Under review as a conference paper at ICLR 2026

DARE-BENCH: EVALUATING MODELING AND
INSTRUCTION FIDELITY OF LLMS IN DATA SCIENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

The fast-growing demands in using Large Language Models (LLMs) to tackle
complex multi-step data science tasks create a emergent need for accurate bench-
marking. There are two major gaps in existing benchmarks: (i) the lack of stan-
dardized, process-aware evaluation that captures instruction adherence and pro-
cess fidelity, and (ii) the scarcity of accurately labeled training data. To bridge
these gaps, we introduce DARE-bench, a benchmark designed for machine learn-
ing modeling and data science instruction following. Unlike many existing bench-
marks that rely on human- or model-based judges, all tasks in DARE-bench have
verifiable ground truth, ensuring objective and reproducible evaluation. To cover
a broad range of tasks and support agentic tools, DARE-bench consists of 6,300
Kaggle-derived tasks and provides both large-scale training data and evaluation
sets. Extensive evaluations show that even highly capable models such as gpt-
o4-mini struggle to achieve good performance, especially in machine learning
modeling tasks. Using DARE-bench training tasks for fine-tuning can substan-
tially improve model performance. For example, supervised fine-tuning boosts
Qwen3-32B’s accuracy by 1.83x and reinforcement learning boosts Qwen3-4B’s
accuracy by more than 8 x. These significant improvements verify the importance
of DARE-bench both as an accurate evaluation benchmark and critical training
data.

1 INTRODUCTION

Large language models (LLMs) (Anthropic, 2025ajb; (OpenAll 2025ajc} [Yang et al.| [2025) are in-
creasingly employed as data-science (DS) agents to perform data reading, transformation, and mod-
eling through tool-augmented code execution. Such a rapid adoption demands rigorous benchmarks
to evaluate and enhance the effectiveness and reliability in performing these complex, multi-step
workflows. However, due to the cost and complexity of evaluation, existing benchmarks can only
evaluate final-answer accuracy, and leaving other valuable metrics such as process fidelity and re-
producibility largely unmeasured (Zhang et al., [2024; Jing et al.| 2024). Meanwhile, many existing
works (Guo et al., [2024; Zhang et al., 2023; [Hong et al., [2024) in this area focus on using prompt
engineering and workflow design to improve model performance. We compliment these works by
taking a benchmark approach to train LLM agents with high fidelity data and sophisticated yet re-
producible evaluation to better acquire domain-specific skills in DS workflows.

Question

Predict target Variable, perform 7 — — B3 prediction.csv
t:.lassif'lta.tio?m/e regression / ~ ﬁ m $
time-series-| castlng

round truth
Files > l-.-" _l L adh VP De .

D) metsda o LLM Agent S v
andbox
0 vaino D testov g eval results

Figure 1: DARE-bench defines each task by providing a natural-language question and structured
files (metadata and train/test splits). An LLM agent executes code within a sandbox to generate
predictions, which are compared against ground truth for automatic and reproducible evaluation.

Creating benchmarks that capture process fidelity for both training and evaluation is significantly
challenging. The main challenge comes from two-fold. First, the sources for crafting training data

Under review as a conference paper at ICLR 2026

Table 1: Comparison between DARE-bench and existing benchmarks.

Data Inst- Time Train

Benchmark Domain File follow Series VeriﬁableTasks Tasks
MLAgentBench (Huang et al.,[2023) Deep Learning v - v X 13
MLE-bench (Chan et al.[[2024) Deep Learning v - v X 75
SWE-bench (Jimenez et al.|[2024) Software Eng. v - v v 21,294
DS-1000 (Lai et al.|[2023) Data Science X X X X X 1,000
Arcade (Yin et al.[[2022) Data Science X X X X X 1,082
Spider2V (Cao et al.|[2024) Data Science X X X v X 494
DSEval (Zhang et al.;[2024) Data Science v X X v X 825
DSBench (Jing et al.[[2024) Data Science v X X v X 540
DA-Code (Huang et al.|[2024) Data Science v X X v X 500
DataSciBench (Zhang et al.[|2025) Data Science v X X X X 222
DABstep (Egg et al.[[2025a) Data Science v X X v X 450
DSBC (Kadiyala et al.[|[2025) Data Science v X X v X 303
DARE-bench (Ours) Data Science v v v v v 6,300

(e.g., expert-level, executable DS process traces) are scarce and prohibitively expensive to acquire.
Existing benchmarks largely rely on human-processed data and often center on Kaggle competi-
tions, creating a major data bottleneck. Second, evaluating “process fidelity” is highly non-trivial
as randomness and environment affects confound behavior, and verifying that an agent follows per-
missible DS practices requires a controlled, instrumented harness. These challenges limit the data
quality and evaluation scope of existing benchmarks, and thus miss the opportunities to better release
the full potential of models.

To address the challenge of data quality and scarcity, we leverage LLMs to process auxiliary con-
tent, such as task descriptions, metadata normalization, rule extraction, instead of heavily replying
on human involvement so that the data generation is scalable with quality. We further improve
the data quality with better diversity by pivoting from leaderboard-oriented Kaggle competitions to
the broader pool of Kaggle datasets, yielding a more diverse and representative problem set such
as time-series domains. To address the evaluation challenge, we engineer determinism (e.g., fixed
seeds, reproducible environments) so that process fidelity is enabled by an outcome-based, verifi-
able reward—enabling reinforcement learning (RLVR) instead of human-involved reward. These
approaches work coherently to construct a large-scale, trainable benchmark for data science that
measures modeling performance and process fidelity, and boosts training performance.

To this end, we introduce Datascience Agentic REasoning bench (DARE-bench), a training-focused
DS agent benchmark featuring two verifiable task families: (i) process-aware instruction-following
tasks with ground truth from executing reference solutions that strictly follow the task instruction;
and (ii) ML modeling tasks evaluated against the dataset’s original ground truth under reproducible
metrics. Our design for the instruction-following tasks leverages a key advantage of data science:
the high degree of reproducibility. We find that by controlling the randomness and providing explicit
instructions, a procedurally faithful execution can produce a deterministic outcome. This allows us
to robustly and automatically evaluate process fidelity by verifying the agent’s final answer against
the ground truth. As shown in Figure|l| for both task families, each task provides a natural-language
question and structured files. The LLMs execute code within a sandbox to generate predictions,
which is checked automatically for scoring. In Table[I} we compare DARE-bench against existing
benchmarks in terms of the task coverage, verifiability, training task support, and number of tasks to
demonstrate DARE-bench’s significant advancements.

We conduct extensive evaluation on both strong general-purpose and code-centric LLMs. The eval-
uation results reveal that many LLMs without task-aligned training fail miserably due to process
deviations, runtime errors, and metric mis-specification. For instance, Qwen3-32B baseline only
achieves a total score of 23.25, while the smaller Qwen3-4B baseline performs even worse which
scores 4.39. By contrast, DARE-bench bridges this gap by providing a training-focused benchmark
with verifiable large-scale training data and useful and sophisticated reproducible evaluation. Su-
pervised fine-tuning yields absolute gains of nearly 20 points, while reinforcement learning boosts
Qwen3-4B from 4.39 to 37.40. Overall, DARE-bench significantly improve success rates, process
adherence, predictive performance, and robustness across a variety of practical data science tasks.

Under review as a conference paper at ICLR 2026

Table 2: Overview of DARE-bench benchmark composition and the primary capabilities evaluated
by each task type. Variants are denoted as IF = Instruction Following, MM = ML Modeling, XF =
eXogenous Features, CF = Canonical Forecasting.

Task Type Train Tasks Test Tasks Capability Assessed
Classification-IF 1160 74 Instruction following
Classification-MM 1160 74 ML Modeling
Regression-IF 899 45 Instruction following
Regression-MM 899 45 ML Modeling
Time-series-XF 915 57 Predictive ML, forecasting
Time-series-CF 915 57 Predictive ML, forecasting

2 RELATED WORK

LLM Agents. Research into Agentic LLMs focuses on their ability as independent agents through
planning, tool calling, and memory capabilities. The integration of reasoning with actions or APIs
occurs through ReAct (Yao et al.l 2023) and Toolformer (Schick et al., 2023 frameworks as re-
searchers work on multi-agent collaboration and autonomous tool-augmented systems. Applying
these to real-world data science remains difficult because current benchmarks lack adequate training
resources and often omit critical domains such as time-series forecasting or the distinction between
open-ended problem solving and strict instruction-following.

LLMs for Coding and Data Science Benchmarks. The advancement of coding benchmarks de-
pends on the use of testable pass/fail signals. The HumanEval (Chen et al., |2021) and MBPP
(Austin et al.|[2021)) provided short self-contained functions with hidden unit tests while SWE-bench
(Jimenez et al.}|2024)) tests models on actual GitHub issues that need multiple file modifications and
complete project testing. The community now performs end-to-end data science (DS) tasks as its
new approach to this paradigm. The DS-1000 (Lai et al.| [2023) teaches NumPy/Pandas program-
ming but DSBench (Jing et al.| 2024) and MLE-bench (Chan et al., [2024) use Kaggle competition
problems which require multi-step analytics. The DABstep (Egg et al., |2025b) dataset contains
450 financial tasks from real-world applications and DataSciBench (Zhang et al., |2025)) uses Task-
Function-Code (TFC) to evaluate programs which are then verified by human evaluators. DSBC
(Kadiyala et al., 2025) addresses private datasets via structured metadata. The research uses |Chen
et al.| (2024) to evaluate visualization skills and Bendinelli et al.|(2025)) to assess data cleaning abil-
ities and Kaggle leaderboards (Grosnit et al.,|2024; |Chan et al.|[2024) to measure performance. The
benchmarks show a sequential development from basic unit testing code to sophisticated tool-based
agents which perform complete DS workflows and produce quantifiable results.

Reinforcement Learning with Verifiable Rewards. The implementation of verifiable program-
matic signals in reinforcement learning enables model training at scale without requiring preference
data. The automatic checking system consists of unit tests and solvers and execution traces for
math and code verification. GRPO (Shao et al.,2024)) achieves learning stability through its relative
rollout feedback system which DeepSeek-R1 (Guo et al.l[2025) and GPT o-series (OpenAl, |2025d)
extend by verifier-enhanced objectives. The methods combine symbolic proofs with coding tests
and retrieval/search execution graphs to improve reward-as-checker for both correct answers and
verifiable reasoning trace generation.

