
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DARE-BENCH: EVALUATING MODELING AND
INSTRUCTION FIDELITY OF LLMS IN DATA SCIENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

The fast-growing demands in using Large Language Models (LLMs) to tackle
complex multi-step data science tasks create a emergent need for accurate bench-
marking. There are two major gaps in existing benchmarks: (i) the lack of stan-
dardized, process-aware evaluation that captures instruction adherence and pro-
cess fidelity, and (ii) the scarcity of accurately labeled training data. To bridge
these gaps, we introduce DARE-bench, a benchmark designed for machine learn-
ing modeling and data science instruction following. Unlike many existing bench-
marks that rely on human- or model-based judges, all tasks in DARE-bench have
verifiable ground truth, ensuring objective and reproducible evaluation. To cover
a broad range of tasks and support agentic tools, DARE-bench consists of 6,300
Kaggle-derived tasks and provides both large-scale training data and evaluation
sets. Extensive evaluations show that even highly capable models such as gpt-
o4-mini struggle to achieve good performance, especially in machine learning
modeling tasks. Using DARE-bench training tasks for fine-tuning can substan-
tially improve model performance. For example, supervised fine-tuning boosts
Qwen3-32B’s accuracy by 1.83× and reinforcement learning boosts Qwen3-4B’s
accuracy by more than 8×. These significant improvements verify the importance
of DARE-bench both as an accurate evaluation benchmark and critical training
data.

1 INTRODUCTION

Large language models (LLMs) (Anthropic, 2025a;b; OpenAI, 2025a;c; Yang et al., 2025) are in-
creasingly employed as data-science (DS) agents to perform data reading, transformation, and mod-
eling through tool-augmented code execution. Such a rapid adoption demands rigorous benchmarks
to evaluate and enhance the effectiveness and reliability in performing these complex, multi-step
workflows. However, due to the cost and complexity of evaluation, existing benchmarks can only
evaluate final-answer accuracy, and leaving other valuable metrics such as process fidelity and re-
producibility largely unmeasured (Zhang et al., 2024; Jing et al., 2024). Meanwhile, many existing
works (Guo et al., 2024; Zhang et al., 2023; Hong et al., 2024) in this area focus on using prompt
engineering and workflow design to improve model performance. We compliment these works by
taking a benchmark approach to train LLM agents with high fidelity data and sophisticated yet re-
producible evaluation to better acquire domain-specific skills in DS workflows.

Figure 1: DARE-bench defines each task by providing a natural-language question and structured
files (metadata and train/test splits). An LLM agent executes code within a sandbox to generate
predictions, which are compared against ground truth for automatic and reproducible evaluation.

Creating benchmarks that capture process fidelity for both training and evaluation is significantly
challenging. The main challenge comes from two-fold. First, the sources for crafting training data

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison between DARE-bench and existing benchmarks.

Benchmark Domain Data
File

Inst-
follow

Time
Series Verifiable Train

Tasks Tasks

MLAgentBench (Huang et al., 2023) Deep Learning ✓ - - ✓ ✗ 13
MLE-bench (Chan et al., 2024) Deep Learning ✓ - - ✓ ✗ 75
SWE-bench (Jimenez et al., 2024) Software Eng. ✓ - - ✓ ✓ 21,294

DS-1000 (Lai et al., 2023) Data Science ✗ ✗ ✗ ✗ ✗ 1,000
Arcade (Yin et al., 2022) Data Science ✗ ✗ ✗ ✗ ✗ 1,082
Spider2V (Cao et al., 2024) Data Science ✗ ✗ ✗ ✓ ✗ 494
DSEval (Zhang et al., 2024) Data Science ✓ ✗ ✗ ✓ ✗ 825
DSBench (Jing et al., 2024) Data Science ✓ ✗ ✗ ✓ ✗ 540
DA-Code (Huang et al., 2024) Data Science ✓ ✗ ✗ ✓ ✗ 500
DataSciBench (Zhang et al., 2025) Data Science ✓ ✗ ✗ ✗ ✗ 222
DABstep (Egg et al., 2025a) Data Science ✓ ✗ ✗ ✓ ✗ 450
DSBC (Kadiyala et al., 2025) Data Science ✓ ✗ ✗ ✓ ✗ 303

DARE-bench (Ours) Data Science ✓ ✓ ✓ ✓ ✓ 6,300

(e.g., expert-level, executable DS process traces) are scarce and prohibitively expensive to acquire.
Existing benchmarks largely rely on human-processed data and often center on Kaggle competi-
tions, creating a major data bottleneck. Second, evaluating “process fidelity” is highly non-trivial
as randomness and environment affects confound behavior, and verifying that an agent follows per-
missible DS practices requires a controlled, instrumented harness. These challenges limit the data
quality and evaluation scope of existing benchmarks, and thus miss the opportunities to better release
the full potential of models.

To address the challenge of data quality and scarcity, we leverage LLMs to process auxiliary con-
tent, such as task descriptions, metadata normalization, rule extraction, instead of heavily replying
on human involvement so that the data generation is scalable with quality. We further improve
the data quality with better diversity by pivoting from leaderboard-oriented Kaggle competitions to
the broader pool of Kaggle datasets, yielding a more diverse and representative problem set such
as time-series domains. To address the evaluation challenge, we engineer determinism (e.g., fixed
seeds, reproducible environments) so that process fidelity is enabled by an outcome-based, verifi-
able reward—enabling reinforcement learning (RLVR) instead of human-involved reward. These
approaches work coherently to construct a large-scale, trainable benchmark for data science that
measures modeling performance and process fidelity, and boosts training performance.

To this end, we introduce Datascience Agentic REasoning bench (DARE-bench), a training-focused
DS agent benchmark featuring two verifiable task families: (i) process-aware instruction-following
tasks with ground truth from executing reference solutions that strictly follow the task instruction;
and (ii) ML modeling tasks evaluated against the dataset’s original ground truth under reproducible
metrics. Our design for the instruction-following tasks leverages a key advantage of data science:
the high degree of reproducibility. We find that by controlling the randomness and providing explicit
instructions, a procedurally faithful execution can produce a deterministic outcome. This allows us
to robustly and automatically evaluate process fidelity by verifying the agent’s final answer against
the ground truth. As shown in Figure 1, for both task families, each task provides a natural-language
question and structured files. The LLMs execute code within a sandbox to generate predictions,
which is checked automatically for scoring. In Table 1, we compare DARE-bench against existing
benchmarks in terms of the task coverage, verifiability, training task support, and number of tasks to
demonstrate DARE-bench’s significant advancements.

We conduct extensive evaluation on both strong general-purpose and code-centric LLMs. The eval-
uation results reveal that many LLMs without task-aligned training fail miserably due to process
deviations, runtime errors, and metric mis-specification. For instance, Qwen3-32B baseline only
achieves a total score of 23.25, while the smaller Qwen3-4B baseline performs even worse which
scores 4.39. By contrast, DARE-bench bridges this gap by providing a training-focused benchmark
with verifiable large-scale training data and useful and sophisticated reproducible evaluation. Su-
pervised fine-tuning yields absolute gains of nearly 20 points, while reinforcement learning boosts
Qwen3-4B from 4.39 to 37.40. Overall, DARE-bench significantly improve success rates, process
adherence, predictive performance, and robustness across a variety of practical data science tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 2: Overview of DARE-bench benchmark composition and the primary capabilities evaluated
by each task type. Variants are denoted as IF = Instruction Following, MM = ML Modeling, XF =
eXogenous Features, CF = Canonical Forecasting.

Task Type Train Tasks Test Tasks Capability Assessed

Classification-IF 1160 74 Instruction following
Classification-MM 1160 74 ML Modeling
Regression-IF 899 45 Instruction following
Regression-MM 899 45 ML Modeling
Time-series-XF 915 57 Predictive ML, forecasting
Time-series-CF 915 57 Predictive ML, forecasting

2 RELATED WORK

LLM Agents. Research into Agentic LLMs focuses on their ability as independent agents through
planning, tool calling, and memory capabilities. The integration of reasoning with actions or APIs
occurs through ReAct (Yao et al., 2023) and Toolformer (Schick et al., 2023) frameworks as re-
searchers work on multi-agent collaboration and autonomous tool-augmented systems. Applying
these to real-world data science remains difficult because current benchmarks lack adequate training
resources and often omit critical domains such as time-series forecasting or the distinction between
open-ended problem solving and strict instruction-following.

LLMs for Coding and Data Science Benchmarks. The advancement of coding benchmarks de-
pends on the use of testable pass/fail signals. The HumanEval (Chen et al., 2021) and MBPP
(Austin et al., 2021) provided short self-contained functions with hidden unit tests while SWE-bench
(Jimenez et al., 2024) tests models on actual GitHub issues that need multiple file modifications and
complete project testing. The community now performs end-to-end data science (DS) tasks as its
new approach to this paradigm. The DS-1000 (Lai et al., 2023) teaches NumPy/Pandas program-
ming but DSBench (Jing et al., 2024) and MLE-bench (Chan et al., 2024) use Kaggle competition
problems which require multi-step analytics. The DABstep (Egg et al., 2025b) dataset contains
450 financial tasks from real-world applications and DataSciBench (Zhang et al., 2025) uses Task-
Function-Code (TFC) to evaluate programs which are then verified by human evaluators. DSBC
(Kadiyala et al., 2025) addresses private datasets via structured metadata. The research uses Chen
et al. (2024) to evaluate visualization skills and Bendinelli et al. (2025) to assess data cleaning abil-
ities and Kaggle leaderboards (Grosnit et al., 2024; Chan et al., 2024) to measure performance. The
benchmarks show a sequential development from basic unit testing code to sophisticated tool-based
agents which perform complete DS workflows and produce quantifiable results.

Reinforcement Learning with Verifiable Rewards. The implementation of verifiable program-
matic signals in reinforcement learning enables model training at scale without requiring preference
data. The automatic checking system consists of unit tests and solvers and execution traces for
math and code verification. GRPO (Shao et al., 2024) achieves learning stability through its relative
rollout feedback system which DeepSeek-R1 (Guo et al., 2025) and GPT o-series (OpenAI, 2025d)
extend by verifier-enhanced objectives. The methods combine symbolic proofs with coding tests
and retrieval/search execution graphs to improve reward-as-checker for both correct answers and
verifiable reasoning trace generation.

