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ABSTRACT
With the increasing number of news uploaded on the internet daily,
rumor detection has garnered significant attention in recent years.
Existing rumor detection approaches excel on familiar topics since
there is enough data (high resource) collected from the same domain
for model training. However, they are poor at detecting rumors
about emergent events especially those propagated in different
languages due to the lack of training data and prior knowledge
(low resource). To tackle this challenge, we introduce the Test-Time
Training for Rumor Detection (T3RD) to enhance the performance
of rumor detection models on low-resource datasets. Specifically,
we introduce self-supervised learning (SSL) as an auxiliary task
in the test-time training (TTT). It consists of local and global con-
trastive learning (CL), in which the local CL focuses on acquiring
invariant node representations and the global CL focuses on obtain-
ing invariant graph representations. We employ auxiliary SSL tasks
for both the training and test-time training phase to give a hint
about the underlying traits of test samples, subsequently leveraging
this hint to calibrate the trained model for these test samples. To
mitigate the risk of distribution distortion in test-time training,
we introduce a feature alignment aimed at achieving a balanced
synergy between the knowledge derived from the training set and
the test samples. The experiments conducted on the two widely
used cross-domain datasets show that our proposed model achieves
state-of-the-art performance. We also provide abundant ablation
studies to verify the effectiveness of our methods.
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1 INTRODUCTION
With the rapid development of the Internet, social media has be-
come a convenient platform for users to access information, express
opinions, and communicate. More and more people are keen to par-
ticipate in discussions about the hot topic on social media and
express their opinions. Due to the limited domain expertise and
relevant data on the emergent events, many rumors appear. For
instance, during the unprecedented COVID-19 pandemic, a false ru-
mor claiming that “5G technology was spreading the virus” rapidly
spread through social media, causing enormous damage, including
the burning of multiple base stations and posing a severe threat to
public safety.

Existing rumor detection methods [2, 8, 24, 25, 33, 38], generally
follow the conventional training-test paradigm of deep learning.
The rumor detection model is learned on the training set to learn
the correlations between the label and the latent features of inputs,
and then apply the captured knowledge on the test samples to make
classifications. Recent approaches [22] model propagation structure
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Figure 1: A toy example to illustrate the gap between source
and target domain. The rumor detection models trained on
the source domain may not adapt well to the target domain.
More error-classifying results are observed when directly
inferring the target domain samples on the model.

as trees to capture structural features. [2] construct graphs for ag-
gregate neighbor features based on reply or retweet relations. [28]
jointly model both user and comment propagation networks. How-
ever, these approaches are worked underlying a hypothesis that
requires the training datasets and test sets to maintain the same dis-
tribution. In practical scenarios, real-world news platforms release
various claims in different domains every day, and newly emer-
gent and time-critical domain events make it difficult to acquire
sufficient labeled data in time. The gap between the source and
target domain results in an unsatisfying detection performance. As
shown in Fig. 1, the rumor detection model is trained on the source
domain, in which the content of training samples is English. When
the newly emergent domain is different from the source domain,
the model trained on the source domain shows poor performance
in the target domain. Directly training the detection model on the
source domain and evaluating the newly emergent domain may
show an unsatisfactory performance. Some studies[14, 37] try to
migrate this challenge by involving some test data in training to
learn the knowledge of the target domain.

Test-Time Training (TTT) [27] is the method that can miti-
gate the distribution shift between source and target domain. The
essence of TTT is to design an auxiliary task for both the training
and test-time training phase to give a hint about the underlying
traits of the target domain samples and then leverage this hint to
calibrate the trained model. Considering the unique characteristics
exhibited by individual samples from the target domain, TTT has
great potential to enhance the generalization capabilities. How-
ever, most TTT approaches are designed for the image classifica-
tion [1, 18, 27] and are not well suited for rumor detection. In rumor
detection, limited expertise restricts the acquisition of labeled data
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in the target domain. And the data sampled from the target do-
main is too limited to represent the distribution of the whole test
set. In addition, how to alleviate the potential server feature space
distortion during test time is another challenge [18] in TTT.

To address these challenges, we present Rumor Detection Test-
Time Training(T3RD), a novel test-time training framework aimed
to enhancing the efficacy of rumor detection in emergency scenar-
ios. Our approach revolves around leveraging graph structures to
emulate social media conversations while employing a dedicated
hierarchical self-supervised learning framework for test-time train-
ing on graphs. In order to mitigate the risk of distribution distortion,
we introduce a features alignment that strives to strike a delicate
balance between the knowledge derived from the training set and
the distinctive signals obtained from a single test sample. Empir-
ical evaluations conducted on various benchmarks demonstrate
the superior performance of our proposed method compared to
state-of-the-art approaches. Our contributions are summarized as
follows:

• We investigate the novel task of test-time training on Rumor
detection tasks using social media context, which is capa-
ble of simultaneously enjoying the merits of the training
knowledge and the characteristics of the test sample.

• We propose a novel model T3RD for test-time training in
Rumor detection using social media context, in which vari-
ous SSL tasks are elaborately designed to boost classification
performance and mitigate the potential risk of feature dis-
tortion.

• We conduct extensive experiments over two groups of datasets
and our proposal consistently achieves superior performance
over all the datasets.

2 RELATEDWORK
Automatic Rumor Detection. The initial studies in automatic ru-
mor detection have primarily concentrated on developing a super-
vised classifier that leverages features extracted from post contents,
user profiles, and propagation patterns [3, 17, 34]. Subsequent re-
search has been further advanced by proposing additional features,
such as those that capture the characteristics of rumor diffusion
and cascades [5, 9, 13]. [39] uses a set of regular expressions to find
questing and denying tweets, thereby reducing the engineering
effort required. Subsequently, in order to extract features from the
continuous flow of social media posts, DNN-based models such as
recurrent neural networks [20], convolutional neural networks [35],
and attention mechanisms [7] are employed. However, these ap-
proaches typically treat the post structure as a simple sequence
and overlook the intricate propagation structure present in rumor
dissemination.