3 DARE-BENCH

DARE-bench consists of three data science task-families - classification, regression and time-series
forecasting, each with two variants that probe distinct agent capabilities. For clarity, we denote
these variants using intuitive abbreviations: IF (Instruction Following) and MM (ML Modeling) for
classification and regression; XF (eXogenous Features) and CF (Canonical Forecasting) for time-
series forecasting. In classification and regression, the IF variant emphasizes instruction-following
by requiring LLM to faithfully reproduce reference workflows, whereas the MM variant targets ML
modeling with outcome-based evaluation. These variants capture complementary real-world needs.
IF simulates a workflow where an agent must strictly execute a senior scientist’s detailed design.
Conversely, MM reflects an outcome-driven scenario where customers only care about the final

Under review as a conference paper at ICLR 2026

accuracy, granting full freedom to the LLM. For time-series forecasting, the distinction between
the two variants is more nuanced: in the XF variant, we retain not only the timestamp and entity
identification columns but also all exogenous features from the original dataset; in the CF variant,
however, while exogenous features remain available for training, the test set is constrained to only
the timestamp and entity columns, making it closer to a classical forecasting setup. We partition our
collection of 6,300 tasks into an approximately 95/5 train/test split, designating the most recently
updated tasks as the test set. Table[2]summarizes the dataset scale and the primary capability assessed
in each task type. Tool schema and task examples are shown in[Appendix 1|

3.1 DATASET CURATION

ﬁ O Data Scourcing 6 ¢3 Task Design 6 33 Post-Process 6 Finalization

k Kaggle APl 4 Crawl @ |dentify targets 3B Train - test split & Sandbox verification
Y License & Size Filter @ Feasibility check & Extra preparation @ Final package

Figure 2: Automated pipeline of DARE-bench. The construction process consists of four stages:
(1) Dataset Sourcing, where Kaggle datasets are filtered by tags, license, size, and metadata; (2)
Task Design, where schema summaries, targets, faetures, and feasibility are analyzed with the help
of LLM; (3) Post-Process, including splitting, noise injection for IF tasks or resampling or entity
checks for time-series-CF tasks; and (4) Finalization, which validates solvability in a sandbox for
IF tasks and produces standardized benchmark artifacts.

To construct DARE-bench, we design an automated data curation pipeline that systematically trans-
forms raw Kaggle datasets into standardized machine learning tasks. Unlike prior benchmarks which
rely mainly on manual curation, our approach integrates web crawling, LLM-based task formulation,
controlled data transformations, and sandbox verification to ensure both quality and scale. Shown

in Figure[2] the pipeline consists of four stages. Detailed prompts are shown in

Dataset Sourcing with Augmented Metadata. We selected Kaggle as the primary data source due
to its breadth of real-world, user-contributed datasets. The official API of Kaggle retrieves candidate
datasets that meet specific criteria including tabular format and valid open license. Additionally,
we develop a lightweight web crawler to extract additional data from webpage descriptions that
were present in the dataset, providing additional metadata elements to the LLM through column
previews and natural-language descriptions which help the model understand the context of the task
formulation.

LLM-Assisted Task Design and Feasibility Analysis. For each sourced candidate dataset, we
employ an LLM to assess whether it can support a well-posed predictive task. The model receives
both the dataset preview and the detailed description to duplicate expert assessment on a large scale.
The LLM detects a target column which can be either categorical or continuous for classification and
regression tasks along with structured features and their corresponding data types. For time-series
forecasting tasks, the model detects timestamp columns and numerical targets that evolve through
time and exogenous features in addition to identifying the temporal frequency of the data. Only
datasets deemed feasible by this automated analysis proceed to the next stage.

Post-Process. Feasible datasets are then transformed into uniform benchmarking tasks. The data
is split randomly into training and testing sets. For instruction-following tasks, controlled noise is
injected into roughly twenty percent of the training data, which simulates real-world data quality
issues through numerical values that exceed valid ranges and unexpected categorical entries, and the
testing set serves as the clean reference data. The chronological split method is used for time-series
forecasting to preserve the natural order of time in the data. LLM then detects entity identifiers to
stop data leakage between groups and it performs automatic resampling of irregular time series data
to uniform intervals through an aggregation method suggested by the model.

Finalization. After the post-process step, for instruction-following tasks, the validation process for
each task runs independently in a sandbox environment by executing the reference solution code
sequence including data loading, preprocessing, training, and prediction generation. Since these
tasks rely on reference outputs rather than fixed ground truth values, the sandbox ensures that the
instructions can be faithfully executed and the generated predictions are fully reproducible under
the same random seed. In contrast, ML modeling tasks directly use ground-truth values (e.g., class

Under review as a conference paper at ICLR 2026

Table 3: Distribution of task domains across the DARE-bench train and test sets.

Dataset Finance Health Business Technology Automotive Education Environment Others
Train 16.9% 10.2% 7.3% 4.0% 4.5% 2.8% 6.8% 47.5%
Test 17.1% 8.4% 8.2% 5.6% 3.3% 3.1% 2.4% 51.9%

labels or numerical targets) for evaluation and do not require sandbox execution. Finally, the task is
packaged into a standardized format that includes training and testing data, metadata describing the
dataset and task, the natural language task description, and the corresponding reference.

3.2 TASK FORMULATION

Input and output. Suppose we have the task description (), an accompanying dataset description
M, a training set Dyain = {(x;,y:) }", a testing set without target values Doy = {x;};%, and
access to a code execution tool 7. The tool T enforces a maximum wall-clock runtime T,,,, while
the agent G is subject to an interaction budget of K turns. Given these inputs and constraints, G
produces executable code C, which is run within 7~ on Dy, to fit a model and subsequently on Dyeg

to generate predictions ¥, i.e., ¥ = G(Q, Duain, Drests M, T (Tinax, K))-

Evaluation metrics. We evaluate models differently depending on the task type. For instruction-
following tasks (i.e., Classification-IF and Regression-IF), we compare the model’s generated pre-
diction y against the simulated reference output y ¢ obtained from the reference solution code Ci,
and assign a score of 1 if § = y.r and 0 otherwise. For ML modeling tasks, including Classification-
MM, Regression-MM, and both Time-series-XF and Time-series-CF, we directly compare the model
predictions ¥ against the masked ground-truth values y. Specifically, we adopt the macro-F1 score
for classification-MM tasks to account for class imbalance, and use the clipped coefficient of deter-
mination for regression and time-series forecasting, defined as clip(R?) = min{1, max{0, R?}}.
For tasks with multiple prediction targets, the evaluation metric is computed by averaging over all
targets. Details of our reference solution code can be found in and calculation of

macro-F1 and R? can be found in|Appendix D|

3.3 FEATURES OF DARE-BENCH

DARE-bench introduces several key features that distinguish it from prior benchmarks in data sci-
ence and machine learning:

ML Modeling and Instruction Following. DARE-bench differs from other existing benchmarks
because it assesses two fundamental data science capabilities which are essential for real-world ap-
plications: ML modeling and task instruction following for data processing and model development.

Verifiable Ground Truth. The evaluation process of DARE-bench depends on actual labels and
simulated reference solution outputs to produce results that can be replicated. The system design
removes all dependencies on human judgment and model-based assessments that enables evaluation
metrics to directly assess task performance. This design is similar to coding benchmarks such as
SWE-bench (Jimenez et al.| 2024} and math benchmarks like AIME (Balunovic¢ et al.,|2025), making
it extremely suitable for supervised fine-tuning (SFT) and reinforcement learning with verifiable
rewards (RLVR).

Dual Role as Evaluation and Training Resource. The benchmark offers a training dataset which
enables users to perform model fine-tuning and alignment. As we will demonstrate in Section [5]
the models trained on DARE-bench achieve better results than their baselines, which proves that the
dataset serves as a benchmark and a resource to improve data science LLMs.

Diversity, Realism, and Practical Constraints. Our datasets are created from Kaggle sources,
making them naturally diverse, multilingual, and spanning various domains while capturing real-
world challenges such as class imbalance, missing values, and noise. As illustrated in Table [3]
quantitative analysis confirms this broad coverage, showing that DARE-bench spans a wide spec-
trum of real-world verticals across both training and test sets. Details in categorization can be found
in[Appendix K] In addition, enforced constraints—such as a 10-minute execution limit and bounded

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameter sensitivity analysis for o4-mini across different turns and sandbox maxi-
mum execution time limit configurations.

turns time class-IF class-MM reg-IF reg-MM time-XF time-CF
3 300 37.16 55.44 29.71 51.69 37.99 6.67
5 200 67.56 57.89 53.62 57.60 42.29 9.67
6 180 73.42 61.07 63.76 60.92 41.59 9.79
8 120 73.87 61.42 65.21 61.05 42.11 8.82
10 100 75.22 63.36 62.31 62.07 42.03 10.97
15 100 76.80 65.88 66.66 62.41 40.03 9.92

Table 5: Main evaluation results on our benchmark (test tasks) under the configuration where turns
set as 5 and sandbox maximum execution time set as 200 s. The best score in each column is bolded.

Model class-IF class-MM reg-IF reg-MM time-XF time-CF
gpt-4o 32.88 40.45 20.28 40.60 35.54 4.77
gpt-4.1 55.82 57.83 52.17 58.62 40.78 6.60
gpt-5 69.81 43.40 57.24 56.29 36.83 10.13
gpt-04-mini 67.56 57.89 53.62 57.60 42.29 9.67
Claude-Sonnet-3.7 61.48 61.03 46.37 63.20 49.88 13.70
Claude-Sonnet-4 16.21 18.27 15.21 11.33 4.80 0.01
Qwen3-32B 17.11 30.71 15.21 35.86 26.96 0.00
Qwen3-4B 3.60 5.23 0.72 3.29 6.97 0.00

tool invocation turns—reflect realistic user expectations for efficient, accurate solutions. See more

details on

4 EVALUATION

In this section, we present the experimental results and analysis of several LLMs evaluated using
DARE-bench.

4.1 EXPERIMENT SETTINGS

We experiment with state-of-the-art LLMs from open-source ones such as Qwen3-32B and Qwen3-
4B (Yang et al.l 2025), to proprietary models such as gpt-o4-mini (OpenAll [2025d)), gpt-4o, gpt-
4.1 (OpenAl [2025a), gpt-5 (OpenAl, |2025b), Claude-Sonnet-3.7 (Anthropic, 2025a)), and Claude-
Sonnet-4 (Anthropic, 2025b)).