3 DARE-BENCH

DARE-bench consists of three data science task-families - classification, regression and time-series
forecasting, each with two variants that probe distinct agent capabilities. For clarity, we denote
these variants using intuitive abbreviations: IF (Instruction Following) and MM (ML Modeling) for
classification and regression; XF (eXogenous Features) and CF (Canonical Forecasting) for time-
series forecasting. In classification and regression, the IF variant emphasizes instruction-following
by requiring LLM to faithfully reproduce reference workflows, whereas the MM variant targets ML
modeling with outcome-based evaluation. These variants capture complementary real-world needs.
IF simulates a workflow where an agent must strictly execute a senior scientist’s detailed design.
Conversely, MM reflects an outcome-driven scenario where customers only care about the final

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

accuracy, granting full freedom to the LLM. For time-series forecasting, the distinction between
the two variants is more nuanced: in the XF variant, we retain not only the timestamp and entity
identification columns but also all exogenous features from the original dataset; in the CF variant,
however, while exogenous features remain available for training, the test set is constrained to only
the timestamp and entity columns, making it closer to a classical forecasting setup. We partition our
collection of 6,300 tasks into an approximately 95/5 train/test split, designating the most recently
updated tasks as the test set. Table 2 summarizes the dataset scale and the primary capability assessed
in each task type. Tool schema and task examples are shown in Appendix I.

3.1 DATASET CURATION

Data Scourcing Task Design Post-Process Finalization

Figure 2: Automated pipeline of DARE-bench. The construction process consists of four stages:
(1) Dataset Sourcing, where Kaggle datasets are filtered by tags, license, size, and metadata; (2)
Task Design, where schema summaries, targets, faetures, and feasibility are analyzed with the help
of LLM; (3) Post-Process, including splitting, noise injection for IF tasks or resampling or entity
checks for time-series-CF tasks; and (4) Finalization, which validates solvability in a sandbox for
IF tasks and produces standardized benchmark artifacts.

To construct DARE-bench, we design an automated data curation pipeline that systematically trans-
forms raw Kaggle datasets into standardized machine learning tasks. Unlike prior benchmarks which
rely mainly on manual curation, our approach integrates web crawling, LLM-based task formulation,
controlled data transformations, and sandbox verification to ensure both quality and scale. Shown
in Figure 2, the pipeline consists of four stages. Detailed prompts are shown in Appendix G.

Dataset Sourcing with Augmented Metadata. We selected Kaggle as the primary data source due
to its breadth of real-world, user-contributed datasets. The official API of Kaggle retrieves candidate
datasets that meet specific criteria including tabular format and valid open license. Additionally,
we develop a lightweight web crawler to extract additional data from webpage descriptions that
were present in the dataset, providing additional metadata elements to the LLM through column
previews and natural-language descriptions which help the model understand the context of the task
formulation.

LLM-Assisted Task Design and Feasibility Analysis. For each sourced candidate dataset, we
employ an LLM to assess whether it can support a well-posed predictive task. The model receives
both the dataset preview and the detailed description to duplicate expert assessment on a large scale.
The LLM detects a target column which can be either categorical or continuous for classification and
regression tasks along with structured features and their corresponding data types. For time-series
forecasting tasks, the model detects timestamp columns and numerical targets that evolve through
time and exogenous features in addition to identifying the temporal frequency of the data. Only
datasets deemed feasible by this automated analysis proceed to the next stage.

Post-Process. Feasible datasets are then transformed into uniform benchmarking tasks. The data
is split randomly into training and testing sets. For instruction-following tasks, controlled noise is
injected into roughly twenty percent of the training data, which simulates real-world data quality
issues through numerical values that exceed valid ranges and unexpected categorical entries, and the
testing set serves as the clean reference data. The chronological split method is used for time-series
forecasting to preserve the natural order of time in the data. LLM then detects entity identifiers to
stop data leakage between groups and it performs automatic resampling of irregular time series data
to uniform intervals through an aggregation method suggested by the model.

Finalization. After the post-process step, for instruction-following tasks, the validation process for
each task runs independently in a sandbox environment by executing the reference solution code
sequence including data loading, preprocessing, training, and prediction generation. Since these
tasks rely on reference outputs rather than fixed ground truth values, the sandbox ensures that the
instructions can be faithfully executed and the generated predictions are fully reproducible under
the same random seed. In contrast, ML modeling tasks directly use ground-truth values (e.g., class

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 3: Distribution of task domains across the DARE-bench train and test sets.

Dataset Finance Health Business Technology Automotive Education Environment Others

Train 16.9% 10.2% 7.3% 4.0% 4.5% 2.8% 6.8% 47.5%
Test 17.1% 8.4% 8.2% 5.6% 3.3% 3.1% 2.4% 51.9%

labels or numerical targets) for evaluation and do not require sandbox execution. Finally, the task is
packaged into a standardized format that includes training and testing data, metadata describing the
dataset and task, the natural language task description, and the corresponding reference.

3.2 TASK FORMULATION

Input and output. Suppose we have the task description Q, an accompanying dataset description
M , a training set Dtrain = {(xi,yi)}ntrain

i=1 , a testing set without target values Dtest = {xi}ntest
i=1, and

access to a code execution tool T . The tool T enforces a maximum wall-clock runtime Tmax, while
the agent G is subject to an interaction budget of K turns. Given these inputs and constraints, G
produces executable code C, which is run within T on Dtrain to fit a model and subsequently on Dtest
to generate predictions ŷ, i.e., ŷ = G(Q,Dtrain,Dtest,M, T (Tmax,K)).

Evaluation metrics. We evaluate models differently depending on the task type. For instruction-
following tasks (i.e., Classification-IF and Regression-IF), we compare the model’s generated pre-
diction ŷ against the simulated reference output yref obtained from the reference solution code Cref,
and assign a score of 1 if ŷ = yref and 0 otherwise. For ML modeling tasks, including Classification-
MM, Regression-MM, and both Time-series-XF and Time-series-CF, we directly compare the model
predictions ŷ against the masked ground-truth values ygt. Specifically, we adopt the macro-F1 score
for classification-MM tasks to account for class imbalance, and use the clipped coefficient of deter-
mination for regression and time-series forecasting, defined as clip(R2) = min{1,max{0, R2}}.
For tasks with multiple prediction targets, the evaluation metric is computed by averaging over all
targets. Details of our reference solution code can be found in Appendix H and calculation of
macro-F1 and R2 can be found in Appendix D.

3.3 FEATURES OF DARE-BENCH

DARE-bench introduces several key features that distinguish it from prior benchmarks in data sci-
ence and machine learning:

ML Modeling and Instruction Following. DARE-bench differs from other existing benchmarks
because it assesses two fundamental data science capabilities which are essential for real-world ap-
plications: ML modeling and task instruction following for data processing and model development.

Verifiable Ground Truth. The evaluation process of DARE-bench depends on actual labels and
simulated reference solution outputs to produce results that can be replicated. The system design
removes all dependencies on human judgment and model-based assessments that enables evaluation
metrics to directly assess task performance. This design is similar to coding benchmarks such as
SWE-bench (Jimenez et al., 2024) and math benchmarks like AIME (Balunović et al., 2025), making
it extremely suitable for supervised fine-tuning (SFT) and reinforcement learning with verifiable
rewards (RLVR).

Dual Role as Evaluation and Training Resource. The benchmark offers a training dataset which
enables users to perform model fine-tuning and alignment. As we will demonstrate in Section 5,
the models trained on DARE-bench achieve better results than their baselines, which proves that the
dataset serves as a benchmark and a resource to improve data science LLMs.

Diversity, Realism, and Practical Constraints. Our datasets are created from Kaggle sources,
making them naturally diverse, multilingual, and spanning various domains while capturing real-
world challenges such as class imbalance, missing values, and noise. As illustrated in Table 3,
quantitative analysis confirms this broad coverage, showing that DARE-bench spans a wide spec-
trum of real-world verticals across both training and test sets. Details in categorization can be found
in Appendix K. In addition, enforced constraints—such as a 10-minute execution limit and bounded

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 4: Hyperparameter sensitivity analysis for o4-mini across different turns and sandbox maxi-
mum execution time limit configurations.

turns time class-IF class-MM reg-IF reg-MM time-XF time-CF

3 300 37.16 55.44 29.71 51.69 37.99 6.67
5 200 67.56 57.89 53.62 57.60 42.29 9.67
6 180 73.42 61.07 63.76 60.92 41.59 9.79
8 120 73.87 61.42 65.21 61.05 42.11 8.82
10 100 75.22 63.36 62.31 62.07 42.03 10.97
15 100 76.80 65.88 66.66 62.41 40.03 9.92

Table 5: Main evaluation results on our benchmark (test tasks) under the configuration where turns
set as 5 and sandbox maximum execution time set as 200 s. The best score in each column is bolded.

Model class-IF class-MM reg-IF reg-MM time-XF time-CF

gpt-4o 32.88 40.45 20.28 40.60 35.54 4.77
gpt-4.1 55.82 57.83 52.17 58.62 40.78 6.60
gpt-5 69.81 43.40 57.24 56.29 36.83 10.13
gpt-o4-mini 67.56 57.89 53.62 57.60 42.29 9.67
Claude-Sonnet-3.7 61.48 61.03 46.37 63.20 49.88 13.70
Claude-Sonnet-4 16.21 18.27 15.21 11.33 4.80 0.01
Qwen3-32B 17.11 30.71 15.21 35.86 26.96 0.00
Qwen3-4B 3.60 5.23 0.72 3.29 6.97 0.00

tool invocation turns—reflect realistic user expectations for efficient, accurate solutions. See more
details on Appendix F.

4 EVALUATION

In this section, we present the experimental results and analysis of several LLMs evaluated using
DARE-bench.

4.1 EXPERIMENT SETTINGS

We experiment with state-of-the-art LLMs from open-source ones such as Qwen3-32B and Qwen3-
4B (Yang et al., 2025), to proprietary models such as gpt-o4-mini (OpenAI, 2025d), gpt-4o, gpt-
4.1 (OpenAI, 2025a), gpt-5 (OpenAI, 2025b), Claude-Sonnet-3.7 (Anthropic, 2025a), and Claude-
Sonnet-4 (Anthropic, 2025b).

