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ABSTRACT

We present a simple meta quantization approach that quantizes different layers of
a large language model (LLM) at different bit levels, and is independent of the
underlying quantization technique. Specifically, we quantize the most important
layers to higher bit precision and less important layers to lower bits. We propose
two effective strategies to measure the importance of layers within LLMs: the first
measures the importance of a layer based on how different its output embeddings are
from the input embeddings (higher is better); the second estimates the importance of
a layer using the number of layer weights that are much larger than average (smaller
is better). We show that quantizing different layers at varying bits according
to our importance scores results in minimal performance drop with a far more
compressed model size. Finally, we present several practical key takeaways from
our variable layer-wise quantization experiments: (a) LLM performance under
variable quantization remains close to the original model until 25–50% of layers
are moved in lower quantization using our proposed ordering but only until 5–10%
if moved using no specific ordering; (b) Adding layer importance to inherently
dynamic quantization techniques can further improve their performance, showing
that our approach is complementary to other dynamic quantization methods; (c)
Quantizing LLMs to lower bits performs substantially better than pruning unless
extreme quantization (2-bit) is used; and (d) Layer-wise quantization to lower bits
works better in the case of larger LLMs with more layers compared to smaller
LLMs with fewer layers. Our code is publicly available at URL hidden for review.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable performance on a variety of tasks,
especially when scaled to billions of parameters Jiang et al. (2023; 2024); Touvron et al. (2023);
Zhang et al. (2022); Team et al. (2023). The largest open-source models available can have an
upwards of 400B parameters, such as LLaMa3-400B Touvron et al. (2023). Even small models such
as LLaMa3-8B require as much as 20GB of VRAM to run on a GPU at the original precision, making
them unusable for low resource settings. In such settings model compression techniques such as
quantization are critical Zhu et al. (2023); Wan et al. (2023).

Most prominent techniques for model compression broadly cover pruning Ma et al. (2023), knowledge
distillation Gu et al. (2023), and quantization Zhu et al. (2023). Pruning yields improvements in
inference speed, but often results in substantial performance drop Frantar & Alistarh (2023); Men
et al. (2024). On the other hand, quantization has proven to be a more robust solution for model size
compression with comparatively much smaller performance drops Lin et al. (2024). In our work, we
primarily focus on memory reduction through quantization. Further, quantization can be training
specific or post-training Yao et al. (2024), where trained models are quantized without requiring any
further training. We focus on post-training quantization due to its practicality.

The majority of quantization techniques proposed recently (Frantar et al., 2023; Xiao et al., 2023;
Yao et al., 2022, inter alia) focus on the quantization of all the LLM layers to a single precision
bit, or quantizing only specific weights of the network Lin et al. (2024). This has shown to be
costly, their effectiveness is data dependent, and their implementations can be considered moderately

1 The work was done while Razvan-Gabriel Dumitru interned at ServiceNow.
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challenging. In contrast, we propose a simple meta quantization technique that quantizes different
layers at different bit precision depending on their importance. Figure 5 shows an example of our idea.
We show that our approach is simple to implement, is independent of the underlying quantization
technique (e.g., we experimented with two prominent quantization techniques: GPT-Q (Frantar et al.,
2023) and Quanto1), performs well, and provides greater flexibility to compress models in varying bit
precision as per memory requirements.
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Figure 1: Overall intuition behind our
approach. We first rank the layers in an
LLM (e.g., LLaMa-2-13B here) in de-
scending order of an importance score
(shown here is ranking based on our
Layer Input Modification (LIM) score,
see section 3.1). The color intensity
of each layer, which represents their
LIM importance score (darker color in-
dicates higher importance score), high-
lights that the original layer structure
(left-hand side of the figure) does not
have the layers sorted according to their
importance. This observation holds for
several other LLMs (see Figure 6 in the
appendix). After sorting (right-hand
side of the figure), the 30 most impor-
tant layers are quantized in 4 bits while
the remaining 10 least important layers
are quantized in 2 bits, resulting in 3.5
bits as the average bit size.