For all the experiments, we employ a greedy decoding strategy whenever applicable, along with
sandbox (ByteDance-Seed Foundation Code Team, 2024)) for code execution. To reduce random-
ness, each task is repeated three times and we report the average score. We evaluate all tasks using
either accuracy or the macro-F1/clipped R? score. The ‘classification-IF’ and ‘regression-IF’ met-
rics are measured using a strict, binary (0/1) accuracy. ‘classification-MM’ is measured using a
graded (0.0-1.0) macro-F1 score. The remaining metrics, ‘regression-MM?’, ‘time-series-XF’, and
‘time-series-CF’, are all evaluated using the clipped R? score.

We conduct our evaluation in two stages. First, we perform a sensitivity analysis on the key hy-
perparameters for our evaluation framework using one of the most advanced models, gpt-o4-mini,
specifically turns and sandbox maximum execution time. These limits are set to simulate real-world
applications, as a user would not wait infinite time for an agent to complete a task. Our goal is to find
a balanced configuration. Second, with this configuration, we conduct a comprehensive comparison
of several leading LLMs on our benchmark.

4.2 HYPERPARAMETER SENSITIVITY ANALYSIS

The results, shown in Table 4] clearly indicate a clear trend emerges: performance generally im-
proves with a higher number of interactive turns. We observe a dramatic leap in performance when
moving from 3-turn configurations to 5-turn configurations. For example, the classification-IF score

Under review as a conference paper at ICLR 2026

Table 6: Average number of tokens and tool calls for completions of different models and prompts.
All token counts are calculated using the Qwen3 tokenizer.

Model IF Tokens IFTool Calls MM Tokens MM Tool Calls Overall Tokens Ove(’:flllf""l
prompt 596.7 - 224.6 - 350.7

gpt-5 609.5 22 582.5 24 591.2 24
Claude-Sonnet-3.7 675.2 36 894.3 48 830.0 44
Qwen3-32B 2093.3 3.1 1693.0 35 1816.8 34
Qwen3-32B-SFT-DV 1778.3 33 1572.0 36 1638.7 35
Qwen3-4B 1691.1 3.7 1151.7 39 1328.1 38
Qwen3-4B-RL 1549.4 37 1140.1 37 1277.9 37

jumps from 37.16 (at 3 turns, 300 s) to 67.56 (at 5 turns, 200 s). This suggests that allowing the
agent more opportunities to iterate and refine its approach is crucial.

The highest performance on classification-IF (76.80) was achieved at the (15 turns, 100 s) setting.
However, for our main model comparison, we sought a balance between performance and computa-
tional efficiency (i.e., cost and latency). We selected the (5 turns, 200 s) configuration as our standard
setting. This configuration (5 turns, 200 s) serves as a robust and practical baseline; it significantly
outperforms 3-turn setups and achieves strong, representative scores across all metrics (e.g., 67.56
on classification-IF, 53.62 on regression-IF, and 42.29 on time-series-XF) within a practical time
constraint, i.e., approximately 1000 s user wait time in total.

4.3 MODEL COMPARISON

Based on our sensitivity analysis, we adopt the (5 turns, 200 s) configuration for a comprehensive
comparison of all models. The main results are presented in Table[5] Statistics on the average token
usage and the number of tool invocations are listed in Table [6]

In this standardized setting, Claude-Sonnet-3.7 emerges as the top-performing model. It achieves the
highest scores on four of the six evaluation metrics: ‘classification-IF’ (69.81), ‘classification-MM’
(61.03), ‘regression-MM’ (63.20), ‘time-series-XF’ (49.88) and ‘time-series-CF’ (13.70), demon-
strating its strong overall capabilities for this benchmark. gpt-5 leads the two IF columns, achieving
the highest ‘classification-IF’ (69.81) and ‘regression-IF’ (57.24).

The results also reveal marked disparities between model generations. Claude-Sonnet-4 under-
performs significantly compared to its predecessor Claude-Sonnet-3.7, with notably weaker scores
across all metrics. A key reason is that Claude-Sonnet-4 tends to decompose tasks into very fine-
grained substeps, executing almost every small operation separately. As a result, completing a single
benchmark task often requires a very large number of steps, and the model nearly always exceeds
the allowed step limit, leading to premature failures. Meanwhile, among the open-source models,
Qwen3-32B and Qwen3-4B perform far below the proprietary models, struggling in all categories
and failing entirely on time-series-CF. This highlights that complex, multi-step data analysis in sand-
boxed environments remains a considerable challenge for current open-source LLMs.

Moving beyond the quantitative scores in Table[5]to understand why models fail on our benchmark,
we conducted a systematic qualitative analysis of failed trajectories. Our goal is to identify the
primary bottlenecks and limitations of current SOTA agents.

Incorrect Tool Argument Passing. A fundamental failure mode observed was that LLMs often
failed to correctly interface with the code-execution tool. While the generated Python code was
logically correct, they frequently mismatched tool parameters (e.g., forgetting to pass filenames),
causing execution to fail before code could run. Definition of our tool can be found in

Instruction Following Failures. LLMs often ignored explicit constraints: processing steps in the
wrong order, skipping required transformations, or omitting critical function arguments (Figure [3).
These errors show weak adherence to task specifications.

Flawed Reasoning in Open-Ended Tasks. More subtle problems came from brittle reasoning.
Common issues included misuse of metadata (hard-coding values), risky preprocessing (e.g., naive

Under review as a conference paper at ICLR 2026

Task

Task Question

Use train.parquet and metadata.txt ..

hours spent alone daily between 0 and 10
to train a MLPClassifier model with
random state set as 51 ... generate
predictions for val.parquet as prediction.csv

Python Code

nfeature_map = {...
'hours spent alone daily': 'Time_spent_Alone'
+

expected_ranges = {'Time_spent_Alone': (0.0, 10.0)}
mm_transformer = Pipeline(steps=[
(*imputer', SimpleImputer(strategy='mean')),

('scaler', StandardScaler())
n

Time_spent_Alone: hours spent alone daily.

Train.csv Test.csv
= Column' (
Time_spent_ | Going_ |personality f Time_spent_ | Going_ [C'mm', num_ » Dum_:),1)
Alone outside Alone outside model = Pipeline(steps=[
4.0 6.0 | Extrovert 1.0 7.0 ('preprocessor', preprocessor),
50 00 | Introvert 40 [('classifier', MLPClassifier()) Pred
50 20| Introvert 70 20 ('classifier’, MLPClassifier(random_state=51)) GT
n
Metadata.txt .
Tabular dataset of 2,900 samples i Prediction Ground Truth
Prediction target: Personality (Extrovert vs. Introvert). Evaluation Personaiiy Peronaly
Data contains missing values, suitable for evaluating
preprocessing and imputation. EXITOVETt = EXtrovert
Column description: F4

Introvert Introvert

Figure 3: Example of an instruction-following task where the agent fails to respect explicit con-
straints. Despite being asked to fix the random seed, the model omitted the required argument,
leading to incorrect predictions and an evaluation failure.

Table 7: Fine-tuning and RL improve performance over baselines. Superscripts denote absolute
gains compared to the baseline of the same model.

Model Setting class-IF class-MM reg-IF rege-MM time-XF time-CF Total Ml?e (1‘;’.1-
Qwen3-32B Baseline 17.11 30.71 15.21 35.86 26.96 0.00 23.25 65.03

Qwen3-32B SFT-FV 40.54+2343 447171399 42752754 4921+1335 3995+1299 (07007 4242+1917 72.32+729
Qwen3-32B SFT-AV 40.542343 472071649 420242081 5556+1970 3356660 000000 42.91+1972 70.27+524
Qwen3-32B SFT-BV 38.06*20% 48.91*1820 43 75+275% 54 55+1869 3591+895 0,000 42.83+19% 71,01*9%
Qwen3-32B SFT-DV 38.58*2!47 43.82+1311 39 13+2392 51 00+1>14 38.92+1196 0,000 41.12*718 71,6806
Qwen3-4B Baseline 3.60 5.23 0.72 3.29 6.97 0.00 4.39 54.18

Qwen3-4B RL 38.063536 30443421 318843116 37043375 30082531 008228 37 40+301 g 55+837

label encoding, mishandling NaNs), and unreliable type inference. Such shortcuts led to fragile
pipelines and frequent errors.

Time-Series Task Failures. Performance on ‘time-series-CF’ was especially poor. Reflecting a lack
of exposure to complex time-series reasoning, LL.Ms often failed to produce valid output formats or
relied on trivial heuristics (last value, mean), resulting in near-zero predictive accuracy.

This qualitative analysis reveals that current agent failures are multi-faceted. They range from ba-
sic API misuse and poor instruction following to, most critically, a lack of robust, generalizable
reasoning for complex tasks. The widespread use of brittle preprocessing and the near-total failure
on complex t ime-series formatting suggest that current agents, while proficient at simple code
generation, still lack the deep, domain-specific reasoning required for autonomous data science.

5 FINE-TUNING LLMsS wiTH DARE-BENCH

To further strengthen the performance of foundation LLMs on DARE-bench, we explore two com-
plementary training paradigms: supervised fine-tuning (SFT) and reinforcement learning (RL). SFT
leverages curated supervision from rejection-sampled traces to align models more closely with task
requirements, while RL directly optimizes models with verifiable outcome rewards. The following
subsections detail each approach, their implementation, and the improvements they yield.

Rejection Sampling and Supervised Fine-tuning. To obtain high-quality supervision signals, we
rejection-sample traces generated across multiple runs, using task-specific filtering strategies.

We generate data for supervised fine-tuning through rejection sampling using task-independent fil-
ters that evaluate trajectories for validity, quality, and speed. A trajectory is valid if it achieves exact
match for IF tasks or exceeds a type-specific score threshold for predictive tasks. A task is con-
sidered diverse if its sampled runs contain both successes and failures (IF) or if the variance of its

Under review as a conference paper at ICLR 2026

Table 8: Ablation study on the impact of Instruction Following (IF) and ML Modeling (MM) data
with SFT-DV rejection sampling data.

Train Data class-IF class-MM reg-IF reg-MM time-XF time-CF
baseline 17.11 30.71 1521 35.86 26.96 0.00

1F 40'99{13.88 22‘38—8.33 47A82+32'61 27'85—8.01 23'83—3.13 O.OOH) 00
MM 11.71-5.4() 45.69+14'98 18.84+3'63 45.38+9'52 34.12+7.l(> 0.00+(l.()()
IF+MM 38.58+2]'47 43.82+13'” 39A]3+23.92 51.00+]5.]4 3892” 1.96 O.OOH)(N)

Table 9: External validation on DSBench (Jing et al., [2024) after converting tasks into our format.
Superscripts denote absolute gains over the baseline of the same model.