For all the experiments, we employ a greedy decoding strategy whenever applicable, along with
sandbox (ByteDance-Seed Foundation Code Team, 2024) for code execution. To reduce random-
ness, each task is repeated three times and we report the average score. We evaluate all tasks using
either accuracy or the macro-F1/clipped R2 score. The ‘classification-IF’ and ‘regression-IF’ met-
rics are measured using a strict, binary (0/1) accuracy. ‘classification-MM’ is measured using a
graded (0.0-1.0) macro-F1 score. The remaining metrics, ‘regression-MM’, ‘time-series-XF’, and
‘time-series-CF’, are all evaluated using the clipped R2 score.

We conduct our evaluation in two stages. First, we perform a sensitivity analysis on the key hy-
perparameters for our evaluation framework using one of the most advanced models, gpt-o4-mini,
specifically turns and sandbox maximum execution time. These limits are set to simulate real-world
applications, as a user would not wait infinite time for an agent to complete a task. Our goal is to find
a balanced configuration. Second, with this configuration, we conduct a comprehensive comparison
of several leading LLMs on our benchmark.

4.2 HYPERPARAMETER SENSITIVITY ANALYSIS

The results, shown in Table 4, clearly indicate a clear trend emerges: performance generally im-
proves with a higher number of interactive turns. We observe a dramatic leap in performance when
moving from 3-turn configurations to 5-turn configurations. For example, the classification-IF score

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 6: Average number of tokens and tool calls for completions of different models and prompts.
All token counts are calculated using the Qwen3 tokenizer.

Model IF Tokens IF Tool Calls MM Tokens MM Tool Calls Overall Tokens Overall Tool
Calls

prompt 596.7 - 224.6 - 350.7 -

gpt-5 609.5 2.2 582.5 2.4 591.2 2.4
Claude-Sonnet-3.7 675.2 3.6 894.3 4.8 830.0 4.4
Qwen3-32B 2093.3 3.1 1693.0 3.5 1816.8 3.4
Qwen3-32B-SFT-DV 1778.3 3.3 1572.0 3.6 1638.7 3.5
Qwen3-4B 1691.1 3.7 1151.7 3.9 1328.1 3.8
Qwen3-4B-RL 1549.4 3.7 1140.1 3.7 1277.9 3.7

jumps from 37.16 (at 3 turns, 300 s) to 67.56 (at 5 turns, 200 s). This suggests that allowing the
agent more opportunities to iterate and refine its approach is crucial.

The highest performance on classification-IF (76.80) was achieved at the (15 turns, 100 s) setting.
However, for our main model comparison, we sought a balance between performance and computa-
tional efficiency (i.e., cost and latency). We selected the (5 turns, 200 s) configuration as our standard
setting. This configuration (5 turns, 200 s) serves as a robust and practical baseline; it significantly
outperforms 3-turn setups and achieves strong, representative scores across all metrics (e.g., 67.56
on classification-IF, 53.62 on regression-IF, and 42.29 on time-series-XF) within a practical time
constraint, i.e., approximately 1000 s user wait time in total.

4.3 MODEL COMPARISON

Based on our sensitivity analysis, we adopt the (5 turns, 200 s) configuration for a comprehensive
comparison of all models. The main results are presented in Table 5. Statistics on the average token
usage and the number of tool invocations are listed in Table 6.

In this standardized setting, Claude-Sonnet-3.7 emerges as the top-performing model. It achieves the
highest scores on four of the six evaluation metrics: ‘classification-IF’ (69.81), ‘classification-MM’
(61.03), ‘regression-MM’ (63.20), ‘time-series-XF’ (49.88) and ‘time-series-CF’ (13.70), demon-
strating its strong overall capabilities for this benchmark. gpt-5 leads the two IF columns, achieving
the highest ‘classification-IF’ (69.81) and ‘regression-IF’ (57.24).

The results also reveal marked disparities between model generations. Claude-Sonnet-4 under-
performs significantly compared to its predecessor Claude-Sonnet-3.7, with notably weaker scores
across all metrics. A key reason is that Claude-Sonnet-4 tends to decompose tasks into very fine-
grained substeps, executing almost every small operation separately. As a result, completing a single
benchmark task often requires a very large number of steps, and the model nearly always exceeds
the allowed step limit, leading to premature failures. Meanwhile, among the open-source models,
Qwen3-32B and Qwen3-4B perform far below the proprietary models, struggling in all categories
and failing entirely on time-series-CF. This highlights that complex, multi-step data analysis in sand-
boxed environments remains a considerable challenge for current open-source LLMs.

Moving beyond the quantitative scores in Table 5 to understand why models fail on our benchmark,
we conducted a systematic qualitative analysis of failed trajectories. Our goal is to identify the
primary bottlenecks and limitations of current SOTA agents.

Incorrect Tool Argument Passing. A fundamental failure mode observed was that LLMs often
failed to correctly interface with the code-execution tool. While the generated Python code was
logically correct, they frequently mismatched tool parameters (e.g., forgetting to pass filenames),
causing execution to fail before code could run. Definition of our tool can be found in Appendix I.

Instruction Following Failures. LLMs often ignored explicit constraints: processing steps in the
wrong order, skipping required transformations, or omitting critical function arguments (Figure 3).
These errors show weak adherence to task specifications.

Flawed Reasoning in Open-Ended Tasks. More subtle problems came from brittle reasoning.
Common issues included misuse of metadata (hard-coding values), risky preprocessing (e.g., naive

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Task Python Code

Evaluation

Fail
Personality

Extrovert

Introvert

Introvert

Personality

Extrovert

Introvert

Extrovert

Figure 3: Example of an instruction-following task where the agent fails to respect explicit con-
straints. Despite being asked to fix the random seed, the model omitted the required argument,
leading to incorrect predictions and an evaluation failure.

Table 7: Fine-tuning and RL improve performance over baselines. Superscripts denote absolute
gains compared to the baseline of the same model.

Model Setting class-IF class-MM reg-IF reg-MM time-XF time-CF Total Model-
Perf

Qwen3-32B Baseline 17.11 30.71 15.21 35.86 26.96 0.00 23.25 65.03
Qwen3-32B SFT-FV 40.54+23.43 44.71+13.99 42.75+27.54 49.21+13.35 39.95+12.99 0.07+0.07 42.42+19.17 72.32+7.29

Qwen3-32B SFT-AV 40.54+23.43 47.20+16.49 42.02+26.81 55.56+19.70 33.56+6.60 0.00+0.00 42.91+19.72 70.27+5.24

Qwen3-32B SFT-BV 38.06+20.95 48.91+18.20 42.75+27.54 54.55+18.69 35.91+8.95 0.00+0.00 42.83+19.58 71.01+5.98

Qwen3-32B SFT-DV 38.58+21.47 43.82+13.11 39.13+23.92 51.00+15.14 38.92+11.96 0.00+0.00 41.12+17.18 71.68+6.65

Qwen3-4B Baseline 3.60 5.23 0.72 3.29 6.97 0.00 4.39 54.18
Qwen3-4B RL 38.96+35.36 39.44+34.21 31.88+31.16 37.04+33.75 32.28+25.31 2.28+2.28 37.40+33.01 62.55+8.37

label encoding, mishandling NaNs), and unreliable type inference. Such shortcuts led to fragile
pipelines and frequent errors.

Time-Series Task Failures. Performance on ‘time-series-CF’ was especially poor. Reflecting a lack
of exposure to complex time-series reasoning, LLMs often failed to produce valid output formats or
relied on trivial heuristics (last value, mean), resulting in near-zero predictive accuracy.

This qualitative analysis reveals that current agent failures are multi-faceted. They range from ba-
sic API misuse and poor instruction following to, most critically, a lack of robust, generalizable
reasoning for complex tasks. The widespread use of brittle preprocessing and the near-total failure
on complex time-series formatting suggest that current agents, while proficient at simple code
generation, still lack the deep, domain-specific reasoning required for autonomous data science.

5 FINE-TUNING LLMS WITH DARE-BENCH

To further strengthen the performance of foundation LLMs on DARE-bench, we explore two com-
plementary training paradigms: supervised fine-tuning (SFT) and reinforcement learning (RL). SFT
leverages curated supervision from rejection-sampled traces to align models more closely with task
requirements, while RL directly optimizes models with verifiable outcome rewards. The following
subsections detail each approach, their implementation, and the improvements they yield.

Rejection Sampling and Supervised Fine-tuning. To obtain high-quality supervision signals, we
rejection-sample traces generated across multiple runs, using task-specific filtering strategies.

We generate data for supervised fine-tuning through rejection sampling using task-independent fil-
ters that evaluate trajectories for validity, quality, and speed. A trajectory is valid if it achieves exact
match for IF tasks or exceeds a type-specific score threshold for predictive tasks. A task is con-
sidered diverse if its sampled runs contain both successes and failures (IF) or if the variance of its

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 8: Ablation study on the impact of Instruction Following (IF) and ML Modeling (MM) data
with SFT-DV rejection sampling data.

Train Data class-IF class-MM reg-IF reg-MM time-XF time-CF

baseline 17.11 30.71 15.21 35.86 26.96 0.00
IF 40.99+23.88 22.38-8.33 47.82+32.61 27.85-8.01 23.83-3.13 0.00+0.00

MM 11.71-5.40 45.69+14.98 18.84+3.63 45.38+9.52 34.12+7.16 0.00+0.00

IF+MM 38.58+21.47 43.82+13.11 39.13+23.92 51.00+15.14 38.92+11.96 0.00+0.00

Table 9: External validation on DSBench (Jing et al., 2024) after converting tasks into our format.
Superscripts denote absolute gains over the baseline of the same model.

Model Setting Competition-level Accuracy

Qwen3-32B Baseline 32.38
Qwen3-32B SFT-FV 37.82+5.44

Qwen3-32B SFT-AV 41.08+8.70

Qwen3-32B SFT-BV 40.06+7.68

Qwen3-32B SFT-DV 42.41+10.03

Qwen3-4B Baseline 18.23
Qwen3-4B RL 40.00+21.77

predictive scores exceeds a threshold. We study four strategies: FV (Fastest-Valid), which keeps the
quickest valid trace for each task; AV (All-Valid), which retains all valid traces; BV (Best-Valid),
which for diverse tasks selects the single best valid trace; and DV (Duo-Valid), which for diverse
tasks retains the top-2 valid traces (fastest for IF, highest-scoring above the mean for predictive).
Both IF and predictive tasks use their natural evaluation metrics (exact match or macro-F1 / clipped
R2) to define validity and rank trajectories. More implementation details are provided in Appendix J.