In the pursuit of extracting valuable cues from both content
semantics and propagation structures, several approaches have in-
troduced kernel-learning models [21, 32] to compare propagation
trees. To generate representations for each post along a propa-
gation tree, guided by the tree structure, researchers have intro-
duced tree-structured recursive neural networks (RvNN) [23] and
transformer-based models [12, 19]. In more recent developments,
graph neural networks [2, 15] have been utilized to encode the

conversation thread, resulting in higher-level representations. Nev-
ertheless, these data-driven approaches encounter challenges in
detecting rumors in low-resource regimes [11], as they often ne-
cessitate substantial training data, which is often scarce in low-
resource domains and/or languages. In this paper, we introduce a
novel framework that performs model fine-tuning based on each
test sample during the test-time training phase, aiming to improve
rumor detection in low-resource domains and/or languages.
Test-Time Training. The primary objective of test time training
is to adapt models based on test samples in the presence of dis-
tributional shifts. In [26], the authors introduced a method called
test-time training with self-supervision to enhance a model’s gener-
alization ability under distribution shift. This is achieved by having
themodel solve a self-supervised task for test samples. Experimental
results in the image domain [1, 6, 26] demonstrate the effective-
ness of this framework in reducing the performance gap between
training and test sets. There have also been endeavors to integrate
test-time training with meta-learning [1], as well as its application
in reinforcement learning [10]. Besides these applications, test-time
training is also being investigated in the graph domain. In [31], a
test-time training framework called GT3 is proposed to bridge the
performance gap between the training dataset and the test set by
using self-supervised learning at test time to improve node classifi-
cation performance in the case of data distribution shift. Different
from these works of adaption on multi-modal data, we focus on lan-
guage and domain adaptation to detect rumors from low-resource
microblog posts corresponding to breaking events.

3 PRELIMINARY
Given a source domain dataset 𝐷𝑠 = {𝐶𝑠

𝑖
}, 𝑖 = [1, . . . , 𝑀], 𝐶𝑠

𝑖
=

{𝑐𝑖 , 𝑦𝑖 ,𝑇 (𝑐𝑖 )} is the tuple that consists of the source claim 𝑐𝑖 , the
label 𝑦𝑖 ∈ {𝑟𝑢𝑚𝑜𝑟, 𝑛𝑜𝑛 − 𝑟𝑢𝑚𝑜𝑟 }, and all its responsive posts 𝑇 (𝑐𝑖 ).
𝑇 (𝑐𝑖 ) = {𝑐𝑖 , 𝑟 𝑖1, . . . , 𝑟

𝑖
|𝑐 |−1}. 𝑟

𝑖
𝑗
is the 𝑗−𝑡ℎ responsive text, and |𝑐 | −1

is the total number of responsive posts. For the target domain,
we consider a much smaller dataset for testing 𝐷𝑡 = {𝐶𝑡

𝑖
}, 𝑖 =

[1, . . . , 𝑁 ] (𝑁 ≪ 𝑀). 𝐶𝑡
𝑖
has a similar composition structure to the

source dataset.
Building upon the aforementioned information, we can obtain

the propagation structure graph 𝐺𝑖 =< 𝑉𝑖 , 𝐸𝑖 >, where 𝑉𝑖 =

{𝑐𝑖 , 𝑟 𝑖1, . . . , 𝑟
𝑖
|𝑐 |−1} is the node, 𝑐𝑖 is the root node, and 𝐸𝑖 = {𝑒𝑖

ℎ𝑒
|

ℎ, 𝑒 = 0, . . . , |𝑐 | − 1} denotes the set of edges from responded posts
to the retweeted posts or responsive posts. Considering 𝑟 𝑖2 has a
response to 𝑟 𝑖1, there will be an directed edge 𝑟 𝑖1 → 𝑟 𝑖2, 𝑖 .𝑒 ., 𝑒

𝑖
12.

Note that A𝑖 ∈ {0, 1} |𝑐 |× |𝑐 | is the adjacency matrix and defined as
follows:

𝑎𝑖
𝑒ℎ

=

{
1, if 𝑒𝑖

ℎ𝑒
∈ 𝐸𝑖

0, otherwise
(1)

X𝑖 = [x𝑖⊤0 , x𝑖⊤1 , . . . , x𝑖⊤|𝑐 |−1]
⊤ is the feature matrix that is extracted

from the posts in 𝐶∗
𝑖
; ∗ ∈ {𝑠, 𝑡}. x𝑖0 represents the feature vector of

𝑐𝑖 and each other row feature x𝑖
𝑗
represents the feature vector of 𝑟 𝑖

𝑗
.

The target of rumor detection is to train a classification model 𝑓
that is used to predict whether the claim from the target domain is
a rumor.
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Figure 2: The overall architecture of T3RD. The shared feature extractor employs GCN to extract input graph features. L𝑎
represents the loss for aligning the feature space. Additionally, the blue L𝑚 and L𝑠 represent the losses obtained during the
training phase for the main and auxiliary tasks, while the orange L𝑠 and L𝑐 denote the losses during the test-time training
phase. ŷ denote the predicted values during the testing phase.

4 METHODOLOGY
In this study on rumor detection in a few-shot scenario within
the target domain, we present a rumor detection model trained on
ample source domain data and a limited amount of target domain
data. However, traditional models often prioritize the utilization
of the training set while neglecting the test set. Our objective is
to thoroughly exploit the information within the test dataset to
maximize detection performance. In this section, we present the
proposed architecture of Test-Time Training for Rumor Detection
(T3RD) and elaborate on the components.

4.1 Architecture
First, the objective of this study is rumor detection, which serves
as the main task of T3RD. Here, we define the loss function for the
primary task as 𝐿𝑚 (·) (in Sec. 4.2). Second, as informed by [18],
the auxiliary tasks should effectively capture information social
media conversation data. To achieve this, we elaborately design a
self-supervised contrastive learning approach that captures node-
node and node-graph information (in Sec. 4.3). For simplicity, we
denote the objective of the SSL task as 𝐿𝑠 (·). Third, as mentioned
in [18], if a significant distribution shift exists, test-time training
may not enhance performance and could potentially worsen it. To
address this, we propose feature alignment (in Sec. 4.4), denoting the
objective of this task as 𝐿𝑎 (·). The overall architecture of our rumor
detection approach is presented in Fig. 2. It consists of training,
test-time training, and test phase.