Model Setting Competition-level Accuracy
Qwen3-32B Baseline 32.38
Qwen3-32B SFT-FV 37.82+544
Qwen3-32B SFT-AV 41.08*870
Qwen3-32B SFT-BV 40.06*768
Qwen3-32B SFT-DV 42.41+1003
Qwen3-4B Baseline 18.23

Qwen3-4B RL 40.00+2177

predictive scores exceeds a threshold. We study four strategies: FV (Fastest-Valid), which keeps the
quickest valid trace for each task; AV (All-Valid), which retains all valid traces; BV (Best-Valid),
which for diverse tasks selects the single best valid trace; and DV (Duo-Valid), which for diverse
tasks retains the top-2 valid traces (fastest for IF, highest-scoring above the mean for predictive).

Both IF and predictive tasks use their natural evaluation metrics (exact match or macro-F1 / clipped
R?) to define validity and rank trajectories. More implementation details are provided in

Reinforcement Learning. We perform reinforcement learning with GRPO (Shao et al., 2024) on
Qwen3-4B (Yang et al 2025) using the DARE-Bench training tasks with the verl (Sheng et al.,
2025) framework. During training, we found that the group normalization used in GRPO intro-
duces training instability. Therefore, we chose to remove the normalization component similar to
Dr.GRPO (Liu et al.}[2025)), which mitigates the training stability issue. Moreover, we use sequence-
level aggregation as in the original GRPO, rather that token-level aggregation used by DAPO (Yu
et al,[2025). Additional training details can be found in[Appendix FJ

Fine-tuning Results. Table [7| summarizes results for both SFT (Qwen3-32B) and RL (Qwen3-
4B). Specifically, Model-Perf measures the quality of the model’s predictions by focusing solely
on successful attempts for MM tasks. This metric isolates the quality dimension from the validity
dimension, confirming that fine-tuning improves the model’s actual data science proficiency, not just
its adherence to syntax rules. Across IF and MM tasks, fine-tuning yields substantial improvements
over the baseline, with absolute gains of nearly 1.83 X in total score and 10% in ModelPerf. Different
strategies bring complementary benefits: AV yields the strongest overall improvements for MM
tasks, while FV favors IF tasks. Reinforcement learning on Qwen3-4B provides even larger relative
gains, boosting the total score from 4.39 to 37.40 and ModelPerf from 54.18 to 62.55. These results
confirm that DARE-bench not only improves instruction following but also translates into better
downstream modeling accuracy once correct predictions are generated.

Impact of Data Composition. As shown in Table[8] we use SFT-DV to further investigate the spe-
cific contributions of IF and MM data through an ablation study. Training exclusively on MM data
boosts predictive modeling performance but degrades instruction adherence, while training solely
on IF data shows the inverse. Only the combined approach successfully integrates both capabili-
ties, achieving a robust balance. This confirms that process-oriented and outcome-oriented tasks are
complementary and essential for a comprehensive data science agent.

Failure Analysis. Shown in Table we categorized incorrect trajectories to identify specific
reasoning bottlenecks. Proprietary models mainly face problems with Code Errors, while open-
source baselines frequently exceed execution limits because of inefficient exploration. Training on
DARE-bench effectively mitigates these issues; notably, RL on Qwen3-4B reduces code errors by

Under review as a conference paper at ICLR 2026

Table 10: Failure mode analysis across different models.

Model Inst Adhere Code Error Code Exec Limit ~ Max Token Limit
gpt-5 126 333 0 0
Claude-Sonnet-3.7 158 262 0 0
Qwen3-32B 48 106 257 372
Qwen3-32B + SFT-DV 43 80 236 256
Qwen3-4B 79 174 661 102
Qwen3-4B + RL 49 91 331 119

Table 11: Comparison between Native Function Calﬂ and DataWiseAgent on DARE-bench and
DSBench.

Framework Model class-IF class-MM reg-IF reg-MM time-XF time-CF DSBench
Native Function Call Qwen3-32B 17.11 30.71 15.21 35.86 26.96 0.0 32.38
Native Function Call Qwen3-32B + SFT-DV 38.58 43.82 39.13 51.00 38.92 0.0 42.41
DataWiseAgent Qwen3-32B 21.62 29.63 34.78 34.40 30.45 0.0 29.17

48 percent and halves code execution limit errors, demonstrating that our supervision significantly
enhances both code correctness and efficiency.

Case Studies of Fine-tuning Effects. To further illustrate the benefits of fine-tuning, we highlight
two representative failure modes that were substantially reduced. First, acommon pre-fine-tuning er-
ror occurred when LLM provided tool with incorrectly generated tool arguments. The code executor
tool requires three explicit arguments including code, input file and output file. However, LLMs fre-
quently generated correct Python code that opened files but failed to pass the filename into the tool’s
file_to_load argument, causing sandbox execution to fail. After fine-tuning, the frequency of
such mismatches decreased remarkably. Second, the baseline models tried to use natural-language
column names from the task description without checking the provided metadata.txt which
led to KeyErrors. The first step of the fine-tuned models involved examining the metadata file for
references to actual column identifiers which led to the development of reliable executable solutions.

External Validation and Comparison. To further assess generalization and compare with state-
of-the-art specialized agents, we adapt data modeling tasks from DSBench (Jing et al., 2024) into
the DARE-bench task format. As shown in Table[9] all fine-tuned versions outperform the original
baseline, proving that DARE-bench enhances performance beyond in-domain tasks. Specifically,
inclusive sampling methods (AV and DV) yield the most significant improvements by leveraging a
wider range of valid traces compared to stricter filtering (FV and BV). Furthermore, we compare
our fine-tuned models with DataWiseAgent (You et al.,[2025) under identical settings. As detailed
in Table our model compare favorably to DataWiseAgent, achieving a score of 42.41 compared
to 29.17. This demonstrates that our framework offers competitive adaptability and robustness in
diverse data science workflows compared to existing specialized agents.

6 CONCLUSION AND FUTURE WORKS

We present DARE-bench, a training-focused benchmark for DS agents which enables executable
evaluation and trainable supervision through two verifiable task families: (i) process-aware instruc-
tion following with reference-code ground truths, and (ii)) ML modeling with dataset ground truths.
The 6,300 Kaggle-derived tasks show poor performance from strong general-purpose LLMs until
they receive task-specific data but fine-tuning on DARE-bench artifacts produce reliable and repeat-
able enhancements in process fidelity and predictive performance and execution failure reduction.
Our design uses the executable-benchmark approach which software engineering professionals have
adopted to solve DS-specific problems that recent evaluations have identified.

We will expand our task type coverage (figures/speeches/clustering), strengthen procedural con-
straints and verifier-based objectives, and add anomaly detection tracks (tabular and time-series)
with appropriate event/segment-level metrics and weak/unsupervised scoring protocols.

https://qwen.readthedocs.io/en/latest/framework/function_call.html

10

https://qwen.readthedocs.io/en/latest/framework/function_call.html

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude sonnet 3.7. https://cloud.google.com/vertex—ai/
generative-ai/docs/partner-models/claude, 2025a. Extended thinking mode,
step-by-step reasoning capability.

Anthropic. Introducing claude sonnet 4. https://www.anthropic.com/news/claude-4,
2025b. Improved coding and reasoning, available via API/ Bedrock / Vertex.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Mislav Balunovié, Jasper Dekoninck, Ivo Petrov, Nikola Jovanovié, and Martin Vechev. Matharena:
Evaluating 1lms on uncontaminated math competitions. arXiv preprint arXiv:2505.23281, 2025.

Tommaso Bendinelli, Artur Dox, and Christian Holz. Exploring 1lm agents for cleaning tabular
machine learning datasets. arXiv preprint arXiv:2503.06664, 2025.

ByteDance-Seed Foundation Code Team. Sandboxfusion: A multi-language code sandbox exe-
cution tool for evaluating code generation models. https://github.com/bytedance/
SandboxFusion, 2024. Used in FullStack Bench: Evaluating LLMs as Full Stack Coders.

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen, Yeqiao Fu, Hongcheng Gao, Xinzhuang
Xiong, Hanchong Zhang, Wenjing Hu, Yuchen Mao, et al. Spider2-v: How far are multimodal
agents from automating data science and engineering workflows? Advances in Neural Informa-
tion Processing Systems, 37:107703-107744, 2024.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learn-
ing agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Nan Chen, Yuge Zhang, Jiahang Xu, Kan Ren, and Yuqing Yang. Viseval: A benchmark for data
visualization in the era of large language models. IEEE Transactions on Visualization and Com-
puter Graphics, 2024.

Alex Egg, Martin Iglesias Goyanes, Friso Kingma, Andreu Mora, Leandro von Werra, and Thomas
Wolf. Dabstep: Data agent benchmark for multi-step reasoning. arXiv preprint arXiv:2506.23719,
2025a.

Alex Egg, Martin Iglesias Goyanes, Friso Kingma, Andreu Mora, Leandro von Werra, and Thomas
Wolf. Dabstep: Data agent benchmark for multi-step reasoning, 2025b. URL https:
//arxiv.org/abs/2506.23719.

Antoine Grosnit, Alexandre Maraval, James Doran, Giuseppe Paolo, Albert Thomas, Refinath
Shahul Hameed Nabeezath Beevi, Jonas Gonzalez, Khyati Khandelwal, Ignacio Iacobacci, Ab-
delhakim Benechehab, et al. Large language models orchestrating structured reasoning achieve
kaggle grandmaster level. arXiv preprint arXiv:2411.03562, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Au-
tomated data science by empowering large language models with case-based reasoning. arXiv
preprint arXiv:2402.17453, 2024.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Chenxing Wei,

Danyang Li, Jiaqi Chen, Jiayi Zhang, et al. Data interpreter: An llm agent for data science. arXiv
preprint arXiv:2402.18679, 2024.

11

https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/claude
https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/claude
https://www.anthropic.com/news/claude-4
https://github.com/bytedance/SandboxFusion
https://github.com/bytedance/SandboxFusion
https://arxiv.org/abs/2506.23719
https://arxiv.org/abs/2506.23719

Under review as a conference paper at ICLR 2026

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language agents
on machine learning experimentation. arXiv preprint arXiv:2310.03302, 2023.

Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang, Fangyu Lei, Yifan Wei, Shizhu He, Lifu
Huang, Xiao Liu, Jun Zhao, et al. Da-code: Agent data science code generation benchmark for
large language models. arXiv preprint arXiv:2410.07331, 2024.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Ligiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming
Zhang, Xinya Du, and Dong Yu. Dsbench: How far are data science agents from becoming data
science experts? arXiv preprint arXiv:2409.07703, 2024.

