players up to a certain
rating (1000, 1300, 1500, respectively). We report 95% confidence intervals calculated through taking ±1.96σ.

We illustrate an example of such transcendence in Figure 1, which measures the chess ratings (Glicko-2
[7]) of several transformer [35] models. Our experimental testbed is generative modeling on chess,
which we choose as a domain for its well-understood, constrained nature. The transformer models are
trained on public datasets of human chess transcripts, autoregressively predicting the next move in the
game. To test for transcendence, we limit the maximal rating of the human players in the dataset below
a specified score. We find that ChessFormer 1000 and ChessFormer 1300 (the latter number being
the maximum rating seen during training) achieve significant levels of transcendence, surpassing the
maximal rating seen in the dataset. Our focus is this capacity of a GM to transcend its expert sources by
broadly outperforming any one expert. The key to our findings is the observation that GMs implicitly
perform majority voting over the human experts. As these models are trained on a collection of many
experts with diverse capacities, predilections, and biases, this majority vote oftentimes outperforms
any individual expert, a phenomena that is known as “wisdom of the crowd”.

Our objective is to formalize the notion of transcendence and focus narrowly on this source of
improvement over the experts: the removal of diverse human biases and errors. We prove that this
form of denoising is enabled by low-temperature sampling, which implicitly induces a majority vote.
Our result draws a subtle but deep connection from our new setting to a rich prior literature on model
ensembling [1, 6, 19], enabling several key results. We precisely characterize the conditions under
which transcendence is possible, and give a rigorous theoretical framework for enabling future study
into the phenomenon. To test the predictive power of our theory, we then empirically demonstrate these
effects. Digging deeper into the effects of majority voting, we show that its advantage is primarily
due to performing much better on a small subset of states—that is, under conditions that are likely key
to determining the outcome of the game. We also find that diversity in the data is a necessary condition
for practically effective majority voting, confirming our theoretical findings. In short:

• We formalize the notion of transcendence in generative models (Section 2).

• We find a key insight explaining one cause of transcendence by connecting the case of
denoising experts to model ensembling. In low temperature sampling settings, we prove that
a generative model can transcend if trained on a single expert that makes mistakes uniformly
at random. We then extend this result to transcending a collection of experts that are each
skilled in different domains (Section 3).

• We train a chess transformer on game transcripts that only include players up to a particular
skill level. We confirm our theoretical prediction that this model only surpasses the maximum
rating of its expert data generators at low temperature settings (Section 4).

• We visualize the distribution of changes in reward by setting a lower sampling temperature,
attributing the increased performance to large improvements on a relatively small portion
of states (Section 4.2).

• We explore the necessity of dataset diversity, and the inability of ChessFormer to transcend
when trained on less diverse datasets (Section 4.2).
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2 Definition of Transcendence

Denote by X the (variable-length) input space and by Y the (finite) output space. Let F be the class of
all functions mapping X 7→P (Y) (where we use the notation P (Y) to denote probability distributions
over Y). That is, the functions in F map inputs in X to probability distributions over Y , so each
function f ∈F defines a conditional probability distribution of y ∈Y given x∈X . We denote this
distribution by f(y|x).
Fix some input distribution p over X such that p has full support (namely, for every x∈X we have
p(x)>0). Throughout the paper, we assume that our data is labeled by k experts, denoted f1,...,fk∈F .
Namely, we assume that the inputs are sampled from the input distribution p and then each input
x∈X is labeled by some expert chosen uniformly at random3. This process induces a joint probability
distribution over X ×Y , which we denote by D. Specifically, D(x,y) = p(x)f(y|x) where f is the
mixture of the expert distributions, namely

f(y|x)= 1

k

k∑
i=1

fi(y|x) (1)

We measure the quality of some prediction function f ∈F using a reward assigned to each input-output
pair. Namely, we define a reward function r : X ×Y → R, s.t. for all x, the function r(x,·) is not
constant (i.e., for every input x not all outputs have the same reward). We choose some test distribution
ptest over X , and for some f ∈F define the average reward of f over ptest by:

Rptest
(f)=Ex∼ptest

[rx(f)], where rx(f)=Ey∼f(·|x)[r(x,y)] (2)
A learner has access to the distribution D, and needs to find a function that minimizes the cross-entropy
loss over D. Namely, the learner chooses some function f̂ ∈F s.t. f̂ =argminf∈FEx∼p

[
H(f,f)

]
where H is the cross-entropy function.
Definition 1. We define “transcendence” to be a setting of f1,...,fk∈F and p∈P (X ) where:

Rptest
(f̂)>max

i∈[k]
Rptest

(fi) (3)

In other words, transcendence describes cases where the learned predictor performs better (achieves
better reward) than the best expert generating the data. Note that we are focusing on an idealized
setting, where the learner has access to infinite amount of data from the distribution D, and can
arbitrarily choose any function to fit the distribution (not limited to a particular choice of architecture
or optimization constraints). As we will show, even in this idealized setting, transcendence can be
impossible to achieve without further modifying the distribution.
Remark 1. We have made various simplifying assumptions when introducing our setting. For example,
we assume that all experts share the same input distribution, we assume that all inputs have non-zero
probability under the training distribution p, and we assume the experts are sampled uniformly at
random. We leave a complete analysis of a more general setting to future work, and discuss this point
further in section 6.