Reinforcement Learning. We perform reinforcement learning with GRPO (Shao et al., 2024) on
Qwen3-4B (Yang et al., 2025) using the DARE-Bench training tasks with the verl (Sheng et al.,
2025) framework. During training, we found that the group normalization used in GRPO intro-
duces training instability. Therefore, we chose to remove the normalization component similar to
Dr.GRPO (Liu et al., 2025), which mitigates the training stability issue. Moreover, we use sequence-
level aggregation as in the original GRPO, rather that token-level aggregation used by DAPO (Yu
et al., 2025). Additional training details can be found in Appendix E.

Fine-tuning Results. Table 7 summarizes results for both SFT (Qwen3-32B) and RL (Qwen3-
4B). Specifically, Model-Perf measures the quality of the model’s predictions by focusing solely
on successful attempts for MM tasks. This metric isolates the quality dimension from the validity
dimension, confirming that fine-tuning improves the model’s actual data science proficiency, not just
its adherence to syntax rules. Across IF and MM tasks, fine-tuning yields substantial improvements
over the baseline, with absolute gains of nearly 1.83× in total score and 10% in ModelPerf. Different
strategies bring complementary benefits: AV yields the strongest overall improvements for MM
tasks, while FV favors IF tasks. Reinforcement learning on Qwen3-4B provides even larger relative
gains, boosting the total score from 4.39 to 37.40 and ModelPerf from 54.18 to 62.55. These results
confirm that DARE-bench not only improves instruction following but also translates into better
downstream modeling accuracy once correct predictions are generated.

Impact of Data Composition. As shown in Table 8, we use SFT-DV to further investigate the spe-
cific contributions of IF and MM data through an ablation study. Training exclusively on MM data
boosts predictive modeling performance but degrades instruction adherence, while training solely
on IF data shows the inverse. Only the combined approach successfully integrates both capabili-
ties, achieving a robust balance. This confirms that process-oriented and outcome-oriented tasks are
complementary and essential for a comprehensive data science agent.

Failure Analysis. Shown in Table 10, we categorized incorrect trajectories to identify specific
reasoning bottlenecks. Proprietary models mainly face problems with Code Errors, while open-
source baselines frequently exceed execution limits because of inefficient exploration. Training on
DARE-bench effectively mitigates these issues; notably, RL on Qwen3-4B reduces code errors by

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 10: Failure mode analysis across different models.

Model Inst Adhere Code Error Code Exec Limit Max Token Limit

gpt-5 126 333 0 0
Claude-Sonnet-3.7 158 262 0 0

Qwen3-32B 48 106 257 372
Qwen3-32B + SFT-DV 43 80 236 256

Qwen3-4B 79 174 661 102
Qwen3-4B + RL 49 91 331 119

Table 11: Comparison between Native Function Call2 and DataWiseAgent on DARE-bench and
DSBench.

Framework Model class-IF class-MM reg-IF reg-MM time-XF time-CF DSBench

Native Function Call Qwen3-32B 17.11 30.71 15.21 35.86 26.96 0.0 32.38
Native Function Call Qwen3-32B + SFT-DV 38.58 43.82 39.13 51.00 38.92 0.0 42.41
DataWiseAgent Qwen3-32B 21.62 29.63 34.78 34.40 30.45 0.0 29.17

48 percent and halves code execution limit errors, demonstrating that our supervision significantly
enhances both code correctness and efficiency.

Case Studies of Fine-tuning Effects. To further illustrate the benefits of fine-tuning, we highlight
two representative failure modes that were substantially reduced. First, a common pre-fine-tuning er-
ror occurred when LLM provided tool with incorrectly generated tool arguments. The code executor
tool requires three explicit arguments including code, input file and output file. However, LLMs fre-
quently generated correct Python code that opened files but failed to pass the filename into the tool’s
file to load argument, causing sandbox execution to fail. After fine-tuning, the frequency of
such mismatches decreased remarkably. Second, the baseline models tried to use natural-language
column names from the task description without checking the provided metadata.txt which
led to KeyErrors. The first step of the fine-tuned models involved examining the metadata file for
references to actual column identifiers which led to the development of reliable executable solutions.

External Validation and Comparison. To further assess generalization and compare with state-
of-the-art specialized agents, we adapt data modeling tasks from DSBench (Jing et al., 2024) into
the DARE-bench task format. As shown in Table 9, all fine-tuned versions outperform the original
baseline, proving that DARE-bench enhances performance beyond in-domain tasks. Specifically,
inclusive sampling methods (AV and DV) yield the most significant improvements by leveraging a
wider range of valid traces compared to stricter filtering (FV and BV). Furthermore, we compare
our fine-tuned models with DataWiseAgent (You et al., 2025) under identical settings. As detailed
in Table 11, our model compare favorably to DataWiseAgent, achieving a score of 42.41 compared
to 29.17. This demonstrates that our framework offers competitive adaptability and robustness in
diverse data science workflows compared to existing specialized agents.

6 CONCLUSION AND FUTURE WORKS

We present DARE-bench, a training-focused benchmark for DS agents which enables executable
evaluation and trainable supervision through two verifiable task families: (i) process-aware instruc-
tion following with reference-code ground truths, and (ii) ML modeling with dataset ground truths.
The 6,300 Kaggle-derived tasks show poor performance from strong general-purpose LLMs until
they receive task-specific data but fine-tuning on DARE-bench artifacts produce reliable and repeat-
able enhancements in process fidelity and predictive performance and execution failure reduction.
Our design uses the executable-benchmark approach which software engineering professionals have
adopted to solve DS-specific problems that recent evaluations have identified.

We will expand our task type coverage (figures/speeches/clustering), strengthen procedural con-
straints and verifier-based objectives, and add anomaly detection tracks (tabular and time-series)
with appropriate event/segment-level metrics and weak/unsupervised scoring protocols.

2https://qwen.readthedocs.io/en/latest/framework/function_call.html

10

https://qwen.readthedocs.io/en/latest/framework/function_call.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Claude sonnet 3.7. https://cloud.google.com/vertex-ai/
generative-ai/docs/partner-models/claude, 2025a. Extended thinking mode,
step-by-step reasoning capability.

Anthropic. Introducing claude sonnet 4. https://www.anthropic.com/news/claude-4,
2025b. Improved coding and reasoning, available via API / Bedrock / Vertex.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Mislav Balunović, Jasper Dekoninck, Ivo Petrov, Nikola Jovanović, and Martin Vechev. Matharena:
Evaluating llms on uncontaminated math competitions. arXiv preprint arXiv:2505.23281, 2025.

Tommaso Bendinelli, Artur Dox, and Christian Holz. Exploring llm agents for cleaning tabular
machine learning datasets. arXiv preprint arXiv:2503.06664, 2025.

ByteDance-Seed Foundation Code Team. Sandboxfusion: A multi-language code sandbox exe-
cution tool for evaluating code generation models. https://github.com/bytedance/
SandboxFusion, 2024. Used in FullStack Bench: Evaluating LLMs as Full Stack Coders.

Ruisheng Cao, Fangyu Lei, Haoyuan Wu, Jixuan Chen, Yeqiao Fu, Hongcheng Gao, Xinzhuang
Xiong, Hanchong Zhang, Wenjing Hu, Yuchen Mao, et al. Spider2-v: How far are multimodal
agents from automating data science and engineering workflows? Advances in Neural Informa-
tion Processing Systems, 37:107703–107744, 2024.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learn-
ing agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Nan Chen, Yuge Zhang, Jiahang Xu, Kan Ren, and Yuqing Yang. Viseval: A benchmark for data
visualization in the era of large language models. IEEE Transactions on Visualization and Com-
puter Graphics, 2024.

Alex Egg, Martin Iglesias Goyanes, Friso Kingma, Andreu Mora, Leandro von Werra, and Thomas
Wolf. Dabstep: Data agent benchmark for multi-step reasoning. arXiv preprint arXiv:2506.23719,
2025a.

Alex Egg, Martin Iglesias Goyanes, Friso Kingma, Andreu Mora, Leandro von Werra, and Thomas
Wolf. Dabstep: Data agent benchmark for multi-step reasoning, 2025b. URL https:
//arxiv.org/abs/2506.23719.

Antoine Grosnit, Alexandre Maraval, James Doran, Giuseppe Paolo, Albert Thomas, Refinath
Shahul Hameed Nabeezath Beevi, Jonas Gonzalez, Khyati Khandelwal, Ignacio Iacobacci, Ab-
delhakim Benechehab, et al. Large language models orchestrating structured reasoning achieve
kaggle grandmaster level. arXiv preprint arXiv:2411.03562, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Siyuan Guo, Cheng Deng, Ying Wen, Hechang Chen, Yi Chang, and Jun Wang. Ds-agent: Au-
tomated data science by empowering large language models with case-based reasoning. arXiv
preprint arXiv:2402.17453, 2024.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Chenxing Wei,
Danyang Li, Jiaqi Chen, Jiayi Zhang, et al. Data interpreter: An llm agent for data science. arXiv
preprint arXiv:2402.18679, 2024.

11

https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/claude
https://cloud.google.com/vertex-ai/generative-ai/docs/partner-models/claude
https://www.anthropic.com/news/claude-4
https://github.com/bytedance/SandboxFusion
https://github.com/bytedance/SandboxFusion
https://arxiv.org/abs/2506.23719
https://arxiv.org/abs/2506.23719

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language agents
on machine learning experimentation. arXiv preprint arXiv:2310.03302, 2023.