Ram Mohan Rao Kadiyala, Siddhant Gupta, Jebish Purbey, Giulio Martini, Suman Debnath, and
Hamza Farooq. Dsbc: Data science task benchmarking with context engineering. arXiv preprint
arXiv:2507.23336, 2025.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319-18345.
PMLR, 2023.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding rl-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

OpenAl Introducing GPT-4.1 in the api. https://openai.com/index/gpt—4-1/, April
2025a. Lower-latency, cheaper GPT model family optimized for instruction following and long
context.

OpenAl Introducing GPT-5. https://openai.com/index/introducing—gpt-5/} Au-
gust 2025b. Latest flagship model with improved code and agentic performance.

OpenAl Introducing openai 03 and o4-mini. https://openai.com/index/
introducing-o3—-and-o4-mini/, April 2025c.

OpenAl Openai 03 and o4-mini system card. https://cdn.
openai.com/pdf/2221c875-02dc-4789-800b—-e7758£f3722c1/
o3-and-od4-mini-system-card.pdf, April 2025d. System card describing capa-
bilities, evaluations, and safety considerations.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539—
68551, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279-1297, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

12

https://arxiv.org/abs/2310.06770
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf

Under review as a conference paper at ICLR 2026

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua How-
land, Paige Bailey, Michele Catasta, Henryk Michalewski, et al. Natural language to code gener-
ation in interactive data science notebooks. arXiv preprint arXiv:2212.09248, 2022.

Ziming You, Yumiao Zhang, Dexuan Xu, Yiwei Lou, Yandong Yan, Wei Wang, Huaming Zhang,
and Yu Huang. Datawiseagent: A notebook-centric llm agent framework for automated data
science. arXiv preprint arXiv:2503.07044, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Dan Zhang, Sining Zhoubian, Min Cai, Fengzu Li, Lekang Yang, Wei Wang, Tianjiao Dong, Ziniu
Hu, Jie Tang, and Yisong Yue. Datascibench: An llm agent benchmark for data science. arXiv
preprint arXiv:2502.13897, 2025.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleash-
ing the power of large language models in solving machine learning tasks. arXiv preprint
arXiv:2304.14979, 2023.

Yuge Zhang, Qiyang Jiang, Xingyu Han, Nan Chen, Yuqing Yang, and Kan Ren. Benchmarking
data science agents. arXiv preprint arXiv:2402.17168, 2024.

Lianmin Zheng, Liangsheng Yin, Zhigiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in neural information processing systems, 37:
62557-62583, 2024.

13

Under review as a conference paper at ICLR 2026

OVERVIEW OF THE APPENDIX

The Appendix is organized as follows:

. contains reproducibility statement.

» [Appendix BJcontains the use of LLMs in this work.

* [Appendix C|provides the limitation of the work.

. contains the explanation of the evaluation metrics used in this work.
. provides training details of the RL experiments in this work.

. contains detailed description of DARE-bench features.

. provides example prompt of the preprocessing steps of this work, including
column inference and task identification.

. contains reference code for instruction-following tasks in this work.

. contains tool schema used in our experiments and some task examples.
* [Appendix J provides details of the rejection sampling implementation of this work.
* [Appendix K] provides details on how we make the use of LLM to classify tasks.

A REPRODUCIBILITY STATEMENT

We have attached the subet of our test set in the supplementary materials. Once accepted, we will
release the full test set of our benchmark. The training set and model checkpoints will also be
provided upon request, and we plan to release them publicly depending on the feedback we receive
from the research community. Also, a detailed description of our data processing procedure is
included in These resources are intended to facilitate reproducibility and allow
future researchers to build upon our work.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this project, LLMs were used as assistive tools. Specifically, we used LLMs to polish the writing
of the paper and to assist in finding related works. In addition, LLMs were used during the data pro-
cessing stage, for tasks such as data filtering, question rewriting, and identifying task targets. Beyond
these uses, the research ideas, experimental design, and analyses were developed independently by
the authors. The authors take full responsibility for all content presented in this paper.

C LIMITATIONS

While DARE-bench provides a large-scale, verifiable, and trainable benchmark, several limitations
remain. First, the current tasks are primarily tabular based, so the benchmark does not yet cover
multimodal inputs such as text-image combinations or code—diagram interactions. Second, the cost
of generating large numbers of executable traces can be high, and the rejection sampling strategies,
while effective, may introduce biases toward shorter trajectories.

D EVALUATION METRICS

We report results using two standard metrics for classification and regression tasks: macro-F1 and
R%.

14

Under review as a conference paper at ICLR 2026

Macro-F1. For a classification task with C classes, let TP., FP., and FN,. denote the number of
true positives, false positives, and false negatives for class ¢, respectively. The precision and recall
for class c are defined as

TP, TP,

Precisionc = m, Recallc = m
The F1-score for class c is

F1, — 2 - Precision,. - Recall,.

Precision, + Recall,
The macro-F1 is then the unweighted mean across all classes:

c
1
Macro-F1 = ol Z Fi1..

c=1

R? (Coefficient of Determination). For regression/time-series tasks with ground-truth values
{y;}7_, and predictions {g; }"_,, define the mean of ground-truth values as j = = 37" | ;. The R?

metric is " .
> i1 Wi — 9i)
- ——.
> ic1 (i — 9)?
An R? value close to 1 indicates strong predictive performance, while values close to 0 or nega-

tive indicate weak or worse-than-baseline performance. Since R? can be negative when the model
performs worse than predicting the mean, we adopt a clipped R? defined as

R = max(R?,0),

R*=1-

2
clipped

to ensure that regression scores remain in [0, 1] and are comparable to classification metrics.

E REINFORCEMENT LEARNING TRAINING DETAILS

E.1 REWARD DESIGN

Instruction following tasks. For instruction following tasks including Classification-IF and
Regression-IF tasks. We have reference solution code C,.s with corresponding simulated predic-
tion for data Dies a8 Yret = Cret(Drest). Given the model prediction ¥ = G(Q, Dyain, Diests M, T)
and simulated ground truth y..s, we use the following reward:

0.1, y exists,
r= 117 y = Yref, (1)
0, otherwise.

Note that LLMs may be unable to generate a prediction.csv file due to the max turns or
sandbox execution time limit.

Predictive ML tasks. For other tasks, including classification-PM, regression-PM, time-series-
XF, and time-series-CF, we have masked ground-truth data y. Given the prediction provided by
LLM y, we define the reward as

- 0.14d(y,ye), ¥ exists,
o0, otherwise,

2

where d : X x) — [0, 1] denotes the distance measure between the prediction and the target. For
classification tasks, we adopt the macro-F1 score to account for class imbalance. For regression and
time-series tasks, we use the clipped coefficient of determination, defined as

clip(R?) = min{1, max{0, R*}}.

If there are multiple prediction targets, we compute the distance by taking the average of them.

15

Under review as a conference paper at ICLR 2026

E.2 OTHER TRAINING PARAMETERS

Reinforcement learning. We summarize our RL training hyper-parameters in

Hyper-parameter Value
RL algorithm GRPO (Shao et al.,[2024)
Loss aggregation Sequence level
Group normalization False
Learning rate 1x10°6
Training mini-batch size 64
KL regularization False
Rollout batch size 64
Number of rollouts per question 8
Rollout backend SGLang (Zheng et al., [2024)
Rollout temperature 1.0
top_p 0.95
top_k 50
Model sequence length 32,768

Table 12: Hyper-parameters used for reinforcement learning experiments.

F DETAILED DESCRIPTION OF OTHER DARE-BENCH FEATURES

Automated and Scalable Curation. The task generation process in DARE-bench uses a defined
approach which collects data from Kaggle and incorporates web-scraped content before LLMs ver-
ify the tasks and produce standardized definitions. The automated pipeline generates authentic work
assignments at large scale across multiple fields through an approach that needs minimal human
involvement.

Diverse and Realistic Coverage. The benchmark contains 6,300 tasks which cover multiple do-
mains and languages, including tabular classification and regression as well as advanced time-series
forecasting. By drawing directly from real-world Kaggle datasets, it naturally incorporates common
data challenges such as class imbalance, missing values, noise, and temporal irregularities, providing
a more faithful simulation of practical data science scenarios.

Time and interaction constraints. DARE-bench implements realistic usage scenarios through
its requirement for both time-limited wall-clock operation and restricted interaction turn counts.
In practice, end users are unlikely to wait hours for a model to train a full pipeline; hence, we
cap execution time to 10 minutes for fast-response settings. The system limits the total number of
agent-environment dialogues which forces models to find efficient solutions instead of performing
endless exploration. The established limitations in this benchmark create a testing environment
which mirrors actual operational conditions for interactive data science agents.

16

Under review as a conference paper at ICLR 2026

G EXAMPLE PROMPT FOR COLUMN INFERENCE AND TASK IDENTIFICATION

The following prompt guides the model to check task suitability and identify prediction target and
relevant features from the provided dataset description and data information.

You are given a dataset along with its description.
Your tasks are as follows:

Task 1: Assess Logistic/Linear Regression Suitability

Determine whether logistic regression (for classification) or linear regression (for regression) can be
appropriately used to model this dataset.

Use this strict checklist:

* Classification: target must be categorical; features structured; manageable missing values.

* Regression: target must be numeric and continuous; features structured; manageable missing
values; categorical targets not allowed.

If all conditions are met, the method is appropriate. Otherwise, it is not. When uncertain, output False.

Task 2: Identify Task Type, Target Column, and Feature Columns
You must select column names only from the list below inside Column list:, avoid using names from
Context / description:.

Column list:
{all_columns}

Context / description:
{filtered_metadata}
{scraper}

Infer:
¢ The task type (classification or regression)
* A list (< 3) of candidate target columns

¢ The best set of feature columns

Task 3: Column Type Inference
For each column in the list, classify it as:

¢ “numerical”: meaningful arithmetic operations

» “categorical”: groups/codes, arithmetic not meaningful
Instructions:

* Return a Python dictionary with every column as a key

* Value must be either “numerical” or “categorical”

» Use dataset description to guide decisions

Final Output Format

Output exactly 5 lines, in LaTeX-boxed format:

1. Method suitability — \boxed{True} or \boxed{False}

2. Task type — \boxed{classification} or \boxed{regression}

3. Target column candidates — \boxed{ ["targetl", "target2"]}

4. Feature columns — \boxed{["coll", "col2", ...]}

5. Column types — \boxed{{{"coll": "numerical", "col2": "categorical"}}}

17

Under review as a conference paper at ICLR 2026

The following prompt reformulates the user question into a precise and well-structured instruction.