The contributions of our work are as follows:

• We introduce a novel method for layer-wise quantization of
LLMs at different bit levels to achieve flexible lower bit preci-
sion overall. Our method is designed to maximize performance
under a given memory budget by keeping as many layers as
possible in higher precision. We accompany our method with a
detailed study, which highlights various important findings such
as importance of layer ranking for quantizing less important
layers with lower bits and more important layers with higher bit
precision. We show that models can be quantized significantly
more from 4-bit while retaining 90% of performance when
following our proposed order.
• We propose and study two layer importance scores for vari-
able quantization. To our knowledge, we are the first to propose
layer orderings for quantization. Our first score, named layer in-
put modification (LIM), is based on how much a layer changes
its input representations into the output ones. This score is cal-
culated with an unlabeled text calibration corpus. The second
scoring method, called z-score distribution (ZD), measures the
distribution of parameter weights within a layer to determine
its importance. Thus, ZD does not require calibration data. We
validate these scores by empirically showing that when LLM
layers are quantized to lower bits as per rankings from our two
importance scores, they retain performance much more strongly
than several other layer ordering baselines. We observe that
LIM performs better than ZD on average but the differences are
not large, and ZD has less performance variance for different
LLMs. We consider this a success for ZD, which is simpler and
does not require calibration data.
• We evaluate the impact of our variable quantization method
based on layer importance on five top performing LLMs from
different model families and different sizes. We draw several
important practical findings from these experiments: (a) LLM
performance under variable quantization remains close to the
original model when using our ordering until reaching the level
of 3.0–3.25 bits on average; (b) Quantizing LLMs to lower
bits performs substantially better than pruning; however, under
extreme quantization settings (i.e., <= 2-bits) pruning shows
slightly better results; (c) We show that quantization at two lev-
els (i.e., quantizing some layers in x bits and remaining layers
in y bits) performs much better than three levels of quantization,

suggesting that the interaction between layers with different quantization is complex and may need
more investigation; and (d) Layer-wise quantization to lower bits works better in the case of larger
LLMs with more layers compared to smaller LLMs with fewer layers.

2 RELATED WORK

Quantization techniques for large language models (LLMs) aim to reduce the precision of weights and
activations to lower-bits without significantly compromising performance (Zhu et al., 2023). Popular

1 https://github.com/huggingface/optimum-quanto
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Figure 2: Plots showing the effect of variable quantization for LLaMa2-13b and multiple datasets using Quanto.
The leftmost point indicates LLM performance when all 40 layers of the LLM are represented in 4-bit; the
rightmost point shows LLM performance when all layers are quantized to 2-bit. The dots on each curve (in each
plot) show accuracy when the model is quantized to lower bits by converting less important layers to 2 bits one
by one. Red and purple line indicate performance from 8bit and fp16 precision model (ceiling models). As
shown, there is no considerable performance drop from fp16 or 8-bit to 4-bit precision. Hence, we focus our
experiments on quantizing below 4 bits. The vertical gray line indicates the quantization point that preserves
90% of the 4-bit performance. The red line represents when layers are ordered randomly. We chose 3 random
orders of the layers and quantized layers to 2 bits as per these orders. The standard deviation in performance
from random orders are highlighted on the red curve. The curves are plotted on 2K evaluation data while results
on full data is summarized in table 1. The figure shows that our method retains performance much better under
more aggressive quantization than all baselines.

approaches include Post-Training Quantization (PTQ) (Banner et al., 2019) and Quantization-Aware
Training (QAT) (Liu et al., 2023). PTQ can be divided into static quantization, which uses a small
dataset to calibrate scaling factors for weights and activations, and dynamic quantization, which
quantizes activations on-the-fly during inference. Our study utilizes the static PTQ techniques such
as GPT-Q (Frantar et al., 2023) in our experiments for practicality, but, importantly, it is agnostic to
the actual quantization technique used.

A few works have highlighted 4-bit precision as a robust quantization limit for wide variety of NLP
tasks (Dettmers & Zettlemoyer, 2023). Our results (fig. 2 and 3) also show similar findings that
performance drop is small from bf16 to 8-bits, and then to 4-bits. Hence, our experiments focus
more on quantizing LLMs below 4-bits to highlight the effectiveness of layer-wise quantization based
on layer importance. Specifically, our empirical results (section 5) show that variable layer-wise
quantization can retain 90% of the performance with a notable compression up to 2.85-bits overall.
Concurrent (ArXiv preprint) work by Tai et al. (2024) also show effectiveness of variable quantization
in vision language models.