3 Conditions for Transcendence

In this section we analyze the necessary and sufficient conditions for transcendence in our setting.
We begin by showing that low-temperature sampling is necessary for transcendence in our specific
setting. Then, we analyze specific sufficient conditions for transcendence, both in the case where the
data is generated by a single expert and when the data is generated by multiple experts. We defer all
proofs to Appendix A.

3.1 Low-Temperature Sampling is Necessary for Transcendence

Observe that by definition of f̂ , and using standard properties of the cross-entropy loss, we get that
f̂ = f , as defined in Eq. (1). Therefore, the conditional probability distribution generated by f̂ is
simply an average of the distributions generated by the expert. Since the reward is a linear function
of these distributions, we get that f̂ never achieves transcendence:

3Equivalently, we can assume that each example is labeled by all experts.
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Figure 2: Visualizing the denoising effects of low temperature on the action distribution: an example of Chess-
Former shifting probability mass towards the high reward move of trapping the queen with the rook as the
temperature τ decreases. Opacity of the red arrows represent the probability mass given to different moves. The
color of the square represent the reward that would be given for taking the action that moves the given piece to that
state. Purple here is high reward, while blue is low. For more visualizations, see Appendix B.

Proposition 1. For all choice of f1,...,fk and ptest, there exists some fi s.t. Rptest
(fi)≥Rptest

(f̂).

Note that in our setting, we assume that all experts are sampled uniformly for a given input x. If
instead this assumption is removed, then it may be possible to achieve transcendence with a bayesian
weighting. We leave this analysis for future work.

3.2 Transcendence with Low-Temperature Sampling

Now, we consider a temperature sampling scheme over the learned function f̂ . Namely, for some
temperature τ > 0, and some probability distribution q ∈ P (Y), denote the softmax operator with

temperature τ by softmax(q;τ) ∈ P (Y) s.t. softmax(q;τ)y =
exp(qy/τ)∑

y′∈Yexp(qy′/τ)
. Additionally,

we define argmax(q) ∈ P (Y) to be the uniform distribution over the maximal values of q, namely
argmax(q)=1/|Yq| if y∈Yq and 0 if y /∈Yq, where Yq ={y∈Y : qy =max(q)}. Now, define f̂τ to
be the temperature sampling of f̂ , i.e. f̂τ (·|x)=softmax(f̂(·|x);τ) and f̂max the arg-max “sampling”
of f̂ , i.e. f̂max(·|x)=argmax(f̂(·|x)). We now show that if the arg-max predictor f̂max is better than
the best expert, then transcendence is possible with low-temperature sampling.

Proposition 2. Rptest
(f̂max) > maxi∈[k]Rptest

(fi) if and only if there exists some temperature
τ ∈(0,1) s.t. for all 0≤τ ′≤τ , it holds that Rptest

(f̂τ ′)>maxi∈[k]Rptest
(fi).

The above shows that, even though transcendence cannot be achieved when directly modeling the
distribution, it can be achieved by temperature sampling, assuming that the arg-max predictor achieves
higher reward compared to all experts. In other words, we make the subtle connection here that low-
temperature sampling can be thought of as performning majority vote [1, 6] between the experts. Please
see Appendix A for a formal proof of this connection. When the experts put non-negligible mass onto
the best actions, the resulting majority vote may find the best action [9], which improves performance
compared to individual experts (i.e., “wisdom of the crowd”) and thus achieve transcendence.

3.3 Denoising a Single Expert

We now turn to study particular cases where low-temperature sampling can lead to transcendence.
The most simple case is of a single expert that outputs a correct but noisy prediction. Denote by f∗ the

optimal expert, s.t. for all x we have f∗(y|x)= δ(y∈Y ∗
x )

|Y ∗
x |

, where Y ∗
x ={y∈Y :y=maxy′r(x,y′)}
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and δ(condition) is 1 if the condition is true and 0 otherwise. Now, for some ρ ∈ (0,1), let fρ be a
“noisy” expert, s.t., for all x, with probability ρ chooses a random output, and with probability 1−ρ
chooses an output according to the optimal expert f∗(·|x), namely fρ(y|x)=ρ/|Y|+(1−ρ)f∗(y|x).
We show that transcendence is achieved with low-temperature sampling for data generated by fρ:
Proposition 3. Assume the data is generated by a single expert fρ. Then, there exists some temperature
τ ∈(0,1) s.t. for all τ ′≤τ , the predictor f̂τ ′ achieves “transcendence”.