Yiming Huang, Jianwen Luo, Yan Yu, Yitong Zhang, Fangyu Lei, Yifan Wei, Shizhu He, Lifu
Huang, Xiao Liu, Jun Zhao, et al. Da-code: Agent data science code generation benchmark for
large language models. arXiv preprint arXiv:2410.07331, 2024.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Liqiang Jing, Zhehui Huang, Xiaoyang Wang, Wenlin Yao, Wenhao Yu, Kaixin Ma, Hongming
Zhang, Xinya Du, and Dong Yu. Dsbench: How far are data science agents from becoming data
science experts? arXiv preprint arXiv:2409.07703, 2024.

Ram Mohan Rao Kadiyala, Siddhant Gupta, Jebish Purbey, Giulio Martini, Suman Debnath, and
Hamza Farooq. Dsbc: Data science task benchmarking with context engineering. arXiv preprint
arXiv:2507.23336, 2025.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319–18345.
PMLR, 2023.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

OpenAI. Introducing GPT-4.1 in the api. https://openai.com/index/gpt-4-1/, April
2025a. Lower-latency, cheaper GPT model family optimized for instruction following and long
context.

OpenAI. Introducing GPT-5. https://openai.com/index/introducing-gpt-5/, Au-
gust 2025b. Latest flagship model with improved code and agentic performance.

OpenAI. Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, April 2025c.

OpenAI. Openai o3 and o4-mini system card. https://cdn.
openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/
o3-and-o4-mini-system-card.pdf, April 2025d. System card describing capa-
bilities, evaluations, and safety considerations.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–
68551, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, pp. 1279–1297, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

12

https://arxiv.org/abs/2310.06770
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua How-
land, Paige Bailey, Michele Catasta, Henryk Michalewski, et al. Natural language to code gener-
ation in interactive data science notebooks. arXiv preprint arXiv:2212.09248, 2022.

Ziming You, Yumiao Zhang, Dexuan Xu, Yiwei Lou, Yandong Yan, Wei Wang, Huaming Zhang,
and Yu Huang. Datawiseagent: A notebook-centric llm agent framework for automated data
science. arXiv preprint arXiv:2503.07044, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Dan Zhang, Sining Zhoubian, Min Cai, Fengzu Li, Lekang Yang, Wei Wang, Tianjiao Dong, Ziniu
Hu, Jie Tang, and Yisong Yue. Datascibench: An llm agent benchmark for data science. arXiv
preprint arXiv:2502.13897, 2025.

Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. Mlcopilot: Unleash-
ing the power of large language models in solving machine learning tasks. arXiv preprint
arXiv:2304.14979, 2023.

Yuge Zhang, Qiyang Jiang, Xingyu Han, Nan Chen, Yuqing Yang, and Kan Ren. Benchmarking
data science agents. arXiv preprint arXiv:2402.17168, 2024.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in neural information processing systems, 37:
62557–62583, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

OVERVIEW OF THE APPENDIX

The Appendix is organized as follows:

• Appendix A contains reproducibility statement.
• Appendix B contains the use of LLMs in this work.
• Appendix C provides the limitation of the work.
• Appendix D contains the explanation of the evaluation metrics used in this work.
• Appendix E provides training details of the RL experiments in this work.
• Appendix F contains detailed description of DARE-bench features.
• Appendix G provides example prompt of the preprocessing steps of this work, including

column inference and task identification.
• Appendix H contains reference code for instruction-following tasks in this work.
• Appendix I contains tool schema used in our experiments and some task examples.
• Appendix J provides details of the rejection sampling implementation of this work.
• Appendix K provides details on how we make the use of LLM to classify tasks.

A REPRODUCIBILITY STATEMENT

We have attached the subet of our test set in the supplementary materials. Once accepted, we will
release the full test set of our benchmark. The training set and model checkpoints will also be
provided upon request, and we plan to release them publicly depending on the feedback we receive
from the research community. Also, a detailed description of our data processing procedure is
included in subsection 3.1. These resources are intended to facilitate reproducibility and allow
future researchers to build upon our work.

B THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this project, LLMs were used as assistive tools. Specifically, we used LLMs to polish the writing
of the paper and to assist in finding related works. In addition, LLMs were used during the data pro-
cessing stage, for tasks such as data filtering, question rewriting, and identifying task targets. Beyond
these uses, the research ideas, experimental design, and analyses were developed independently by
the authors. The authors take full responsibility for all content presented in this paper.

C LIMITATIONS

While DARE-bench provides a large-scale, verifiable, and trainable benchmark, several limitations
remain. First, the current tasks are primarily tabular based, so the benchmark does not yet cover
multimodal inputs such as text–image combinations or code–diagram interactions. Second, the cost
of generating large numbers of executable traces can be high, and the rejection sampling strategies,
while effective, may introduce biases toward shorter trajectories.

D EVALUATION METRICS

We report results using two standard metrics for classification and regression tasks: macro-F1 and
R2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Macro-F1. For a classification task with C classes, let TPc, FPc, and FNc denote the number of
true positives, false positives, and false negatives for class c, respectively. The precision and recall
for class c are defined as

Precisionc =
TPc

TPc + FPc
, Recallc =

TPc

TPc + FNc
.

The F1-score for class c is
F1c =

2 · Precisionc · Recallc
Precisionc +Recallc

.

The macro-F1 is then the unweighted mean across all classes:

Macro-F1 =
1

C

C∑
c=1

F1c.

R2 (Coefficient of Determination). For regression/time-series tasks with ground-truth values
{yi}ni=1 and predictions {ŷi}ni=1, define the mean of ground-truth values as ȳ = 1

n

∑n
i=1 yi. The R2

metric is

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
.

An R2 value close to 1 indicates strong predictive performance, while values close to 0 or nega-
tive indicate weak or worse-than-baseline performance. Since R2 can be negative when the model
performs worse than predicting the mean, we adopt a clipped R2 defined as

R2
clipped = max(R2, 0),

to ensure that regression scores remain in [0, 1] and are comparable to classification metrics.

E REINFORCEMENT LEARNING TRAINING DETAILS

E.1 REWARD DESIGN

Instruction following tasks. For instruction following tasks including Classification-IF and
Regression-IF tasks. We have reference solution code Cref with corresponding simulated predic-
tion for data Dtest as yref = Cref(Dtest). Given the model prediction ŷ = G(Q,Dtrain,Dtest,M, T)
and simulated ground truth yref, we use the following reward:

r =


0.1, ŷ exists,
1.1, ŷ = yref,

0, otherwise.
(1)

Note that LLMs may be unable to generate a prediction.csv file due to the max turns or
sandbox execution time limit.

Predictive ML tasks. For other tasks, including classification-PM, regression-PM, time-series-
XF, and time-series-CF, we have masked ground-truth data ygt. Given the prediction provided by
LLM ŷ, we define the reward as

r =

{
0.1 + d(ŷ,ygt), ŷ exists,
0, otherwise,

(2)

where d : X × Y → [0, 1] denotes the distance measure between the prediction and the target. For
classification tasks, we adopt the macro-F1 score to account for class imbalance. For regression and
time-series tasks, we use the clipped coefficient of determination, defined as

clip(R2) = min{1,max{0, R2}}.

If there are multiple prediction targets, we compute the distance by taking the average of them.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E.2 OTHER TRAINING PARAMETERS

Reinforcement learning. We summarize our RL training hyper-parameters in Table 12.

Hyper-parameter Value
RL algorithm GRPO (Shao et al., 2024)
Loss aggregation Sequence level
Group normalization False
Learning rate 1× 10−6

Training mini-batch size 64
KL regularization False

Rollout batch size 64
Number of rollouts per question 8
Rollout backend SGLang (Zheng et al., 2024)

Rollout temperature 1.0
top p 0.95
top k 50
Model sequence length 32,768

Table 12: Hyper-parameters used for reinforcement learning experiments.

F DETAILED DESCRIPTION OF OTHER DARE-BENCH FEATURES

Automated and Scalable Curation. The task generation process in DARE-bench uses a defined
approach which collects data from Kaggle and incorporates web-scraped content before LLMs ver-
ify the tasks and produce standardized definitions. The automated pipeline generates authentic work
assignments at large scale across multiple fields through an approach that needs minimal human
involvement.

Diverse and Realistic Coverage. The benchmark contains 6,300 tasks which cover multiple do-
mains and languages, including tabular classification and regression as well as advanced time-series
forecasting. By drawing directly from real-world Kaggle datasets, it naturally incorporates common
data challenges such as class imbalance, missing values, noise, and temporal irregularities, providing
a more faithful simulation of practical data science scenarios.

Time and interaction constraints. DARE-bench implements realistic usage scenarios through
its requirement for both time-limited wall-clock operation and restricted interaction turn counts.
In practice, end users are unlikely to wait hours for a model to train a full pipeline; hence, we
cap execution time to 10 minutes for fast-response settings. The system limits the total number of
agent-environment dialogues which forces models to find efficient solutions instead of performing
endless exploration. The established limitations in this benchmark create a testing environment
which mirrors actual operational conditions for interactive data science agents.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G EXAMPLE PROMPT FOR COLUMN INFERENCE AND TASK IDENTIFICATION

The following prompt guides the model to check task suitability and identify prediction target and
relevant features from the provided dataset description and data information.

Task Target and Feature Identification Prompt

You are given a dataset along with its description.
Your tasks are as follows:

Task 1: Assess Logistic/Linear Regression Suitability
Determine whether logistic regression (for classification) or linear regression (for regression) can be
appropriately used to model this dataset.
Use this strict checklist:

• Classification: target must be categorical; features structured; manageable missing values.

• Regression: target must be numeric and continuous; features structured; manageable missing
values; categorical targets not allowed.

If all conditions are met, the method is appropriate. Otherwise, it is not. When uncertain, output False.

Task 2: Identify Task Type, Target Column, and Feature Columns
You must select column names only from the list below inside Column list:, avoid using names from
Context / description:.

Column list:
{all_columns}

Context / description:
{filtered_metadata}
{scraper}

Infer:

• The task type (classification or regression)

• A list (≤ 3) of candidate target columns

• The best set of feature columns

Task 3: Column Type Inference
For each column in the list, classify it as:

• “numerical”: meaningful arithmetic operations

• “categorical”: groups/codes, arithmetic not meaningful

Instructions:

• Return a Python dictionary with every column as a key

• Value must be either “numerical” or “categorical”

• Use dataset description to guide decisions

Final Output Format
Output exactly 5 lines, in LaTeX-boxed format:
1. Method suitability → \boxed{True} or \boxed{False}
2. Task type → \boxed{classification} or \boxed{regression}
3. Target column candidates → \boxed{["target1", "target2"]}
4. Feature columns → \boxed{["col1", "col2", ...]}
5. Column types → \boxed{{{"col1": "numerical", "col2": "categorical"}}}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The following prompt reformulates the user question into a precise and well-structured instruction.