4.1.1 The Training Phase. Given the training set 𝐷∗, ∗ ∈ 𝑠, 𝑡 , dur-
ing the training phase, we train all parameters for both the main
task and the SSL task. Inspired by [31], to effectively integrate the
main task and auxiliary tasks of rumor detection, we enable param-
eter sharing between the two layers of GCN responsible for feature
extraction. We denote the shared model parameters as \𝑒 = (\1, \2).
The model parameters specifically designated for the main task are

denoted as \𝑚 , corresponding to the parameters in the prediction
layer for rumor detection. Correspondingly, the SSL task has its
self-supervised learning parameters, denoted as \𝑠 , which represent
the contrastive layer parameters for the SSL task. In summary, the
model parameters are as follows: \𝑚𝑎𝑖𝑛 = (\𝑒 , \𝑚) for the main
task, \𝑠𝑒𝑙 𝑓 = (\𝑒 , \𝑠 ) for the auxiliary task, \𝑎𝑙𝑖𝑔𝑛 = (\𝑒 ) for the
feature alignment task, and \𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = (\𝑒 , \𝑚, \𝑠 ) for the entire
framework.

In the training process, we optimize the entire framework by
minimizing a weighted combination of losses 𝐿𝑚 (·) and 𝐿𝑠 (·) as
follows:

min
𝜽𝑒 ,𝜽𝑚,𝜽𝑠

1
𝑛

𝑁∑︁
𝑖=1

𝐿𝑚 (A𝑖 ,X𝑖 , 𝑦𝑖 ;𝜽𝑒 , 𝜽𝑚) + 𝛼𝐿𝑠 (A𝑖 ,X𝑖 ;𝜽𝑒 , 𝜽𝑠 ) (2)

where 𝛼 is a hyper-parameter balancing the rumor detection task
and the self-supervised task in the training process.

4.1.2 The Test-time Training Phase. Given the test sample 𝐶𝑡 , the
test-time training process fine-tunes the learned model through the
SSL task and feature alignment task. Specifically, the shared model
parameters \𝑒 and the self-supervised learning parameters \𝑠 are
fine-tuned by minimizing a weighted combination of losses 𝐿𝑠 and
𝐿𝑎 :

min
𝜽𝑒 ,𝜽𝑠

𝐿𝑠 (A𝑡 ,X𝑡 ;𝜽𝑒 , 𝜽𝑠 ) + 𝛾𝐿𝑎 (A𝑡 ,X𝑡 ;𝜽𝑒 , ) (3)

where𝛾 is a hyper-parameter balancing the self-supervised learning
task and features alignment task in the test-time training process.
Suppose that \∗overall =

(
\∗𝑒 , \

∗
𝑚, \∗𝑠

)
represents the optimal param-

eters obtained from minimizing the overall loss of Eq. 2 during
the training process. In the test-time training phase, the proposed
framework further updates \∗𝑒 and \∗𝑠 to \∗′𝑒 and \∗′𝑠 by minimizing
the SSL loss and feature alignment loss of Eq. 3 over the test sample
𝐶𝑡 .
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4.1.3 The Test Phase. In the testing phase, we predict the labels of
𝐶𝑡 using the classification model 𝑓 (·;\∗′𝑒 , \∗𝑚):

𝑦𝑡 = 𝑓 (A𝑡 ,X𝑡 ;𝜽 ∗𝑒
′
, 𝜽 ∗𝑚) (4)

4.2 Rumor Detection
For a given event𝐶𝑖 = {𝑐𝑖 , 𝑦𝑖 ,𝑇 (𝑐𝑖 )}, we obtain its adjacency matrix
𝐴𝑖 and feature matrix𝑋𝑖 . Inspired by [14], here, we first obtain prop-
agation and dispersion features through Top-Down graph convo-
lutional Networks (TD-GCN) and Bottom-Up graph convolutional
Networks (BU-GCN), respectively. Then, we use the supervised
contrastive learning to align the representation space of rumor-
indicative signals from different domains and languages.
Top-Down GCN.We utilize a layer-wise propagation rule to up-
date the node vector at the 𝑙 − 𝑡ℎ layer:

𝐻 (𝑙+1) = ReLU(Âi · 𝐻 (𝑙 ) ·𝑊 (𝑙 ) ) (5)

In the above equation Âi = D̃− 1
2 ÃiD̃− 1

2 is the normalized adjacency
matrix, where Ãi = Ai+I𝑁 (i.e., adding selfconnection), D̃𝑖𝑖 = Σ 𝑗 Ã𝑖 𝑗

that represents the degree of the 𝑖 − 𝑡ℎ node;𝑊 (𝑙 ) ∈ R𝑑 (𝑙 )×𝑑 (𝑙+1) is
a layer-specific trainable transformation matrix. 𝐻 (0) is initialized
as 𝑋𝑖 . For a GCN model with 2-layers, we obtain the final node
representation 𝐻𝑇𝐷 w.r.t 𝐻 (2) .
Bottom-Up GCN. Similar to the Top-Down GCN, we follow the
same procedure as described in Eq. 5 to update the hidden represen-
tation of nodes, ultimately obtaining the output node states 𝐻𝐵𝑈

at the 𝐿-th graph convolutional layer.
The feature representation.We aggregate the output of TD-GCN
and BU-GCN separately using mean-pooling to obtain representa-
tions for propagation and dispersion, and then concatenate these
representations:

𝑜𝑖 = concat(mean-pooling(𝐻𝑇𝐷 ),mean-pooling(𝐻𝐵𝑈 )) (6)

Supervised Contrastive Training. For an event 𝐶𝑠
𝑖
from the

source data, to enhance the discriminative power of rumor represen-
tations within source events, we introduce a supervised contrastive
learning objective aimed at clustering samples of the same class
while separating those from different classes.