3.4 Transcendence from Multiple Experts

Next, we consider the case where the dataset is generated by multiple experts that complement each
other in terms of their ability to correctly predict the best output. For example, consider the case where
the input space is partitioned into k disjoint subsets, X =X1∪̇...∪̇Xk, s.t. the i-th expert performs
well on the subset Xi, but behaves randomly on other subsets. Namely, assume the expert fi behaves as

follows: fi(y|x)=
(

δ(y∈Y ⋆
x )δ(x∈Xi)
|Y ⋆

x | + δ(x/∈Xi)
|Y|

)
where Y ∗

x is as previously defined and δ(condition)

is 1 if the condition is true and 0 otherwise. We show that, assuming that the test distribution ptest
is not concentrated on a single subset Xi, we achieve transcendence with low-temperature sampling:
Proposition 4. Let ptest be some distribution s.t. there are at least two subsets Xi ̸= Xj s.t.
ptest(Xi),ptest(Xj)> 0. Then, if the data is generated by f1,...,fk, there exists some temperature
τ ∈(0,1) s.t. for all τ ′≤τ , the predictor f̂τ ′ achieves “transcendence”.

In order to build intuition for Proposition 4, see Appendix C for an intuitive diagram.

4 Experiments

To evaluate the predictive power of our impossibility result of transcendence with no temperature
sampling (Proposition 1) as well as our result of transcendence from multiple experts with low
temperature sampling (Proposition 2), we turn to modeling and training chess players. Chess stands out
as an attractive option for several reasons. Chess is a well-understood domain and more constrained than
other settings such as natural language generation, lending to easier and stronger analysis. Evaluation of
skill in chess is also natural and well-studied, with several rigorous statistical rating systems available.
In this paper, we use the Glicko-2 rating system [7], which is also adopted by https://lichess.org,
the free and open-source online chess server from which we source our dataset.

4.1 Experimental Setup
Training Details. We trained several 50M parameter autoregressive transformer decoders following
best practices from modern large model training, including a cosine learning rate schedule and similar
batch size-learning rate ratios as prescribed by the OPT-175B team [37]. Our dataset consists of human
chess games from the lichess.org open source database from January 2023 to October 2023. In total,
this dataset contains approximately one billion games. In this setting, an expert is a specific individual
player. To test for transcendence, we truncate this dataset by a maximum rating, so that during training
a model only sees data up to a given rating. We train our model on the next-token prediction objective,
and represent our chess games as Portable Game Notation (PGN) strings, such as 1.e4 e5 2.Nf3 Nc6
3.Bb5... 1/2-1/2. Note that we do not give any rating or reward information during training—the
only input the model sees are the moves and the outcome of the game. We tokenize our dataset at the
32-symbol character level. (For further details, see Appendix E.) Our model plays chess “blind”—
without direct access to the board state—and, furthermore, is never explicitly given the rules of the
game: at no point is play constrained to valid outputs for a given piece or board state. Nontrivial chess
skill is therefore not straightforward to acquire, and if not for the surprising capabilities of modern large
transformers, one might imagine such a model would fail to learn even the basic rules of playing chess.
This blindfolded setting has also been studied by prior work [23, 30], as discussed further in section 5.

One gap between our theory and practice is that in our theory, we assume that each expert is defined over
the entire input space X . However, in the chess setting such full coverage is extremely unlikely to be
the case after around move 15, as there are more unique chess games than atoms in the universe due to
the high branching factor of the game tree. To address this gap, we visualize the latent representation of
our model in Figure 3, where we find the model is able to capture meaningful semantics regarding both
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Figure 3: Inspired by Mnih et al. [20], we generate a t-SNE embedding [34] of ChessFormer’s last hidden layer
latent representations of game transcripts during training time. The colors represent the probability of winning,
with +1 corresponding to a state where White has won and 0 to Black. Probabiliy of winning is computed through
the Stockfish analysis engine. We also visualize several board states associated with different clusters in the t-SNE
embedding, and their associated expected reward when following the expert Stockfish distribution. Note that the
model distinguishes between states where the outcome has already been determined (the two left boards), versus
opening states that are extremely similar (the two right boards). See the full t-SNE in Appendix G.

the relative advantage of a state, as well as the identity of the black and white player. This visualization
illustrates the ability of our model to generalize by compressing games into some shared latent represen-
tation, enabling experts to generalize to unseen states, bridging this gap between theory and practice.

Evaluation. We evaluate each model by its Glicko-2 ratings against Stockfish 16.1 [29], a popular
open-source chess engine. Stockfish uses a traditional minimax search equipped with a bespoke CPU-
efficient neural network for evaluation [22] andα-β pruning for further efficiency. We evaluate Stockfish
at levels 1, 3, and 5 with a 100ms timeout directly on Lichess’ platform against the Maia [18] 1, 5, and 9
bots (human behavior cloned convolutional networks trained at rating bins 1100-1200, 1500-1600, and
1900-2000, respectively) for several hundred games, obtaining calibrated Glicko-2 ratings for Stockfish
specifically on Lichess’ platform (1552±45.2, 1842±45.2, 2142±59 for Stockfish Levels 1, 3, and 5,
respectively). Next, for evaluating our own models, we then play against Stockfish levels of 1, 3, and 5
for 100 games each, reaching a final rating calculation with 300 games. We then report both the Glicko-2
rating R as well as rating deviation RD of our models, where R±2∗RD provides a 95% confidence
interval. To play against Stockfish, we successively prompt our model with the current game PGN
string. Note that our output is entirely unconstrained, and may be either illegal in the current board state
or altogether unparsable. If our model fails to generate a valid legal move after 5 samples, we consider
it to have lost. After generation, we give the updated board state to Stockfish and pass a new PGN string
appended with the prior move of Stockfish back to our model. We repeat this process until the game ends.