You are given a machine learning task described in final_question and a dictionary of column
metadata in metadata_description. Your job is to rewrite the final_question in fluent
natural language, making it easier to read while keeping the meaning and structure intact.

Here’s what you must do:

1. Replace all column names and feature names in final_question with their natural lan-
guage descriptions from metadata_description. Preserve the original ordering of
features in lists.

2. If a column or feature name is not present in metadata_description, rewrite it into a
natural-sounding phrase using best judgment.

3. Rewrite structured formats (lists, dicts) into natural language paragraphs, while retaining
original item order.

Keep existing natural language unchanged.

Keep all file paths unchanged.

File names or paths must be wrapped in backticks.
Target column names must be wrapped in backticks.

Final output must be a clear instruction in natural language.

2 2 ey ;s

If the string None appears in value ranges, treat it as a categorical value None.

10. Do not include headings, markdown, or extra explanations—return only the rewritten ques-
tion.

11. Use only standard English characters.

12. Explicitly preserve ordering requirements in the rewritten question.

Here is the final_ question:
{question}

Here is the metadata_description:
{description}

Now return only the rewritten version of the question, using natural language descriptions where pos-
sible. Preserve file paths, model names, and categorical values exactly as given.

18

Under review as a conference paper at ICLR 2026

The following prompt determines whether the dataset is time-series and infers the appropriate tem-
poral type information.

You are given a dataset and its description.

Task 1: Assess Suitability
Check if Time Series Forecasting applies. Conditions:

1. Must have a clear timestamp column (e.g., ‘date‘, ‘time®).

2. Must have a target variable changing over time (e.g., sales, temperature).
3. Observations should be sequential and time-dependent.

4. Time interval must be regular or resample-able (e.g., daily, hourly).

If all are met, output True; otherwise False.

Task 2: Identify Key Columns
From the list below, infer:

* Best timestamp column
* Best target column
* Optional exogenous feature columns

Column list:
{all_columns}

Context:
{filtered_metadata}
{scraper}

Preview (first 50 rows):
{df_preview}

Task 3: Column Typing
For each column, classify as: "timestamp", "numerical", "categorical", or "other".
If timestamp exists, also infer its format (Python strftime).

Final Output Format (6 lines, LaTeX-boxed):

1. Suitability — \boxed{True} or \boxed{False}
Timestamp column — \boxed{column_name} or \boxed{ambiguous}
Target column — \boxed{column_name} or \boxed{ambiguous}
Exogenous features — \boxed{ ["coll", ...]} or \boxed{[]}

Column types — \boxed{{"coll": "timestamp", "col2": "numerical"}}

P> PR

Time format — \boxed{%Y-%m—-%d %$H:%M:%S} or \boxed{ambiguous}

19

Under review as a conference paper at ICLR 2026

The following prompt identifies grouping entities (e.g., users, products, or regions) that structure the
dataset for time-CF tasks.

You are given a dataset for time series forecasting. The dataset includes a timestamp column, a tar-
get column to be predicted, and possibly multiple other columns representing categorical or numeric
features. Your task is to identify which column(s) represent the entity (or group ID) — that is, the
column(s) that differentiate multiple independent time series within the dataset.

Please analyze the column names and a sample of the data (including at least the first few rows), and
answer the following:

1. Which column(s) should be used to distinguish different time series entities?
2. Briefly explain why those column(s) were selected as entity identifiers.

3. If no entity column is needed because the dataset represents a single time series, say so
explicitly.

Dataset Description

{description}

Additional identification suggestions (optional)
{entity_identification_suggestions}

Sample Data (first 30 rows)

{sample_str}

Column statistics (distinct counts, top value frequency, example value patterns)
{column_stats_str}

Output format (exactly 2 lines, LaTeX-boxed, nothing else):

1. Entity Columns — \boxed{["col_namel", "col_name2", ...]1} or
\boxed{ []} if none

2. Justification — \boxed{<Your explanation here>}

20

Under review as a conference paper at ICLR 2026

The following prompt decides whether resampling is needed for the dataset and, if so, specifies the
appropriate resampling strategy.

You are an expert data scientist assisting with time series preprocessing.
Your goal is to decide whether a given time series dataset needs resampling (i.e., converting irregular
or overly fine-grained timestamps to a fixed frequency like daily/hourly).

Task Description
You are given:

1. A brief description of the dataset and task.
2. The first 30 rows of the dataset (including timestamps and relevant columns).

* For each time value, up to 5 rows are shown.
¢ If a time value had more than 5 rows, it is marked with a comment.

3. The target column for forecasting or analysis: {target_col}.
Please analyze:
* Whether the time column appears irregular, too granular, or dense.

* Whether each row represents a meaningful unit (e.g., per-day summary) or a low-level log
(e.g., events).

e Whether resampling could make the series easier to model.
* If resampling is needed, recommend:

— The resampling rule (e.g., Imin, Smin, 1H, 1D).
- The aggregation function for the target column ({target_col}): choose from
"mean", "sum", "count", or other common aggregations.

 If resampling is not needed, it may be because the data is evenly spaced or each row is
meaningful as-is.

Dataset Description
{description}
Sample Data (first 30 rows)
{sample_str}
Output format (exactly 4 lines, LaTeX-boxed, nothing else):
1. Should resample — \boxed{True} or \boxed{False}
2. Reason — \boxed{<One-sentence explanation>}
3. Suggested rule — \boxed{<lmin/5min/1H/1D or null>}
4

. Target aggregation — \boxed{<mean/sum/count/... for ’{target_col}’>}

21

Under review as a conference paper at ICLR 2026

H REFERENCE CODE FOR INSTRUCTION-FOLLOWING EVALUATION

Below we include the reference implementation used to evaluate instruction-following tasks in our
benchmark.

Reference Code for Instruction-Following Evaluation

import json

import os

import sglite3

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler, OneHotEncoder

from sklearn.impute import SimpleImputer

from sklearn.compose import ColumnTransformer

from sklearn.pipeline import Pipeline

from sklearn.linear_model import LogisticRegression, LinearRegression, Ridge, Lasso

from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor

from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor

from sklearn.neural network import MLPClassifier, MLPRegressor

from sklearn.naive_bayes import GaussianNB

from sklearn.svm import LinearSVC

from sklearn.multioutput import MultiOutputClassifier

from sklearn.metrics import accuracy_score, classification_report, mean_squared_error,
r2_score

Function to load and join tables from a SQLite file
def load_and_join(sglite_path):
conn = sqglite3.connect (sqlite_path)
tables = pd.read_sqgl_query ("SELECT name FROM sglite_master WHERE type=’table’;",
conn) ["name’] .tolist ()
df = None
for table in tables:
df_tab = pd.read_sqgl_query (f"SELECT x FROM ’{table}’", conn)
if "row_id’ not in df_tab.columns:
continue
if df is None:
df = df_tab
else:
df = df.merge(df_tab, on=’'row_id’, how=’inner’)
conn.close ()
return df

def train_predict_model (train_df, eval_df, feature_cols, model_type,
column_type_inference, target_cols=[’answer’], imputer_type="most_frequent",
problem_type="classification", random_state=42):
print (£"MACHINE LEARNING PIPELINE")
print ("=" x 60)

Check if target column exists in training data
for target_coloumn in target_cols:
if target_coloumn not in train_df.columns:
print (f"Target column ’{target_coloumn}’ not found in training data!")
print (f"Available columns in train_df: {list (train_df.columns)}")
return None

Check if all feature columns exist in both datasets

missing_features_train = [col for col in feature_cols if col not in train_df.
columns]
missing_features_eval = [col for col in feature_cols if col not in eval_df.columns]

if missing_features_train:
print (f"Missing feature columns in train_df: {missing_features_train}")
return None

if missing_features_eval:
print (f"Missing feature columns in eval_df: {missing_features_eval}l")
return None

formatted_targets = ", ".join("‘{}‘".format (col) for col in target_cols)
print (f"Target column {formatted_targets} found in training data")

print (f" Training dataset shape: {train_df.shape}")

print (f" Evaluation dataset shape: {eval_df.shape}")

Prepare training features and target

22

Under review as a conference paper at ICLR 2026

X_train = train_df[feature_cols].copy ()
y_train = train_df[target_cols].copy ()

Prepare evaluation features (and target if it exists)
X_eval = eval_df[feature_cols].copy ()

Check if target column exists in eval_df for evaluation
has_eval_target = True
for target_coloumn in target_cols:
if target_coloumn not in eval_df.columns:
has_eval_target = False
if has_eval_target:
y_eval = eval_df[target_cols].copy ()
print (f"Target column found in evaluation data - will compute metrics")
else:
y_eval = None
print (f" Target column not found in evaluation data - will only make
predictions™")

Check for null targets in training data

null_targets_train = y_train.isnull().sum() .sum() # use two sum to get the total
null number

if null_targets_train > 0:

print (f" Found {null_targets_train} null targets in training data - removing
these rows")

valid_indices = “y_train.isnull () .any (axis=1) # make sure no null target row

X_train = X_train([valid_indices]

y_train = y_train[valid_indices]

print (f" Final training data: {X_train.shape[0]} rows")
print (f" Final evaluation data: {X_eval.shape[0]} rows")

Separate numeric and categorical features
numeric_features = []
categorical_features = []

for col in feature_cols:
Check data type in training data

if column_type_inference[col].lower () == "numerical":
numeric_features.append(col)
elif column_type_inference[col].lower () == "categorical”:

categorical_features.append(col)

print (f" Numeric features ({len(numeric_features)}): {numeric_features}")

print (£" Categorical features ({len(categorical_features)}): {categorical_features
I

assert len(numeric_features) + len(categorical_features) == len(feature_cols)

Create preprocessing pipeline
transformers = []

if numeric_features:
transformers.append((' num’, Pipeline ([
(" imputer’, SimplelImputer (strategy=imputer_type)),
("scaler’, StandardScaler())
1), numeric_features)

if categorical_features:
transformers.append((’cat’, Pipeline ([
(" imputer’, SimpleImputer (strategy="most_frequent")),
("onehot’, OneHotEncoder (handle_unknown=’ignore’, sparse_output=False))
1), categorical_features)

preprocessor = ColumnTransformer (transformers=transformers)