𝐿𝑠
𝑆𝐶𝐿

= − 1
2𝑁 𝑠

∑𝑁 𝑠

𝑖=1
1

𝑁𝑦𝑠
𝑖
−1

∑𝑁 𝑠

𝑗=1 1[𝑖≠𝑗 ]1[
𝑦𝑠
𝑖
=𝑦𝑠

𝑗

]
log

exp
(
sim

(
𝑜𝑠
𝑖
,𝑜𝑠

𝑗

)
/𝜏
)

∑𝑁𝑠

𝑘=1 1[𝑖≠𝑘 ] exp
(
sim

(
𝑜𝑠
𝑖
,𝑜𝑠
𝑘

)
/𝜏
) (7)

where𝑁𝑦𝑠
𝑖
represents the number of source examples with the same

label 𝑦𝑠
𝑖
in the event 𝐶𝑠

𝑖
, and 1 is the indicator. 𝑠𝑖𝑚(·) refers to the

cosine similarity function and 𝜏 is the temperature parameter.
For an event 𝐶𝑡

𝑖
from the target data, to align the features of

source domain and target domain samples, we employ contrastive
learning, which brings samples from the same category in the
source and target domains closer together than samples from dif-
ferent categories.

𝐿𝑡
𝑆𝐶𝐿

= − 1
2𝑁 𝑡

∑𝑁 𝑡

𝑖=1
1

𝑁
𝑦𝑡
𝑖

∑𝑁 𝑠

𝑗=1 1
[
𝑦𝑡
𝑖
=𝑦𝑠

𝑗

]
log

exp
(
sim

(
𝑜𝑡
𝑖
,𝑜𝑠

𝑗

)
/𝜏
)

∑𝑁𝑠

𝑘=1 exp
(
sim

(
𝑜𝑡
𝑖
,𝑜𝑠
𝑘

)
/𝜏
) (8)

where 𝑁 𝑡 is the total number of target examples in the batch and
𝑁𝑦𝑡

𝑖
is the number of source examples with the same label 𝑦𝑡

𝑖
in the

event 𝐶𝑡
𝑖
.

The overall loss function.We input the feature representations
𝑜𝑖 into a softmax function to obtain the predicted label 𝑦𝑖 . Then,
we learn to minimize the cross-entropy loss between the prediction
and the ground-truth label 𝑦∗

𝑖
, ∗ ∈ {𝑠, 𝑡}:

𝐿∗𝐶𝐸 = − 1
2𝑁 ∗

𝑁 ∗∑︁
𝑖=1

log(𝑝𝑖 ) (9)

where 𝑁 ∗ is the total number of source examples in the batch, 𝑝𝑖
is the probability of correct prediction. Finally, we jointly train
the main task with the cross-entropy and supervised contrastive
objectives:

𝐿𝑚 = 𝐿∗𝐶𝐸 + 𝐿∗𝑆𝐶𝐿 ; ∗ ∈ {𝑠, 𝑡} (10)

4.3 Self-supervised Learning
The key to the success of test-time training lies in an appropriate
and informative SSL task [18]. However, designing a suitable SSL
task for test-time training of rumor detection models is challeng-
ing. Specifically, Existing methods that involve test-time training
with graph data are relatively limited, and even when available,
they primarily focus on graph structures resembling molecular
structures. However, the structure of rumor propagation graphs
significantly differs from that of molecular structures. Firstly, the
number of nodes in rumor propagation graphs greatly exceeds the
number of molecular components, posing a challenge for generat-
ing propagation graphs node by node. Secondly, molecular graphs
typically adhere to specific connection rules, such as atoms in a mol-
ecule being frequently connected through covalent bonds. These
patterns, however, do not apply to rumor propagation graphs, ren-
dering graph-based methods unsuitable for direct use in rumor
detection [4]. Therefore, it is important to take full advantage of
the rumor propagation feature in the design of SSL tasks.

Inspired by the success of contrastive learning in graph do-
mains [31], we present a hierarchical SSL task for T3RD that in-
tegrates both local and global perspectives. By doing so, we fully
leverage the graph information from both the node-node level and
node-graph level. Notably, our proposed SSL task is not built rely-
ing on differences among different graphs, so it can be applied to
a single graph. Our empirical validation confirms the necessity of
both the global (node-graph level) contrastive learning task and the
local (node-node level) contrastive learning task in the proposed
two-level SSL framework for T3RD. In the following sections, we
will provide detailed explanations of the global contrastive learning
task and the local contrastive learning task.

4.3.1 Global Contrastive Learning. The objective of global con-
trastive learning is to help the node representation in capturing
global information from the entirety of the social media conver-
sation graph. In essence, global contrastive learning operates by
maximizing the mutual information between the local node repre-
sentations and the global graph representation. As shown in Fig. 2,
given a rumor propagation structure graph𝐺𝑖 , different views can
be generated with various types of data augmentation techniques.
For global contrastive learning, we employ two views: one is the



T3RD: Test-Time Training for Rumor Detection on Social Media WWW 24, May 13–17, 2024, Singapore

raw view 𝑉𝑖𝑒𝑤0, where the original graph remains unaltered; the
other is the augmented view 𝑉𝑖𝑒𝑤1, where node attributes are ran-
domly shuffled across all nodes in the graph. Leveraging these two
graph views, we can obtain two corresponding node representa-
tions, 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒0 and 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒1, through a shared feature extractor.
Following this, a global graph representation is summarized by em-
ploying a multilayer perceptron to process the node representation
matrix 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒0, which is extracted from the raw view 𝑉𝑖𝑒𝑤0.

As per [30], the positive samples in the global contrastive learn-
ing are composed of node-graph representation pairs, with both
the node representation and graph representation originating from
the raw view 𝑉𝑖𝑒𝑤0. The negative samples are composed of node-
graph representation pairs, wherein the node representations are
sourced from 𝑉𝑖𝑒𝑤1, while the graph representation is extracted
from 𝑉𝑖𝑒𝑤0. We employ a discriminator 𝐷 to calculate the proba-
bility score for each pair, where positive pairs should have higher
scores, and negative pairs should have lower scores. In our work,
we define 𝐷 (𝑍𝑠𝑖 , 𝑠) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑍𝑠𝑖 ∗ 𝑠), where 𝑍𝑠𝑖 signifies the rep-
resentation of node 𝑖 from 𝑉𝑖𝑒𝑤𝑠 , and ∗ denotes the inner product.

The objective function for the global contrastive learning can be
summarized as follows:

𝐿𝑔 = − 1
2𝑁 (

𝑁∑︁
𝑖=1

(log𝐷 (𝑍0𝑖 , 𝑠) + log(1 − 𝐷 (𝑍1𝑖 , 𝑠)))), (11)

where 𝑁 represents the number of nodes in the input graph.