4.2 Experimental Results

Main Result: Low-temperature sampling enables transcendence. In this section we attempt to
answer our primary research question, can low-temperature sampling actually induce transcendence in
practice? We test Proposition 2 by evaluating several ChessFormers across different temperature
values, from 0.001 (nearly deterministic), to 1.0 (original distribution), to 1.5 (high entropy). In
Figure 1 we definitively confirm the existence of transcendence. Our ChessFormer 1000 (where the
latter number refers to the maximum rating seen during training) and ChessFormer 1300 models are
able to transcend to around 1500 rating at temperature τ equal to 0.001. Interestingly, ChessFormer
1500 is unable to transcend at test time, a result we further analyze in Dataset Diversity.

To more deeply understand when and why transcendence occurs, we investigate two questions. (1)
How does the reward function defined in Equation 2 shift with respect to low-temperature sampling?
(2) Does transcendence rely on dataset diversity, as introduced theoretically in subsection 3.4?

Lowering temperature increases rewards in expectation on specific states, leading to transcen-
dence over the full game. When playing chess, a low-skilled player may play reasonably well
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until they make a significant blunder at a key point in play. If these errors are idiosyncratic, averaging
across many experts would have a denoising effect, leaving the best moves with higher probability.
Therefore, low-temperature sampling would move probability mass towards better moves in specific
play contexts. Without low-temperature sampling, the model would still put probability mass onto
blunders. To gain intuition for this idea, we visualize it theoretically in Appendix C and empirically
in Figure 2 and Appendix B. This hypothesis motivates our first research question in this section: Does
low-temperature sampling improve the expected reward very much for just some specific key game
states, or a little for many game states?

To formalize this notion, we first define a “favor” function, which captures the improvement in reward
by following some new probability distribution over some baseline probability distribution. Our
definition is inspired by the Performance Difference Lemma (PDL) [10] from Reinforcement Learning
(RL), which establishes an equivalence between the change in performance from following some
new policy (a probability distribution of actions given a state) over some old policy, and the expected
value of the advantage function of the old policy sampled with respect to the new policy. In RL, the
advantage function is defined as the difference between the value of taking a single action in a given
state versus the expected value of following some policy distribution of actions in that state.

Here, we define the “favor” of f ′ over f in x as the change in the reward function by comparing what
f would have done when following f ′ for a given input x:

F (f ′,f ;x)=Ex∼df′ ,y∼f ′(·|x)[r(x,y)]−Ex∼df′ ,y∼f(·|x)[r(x,y)]. (4)

Where df refers to the state visitation distribution [31] when following f in a sequential setting—
informally, this variable can be thought of the distribution of states seen when sampling from f with
a fixed transition function that takes in an input x, a output y, and outputs a next input x. Here, that
transition function is given by the rules of chess and the opponent player. Given this favor function,
we can now quantitatively explore the effects that lead to transcendence by setting the baseline f to be
the original imitation-learned probability distribution (temperature τ=1), and f ′ as a low-temperature
intervention on f (e.g. temperature τ = 0). We can empirically calculate the reward by using the
evaluation function [22] of Stockfish, an expert neural reward function that Stockfish uses to calculate
its next move. This reward function is a neural network trained to predict the probability of winning
through a sigmoid on a linear combination of handcrafted expert heuristics, such as amount of material
versus opponent material, and number of moves to a potential checkmate.

Figure 4: The favor probability distribution, or change in expected reward by setting temperature lower than
τ=1.0. We plot the favor distribution across two different temperatures: setting τ= .75 and τ=0.001 by running
the Stockfish analysis engine across 100 total Chessformer 1000 games played at 0.001 temperature against
Stockfish level 1 (as theoretically justified by PDL [10]). We calculate favor by sampling 100 counterfactual
potential moves at τ =1.0 per actual move made at τ =0.001 to compute a baseline expected reward. In total,
we gather an empirical probability distribution with n=382,000 total samples per τ (38.2 moves on average per
game). Note that we plot the distributions with transparency, so the brownish area is where the two overlap. We
visualize several long-tail examples in Appendix B.

In Figure 4, we find that lowering the temperature has the effect of skewing the expected reward
distribution to the right, especially for the green τ =0.001 distribution. This result implies that the
model does not improve the expected reward by a small amount for many game states, but rather
improves the expected reward by a relatively large amount for a few game states. Thus, τ = 0.001
improves the expected reward (probability of winning) by an average of 2.15±0.17%, but for some
states, this expected improvement is over 5%. Note that the original temperature expected reward can
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be thought of as a Dirac distribution centered at 0. The above finding answers our research question
in this section: Low-temperature sampling is able improves the expected reward by relatively large
amounts for some specific game states, which is likely why the ChessFormer 1000 and 1300 model
was able to achieve transcendence.