Choose model based on problem type
if problem_type.lower () == "classification":
if model_type == "LogisticRegression":
model = LogisticRegression (random_state=random_state)
if len(target_cols) > 1:
model = MultiOutputClassifier (model)

elif model_type == "DecisionTreeClassifier":
model = DecisionTreeClassifier (random_state=random_state)
elif model_type == "GaussianNB":

model = GaussianNB ()
if len(target_cols) > 1:
model = MultiOutputClassifier (model)
elif model_type == "LinearSVC":

23

Under review as a conference paper at ICLR 2026

model = LinearSVC (random_state=random_state)
if len(target_cols) > 1:
model = MultiOutputClassifier (model)

elif model_type == "MLPClassifier":

model = MLPClassifier (random_state=random_state)
else:

raise ValueError (f"Invalid model type: {model_type}")
print (f" Using {model_type} for classification")

elif problem type.lower () == "regression":
if model_type == "LinearRegression":
model = LinearRegression()
elif model_type == "DecisionTreeRegressor":
model = DecisionTreeRegressor (random_state=random_state)
elif model_type == "Ridge":
model = Ridge (random_state=random_state)
elif model_type == "Lasso":
model = Lasso (random_state=random_state)
elif model_type == "MLPRegressor":
model = MLPRegressor (random_state=random_state)
else:
raise ValueError (f"Invalid model type: {model_type}")

print (f" Using {model_type} for regression")

Create full pipeline

ml_pipeline = Pipeline ([
(' preprocessor’, preprocessor),
('model’, model)

1)

Train the model
print (£"TRAINING MODEL...")
try:
ml_pipeline.fit (X_train, y_train)
print (f" Model trained successfully")
except Exception as e:
print (f" Error during training: {e}")
return None

Make predictions

print (£"MAKING PREDICTIONS...")

try:
y_pred = ml_pipeline.predict (X_eval)
print (f"Predictions completed")

except Exception as e:
print (f"Error during prediction: {e}")
return None

Evaluate model (only if we have evaluation targets)
if has_eval_target and y_eval is not None:

print (f"ODEL EVALUATION")

print ("=" = 30)

Remove rows with null targets in evaluation for metrics
valid_eval_mask = y_eval.notna/()

y_eval_clean = y_eval[valid_eval_mask]

y_pred_clean = y_pred[valid_eval_mask]

if len(y_eval_clean) == O0:

print (" No valid evaluation targets found - skipping evaluation metrics"
else:

if problem type.lower () == "classification":

accuracy = accuracy_score(y_eval_clean, y_pred_clean)
print (£" Accuracy: {accuracy:.4f}")

print (f"Classification Report:")

print (classification_report (y_eval_clean, y_pred_clean))

Show sample predictions
print (f"Sample Predictions:")
for 1 in range(min (10, len(y_eval_clean))):

actual = y_eval _clean.iloc[1i]
predicted = y_pred_clean([i]
status = "right" if actual == predicted else "wrong"

print (f"{status} Row {i}: Actual={actual}, Predicted={predicted}")

else:

24

Under review as a conference paper at ICLR 2026

mse = mean_squared_error (y_eval_clean, y_pred_clean)
r2 = r2_score(y_eval_clean, y_pred_clean)
rmse = np.sqrt (mse)

print (f" R"{2} Score: {r2:.4f}")
print (£" RMSE: {rmse:.4f}")
print (£" MSE: {mse:.4f}")

Show sample predictions
print (f"Sample Predictions:")
for 1 in range (min (10, len(y_eval_clean))):
actual = y_eval_clean.iloc[i]
predicted = y_pred_clean([i]
diff = abs(actual - predicted)
print (£" Row {i}: Actual={actual:.3f}, Predicted={predicted:.3f},
Diff={diff:.3f}")
else:
print (f"EVALUATION SKIPPED - No target column in evaluation data")
print (f" Generated {len(y_pred)} predictions")

y_pred_df = pd.DataFrame (y_pred, columns=y_train.columns)
y_pred_df.insert (0, "row_id’, eval_df["row_id"].values
return {

'pipeline’: ml_pipeline,

’'predictions’: y_pred_df

"eval_indices’: X_eval.index,

'problem_type’: problem_type,

’X_train’: X_train,

’'y_train’: y_train,

'X_eval’: X_eval,

'y_eval’: y_eval if has_eval_target else None,

"has_eval_target’: has_eval_target,

"numeric_features": numeric_features,
"categorical_features": categorical_features,
}
feature_cols = $feature_cols
model_type = "$model_type"
column_type_inference = $column_type_inference
target_cols = $target_cols
imputer_type = "$imputer_type"
problem_type = "S$problem_type"
random_state = $random_state
save_file_type = "$save_file_type"
if save_file_type == ’‘sqlite’:
conn = sglite3.connect ("train_vl_no_err.sqglite")

train_df = pd.read_sqgl ("SELECT x FROM train_set", conn)
train_df = train_df.replace({None: np.nan})
conn.close ()

eval_df = load_and_join("val_vl.sqglite")
eval_df = eval_df.replace({None: np.nan})
elif save_file_type == ’csv’:

train_df = pd.read_csv(’train_vl_no_err.csv’, keep_default_na=False, na_values
=[""])

eval_df = pd.read_csv(’‘val_vl.csv’, keep_default_na=False, na_values=[""])
elif save_file_type == ’parquet’:

train_df = pd.read_parquet (‘train_vl_no_err.parquet’)

train_df = train_df.replace({None: np.nan})

eval_df = pd.read_parquet ('val_vl.parquet’)

eval_df = eval_df.replace({None: np.nan})

result = train_predict_model (
train_df = train_df,
eval_df = eval_df,
feature_cols = feature_cols,
model_type = model_type,
column_type_inference=column_type_inference,
target_cols=target_cols,
imputer_type=imputer_type,
problem_type=problem_type,
random_state=random_state

result [’predictions’].to_csv(’simulated_pred_local.csv’, index=False)

25

Under review as a conference paper at ICLR 2026

I TooL SCHEMA AND TASK EXAMPLES

The following schema defines the details of our code executor tool.

1 Schema: python_executor

"type": "function",

"name": "python_executor"

"description": "Execute a Python script in an isolated HTTP sandbox with a 200-second
time limit. Each run is single-shot and stateless (no REPL, no persistent
environment between runs). You may upload input files via ‘files_to_load' and
retrieve results via ‘files_to_save'. The maximum file size for both upload and
download is 200 MB. The tool returns the full program output, including both
stdout and stderr. Use explicit ‘print(...)"' statements to capture values in the
output. This tool can be invoked up to 3 times per conversation.",

"parameters": {
"type": "object",
"properties": {
"code": {
"type": "string",
"description": "The Python code to execute."

by
"files_to_load": {

"type": "array",
"items": {
"type": "string"
I
"description": "List of input file paths to upload prior to execution (e.g. [\"

inputl.csv\", \"config.json\"]).

I
"files_to_save": {

"type": "array",
"items": {
"type": "string"
I
"description": "List of output file paths to download after execution (e.g. [\"

results.csv\", \"log.txt\"])."
}
I
"required": [
"code",
"files_to_load",
"files_to_save"
1,
"additionalProperties": false
I

"strict": true

26

Under review as a conference paper at ICLR 2026

The following provides a example of IF task.

Instruction Following Task Example

Question

Please complete the task as described below without asking any follow-up questions or requesting ad-
ditional information. Proceed under the assumption that all required information is provided. You are
given access to a training Parquet file named train_v1.parquet, which contains a single table,
and a metadata file met adata . txt that describes the original dataset and each of its columns. Your
task is to perform classification using this data and predict the target column Personality for the
validation set located at val_v1.parquet. Unless stated otherwise, you should use default parame-
ters for all steps including model training and preprocessing. First, load the training file directly. Then,
filter the training dataset using the expected ranges while retaining any rows that have missing values in
the relevant columns, excluding only those rows where a non-missing value violates its expected range.
The expected ranges are as follows in the specified order: number of close friends must be between 0.0
and 15.0; presence of stage fright must be either “No” or “Yes”; social media post frequency must be
between 0.0 and 10.0; frequency of going outside must be between 0.0 and 7.0; feeling drained after
socializing must be either “No” or “Yes”; frequency of social events must be between 0.0 and 10.0;
and hours spent alone daily must be between 0.0 and 11.0. After filtering, select only the features listed
in their original order: number of close friends, frequency of social events, presence of stage fright,
feeling drained after socializing, and hours spent alone daily. The numeric features, to be used in the
specified order, are number of close friends, frequency of social events, and hours spent alone daily,
and the categorical features, also to be used in the specified order, are presence of stage fright and feel-
ing drained after socializing. Handle missing values by imputing numeric features with the mean and
categorical features with the most frequent value. Preprocess the data by applying a standard scaler to
the numeric features and one-hot encoding to the categorical features with handle_unknown set to
ignore and sparse_output setto False. Train a single LogisticRegression model using
scikit-learn with random_state=86. Finally, make predictions on the validation set and save the
results to a CSV file at prediction. csv, including the column row_id as provided in the original
val_vl.parquet and the corresponding predictions aligned with each row_id so that performance
can be computed correctly.

Metadata

Overview

Dive into the Extrovert vs. Introvert Personality Traits Dataset, a rich collection of behavioral and
social data designed to explore the spectrum of human personality. This dataset captures key indicators
of extroversion and introversion, making it a valuable resource for psychologists, data scientists, and
researchers studying social behavior, personality prediction, or data preprocessing techniques.

Context

Personality traits like extroversion and introversion shape how individuals interact with their social
environments. This dataset provides insights into behaviors such as time spent alone, social event
attendance, and social media engagement, enabling applications in psychology, sociology, marketing,
and machine learning. Whether you're predicting personality types or analyzing social patterns, this
dataset is your gateway to uncovering fascinating insights.

Dataset Details
Size: The dataset contains 2,900 rows and 8 columns.
Features:

* Time_spent_Alone: Hours spent alone daily (0-11).

* Stage_fear: Presence of stage fright (Yes/No).

* Social_event_attendance: Frequency of social events (0-10).

* Going_outside: Frequency of going outside (0-7).

* Drained.after_socializing: Feeling drained after socializing (Yes/No).
e Friends_circle_size: Number of close friends (0-15).

* Post_frequency: Social media post frequency (0-10).

* Personality: Target variable (Extrovert/Introvert).