4.3.2 Local Contrastive Learning. In global contrastive learning,
the primary objective of the model is to capture the global informa-
tion of the entire graph into the node representations. Put differ-
ently, the model aims to acquire an invariant graph representation
at a global level and integrate it into the node representations. How-
ever, graph data is composed of nodes with various attributes and
distinct structural roles. To fully harness the structural information
within a graph, it is essential not only to obtain an invariant graph
representation at a global level but also to learn invariant node rep-
resentations from a local level. To achieve this, we introduce local
contrastive learning, which is grounded in distinguishing diverse
nodes from distinct augmented views of a graph.

Given a rumor propagation structure input graph𝐺𝑖 , as shown
in Fig. 2, two views of the graph can be generated through data
augmentation. As local contrastive learning aims to differentiate
whether two nodes from different views represent the same node
in the input graph, it is imperative that the employed data aug-
mentation does not introduce significant alterations to the input
graph. In order to fulfill this requirement, we employ two graph
data augmentation mechanisms - edge dropping and node attribute
masking. Following data augmentation, we get two views of an
input graph, which then serve as the input for the shared GCN
model. The outputs consist of two node representation matrices,
denoted as 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒2 and 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒3, which correspond to two views,
respectively. Please note that the fundamental objective of local
contrastive learning is to discern whether two nodes from aug-
mented views represent the same node in the input graph. There-
fore, (𝑍2𝑖 , 𝑍3𝑖 ) (𝑖 ∈ {0, . . . , |𝑐 | − 1}) represent positive pairs, where
|𝑐 | is the number of nodes. On the other hand, the pairs (𝑍2𝑖 , 𝑍3𝑗 )
and (𝑍2𝑖 , 𝑍2𝑗 ) (𝑖, 𝑗 ∈ {1, . . . , 𝑁 }𝑎𝑛𝑑𝑖 ≠ 𝑗) represent intra-view neg-
ative pairs and inter-view negative pairs, respectively. Inspired by

Table 1: Statistics of the datasets in this paper.

Statistics Source Target Source Target
Twitter Weibo-COVID19 Weibo Twitter-COVID19

# of events 1154 399 4649 400

# of tree nodes 60409 26687 1956449 406185

# of non-rumors 579 146 2336 148

# of rumors 575 253 2313 252

Avg.# of posts/tree 52 67 420 1015

Language English Chinese Chinese English

InfoNCE [29, 40], we define the objective for a positive node pair
(𝑍2𝑖 , 𝑍3𝑖 ) as follows:

I𝑐 (Z2𝑖 ,Z3𝑖 ) = log ℎ (Z2𝑖 ,Z3𝑖 )
ℎ (Z2𝑖 ,Z3𝑖 ) +

∑
𝑗≠𝑖 ℎ

(
Z2𝑖 ,Z3𝑗

)
+∑

𝑗≠𝑖 ℎ
(
Z2𝑖 ,Z2𝑗

)
(12)

where ℎ(𝑍2𝑖 , 𝑍3𝑗 ) = 𝑒𝑐𝑜𝑠 (𝑔 (𝑍2𝑖 ),𝑔 (𝑍3𝑗 ) )/𝜏 , the function 𝑐𝑜𝑠 () repre-
sents the cosine similarity. The symbol 𝜏 represents the temperature
parameter, and 𝑔() denotes a two-layer perceptron (MLP) used to
enhance the expressive capacity of the model further. The MLP
refined node representations are denoted as 𝑍 ′

2 and 𝑍
′
3, respectively.

𝐿𝑙 = − 1
2𝑁

𝑁∑︁
𝑖=1

(I𝑐 (Z2𝑖 ,Z3𝑖 ) + I𝑐 (Z3𝑖 ,Z2𝑖 )) (13)

4.3.3 The Overall Loss Function. The SSL task total loss function
for T3RD is a weighted combination of global and local contrastive
learning losses:

𝐿𝑠 = 𝐿𝑔 + 𝛽𝐿𝑙 , (14)

where 𝛽 is the parameter that balances global and local contrastive
learning. Through minimizing the SSL loss defined in Eq. ??, the
model simultaneously captures global graph information and learns
invariant and crucial node representations.

4.4 Feature Alignment
Directly applying test-time training, the model may overfit to the
SSL task of specific test samples [18]. This overfitting hinder the
model’s performance on the main task. When test-time training is
applied to rumor detection, the problem becomes even more precar-
ious because rumor samples not only exhibit significant variations
in their post attributes but also in the structure of the rumor propa-
gation graphs. To alleviate this problem, we propose incorporating
a constraint into the objective function during the test-time training
phase. The core idea is to impose constraints on the embedding
space generated by the shared feature extractor during test-time
training, ensuring that the feature distribution of test examples
remains close to that of the training domain.

The shared feature extractor consists of a 2-layers GCN. Let
𝐻2
1 , 𝐻

2
2 , . . . , 𝐻

2
𝑀

represent the node embeddings that the shared
graph feature extractor outputs for graphs 𝐺1,𝐺2, . . . ,𝐺𝑀 in the
source domain data during training. After completing the train-
ing process, we obtain graph embeddings using a read-out func-
tion ℎ2

𝑖
= 𝑅𝐸𝐴𝐷𝑂𝑈𝑇 (𝐻2

𝑖
) and then compute two statistics based

on these graph embeddings: the empirical mean `𝑠 = 1
𝑀

∑𝑀
𝑖 h2

𝑖
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Table 2: The experimental results on the Target(Source) domain. The best performances are highlighted in bold.