Temperature E[Pτ (%)] E[Pτ−P1.0] Top 1 Acc (%) Top 3 Acc (%) Top 5 Acc (%)

τ=0.001 39.95±0.92 2.15±0.17 29.61±1.43 54.26±1.57 66.86±1.47
τ=0.75 38.79±0.90 0.99±0.06 25.08±0.95 47.84±1.09 60.37±1.04
τ=1.0 37.80±0.87 0±0 22.61±0.86 44.00±9.96 56.27±0.93

Table 1: Table of several statistics describing the relationship between reward at τ=0 vs. τ=1. In the first column,
we display the expected reward across our dataset, which is P of winning calculated by Stockfish 16.1). In the
second column, we display F , or the change in reward for the given temperature τ versus the baseline. In the last
three columns we display the accuracy for the best moves ranked by Stockfish analysis run at a time cutoff of 1
second. Here, the top-k accuracy is the percentage of games where the actual move sampled by the model was in
the top-k moves as ranked by Stockfish. We report 95% bootstrapped confidence intervals with 10K resamples.

In Table 1, we present the statistics of the favor function for different temperature values. From this
table, we observe that as the temperature decreases, the top-k accuracies monotonically increase,
suggesting that the model becomes more consistent in selecting good moves. We also observe that
although the model improves as temperature decreases, the probability of winning is still below
50%, meaning our model should tend to lose more games than it wins against Stockfish 1. This result
matches with our results in Figure 1, as the rating of Stockfish 1 is also higher than the reported rating
for τ = 0.001 (1550 for Stockfish 1 vs ∼ 1450 for Chessformer 1000). Overall, the analysis of the
advantage statistics provides further evidence for the effectiveness of low-temperature sampling in
inducing transcendence in chess models.
Dataset diversity is essential for transcendence. As we note in subsection 3.4, our theory requires
dataset diversity as a necessary condition for enabling transcendence. Importantly, we find in Figure 1
that not all models are able to transcend. Unlike ChessFormer 1000 or 1300, the Chessformer 1500
fails to transcend. We hypothesize that this results is due to the fact that in the band of ratings from 1000
to 1500, diversity does not significantly increase. If so, a 1000 rated player can be thought of as a noisy
1500 rated player, but a 1500 rated player cannot be thought of as a noisy 2000 rated player. In this
section we ask the following research question: Is diversity in data required for enabling transcendence?

In Figure 5, we explore this research question by quantifying dataset diversity through the normalized
entropy on the action distribution Hf (Y |X) = Ey∼f(y|x=X)[−log2f(y|x=X)]/log2|Y|. To gain
intuition for this metric, imagine the action distribution of moves taken for any given state. Entropy
will be higher for more uniform action distributions, and lower for more deterministic, peaked action
distributions. The average entropy of these action distributions can therefore serve as a measurement
of the diversity of the dataset. We normalize this entropy to the range [0,1] by dividing by the binary
log of the number of legal moves: log2|Y|.
Importantly, we cannot calculate this normalized entropy for
every state, as most states after move 16 in the midgame
and before the engame are unique within the dataset and we
therefore observe just a single action for thus states. Therefore
our metric is limited in that it only considers opening moves,
the beginning of the midgame, and the endgame. We consider
only common states with greater than 100 actions by sampling
1,000,000 games from each dataset. The average entropy
confirm our hypothesis: The < 1500 cut off dataset has on
average less diversity than the < 1300 dataset, which has is
again less than the <1000 dataset. This result suggests that
Chessformer 1500 likely is not transcendent due to a lack of
diversity in its dataset. If the entropy instead stayed constant
for each dataset, it would imply that each had a similar level of
diversity. In such a case, we would expect that ChessFormer
1500 likely would also transcend. Instead, as predicted, it is
likely not transcendent due to a lack of diversity.

Figure 5: Action distribution diversity, as
measured by the average normalized entropy
over different chess rating dataset cutoffs
with n = 2681,3037,3169 common states
for ratings 1000, 1300, 1500, respectively.
These entropies are calculated directly from
the empiricial frequencies of our dataset, and
are model-agnostic.
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4.3 Additional Settings

SQuADv2 Natural Language Temperature Denoising Experiment. We extend our analysis to
the Natural Language Processing domain by running experiments on the Stanford Question Answering
Dataset (SQuAD 2.0). We tested the effects of temperature denoising on the performance of several
large language models (LLMs) of varying sizes. The SQuAD task involves reading comprehension
and question-answering based on Wikipedia articles, making it an ideal setting to evaluate the impact
of denoising on language models. We measured the exact-match, semantic-match, and F1 scores
of the model outputs at different temperatures. The results show that temperature denoising leads
to improved performance, corroborating the findings of our chess experiments and providing broader
validation of the underlying mechanism of temperature denoising in diverse domains.

Figure 6: We evaluate several pretrained language models on the SQuADv2 Question-Answering reading
comprehesion dataset, a task consisting of answering a question given some snippet from a Wikipedia article. We
report F1, ’Exact Match’, and ’Semantic Match’ scores of several different language models of varying size from
163M parameters to 7B parameters, over several different temperatures. Semantic Match is calculated by using
another LLM (llama3.1) to judge if two responses are equivalent, even if the exact strings slightly differ between
the model output and the correct response. We also report 95% confidence intervals calculated through taking
±1.96σ.