Rewrite Question Prompt

You are given a machine learning task described in final_question and a dictionary of column
metadata in metadata_description. Your job is to rewrite the final_question in fluent
natural language, making it easier to read while keeping the meaning and structure intact.
Here’s what you must do:

1. Replace all column names and feature names in final_question with their natural lan-
guage descriptions from metadata_description. Preserve the original ordering of
features in lists.

2. If a column or feature name is not present in metadata_description, rewrite it into a
natural-sounding phrase using best judgment.

3. Rewrite structured formats (lists, dicts) into natural language paragraphs, while retaining
original item order.

4. Keep existing natural language unchanged.

5. Keep all file paths unchanged.

6. File names or paths must be wrapped in backticks.

7. Target column names must be wrapped in backticks.

8. Final output must be a clear instruction in natural language.

9. If the string None appears in value ranges, treat it as a categorical value None.

10. Do not include headings, markdown, or extra explanations—return only the rewritten ques-
tion.

11. Use only standard English characters.

12. Explicitly preserve ordering requirements in the rewritten question.

- - -

Here is the final_question:

{question}
- - -

Here is the metadata_description:

{description}
- - -

Now return only the rewritten version of the question, using natural language descriptions where pos-
sible. Preserve file paths, model names, and categorical values exactly as given.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The following prompt determines whether the dataset is time-series and infers the appropriate tem-
poral type information.

Time-Series Identification and Typing Prompt

You are given a dataset and its description.

Task 1: Assess Suitability
Check if Time Series Forecasting applies. Conditions:

1. Must have a clear timestamp column (e.g., ‘date‘, ‘time‘).

2. Must have a target variable changing over time (e.g., sales, temperature).

3. Observations should be sequential and time-dependent.

4. Time interval must be regular or resample-able (e.g., daily, hourly).

If all are met, output True; otherwise False.

Task 2: Identify Key Columns
From the list below, infer:

• Best timestamp column
• Best target column
• Optional exogenous feature columns

Column list:
{all_columns}

Context:
{filtered_metadata}
{scraper}

Preview (first 50 rows):
{df_preview}

Task 3: Column Typing
For each column, classify as: "timestamp", "numerical", "categorical", or "other".
If timestamp exists, also infer its format (Python strftime).

Final Output Format (6 lines, LaTeX-boxed):

1. Suitability → \boxed{True} or \boxed{False}

2. Timestamp column → \boxed{column_name} or \boxed{ambiguous}

3. Target column → \boxed{column_name} or \boxed{ambiguous}

4. Exogenous features → \boxed{["col1", ...]} or \boxed{[]}

5. Column types → \boxed{{"col1": "timestamp", "col2": "numerical"}}

6. Time format → \boxed{%Y-%m-%d %H:%M:%S} or \boxed{ambiguous}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The following prompt identifies grouping entities (e.g., users, products, or regions) that structure the
dataset for time-CF tasks.

Entity (Group) Identification Prompt

You are given a dataset for time series forecasting. The dataset includes a timestamp column, a tar-
get column to be predicted, and possibly multiple other columns representing categorical or numeric
features. Your task is to identify which column(s) represent the entity (or group ID) — that is, the
column(s) that differentiate multiple independent time series within the dataset.
Please analyze the column names and a sample of the data (including at least the first few rows), and
answer the following:

1. Which column(s) should be used to distinguish different time series entities?

2. Briefly explain why those column(s) were selected as entity identifiers.

3. If no entity column is needed because the dataset represents a single time series, say so
explicitly.

- - -

Dataset Description

{description}

- - -

Additional identification suggestions (optional)

{entity_identification_suggestions}

- - -

Sample Data (first 30 rows)

{sample_str}

- - -

Column statistics (distinct counts, top value frequency, example value patterns)

{column_stats_str}

- - -

Output format (exactly 2 lines, LaTeX-boxed, nothing else):

1. Entity Columns → \boxed{["col_name1", "col_name2", ...]} or
\boxed{[]} if none

2. Justification → \boxed{<Your explanation here>}

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The following prompt decides whether resampling is needed for the dataset and, if so, specifies the
appropriate resampling strategy.

Resampling Decision Prompt

You are an expert data scientist assisting with time series preprocessing.
Your goal is to decide whether a given time series dataset needs resampling (i.e., converting irregular
or overly fine-grained timestamps to a fixed frequency like daily/hourly).

Task Description
You are given:

1. A brief description of the dataset and task.

2. The first 30 rows of the dataset (including timestamps and relevant columns).

• For each time value, up to 5 rows are shown.
• If a time value had more than 5 rows, it is marked with a comment.

3. The target column for forecasting or analysis: {target col}.

Please analyze:

• Whether the time column appears irregular, too granular, or dense.

• Whether each row represents a meaningful unit (e.g., per-day summary) or a low-level log
(e.g., events).

• Whether resampling could make the series easier to model.

• If resampling is needed, recommend:

– The resampling rule (e.g., 1min, 5min, 1H, 1D).
– The aggregation function for the target column ({target col}): choose from
"mean", "sum", "count", or other common aggregations.

• If resampling is not needed, it may be because the data is evenly spaced or each row is
meaningful as-is.

- - -

Dataset Description

{description}

- - -

Sample Data (first 30 rows)

{sample_str}

- - -

Output format (exactly 4 lines, LaTeX-boxed, nothing else):

1. Should resample → \boxed{True} or \boxed{False}

2. Reason → \boxed{<One-sentence explanation>}

3. Suggested rule → \boxed{<1min/5min/1H/1D or null>}

4. Target aggregation → \boxed{<mean/sum/count/... for ’{target_col}’>}

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

H REFERENCE CODE FOR INSTRUCTION-FOLLOWING EVALUATION

Below we include the reference implementation used to evaluate instruction-following tasks in our
benchmark.

Reference Code for Instruction-Following Evaluation

import json
import os
import sqlite3
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression, LinearRegression, Ridge, Lasso
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.neural_network import MLPClassifier, MLPRegressor
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import LinearSVC
from sklearn.multioutput import MultiOutputClassifier
from sklearn.metrics import accuracy_score, classification_report, mean_squared_error,

r2_score

Function to load and join tables from a SQLite file
def load_and_join(sqlite_path):

conn = sqlite3.connect(sqlite_path)
tables = pd.read_sql_query("SELECT name FROM sqlite_master WHERE type=’table’;",

conn)[’name’].tolist()
df = None
for table in tables:

df_tab = pd.read_sql_query(f"SELECT * FROM ’{table}’", conn)
if ’row_id’ not in df_tab.columns:

continue
if df is None:

df = df_tab
else:

df = df.merge(df_tab, on=’row_id’, how=’inner’)
conn.close()
return df

def train_predict_model(train_df, eval_df, feature_cols, model_type,
column_type_inference, target_cols=[’answer’], imputer_type="most_frequent",

problem_type="classification", random_state=42):
print(f"MACHINE LEARNING PIPELINE")
print("=" * 60)

Check if target column exists in training data
for target_coloumn in target_cols:

if target_coloumn not in train_df.columns:
print(f"Target column ’{target_coloumn}’ not found in training data!")
print(f"Available columns in train_df: {list(train_df.columns)}")
return None

Check if all feature columns exist in both datasets
missing_features_train = [col for col in feature_cols if col not in train_df.

columns]
missing_features_eval = [col for col in feature_cols if col not in eval_df.columns]

if missing_features_train:
print(f"Missing feature columns in train_df: {missing_features_train}")
return None

if missing_features_eval:
print(f"Missing feature columns in eval_df: {missing_features_eval}")
return None

formatted_targets = ", ".join("‘{}‘".format(col) for col in target_cols)
print(f"Target column {formatted_targets} found in training data")
print(f" Training dataset shape: {train_df.shape}")
print(f" Evaluation dataset shape: {eval_df.shape}")

Prepare training features and target

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

X_train = train_df[feature_cols].copy()
y_train = train_df[target_cols].copy()

Prepare evaluation features (and target if it exists)
X_eval = eval_df[feature_cols].copy()

Check if target column exists in eval_df for evaluation
has_eval_target = True
for target_coloumn in target_cols:

if target_coloumn not in eval_df.columns:
has_eval_target = False

if has_eval_target:
y_eval = eval_df[target_cols].copy()
print(f"Target column found in evaluation data - will compute metrics")

else:
y_eval = None
print(f" Target column not found in evaluation data - will only make

predictions")

Check for null targets in training data
null_targets_train = y_train.isnull().sum().sum() # use two sum to get the total

null number
if null_targets_train > 0:

print(f" Found {null_targets_train} null targets in training data - removing
these rows")

valid_indices = ˜y_train.isnull().any(axis=1) # make sure no null target row
X_train = X_train[valid_indices]
y_train = y_train[valid_indices]

print(f" Final training data: {X_train.shape[0]} rows")
print(f" Final evaluation data: {X_eval.shape[0]} rows")

Separate numeric and categorical features
numeric_features = []
categorical_features = []

for col in feature_cols:
Check data type in training data
if column_type_inference[col].lower() == "numerical":

numeric_features.append(col)
elif column_type_inference[col].lower() == "categorical":

categorical_features.append(col)

print(f" Numeric features ({len(numeric_features)}): {numeric_features}")
print(f" Categorical features ({len(categorical_features)}): {categorical_features

}")
assert len(numeric_features) + len(categorical_features) == len(feature_cols)

Create preprocessing pipeline
transformers = []

if numeric_features:
transformers.append((’num’, Pipeline([

(’imputer’, SimpleImputer(strategy=imputer_type)),
(’scaler’, StandardScaler())

]), numeric_features))

if categorical_features:
transformers.append((’cat’, Pipeline([

(’imputer’, SimpleImputer(strategy="most_frequent")),
(’onehot’, OneHotEncoder(handle_unknown=’ignore’, sparse_output=False))

]), categorical_features))

preprocessor = ColumnTransformer(transformers=transformers)