Data Quality: Includes some missing values, ideal for practicing imputation and preprocessing.
Format: Single CSV file, compatible with Python, R, and other tools.
Data Quality Notes

27

Under review as a conference paper at ICLR 2026

¢ Contains missing values in columns like Time_spent_Alone and Going_outside, of-
fering opportunities for data cleaning practice.

* Balanced classes ensure robust model training.

* Binary categorical variables simplify encoding tasks.

Potential Use Cases
* Build machine learning models to predict personality types.
* Analyze correlations between social behaviors and personality traits.
* Explore social media engagement patterns.
¢ Practice data preprocessing techniques like imputation and encoding.
* Create visualizations to uncover behavioral trends.

=== About this file ===
About this file This dataset contains 2,900 entries with 8 features related to social behavior and per-
sonality traits, designed to explore and classify individuals as Extroverts or Introverts.

28

Under review as a conference paper at ICLR 2026

The following provides an example of ML Modeling task.

ML Modeling Task Example

Question

Please complete the task as described below without asking any follow-up questions or requesting
additional information. Your task is to achieve good performance while balancing training time
and accuracy in the sandbox. You are provided with a processed dataset, along with a metadata
file metadata.txt that describes the original dataset and each of its columns. Load data in
train_v2.parquet as your full training set. Once that’s done, using only CPU resources, train
a classification model on this training data. Then use val_v2.parquet to generate a prediction for
Internet_Access for each row_id. The model should output a file named prediction.csv.
The file must contain the column row_id (as provided in the original val_v2.parquet and the
corresponding predictions. Each prediction should be aligned with its row_id so that performance can
be computed correctly.

Metadata
Al Tool Usage by Indian College Students 2025

This unique dataset, collected via a May 2025 survey, captures how 496 Indian college students use Al
tools (e.g., ChatGPT, Gemini, Copilot) in academics. It includes 16 attributes like Al tool usage, trust,
impact on grades, and internet access, ideal for education analytics and machine learning.

Columns

* Student_Name: Anonymized student name.

* College_Name: College attended.

* Stream: Academic discipline (e.g., Engineering, Arts).

* Year_of_Study: Year of study (1-4).

¢ AT_Tools_Used: Tools used (e.g., ChatGPT, Gemini).

* Daily.-Usage_Hours: Hours spent daily on Al tools.

¢ Use_Cases: Purposes (e.g., Assignments, Exam Prep).

e Trust_in_ATI_Tools: Trustlevel (1-5).

* Impact_on_Grades: Grade impact (-3 to +3).

* Do_Professors_Allow_Use: Professor approval (Yes/No).
* Preferred.AI_Tool: Preferred tool.

e Awareness_Level: Al awareness (1-10).

e Willing-to-Pay_-for_Access: Willingness to pay (Yes/No).
¢ State: Indian state.

* Device_Used: Device (e.g., Laptop, Mobile).

e Internet_Access: Access quality (Poor/Medium/High).

Use Cases - Predict academic performance using Al tool usage. - Analyze trust in Al across streams
or regions. - Cluster students by usage patterns. - Study digital divide via ‘Internet_Access*.

Source: Collected via Google Forms survey in May 2025, ensuring diverse representation across India.
Note: First dataset of its kind on Kaggle!

29

Under review as a conference paper at ICLR 2026

The following provides an example of Time Series Canonical Forecasting Task.

Time Series Canonical Forecasting Task Example

Question

Please complete the task as described below without asking any follow-up questions or requesting
additional information. Your task is to achieve good performance while balancing time and accu-
racy in the sandbox environment. You are provided with a processed dataset, along with a meta-
data file metadata.txt that describes the original dataset and each of its columns. Load the file
train.csv as your complete training data. This file contains the raw, non-resampled time series
data. Once that’s done, using only CPU resources, train time series analysis model(s) on the training
data. Then, based on the file val_v2.csv, forecast the target column Close. Generate predictions
exactly for each row_id present in the validation data, Output a file named prediction.csv. The
file must contain the column row_id (as provided in the original val_v2 . csv and the corresponding
predictions. Each prediction should be aligned with its row_id so that performance can be computed
correctly.

Metadata

Here’s to the crazy ones—the data dreamers, the analysts, the visionaries who believe that a handful
of numbers can reveal the DNA of innovation. This dataset is more than a collection of Apple Inc.’s
historical stock prices; it’s a chronicle of invention, perseverance, and thinking differently.

What’s Inside
- Time Span: Daily stock price data for Apple Inc. over multiple years - Features: - ‘Date’: The day
of the record - ‘Close’: Price at market close - Format: CSV, clean and ready for analysis

Why This Matters

Apple is not just a company, it’s a movement. Its stock price reflects not only financial performance,
but the world’s response to innovation—launches, leadership changes, economic cycles, and the occa-
sional “one more thing.”

Possibilities

- Visualize long-term growth and volatility - Model trends, moving averages, or momentum - Forecast
future prices with machine learning - Detect the impact of major product launches or events - Explore
relationships between volume and price action

Inspiration

As you explore this data, don’t just look for patterns—Ilook for stories. See how moments of genius
and risk-taking ripple through the numbers. Use this dataset to inspire your own creativity, your own
analysis, your own ‘insanely great’ discoveries.

Whether you’re here to build a predictive model, craft beautiful visualizations, or simply marvel at the
journey, remember: The people who are crazy enough to think they can change the world with data. ..
are the ones who do.

=== About this file ===
About this file This file contains historical daily stock price data for Apple Inc. Each row represents
one trading day and includes key financial metrics that track Apple’s performance on the stock market.

=== Columns & descriptions ===
Date: The calendar date for the trading record (format: YYYY-MM-DD). Close: The price of Apple’s
stock at the end of the trading day.

30

Under review as a conference paper at ICLR 2026

J REJECTION SAMPLING IMPLEMENTATION DETAILS

We sample up to K'=8 candidate trajectories per task. Each trajectory records: (i) final_score
and (ii) end-to-end wall-clock time. For IF tasks, final_score is exact match € {0,1}; for
predictive tasks, final_score is a normalized metric such as macro-F1 or clipped R2.

J.1 VALIDITY AND DIVERSITY CONDITIONS
Validity. A trajectory is considered valid if:

e For IF tasks: final_score = 1.

* For predictive tasks: final_score > type-specific threshold:
class-MM: 0.8, reg-MM: 0.7, time-XF: 0.6, time-CF: 0.3.
Diversity. A task is considered diverse if:

* For IF tasks: among the K trials, at least one final_score = 1 and at least one
final_score =0.

* For predictive tasks: the variance of the K scores satisfies
Var(S;) > threshold, class-MM/reg-MM: 0.15, time-XF: 0.15, time-CF: 0.1.
J.2 REJECTION SAMPLING STRATEGIES
FV (Fastest-Valid). For every task that has at least one valid trajectory:

* IF tasks: keep the single fastest valid trajectory.
* Predictive tasks: keep the trajectory with the highest final_score.

AV (All-Valid). For every task:

* Keep all valid trajectories (as defined above).

BV (Best-Valid). For every diverse task:

* IF tasks: keep the single fastest valid trajectory.
* Predictive tasks: keep the trajectory with the highest final_score.

Thus BV applies the same selection rule as FV, but restricted to diverse tasks only.

DV (Duo-Valid). For every diverse task:

* IF tasks: keep the two fastest valid trajectories (or one if fewer exist).

* Predictive tasks: keep the top-2 trajectories by score, restricted to those with s(¢) > 3;
(above mean).

* FV applies to all tasks with valid traces; BV and DV apply only to diverse tasks.

* AV is the only strategy that may return multiple valid trajectories even for non-diverse
tasks.

* FV/BV always select at most one trajectory; DV at most two; AV can return more.

* This design ensures a balance between efficiency (FV), diversity (AV), quality (BV), and
complementary coverage (DV).

31

Under review as a conference paper at ICLR 2026

K TASK DOMAIN CLASSIFICATION METHODOLOGY

To assess the diversity of DARE-bench and verify its coverage across real-world scenarios, we clas-
sified each task into a primary domain (e.g., Finance, Health, Technology). Given the scale of the
benchmark (6,300 tasks), manual classification was infeasible. Therefore, we employed an auto-
mated LLM-based classification pipeline utilizing the rich metadata associated with each Kaggle-
derived dataset.

Metadata Usage. The classification relies on four key metadata fields:

* Title: The official name of the dataset.

* Subtitle: A short phrase summarizing the dataset content.

e Description: The full natural language description of the dataset context.
* Keywords: User-provided tags from the original Kaggle source.

Classification Taxonomy. To ensuring consistency, we defined a controlled vocabulary of allowed
domains based on common industry verticals: finance, health, business, technology, automotive,
education, environment, and others.

Prompt Design. We constructed a strict prompt to instruct the LLM to identify the single best
domain label. The prompt enforces a hierarchical reasoning logic: it prioritizes explicit domain
terms found in the user-provided keywords before inferring the domain from the title or description.
The full prompt template is provided below:

Instruction: Identify the single best domain for a task using the provided metadata.

Input Data:
* Title: {title}
* Subtitle: {subtitle}
* Description: {description}

* Keywords: {keywords}

Example Domains: [agriculture, finance, health, business, technology, automotive, education, envi-
ronment, other]

Reasoning Steps:

1. Keyword Check: First, strictly check the provided ‘keywords’ list for any explicit domain
word (e.g., ‘finance’, ‘health’). If a match is found from the allowed list, select it immedi-
ately.

2. Inference: If no direct domain appears in the keywords, infer the most appropriate domain
based on the semantic context of the ‘title’, ‘subtitle’, and ‘description’.

3. Output Formatting: Output exactly ONE lowercase word from the allowed domains list.
Do not output punctuation, explanations, or spaces. If the domain is uncertain or does not fit
the specific categories, output ‘other’.

Output:

32

	Introduction
	Related Work
	DARE-bench
	Dataset Curation
	Task Formulation
	Features of DARE-bench

	Evaluation
	Experiment Settings
	Hyperparameter Sensitivity Analysis
	Model Comparison

	Fine-tuning LLMs with DARE-bench
	Conclusion and Future Works
	Reproducibility Statement
	The Use of Large Language Models (LLMs)
	limitations
	Evaluation Metrics
	Reinforcement Learning Training Details
	Reward design
	Other Training Parameters

	Detailed Description of Other DARE-bench Features
	Example Prompt for Column Inference and Task Identification
	Reference Code for Instruction-Following Evaluation
	Tool Schema and Task Examples
	Rejection Sampling Implementation Details
	Validity and Diversity Conditions
	Rejection Sampling Strategies

	TASK DOMAIN CLASSIFICATION METHODOLOGY