Target(Source) Weibo-COVID19(Twitter) Twitter-COVID19(Weibo)
Models ACC. Mac-F1 RF1 NF1 ACC. Mac-F1 RF1 NF1
CNN 0.445 0.402 0.476 0.328 0.498 0.389 0.528 0.249
RNN 0.463 0.414 0.498 0.329 0.510 0.388 0.533 0.243
RvNN 0.514 0.482 0.538 0.426 0.540 0.391 0.534 0.247
PLAN 0.532 0.496 0.578 0.414 0.573 0.423 0.549 0.298
BiGCN 0.569 0.508 0.586 0.429 0.616 0.415 0.577 0.252

ACLR-BiGCN 0.873 0.861 0.896 0.827 0.765 0.686 0.766 0.605
T3RD(Ours) 0.896 0.880 0.917 0.843 0.781 0.696 0.706 0.685

and the covariance matrix Σ𝑠 =
1

𝑀−1

(
H2𝑇 H2 −

(
I𝑇H2

)𝑇 (
I𝑇H2

))
,

where H2 =
{
h2

𝑇

1 , . . . , h2
𝑇

𝑀

}
. During the test-time training process,

when provided with an input graph 𝐺𝑖 from the test dataset 𝐷𝑡 ,
we also compute embedding statistics for 𝐺𝑖 and its augmented
views, denoting them as `𝑡 and Σ𝑡 . The feature alignment aims to
enforce the embedding statistics of the test graph sample to closely
align with those of the training graph samples. This can be formally
defined as:

𝐿𝑎 = ∥`𝑠 − `𝑡 ∥22 + ∥Σ𝑠 − Σ𝑡 ∥2𝐹 . (15)
where ∥·∥2 is the Euclidean norm and ∥·∥𝐹 is the Frobenius norm.

5 EXPERIMENT
In this section, we conduct a series of experiments to assess the
effectiveness of our proposed rumor detection model, T3RD. First,
we evaluate its empirical performance by comparing it with several
baseline models. Then, we analyze the impact of each variant of
our model. After that, we investigate the capabilities of early ru-
mor detection for both T3RD and the compared model. Finally, we
provide extensive ablation studies to assess the effects of modules
within the proposed model.

5.1 Datasets
We assess our proposed model, T3RD, using two widely used sets
of real-world cross-domain rumor datasets. The first set encom-
passes the English Twitter dataset [21] and the Chinese Weibo-
COVID19 dataset [14]. The second set comprises the ChineseWeibo
dataset [20] and the English Twitter-COVID19 dataset [14]. These
cross-domain datasets are annotated with two binary labels: Non-
rumor (N) and Rumor (R). Detailed statistics for both sets of cross-
domain datasets are provided in Tab. 1.

5.2 Baseline and Evaluation Metrics
We compare our model with the following baselines:
CNN [36]: A CNN-based approach for misinformation identifica-
tion that frames the relevant posts as fixed-length sequences.
RNN [20]: An RNN-based rumor detection model with GRU used
for feature learning from relevant posts over time.
RvNN [23]: A rumor detection model based on tree-structured
recursive neural networks, which learns rumor representations
guided by the propagation structure.

PLAN [12]: A transformer-based model designed for rumor de-
tection to capture long-distance interactions between any pair of
involved tweets.
BiGCN [2]: A GCN-based model that leverages directed conversa-
tion trees to learn higher-level representations (see Section 4.2).
ACLR-BiGCN [14]: An adversarial contrastive learning framework
built on top of BiGCN. The model aims to bridge low-resource
gaps for rumor detection by adapting features learned from well-
resourced data to those of low-resource breaking events.
RPL [16]: A zero-shot rumor detection model based on prompt
learning employs a hierarchical prompt encoding mechanism to
acquire language-agnostic context representations for both prompts
and rumor data.

We employ commonly-used metrics to evaluate the effective-
ness of our proposed method. The accuracy (ACC) measures the
probability of correctly predicting the samples. The F1-score pro-
vides distinct scores for positive (RF1), negative (NF1), and macro-
average (Mac-F1). These metrics span a range from 0 to 1, with
higher values signifying superior performance. We conduct 5-fold
cross-validation on the target datasets.

5.3 Overall Performance
In Tab. 2, we evaluate our proposed method by comparing it with
othermethods tested on theWeibo-COVID19 and Twitter-COVID19
test sets. We note that the baselines in the first group exhibit poor
performance, likely due to their sole reliance on sequential infor-
mation while neglecting the propagation structure. Other base-
lines leverage the structural properties of information propagation
on social media, affirming the significance of propagation struc-
ture representations within our framework. In the second group
of structure-based baselines, PLAN and BiGCN outperform RvNN,
attributed to the feature vector architecture and tree structures.
The third group focuses on cross-domain rumor detection, with
ACLR aligning the source and target domains through supervised
contrast [14]. In contrast, our model T3RD employs test-time train-
ing to further extract additional information from the test data. In
contrast, our proposed T3RD achieves state-of-the-art performance
on the Weibo-COVID19 (Twitter-COVID19) dataset and makes a
2.3%(1.6%) improvement in accuracy scores, respectively. These re-
sults further emphasize the efficacy of test-time training in improv-
ing cross-domain rumor detection by extracting information from
test data. In addition, we carry out experiments on zero-shot target
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Table 3: The target dataset is only used for testing rumor
detection results. The best performances are highlighted in
bold.

Target(Source) Weibo-COVID19(Twitter)
Models ACC. Mac-F1 RF1 NF1
BiGCN (No-test) 0.615 0.524 0.729 0.319
ACLR_BiGCN (No-test) 0.721 0.685 0.788 0.582
RPL 0.745 0.719 0.804 0.634
T3RD (No-test) 0.797 0.788 0.832 0.743
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Figure 3: The ablation study of components in T3RD.

domain rumor detection, where the model is trained on source
domain data and tested on target domain data. The experimental
results are shown in Tab. 3. In comparison with the state-of-the-art,
our proposed T3RD method achieves a 6.9% improvement in macro
F1 score on the Weibo-COVID19 dataset. It proves the generaliza-
tion capabilities of our methods.

5.4 Ablation Study
Effectiveness of test-time training. In Fig. 3 (a), we investi-
gate the effectiveness of test-time training on rumor detection, in
where T3RD represents our primary model, T3RD-SSL signifies
the model with self-supervised learning incorporated during the
training phase, and T3RD-w/o-TTT denotes the rumor detection
model without test-time training. We adopt Weibo as the source
domain dataset and Twitter-COVID19 as the target domain dataset.
As depicted in Fig. 3 (a), performance exhibits a gradual decline,
indicating the efficacy of self-supervised learning in rumor detec-
tion, while underscoring the importance of test-time training in
information extraction from the test set.
Effectiveness of components in T3RD. In this subsection, we
utilize Twitter as the source domain dataset andWeibo-COVID19 as
the target domain dataset to evaluate the effectiveness of the com-
ponents of our T3RD. As shown in Fig. 3 (b), we assess the impact of
global contrastive learning, local contrastive learning, and feature
alignment by eliminating each of them from T3RD. These three
variants of T3RD are denoted as T3RD-w/o-GCL, T3RD-w/o-LCL,
and T3RD-w/o-FA. The results indicate that the removal of any of
these components results in a decline in model performance, under-
scoring the indispensability of the three components for effective
rumor detection.
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Figure 4: Parameter analysis for the 𝛼 on Weibo-COVID19
and Twitter-COVID19.
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Figure 5: Parameter analysis for the 𝛽 on Weibo-COVID19
and Twitter-COVID19.