Choose model based on problem type
if problem_type.lower() == "classification":

if model_type == "LogisticRegression":
model = LogisticRegression(random_state=random_state)
if len(target_cols) > 1:

model = MultiOutputClassifier(model)
elif model_type == "DecisionTreeClassifier":

model = DecisionTreeClassifier(random_state=random_state)
elif model_type == "GaussianNB":

model = GaussianNB()
if len(target_cols) > 1:

model = MultiOutputClassifier(model)
elif model_type == "LinearSVC":

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

model = LinearSVC(random_state=random_state)
if len(target_cols) > 1:

model = MultiOutputClassifier(model)
elif model_type == "MLPClassifier":

model = MLPClassifier(random_state=random_state)
else:

raise ValueError(f"Invalid model type: {model_type}")
print(f" Using {model_type} for classification")

elif problem_type.lower() == "regression":
if model_type == "LinearRegression":

model = LinearRegression()
elif model_type == "DecisionTreeRegressor":

model = DecisionTreeRegressor(random_state=random_state)
elif model_type == "Ridge":

model = Ridge(random_state=random_state)
elif model_type == "Lasso":

model = Lasso(random_state=random_state)
elif model_type == "MLPRegressor":

model = MLPRegressor(random_state=random_state)
else:

raise ValueError(f"Invalid model type: {model_type}")

print(f" Using {model_type} for regression")

Create full pipeline
ml_pipeline = Pipeline([

(’preprocessor’, preprocessor),
(’model’, model)

])

Train the model
print(f"TRAINING MODEL...")
try:

ml_pipeline.fit(X_train, y_train)
print(f" Model trained successfully")

except Exception as e:
print(f" Error during training: {e}")
return None

Make predictions
print(f"MAKING PREDICTIONS...")
try:

y_pred = ml_pipeline.predict(X_eval)
print(f"Predictions completed")

except Exception as e:
print(f"Error during prediction: {e}")
return None

Evaluate model (only if we have evaluation targets)
if has_eval_target and y_eval is not None:

print(f"ODEL EVALUATION")
print("=" * 30)

Remove rows with null targets in evaluation for metrics
valid_eval_mask = y_eval.notna()
y_eval_clean = y_eval[valid_eval_mask]
y_pred_clean = y_pred[valid_eval_mask]

if len(y_eval_clean) == 0:
print(" No valid evaluation targets found - skipping evaluation metrics")

else:
if problem_type.lower() == "classification":

accuracy = accuracy_score(y_eval_clean, y_pred_clean)
print(f" Accuracy: {accuracy:.4f}")
print(f"Classification Report:")
print(classification_report(y_eval_clean, y_pred_clean))

Show sample predictions
print(f"Sample Predictions:")
for i in range(min(10, len(y_eval_clean))):

actual = y_eval_clean.iloc[i]
predicted = y_pred_clean[i]
status = "right" if actual == predicted else "wrong"
print(f"{status} Row {i}: Actual={actual}, Predicted={predicted}")

else:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

mse = mean_squared_error(y_eval_clean, y_pred_clean)
r2 = r2_score(y_eval_clean, y_pred_clean)
rmse = np.sqrt(mse)

print(f" Rˆ{2} Score: {r2:.4f}")
print(f" RMSE: {rmse:.4f}")
print(f" MSE: {mse:.4f}")

Show sample predictions
print(f"Sample Predictions:")
for i in range(min(10, len(y_eval_clean))):

actual = y_eval_clean.iloc[i]
predicted = y_pred_clean[i]
diff = abs(actual - predicted)
print(f" Row {i}: Actual={actual:.3f}, Predicted={predicted:.3f},

Diff={diff:.3f}")
else:

print(f"EVALUATION SKIPPED - No target column in evaluation data")
print(f" Generated {len(y_pred)} predictions")

y_pred_df = pd.DataFrame(y_pred, columns=y_train.columns)
y_pred_df.insert(0, ’row_id’, eval_df["row_id"].values)
return {

’pipeline’: ml_pipeline,
’predictions’: y_pred_df,
’eval_indices’: X_eval.index,
’problem_type’: problem_type,
’X_train’: X_train,
’y_train’: y_train,
’X_eval’: X_eval,
’y_eval’: y_eval if has_eval_target else None,
’has_eval_target’: has_eval_target,
"numeric_features": numeric_features,
"categorical_features": categorical_features,

}

feature_cols = $feature_cols
model_type = "$model_type"
column_type_inference = $column_type_inference
target_cols = $target_cols
imputer_type = "$imputer_type"
problem_type = "$problem_type"
random_state = $random_state
save_file_type = "$save_file_type"

if save_file_type == ’sqlite’:
conn = sqlite3.connect("train_v1_no_err.sqlite")
train_df = pd.read_sql("SELECT * FROM train_set", conn)
train_df = train_df.replace({None: np.nan})
conn.close()

eval_df = load_and_join("val_v1.sqlite")
eval_df = eval_df.replace({None: np.nan})

elif save_file_type == ’csv’:
train_df = pd.read_csv(’train_v1_no_err.csv’, keep_default_na=False, na_values

=[""])
eval_df = pd.read_csv(’val_v1.csv’, keep_default_na=False, na_values=[""])

elif save_file_type == ’parquet’:
train_df = pd.read_parquet(’train_v1_no_err.parquet’)
train_df = train_df.replace({None: np.nan})
eval_df = pd.read_parquet(’val_v1.parquet’)
eval_df = eval_df.replace({None: np.nan})

result = train_predict_model(
train_df = train_df,
eval_df = eval_df,
feature_cols = feature_cols,
model_type = model_type,
column_type_inference=column_type_inference,
target_cols=target_cols,
imputer_type=imputer_type,
problem_type=problem_type,
random_state=random_state

)

result[’predictions’].to_csv(’simulated_pred_local.csv’, index=False)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

I TOOL SCHEMA AND TASK EXAMPLES

The following schema defines the details of our code executor tool.

Tool Schema: python executor

{
"type": "function",
"name": "python_executor",
"description": "Execute a Python script in an isolated HTTP sandbox with a 200-second

time limit. Each run is single-shot and stateless (no REPL, no persistent
environment between runs). You may upload input files via ‘files_to_load‘ and
retrieve results via ‘files_to_save‘. The maximum file size for both upload and
download is 200 MB. The tool returns the full program output, including both
stdout and stderr. Use explicit ‘print(...)‘ statements to capture values in the
output. This tool can be invoked up to 3 times per conversation.",

"parameters": {
"type": "object",
"properties": {

"code": {
"type": "string",
"description": "The Python code to execute."

},
"files_to_load": {
"type": "array",
"items": {

"type": "string"
},
"description": "List of input file paths to upload prior to execution (e.g. [\"

input1.csv\", \"config.json\"])."
},
"files_to_save": {
"type": "array",
"items": {

"type": "string"
},
"description": "List of output file paths to download after execution (e.g. [\"

results.csv\", \"log.txt\"])."
}

},
"required": [

"code",
"files_to_load",
"files_to_save"

],
"additionalProperties": false

},
"strict": true

}

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

The following provides a example of IF task.

Instruction Following Task Example

Question
Please complete the task as described below without asking any follow-up questions or requesting ad-
ditional information. Proceed under the assumption that all required information is provided. You are
given access to a training Parquet file named train v1.parquet, which contains a single table,
and a metadata file metadata.txt that describes the original dataset and each of its columns. Your
task is to perform classification using this data and predict the target column Personality for the
validation set located at val v1.parquet. Unless stated otherwise, you should use default parame-
ters for all steps including model training and preprocessing. First, load the training file directly. Then,
filter the training dataset using the expected ranges while retaining any rows that have missing values in
the relevant columns, excluding only those rows where a non-missing value violates its expected range.
The expected ranges are as follows in the specified order: number of close friends must be between 0.0
and 15.0; presence of stage fright must be either “No” or “Yes”; social media post frequency must be
between 0.0 and 10.0; frequency of going outside must be between 0.0 and 7.0; feeling drained after
socializing must be either “No” or “Yes”; frequency of social events must be between 0.0 and 10.0;
and hours spent alone daily must be between 0.0 and 11.0. After filtering, select only the features listed
in their original order: number of close friends, frequency of social events, presence of stage fright,
feeling drained after socializing, and hours spent alone daily. The numeric features, to be used in the
specified order, are number of close friends, frequency of social events, and hours spent alone daily,
and the categorical features, also to be used in the specified order, are presence of stage fright and feel-
ing drained after socializing. Handle missing values by imputing numeric features with the mean and
categorical features with the most frequent value. Preprocess the data by applying a standard scaler to
the numeric features and one-hot encoding to the categorical features with handle unknown set to
ignore and sparse output set to False. Train a single LogisticRegression model using
scikit-learn with random state=86. Finally, make predictions on the validation set and save the
results to a CSV file at prediction.csv, including the column row id as provided in the original
val v1.parquet and the corresponding predictions aligned with each row id so that performance
can be computed correctly.

Metadata

Overview
Dive into the Extrovert vs. Introvert Personality Traits Dataset, a rich collection of behavioral and
social data designed to explore the spectrum of human personality. This dataset captures key indicators
of extroversion and introversion, making it a valuable resource for psychologists, data scientists, and
researchers studying social behavior, personality prediction, or data preprocessing techniques.

Context
Personality traits like extroversion and introversion shape how individuals interact with their social
environments. This dataset provides insights into behaviors such as time spent alone, social event
attendance, and social media engagement, enabling applications in psychology, sociology, marketing,
and machine learning. Whether you’re predicting personality types or analyzing social patterns, this
dataset is your gateway to uncovering fascinating insights.

Dataset Details
Size: The dataset contains 2,900 rows and 8 columns.
Features:

• Time spent Alone: Hours spent alone daily (0–11).
• Stage fear: Presence of stage fright (Yes/No).
• Social event attendance: Frequency of social events (0–10).
• Going outside: Frequency of going outside (0–7).
• Drained after socializing: Feeling drained after socializing (Yes/No).
• Friends circle size: Number of close friends (0–15).
• Post frequency: Social media post frequency (0–10).
• Personality: Target variable (Extrovert/Introvert).

Data Quality: Includes some missing values, ideal for practicing imputation and preprocessing.