Toy Model Setting and Results. In addition, we develop a toy theoretical model to further study when
transcendence is possible. This model involves a classification task with Gaussian input data and linearly
separable classes. Experts label the data with noisy versions of the ground truth separator. We trained a
linear model on a dataset labeled by random experts and observed the test accuracy for different temper-
ature settings. The synthetic experiments demonstrated that transcendence occurs when expert diversity
is high and temperature is low, aligning with our theoretical and empirical analysis in the chess domain.
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Figure 7: Toy model for demonstrating transcendence. Input data is d-dimensional Gaussian, with d=100. Output
is classification with 10 classes. Ground-truth is generated by a linear function, i.e. y=argmaxiW

⋆
i x for some

W ∗∈R10×d. We sample k experts, with k=5, to label the data, where the labels of each expert are generated by
some W ∈R10×d s.t. W =W ∗+ξ, where ξi,j ∼N (0,σ2), for some standard deviation σ. Namely, each expert
labels the data with a noisy version of the ground truth separator, with noise std σ. We then train a linear model
on a dataset with 10K examples, where each example is labeled by a random expert. We plot the test accuracy,
measured by the probability assigned to the correct class, for different choices of temperature, and compare to the
best expert.
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5 Related Work
Chess and AI. Chess has been motivating AI research since the field began. In 1950, before anyone
had used the term “artificial intelligence”, automated chess were explored by both Claude Shannon
[26] and Alan Turing [32]. Arguably, this history goes back even further: the famed “mechanical
turk” of the 18th century was a fraudulently automated chess player. These centuries of mechanical
ambitions were finally realized in 1997, when world champion Garry Kasparov was defeated by IBM’s
Deep Blue [3]. Since then, chess program developers have drawn on neural approaches, with the
RL-based convolutional network AlphaZero [27] far surpassing prior world champion engines such
as Stockfish [25].Our chess model testbed is inspired by a number of existing approaches, including
other models trained on lichess data [18], and other transformer-based sequential chess agents [23, 5].

Diversity beats Strength. Another historical thread in AI research is the strength of diverse learners.
Long since the development of ensemble methods that exploit learner diversity—including bagging [1],
boosting [6], and model averaging [19]—researchers have continued to articulate this insight across set-
tings. Similar to our chess setting, a diverse team of go playing agents have been proven and empirically
shown to outperform solitary agents [9] and homogeneous teams [28], even when the alternative models
individually outperform the diverse team members [17]. We draw a connection to this deep literature
through our theory, which shows that imitation learning objective and then performing low-temperature
sampling subtly implies the same principle of majority voting. Teacher diversity has also been explored
in the machine learning literature. One related method is ensemble distillation [16], in which a model is
trained with an additional objective to match a variety of weaker teacher models. Closer to our setting,
ensemble self-training approaches [24] train a learner directly on the labels produced by varied teachers.
Large language models supervised by smaller or less trained models are said to exhibit “weak to strong
generalization” [2]. Overall, evidence continues to accrue that the general phenomenon we address
is pervasive: that is, models can substantially improve over the experts that generate their training data.

Offline Reinforcement Learning. Our work also draws connections to the Offline Reinforcement
Learning [14] setting, where one attempts to learn a new policy π that improves upon a fixed dataset
generated by some behavior policy πβ . However, our setting of imitation learning differs substantially
from this literature, as we do not explicitly train our model on a RL objective that attempts to improve
upon the dataset. Importantly, such an objective oftentimes introduces training instabilities [15] and
also assumes reward labels. We defer a more extended discussion of related work to Appendix D.

6 Discussion and Future Work
This paper introduces the concept of transcendence. Our theoretical analysis shows that low-
temperature sampling is key to achieving transcendence by denoising expert biases and consolidating
diverse knowledge. We validate our findings empirically by training several chess models which, under
low-temperature sampling, surpass the performance of the players who produced their training data,
as well as further experiments in natural language question-answering and toy Gaussian models. We
additionally highlight the necessity of dataset diversity for transcendence, emphasizing the role of
varied expert perspectives.

Limitations. While our work provides a strong foundation for understanding and achieving transcen-
dence in generative models, several avenues for future research remain. Future work may investigate
transcendence and its causes in domains and contexts beyond chess, such as natural language process-
ing, computer vision, and text-to-video, to understand the generalizability of our findings. Additionally,
our theoretical framework assumes that game conditions at test time match those seen during training;
in order to extend our findings to cases of composition or reasoning, we must forego this assumption.

Future Work. Future work could also explore the practical implementations of transcendence, and
ethical considerations in the broader context of deployed generative models. Ultimately, our findings
lay the groundwork for leveraging generative models to not only match but exceed human expertise
across diverse applications, pushing the theoretical boundaries of what generative models can achieve.

Broader Impact. The possibility of “superintelligent” AGI has recently fueled many speculative
hopes and fears. It is therefore possible that our work will be cited by concerned communities as
evidence of a threat, but we would highlight that the denoising effect addressed in this paper does
not offer any evidence for a model being able to produce novel solutions that a human expert would
be incapable of devising. In particular, we do not present evidence that low temperature sampling
leads to novel abstract reasoning, but just denoising of errors.
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A Proofs

Here we prove Proposition 1, where transcendencecannot occur by purely using imitation learning
in our setting where all experts are sampled uniformly across the input distribution.