5.5 Hyper-parameter Analysis.
Hyper-parameter 𝛼 . To investigate the influence of the hyperpa-
rameter 𝛼 in Eq. 2 on performance (Accuracy and Macro F1 score),
we conduct a qualitative analysis within the T3RD architecture. For
the target data Weibo-COVID19, we use Twitter as the source data
(in Fig. 4 (a)). In terms of Twitter-COVID19, we use Weibo as the
source data (in Fig. 4 (b)). The horizontal axis represents the values
of 𝛼 . We observe that when Weibo-COVID19 is the target dataset,
the optimal result is achieved at 𝛼 = 0.07, and for Twitter-COVID19,
the best result is obtained at 𝛼 = 0.25. From the overall trend, as
the 𝛼 value increases, the performance exhibits a certain degree of
fluctuation. We believe this occurs because the model while opti-
mizing the representation distribution, compromises the mapping
relationship with labels.
Hyper-parameter 𝛽. To study the effects on performance (Accu-
racy and Macro F1 score) of the hyper-parameter 𝛽 in our Eq. 14,
we conduct qualitative analysis under T3RD architecture(in Fig. 5).
The horizontal axis denotes the value of 𝛽 . According to the results,
we observe that the optimal outcome is achieved at 𝛽 = 0.6 when
Weibo-COVID19 is the target dataset, while 𝛽 = 0.6 yields the best
result when Twitter-COVID19 is the target dataset.
Hyper-parameter𝛾 .To study the Effectiveness of hyper-parameter
𝛾 in our Eq. 3, we conduct qualitative analysis under T3RD architec-
ture in Fig. 6. The horizontal axis denotes the value of 𝛾 . According
to the results, we observe that the optimal outcome is achieved at
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𝛾 = 0.7 when Weibo-COVID19 is the target dataset, while 𝛾 = 0.5
yields the best result when Twitter-COVID19 is the target dataset.

0.78

0.72

0.66

0.60
0.1 0.3 0.5 0.7 0.9

ACC.
Mac-F1

0.89

0.87

0.85

0.83
0.1 0.3 0.5 0.7 0.9

ACC.
Mac-F1

（a）Weibo-COVID19

<latexit sha1_base64="TmO7x1Rj2fuaqXZh2ZAKxmVwq5M="></latexit> V
a
lu

e

<latexit sha1_base64="TmO7x1Rj2fuaqXZh2ZAKxmVwq5M="></latexit> V
a
lu

e

<latexit sha1_base64="1xKEDOuc9djPEMsd0z3BlC8REaA="></latexit>� <latexit sha1_base64="1xKEDOuc9djPEMsd0z3BlC8REaA="></latexit>�

（b）Twitter-COVID19

Figure 6: Parameter analysis for the 𝛾 on Weibo-COVID19
and Twitter-COVID19.

5.6 Early Detection
Early detection aims to identify rumors in the early stages of their
propagation, which is crucial for minimizing their societal impact.
Therefore, it serves as another important metric for evaluating the
quality of rumor detection models. To construct an early detection
task, we establish a series of “delays” detection checkpoints. We
determine these checkpoints based on either the number of reply
posts or the time that has elapsed since the initial post. Only con-
tent posted no later than the checkpoint time is used for model
evaluation. Performance is assessed using macro F1 scores obtained
at each checkpoint.

0.9

 

0.7

 

0.5

 

0.3

 

0.1
0 20 40 60 80 100

0.7

 

0.5
 

0.3

0.1
0 6 12 18 24

(a) Posts count (b) Elapsed time (hours)

<latexit sha1_base64="X4ymja8HUx0/MD5MD+HHU3NMbxM="></latexit>

RvNN
<latexit sha1_base64="a0/ywdrNLGLSHC+p0vZon7J4IGE="></latexit>

PLAN
<latexit sha1_base64="DOKNXIRvfXVIAcdO5doRt1GCLpA=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSztQlfSgn1AWyRJp3UwL5KJWkrFrT/gVv9K/AP9C++MKahFdEKSM+fec2buvXbo8lgYxmtGm5mdm1/ILuaWlldW1/LrG404SCKH1Z3ADaKWbcXM5T6rCy5c1gojZnm2y5r2VUXGm9csinngn4thyLqeNfB5nzuWIKrTEexWjMr8pHI2vsgXjKKhlj4NzBQUkK5qkH9BBz0EcJDAA4MPQdiFhZieNkwYCInrYkRcRIirOMMYOdImlMUowyL2ir4D2rVT1qe99IyV2qFTXHojUurYIU1AeRFheZqu4olyluxv3iPlKe82pL+dennEClwS+5dukvlfnaxFoI9jVQOnmkLFyOqc1CVRXZE3179UJcghJE7iHsUjwo5STvqsK02sape9tVT8TWVKVu6dNDfBu7wlDdj8Oc5p0NgrmofFg9p+oVROR53FFraxS/M8QgmnqKJO3iEe8YRnrabdaHfa/Weqlkk1m/i2tIcP/p2UGQ==</latexit>