Format: Single CSV file, compatible with Python, R, and other tools.

Data Quality Notes

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

• Contains missing values in columns like Time spent Alone and Going outside, of-
fering opportunities for data cleaning practice.

• Balanced classes ensure robust model training.

• Binary categorical variables simplify encoding tasks.

Potential Use Cases

• Build machine learning models to predict personality types.

• Analyze correlations between social behaviors and personality traits.

• Explore social media engagement patterns.

• Practice data preprocessing techniques like imputation and encoding.

• Create visualizations to uncover behavioral trends.

=== About this file ===
About this file This dataset contains 2,900 entries with 8 features related to social behavior and per-
sonality traits, designed to explore and classify individuals as Extroverts or Introverts.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

The following provides an example of ML Modeling task.

ML Modeling Task Example

Question
Please complete the task as described below without asking any follow-up questions or requesting
additional information. Your task is to achieve good performance while balancing training time
and accuracy in the sandbox. You are provided with a processed dataset, along with a metadata
file metadata.txt that describes the original dataset and each of its columns. Load data in
train v2.parquet as your full training set. Once that’s done, using only CPU resources, train
a classification model on this training data. Then use val v2.parquet to generate a prediction for
Internet Access for each row id. The model should output a file named prediction.csv.
The file must contain the column row id (as provided in the original val v2.parquet and the
corresponding predictions. Each prediction should be aligned with its row id so that performance can
be computed correctly.

Metadata

AI Tool Usage by Indian College Students 2025

This unique dataset, collected via a May 2025 survey, captures how 496 Indian college students use AI
tools (e.g., ChatGPT, Gemini, Copilot) in academics. It includes 16 attributes like AI tool usage, trust,
impact on grades, and internet access, ideal for education analytics and machine learning.
Columns

• Student Name: Anonymized student name.

• College Name: College attended.

• Stream: Academic discipline (e.g., Engineering, Arts).

• Year of Study: Year of study (1–4).

• AI Tools Used: Tools used (e.g., ChatGPT, Gemini).

• Daily Usage Hours: Hours spent daily on AI tools.

• Use Cases: Purposes (e.g., Assignments, Exam Prep).

• Trust in AI Tools: Trust level (1–5).

• Impact on Grades: Grade impact (-3 to +3).

• Do Professors Allow Use: Professor approval (Yes/No).

• Preferred AI Tool: Preferred tool.

• Awareness Level: AI awareness (1–10).

• Willing to Pay for Access: Willingness to pay (Yes/No).

• State: Indian state.

• Device Used: Device (e.g., Laptop, Mobile).

• Internet Access: Access quality (Poor/Medium/High).

Use Cases - Predict academic performance using AI tool usage. - Analyze trust in AI across streams
or regions. - Cluster students by usage patterns. - Study digital divide via ‘Internet Access‘.
Source: Collected via Google Forms survey in May 2025, ensuring diverse representation across India.
Note: First dataset of its kind on Kaggle!

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

The following provides an example of Time Series Canonical Forecasting Task.

Time Series Canonical Forecasting Task Example

Question
Please complete the task as described below without asking any follow-up questions or requesting
additional information. Your task is to achieve good performance while balancing time and accu-
racy in the sandbox environment. You are provided with a processed dataset, along with a meta-
data file metadata.txt that describes the original dataset and each of its columns. Load the file
train.csv as your complete training data. This file contains the raw, non-resampled time series
data. Once that’s done, using only CPU resources, train time series analysis model(s) on the training
data. Then, based on the file val v2.csv, forecast the target column Close. Generate predictions
exactly for each row id present in the validation data, Output a file named prediction.csv. The
file must contain the column row id (as provided in the original val v2.csv and the corresponding
predictions. Each prediction should be aligned with its row id so that performance can be computed
correctly.

Metadata

Here’s to the crazy ones—the data dreamers, the analysts, the visionaries who believe that a handful
of numbers can reveal the DNA of innovation. This dataset is more than a collection of Apple Inc.’s
historical stock prices; it’s a chronicle of invention, perseverance, and thinking differently.

What’s Inside
- Time Span: Daily stock price data for Apple Inc. over multiple years - Features: - ‘Date’: The day
of the record - ‘Close’: Price at market close - Format: CSV, clean and ready for analysis

Why This Matters
Apple is not just a company, it’s a movement. Its stock price reflects not only financial performance,
but the world’s response to innovation—launches, leadership changes, economic cycles, and the occa-
sional “one more thing.”

Possibilities
- Visualize long-term growth and volatility - Model trends, moving averages, or momentum - Forecast
future prices with machine learning - Detect the impact of major product launches or events - Explore
relationships between volume and price action

Inspiration
As you explore this data, don’t just look for patterns—look for stories. See how moments of genius
and risk-taking ripple through the numbers. Use this dataset to inspire your own creativity, your own
analysis, your own ‘insanely great’ discoveries.

Whether you’re here to build a predictive model, craft beautiful visualizations, or simply marvel at the
journey, remember: The people who are crazy enough to think they can change the world with data. . .
are the ones who do.

=== About this file ===
About this file This file contains historical daily stock price data for Apple Inc. Each row represents
one trading day and includes key financial metrics that track Apple’s performance on the stock market.

=== Columns & descriptions ===
Date: The calendar date for the trading record (format: YYYY-MM-DD). Close: The price of Apple’s
stock at the end of the trading day.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

J REJECTION SAMPLING IMPLEMENTATION DETAILS

We sample up to K=8 candidate trajectories per task. Each trajectory records: (i) final score
and (ii) end-to-end wall-clock time. For IF tasks, final score is exact match ∈ {0, 1}; for
predictive tasks, final score is a normalized metric such as macro-F1 or clipped R2.

J.1 VALIDITY AND DIVERSITY CONDITIONS

Validity. A trajectory is considered valid if:

• For IF tasks: final score = 1.
• For predictive tasks: final score ≥ type-specific threshold:

class-MM: 0.8, reg-MM: 0.7, time-XF: 0.6, time-CF: 0.3.

Diversity. A task is considered diverse if:

• For IF tasks: among the K trials, at least one final score = 1 and at least one
final score = 0.

• For predictive tasks: the variance of the K scores satisfies

Var(Si) ≥ threshold, class-MM/reg-MM: 0.15, time-XF: 0.15, time-CF: 0.1.

J.2 REJECTION SAMPLING STRATEGIES

FV (Fastest-Valid). For every task that has at least one valid trajectory:

• IF tasks: keep the single fastest valid trajectory.
• Predictive tasks: keep the trajectory with the highest final score.

AV (All-Valid). For every task:

• Keep all valid trajectories (as defined above).

BV (Best-Valid). For every diverse task:

• IF tasks: keep the single fastest valid trajectory.
• Predictive tasks: keep the trajectory with the highest final score.

Thus BV applies the same selection rule as FV, but restricted to diverse tasks only.

DV (Duo-Valid). For every diverse task:

• IF tasks: keep the two fastest valid trajectories (or one if fewer exist).
• Predictive tasks: keep the top-2 trajectories by score, restricted to those with s(t) > si

(above mean).

NOTES

• FV applies to all tasks with valid traces; BV and DV apply only to diverse tasks.
• AV is the only strategy that may return multiple valid trajectories even for non-diverse

tasks.
• FV/BV always select at most one trajectory; DV at most two; AV can return more.
• This design ensures a balance between efficiency (FV), diversity (AV), quality (BV), and

complementary coverage (DV).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

K TASK DOMAIN CLASSIFICATION METHODOLOGY

To assess the diversity of DARE-bench and verify its coverage across real-world scenarios, we clas-
sified each task into a primary domain (e.g., Finance, Health, Technology). Given the scale of the
benchmark (6,300 tasks), manual classification was infeasible. Therefore, we employed an auto-
mated LLM-based classification pipeline utilizing the rich metadata associated with each Kaggle-
derived dataset.

Metadata Usage. The classification relies on four key metadata fields:

• Title: The official name of the dataset.
• Subtitle: A short phrase summarizing the dataset content.
• Description: The full natural language description of the dataset context.
• Keywords: User-provided tags from the original Kaggle source.

Classification Taxonomy. To ensuring consistency, we defined a controlled vocabulary of allowed
domains based on common industry verticals: finance, health, business, technology, automotive,
education, environment, and others.

Prompt Design. We constructed a strict prompt to instruct the LLM to identify the single best
domain label. The prompt enforces a hierarchical reasoning logic: it prioritizes explicit domain
terms found in the user-provided keywords before inferring the domain from the title or description.
The full prompt template is provided below:

Domain Classification Prompt

Instruction: Identify the single best domain for a task using the provided metadata.

Input Data:
• Title: {title}
• Subtitle: {subtitle}
• Description: {description}
• Keywords: {keywords}

Example Domains: [agriculture, finance, health, business, technology, automotive, education, envi-
ronment, other]

Reasoning Steps:
1. Keyword Check: First, strictly check the provided ‘keywords’ list for any explicit domain

word (e.g., ‘finance’, ‘health’). If a match is found from the allowed list, select it immedi-
ately.

2. Inference: If no direct domain appears in the keywords, infer the most appropriate domain
based on the semantic context of the ‘title’, ‘subtitle’, and ‘description’.

3. Output Formatting: Output exactly ONE lowercase word from the allowed domains list.
Do not output punctuation, explanations, or spaces. If the domain is uncertain or does not fit
the specific categories, output ‘other’.

Output:

32

	Introduction
	Related Work
	DARE-bench
	Dataset Curation
	Task Formulation
	Features of DARE-bench

	Evaluation
	Experiment Settings
	Hyperparameter Sensitivity Analysis
	Model Comparison

	Fine-tuning LLMs with DARE-bench
	Conclusion and Future Works
	Reproducibility Statement
	The Use of Large Language Models (LLMs)
	limitations
	Evaluation Metrics
	Reinforcement Learning Training Details
	Reward design
	Other Training Parameters

	Detailed Description of Other DARE-bench Features
	Example Prompt for Column Inference and Task Identification
	Reference Code for Instruction-Following Evaluation
	Tool Schema and Task Examples
	Rejection Sampling Implementation Details
	Validity and Diversity Conditions
	Rejection Sampling Strategies

	TASK DOMAIN CLASSIFICATION METHODOLOGY