Proof. From linearity of the expectation

Rptest(f̂)=Ex∼ptest

[
rx(f)

]
=Ex∼ptest

[
1

k

k∑
i=1

rx(fi)

]
=

1

k

k∑
i=1

Rptest
(fi)≤max

i
Rptest

(fi)

We now give the proof of Proposition 2 that if the arg-max prediction is better than the best expert,
then transcendence is possible with low-temperature sampling.

Proof. Observe that for all q, it holds that limτ→0softmax(q;τ)=argmax(q). Therefore, for all x

lim
τ→0

rx(f̂τ )= lim
τ→0

∑
y

r(x,y)·f̂τ (y|x)=
∑
y

r(x,y)f̂max(y|x)=rx(f̂max)

and so,

lim
τ→0

Rptest(f̂τ )= lim
τ→0

Ex∼ptest

[
rx(f̂τ )

]
=Ex∼ptest

[
lim
τ→0

rx(f̂τ )
]
=Ex∼ptest

rx(f̂max)=Rptest
(f̂max)

Therefore, the required immediately follows.

To prove Proposition 3.3, we directly use the result in Proposition 2.

Proof. Notice that for this expert, argmax(f(·|x)) = f∗(y|x), which achieves higher reward
compared to f . Therefore, Theorem 2 implies that we achieve transcendence in the setting where
all the data is generated by a single expert f .

Next, we give the proof for that low-temperature sampling can be thought of as performing majority
vote [1, 6] between the experts:

Proposition 5. Let z=[z1,z2,...,zn] be a vector and τ > 0 be a temperature parameter. Define the
softmax function as

στ (zi)=
ezi/τ∑n
j=1e

zj/τ
.

Then, as τ→0+, the limit of the softmax function is given by

lim
τ→0+

στ (zi)=

{1

k
, if zi=zmax,

0, otherwise,

where zmax=max1≤j≤nzj , and k is the number of indices i such that zi=zmax.

Proof. Let zmax=max1≤j≤nzj , and define the set

S={i |zi=zmax},

with cardinality k= |S|.
For each i, let

∆i=zi−zmax≤0.

13



Then the softmax function becomes

στ (zi)=
e(zmax+∆i)/τ∑n
j=1e

(zmax+∆j)/τ
=

e∆i/τ∑n
j=1e

∆j/τ
,

since ezmax/τ cancels out in the numerator and denominator.

We analyze the behavior of the terms as τ→0+.

For i∈S we have ∆i=0 and so:
e∆i/τ =e0=1.

For i /∈S we have ∆i<0 so
lim
τ→0

e∆i/τ =0

Therefore, the denominator simplifies to

lim
τ→0+

n∑
j=1

e∆j/τ =
∑
j∈S

lim
τ→0+

e∆j/τ+
∑
j /∈S

lim
τ→0+

e∆j/τ =
∑
j∈S

1+
∑
j /∈S

0=k.

Similarly, the numerator becomes

lim
τ→0+

e∆i/τ =

{
1, if i∈S,

0, if i /∈S.

Thus, for each i,

lim
τ→0+

στ (zi)=
limτ→0+e

∆i/τ

limτ→0+
∑n

j=1e
∆j/τ

=

{1

k
, if i∈S,

0, if i /∈S.

This concludes the proof.

Finally, we give the proof of Proposition 4, or the statement that transcendence can occur from multiple
experts if the test distribution ptest is spread across multiple disjoing subsets of Xi.

Proof. In this case, observe that for all i

Rptest
(fi)=ptest(Xi)·Ex∼ptest|Xi

rx(f
∗)+ptest(X \Xi)·Ex∼p|X\Xi

[
Ey∼Uni(Y)r(x,y)

]
<Rptest

(f∗)

Therefore, we get that for all x

f̂(y|x)= 1

k

k∑
j=1

fj(y|x)=
k−1

k
· 1

|Y|
+
1

k
f∗(y|x)= k−1

k ·|Y|
+

1

k|Y ∗
x |

·1y∈Y ∗
x

Thus, we get fmax=f∗, and the required follows from Proposition 2.

14



B Additional Denoising Visualizations

Figure 8: An example of where denoising helps black find the only correct move. White has pinned the black rook
to the Queen: any move where the rook does not move to e4 results in a heavy loss of material. As τ decreasses,
the expected reward increases substantially and converges onto the correct move.

Figure 9: Another example where denoising helps avoid errors. Moving the queen to either d1 or h1 takes a
bishop or rook, respectively, but loses the queen in the following turn. While queen to e5 does not put the queen in
immediate danger, it allows white to push the pawn on f3 to d3, where it threatens the queen and is protected by the
bishop on c1. The queen then must move out of danger, losing its opportunity to take the free pawn on h4 and
giving white valuable space towards the center of the board. As τ decreases, the expected reward converges to the
move queen to d4, taking the pawn and checking the black king.