BiGCN

<latexit sha1_base64="cUkkbZcm1kWo3k76qCwSgpC82xY="></latexit>

ACLR-BiGCN
<latexit sha1_base64="6ZmQSz3i3LL2rhTZKBv9lIbsYoU=">AAAC2HicjVHLSsNAFD2Nr1pf0S7dBIvgqiS+l0VduKzSF7a1JOlUQ9MkJBOxlII7cesPuNUvEv9A/8I70xTUIjohyZlz7zkz914rcJ2I6/pbSpmanpmdS89nFhaXllfU1bVK5Mehzcq27/phzTIj5joeK3OHu6wWhMzsWS6rWt1jEa/esDByfK/E+wFr9swrz+k4tsmJaqnZBme3fFAaXu6M0PnJsKXm9LwulzYJjATkkKyir76igTZ82IjRA4MHTtiFiYieOgzoCIhrYkBcSMiRcYYhMqSNKYtRhklsl75XtKsnrEd74RlJtU2nuPSGpNSwSRqf8kLC4jRNxmPpLNjfvAfSU9ytT38r8eoRy3FN7F+6ceZ/daIWjg4OZQ0O1RRIRlRnJy6x7Iq4ufalKk4OAXECtykeEralctxnTWoiWbvorSnj7zJTsGJvJ7kxPsQtacDGz3FOgsp23tjP753t5gpHyajTWMcGtmieByjgFEWUybuPJzzjRblQ7pR75WGUqqQSTRbflvL4CQ7Kl6E=</latexit>

T3RD

<latexit sha1_base64="X4ymja8HUx0/MD5MD+HHU3NMbxM="></latexit>

RvNN
<latexit sha1_base64="a0/ywdrNLGLSHC+p0vZon7J4IGE="></latexit>

PLAN
<latexit sha1_base64="DOKNXIRvfXVIAcdO5doRt1GCLpA=">AAACz3icjVHLSsNAFD2Nr1pfVZdugkVwVRLxtSztQlfSgn1AWyRJp3UwL5KJWkrFrT/gVv9K/AP9C++MKahFdEKSM+fec2buvXbo8lgYxmtGm5mdm1/ILuaWlldW1/LrG404SCKH1Z3ADaKWbcXM5T6rCy5c1gojZnm2y5r2VUXGm9csinngn4thyLqeNfB5nzuWIKrTEexWjMr8pHI2vsgXjKKhlj4NzBQUkK5qkH9BBz0EcJDAA4MPQdiFhZieNkwYCInrYkRcRIirOMMYOdImlMUowyL2ir4D2rVT1qe99IyV2qFTXHojUurYIU1AeRFheZqu4olyluxv3iPlKe82pL+dennEClwS+5dukvlfnaxFoI9jVQOnmkLFyOqc1CVRXZE3179UJcghJE7iHsUjwo5STvqsK02sape9tVT8TWVKVu6dNDfBu7wlDdj8Oc5p0NgrmofFg9p+oVROR53FFraxS/M8QgmnqKJO3iEe8YRnrabdaHfa/Weqlkk1m/i2tIcP/p2UGQ==</latexit>

BiGCN

<latexit sha1_base64="cUkkbZcm1kWo3k76qCwSgpC82xY="></latexit>

ACLR-BiGCN
<latexit sha1_base64="6ZmQSz3i3LL2rhTZKBv9lIbsYoU="></latexit>

T3RD

<latexit sha1_base64="TmO7x1Rj2fuaqXZh2ZAKxmVwq5M="></latexit> V
al

u
e

<latexit sha1_base64="TmO7x1Rj2fuaqXZh2ZAKxmVwq5M="></latexit> V
al

u
e

Figure 7: Early detection performance is assessed at various
checkpoints based on the count of posts (or elapsed time)
on both the Weibo-COVID19 (a) and Twitter-COVID19 (b)
datasets.

In Fig. 7, we make a comparison of the performance between
our method with RvNN, PLAN, BiGCN, and ACLR at various check-
points. The proposed T3RD outperforms other approaches through-
out the entire lifecycle and achieves a relatively high Macro F1
score at an early stage. Our method requires about 20 posts on
Weibo-COVID19 and 4 hours on Twitter-COVID19 to achieve sta-
ble performance, while the state-of-the-art method ACLR requires
50 posts to achieve a similar level of performance. This demon-
strates the outstanding early detection capability of our method.

Table 4: Experimental results of Cross-domain Rumor Detec-
tion. The best performances are highlighted in bold.

Target Weibo-COVID19 Twitter-COVID19
Models ACC. Mac-F1 ACC. Mac-F1
ACLR(cross-D) 0.884 0.855 0.737 0.623
T3RD(cross-D) 0.900 0.889 0.771 0.689
T3RD(cross-D&L) 0.896 0.880 0.781 0.696

Additionally, early-stage performance tends to exhibit more or less
fluctuation. This is due to the increase in semantic and structural
information as statements propagate, resulting in a corresponding
increase in noise.

5.7 Cross-domain Rumor Detection
In this subsection, we exclusively conduct experiments within the
cross-domain setting. When considering the Weibo-COVID19 as
the target data, we employ the WEIBO dataset with comprehensive
annotation as the source data. Similarly, for the Twitter-COVID19,
we designate the TWITTER dataset as the source data. The results
are shown in Tab. 4. With Weibo as the source data, our model
improves the 0.4% Accuracy and 0.9% Macro F1 on the Weibo-
COVID19 dataset, indicating our superior ability in cross-domain
rumor detection on Weibo. However, the overall performance on
Twitter-COVID19 is relatively worse with Twitter as the source
dataset. The reason may be that the number of events in the Twitter
dataset is smaller than in Weibo, in which our model could achieve
about 77.1%Accuracy and 68.9%Macro F1 score among the variants
of response ranking. The proposed T3RD could alleviate the low-
resource issue of rumor detection as well as diminish the need for
extensive reliance on datasets annotated with specific domain and
language knowledge, which enables to leverage the knowledge from
Weibo instead of just Twitter to detect rumors in Twitter-COVID19
for better performance.

6 CONCLUSION AND FUTUREWORK
In this work, we design a test-time training framework for cross-
domain rumor detection. This framework introduces an additional
test-time training phase between the training and testing phases,
aiming to bridge the performance gap between the training set
and the test set. In the test-time training phase, we employ self-
supervised learning to extract information from the test set. It com-
prises global and local contrastive learning. Global contrastive learn-
ing captures invariant graph representations that are integrated
into node representations, while local contrastive learning acquires
invariant node representations. Comprehensive experimental re-
sults on two widely used datasets demonstrate the superiority of
the proposed method compared with other state-of-the-art rumor
detection methods. In future work, we will make the exploration
of design a more effective auxiliary task for test-time training on
rumor detection. We also would like to explore the generalization
of rumor detection in other domains and minority languages.
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