Figure 10: In this setup, a higher temperature shows two plausible moves for the black rook: g1 or f1. As the
temperature decreases, the expected reward converges to g1. If the black rook were to move to f1, the white rook
would take the black rook, blocking the black pawn on f2 from promoting and protecting the promotion square
from the h2 pawn. If the rook were to move to g1, on the other hand, it would open the promotion square from
the h2 pawn without being at any immediate risk. If white responded by moving its bishop to g2, protecting the
promotion squares from both of the advanced black pawns, black could respond by taking the rook on a1, gaining
significant material.
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C Intuition of low temperature sampling inducing transcendence

To build intuition for the primary mechanism of transcendence that we explore in this paper, we
give the following toy progression of distributions in order to clearly illustrate how low-temperature
sampling can induce transcendence through majority voting. Here, the middle purple action represent
the correct, high-reward output, whilst the left and right actions are low-reward bad outputs. We plot
the probability of each output as a label on the x axis.

Figure 11: The first expert output distribution. Although it puts non-negligible mass on the purple, high-reward
action, it still samples a low-reward action the majority of the time.

Figure 12: The second expert output distribution. Symmetric to to the first expert, it also puts non-negligible mass
on the purple, high-reward action. However, it samples a low-reward action the majority of the time on the right.

Figure 13: By taking the average of the first and second expert, we observe that this distribution now puts the
majority of mass onto the correct action.

Figure 14: Finally, by setting temperature τ to be <1, more weight is shifted towards the high probability action,
leading to a gain in the expected reward.
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D Further Related Work

D.1 Label Disagreement

Label disagreement in training data, in particular, can improve models in practice. Xie et al. [36]
empirically show that adding random noise to teacher-generated labels can improve a student model.
Uma et al. [33] even survey the literature on human interannotator disagreement and find a trend of
improvements when models are trained on the full set of disagreeing labels rather than on majority
vote labels or only on data where labelers agree. Our theoretical claims build on these findings by
making the point that the learner can even improve on these original diverse labelers.

D.2 Offline Reinforcement Learning

Although most Offline Reinforcement Learning algorithms train on an RL objective, perhaps most
similar to our work is Decision Transformer [4] and Trajectory Transformer [8]: prior models trained
on just the sequence prediction of trajectories. Most notably, Decision Transformer also finds an
alternative form of transcendencethan the one explored in this paper: by conditioning the trained
transformer by the performance of the trajectory, at inference time they can then prompt the model to
perform better than the best trajectory seen during training. This remains another promising direction
to explore transcendence under.

Interestingly, an analogue to low-temperature sampling also has been noticed and exploited by
Reinforcement Learning practitioners in the context of off-policy learning, where a different
exploration policy πE is used than the final learned target policy πT . Oftentimes πT will just be set
to a greedy version of πE [21], such as choosing πT to take the argmax action of πE , which we note
is directly equivalent to setting temperature to 0.
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E Training Details

We give a full list of the hyperparameters we used for training here. Note that we largely follow the
same hyperparameter set as [37], but lower the batch size to 125K as we found training to still be
stable ta this level. We also release our code openly to support further research into transcendence,
which was built off the wonderful work done by Karvonen [12] and Karpathy [11].

Hyperparameter Value

ChessFormer Optimizer AdamW [13]
Activation Function ReLU
Mini-batch size 125K tokens
Gradient Accumulation Steps 1
Transformer num. layers 16
Transformer num. heads 8
Transformer embedding dim. 512
Dropout 0.0
Learning Rate 3e-4
Number of gradient steps 100K
Weight Decay 0.1
Critic hidden layers 3
Adam β1 0.90
Adam β2 0.95
Gradient Clip 1.0
Cosine Learning Rate True
Warmup Iterations 2000
Minimum Learning Rate 3e-5
Learning Rate Deacy Iterations 400K
Tensor datatype bfloat16

Table 2: Hyperparameters for our ChessFormer model.
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F Compute Resources

We train all of our models on the Nvidia H100 80GB GPU. To train one of our models takes around
6 to 12 hours.
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G Full t-SNE

We visualize the full t-SNE here, coloring by the reward of the game. We see that the model has
learned some representation of the reward, with high absolute reward states being more likely to be
near each other in the latent space. This also points towards evidence that the model has learned some
sort equivariant representation of the player identity, as the region of symmetric high reward states
indicate. Note that reward is not directly given to the model during training.
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We visualize the same t-SNE, but this time coloring by game length rather than reward. We see that
games with high reward tend to be longer, which makes logical sense as the result of the game will
tend to be clearer as the game proogresses.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the relevant

information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided
a proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims in the introduction are cross referenced with the rest of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations provided in discussion section
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend
on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: proof provided in the appendix, assumptions provided in preambles

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: data sources are given, and open source

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: We link to our website on the first page, which provides open access to data,
code, and extensive documentation.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be pos-
sible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to
run to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We provide all information for reproducibility in our code, as well as Appendix E
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: plots that demonstrate transcendence include standard deviations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We provide this information in Appendix F
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).
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9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: the authors have read the code of ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require

a deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Provided in discussion section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: the models in question are domain specific chess agents

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all original sources of data (lichess) and write all of our training code
from scratch.

Guidelines

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide code and release the dataset that we train our models on, as well
as the figure generation code. We give extensive documentation on both, and take pride in
the reproducibility of our work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects, data used is from public sources without individual
identities.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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