A few previous works have studied layer importance in transformers (Vaswani et al., 2017; Simoulin
& Crabbé, 2021). Some of the recent, (unpublished) concurrent works such as ShortGPT (Men et al.,
2024) have also proposed utilizing layer importance but primarily focusing on pruning. Shen et al.
(2020) had utilized hessian information from each layer as an importance measure to quantize specific
weight matrices at different bits. Different from these, our dynamic strategy focuses on utilizing layer
importance for quantizing more important layers in higher bits and less important layers in lower
bits. Importantly, our proposed approach of layer-wise quantization of LLMs based on their layer
importance is a meta method that can be coupled with any quantization techniques such as GPT-Q
and Quanto (section 3.3). We also compare ShortGPT’s layer importance-based pruning with our
layerwise quantization approach in section 6.1, and show that they are largely complementary.
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Figure 3: Plots showing the effect of variable quantization for Mistral-7b and multiple datasets using Quanto.
All notations are the same as in Figure 2. Again, the figure shows that our method retains performance much
better under more aggressive quantization than all baselines.

3 METHOD

At a high level, our meta quantization strategy operates in two steps: first, given an LLM with N layers
denoted as {L1,L2,L3, ....LN}, we first compute the importance of each layer. Second, we then
employ an existing quantization technique to quantize layers differently based on their importance.

3.1 LAYER IMPORTANCE SCORES

We propose two layer importance scoring methods.

We call our first layer importance score layer input modification (LIM). The intuition behind LIM is
that the more a layer changes its received input embeddings the more important it must be. More
formally, the LIM score for a specific layer Li measures the modification of the representations of
Li’s input (denoted by LI

i ) to create its output representations (denoted by LO
i ). A near similar score

has been also studied for pruning (layer removal) in a concurrent (unpublished) work (Men et al.,
2024). The LIM score is the negative of cosine similarity between LI

i and LO
i as shown below:

LIM(Li) = − LI
i · LO

i

∥LI
i∥∥LO

i ∥
(1)

The dot product LI
i · LO

i quantifies the alignment between the input and output vectors, while the
normalization factor ∥LI

i∥∥LO
i ∥ scales the dot product to the range of [-1, 1], corresponding to the

cosine of the angle between the two vectors. The negative sign in the LIM score indicates that a
higher similarity (cosine similarity closer to 1) between LI

i and LO
i results in a lower importance

score. For measuring change in LI
i to LO

i , we use all 50 documents of pg19! Rae et al. (2019a) (an
unlabelled text corpus) as calibration corpus.

Our second score, called z-score distribution (ZD), is based on the distribution of parameter values
and does not require any calibration data. Intuitively, this score considers a layer as more important if
it contains more weights that are much higher than average.

We examine the proportion of weights in a layer exhibiting a z-score greater than 1. The z-score of a
weight wi is defined as

zi =
wi − µ

σ
,

4
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where for layer Li, wi represents an individual weight, µ the mean of the weights, and σ their standard
deviation. The measure of interest, ZD(Li), is expressed as

ZD(Li) =
|LiZscore > 1|

Ni
,

quantifying the ratio of weights whose z-scores exceed 1 (|LiZscore > 1|) to the total number of
weights Ni in the ith layer.

Note that both these two scores have distinct advantages and disadvantages. LIM relies on runtime
information (i.e., changes in representations) so it is more aligned with inference behavior. However,
LIM requires a tuning dataset to compute these representations. In contrast, ZD does not require
calibration data as it uses solely the network parameters.

Baselines: To highlight the benefits of our layer importance scores, we compare them to three
baselines. The first baseline simply randomly ranks layers.2 The second baseline implements a
reverse LIM ordering. Finally, to compare our approach with pruning, we implemented the pruning
strategy of Gromov et al. (2024), who has shown that removing layers from the top of the LLM to be
an effective pruning strategy.

3.2 CHOOSING THE NUMBER OF LAYERS IN HIGHER PRECISION GIVEN A MEMORY BUDGET

Under a fixed memory budget, our approach aims to keep as many layers as possible in higher
precision. The maximum number of layers to keep in higher precision given available memory is easy
to compute. In particular, assume we have Mavailable memory available. Having all Nlayers layers in
the network in lower precision requires Mlower memory, while having all of them in higher precision
requires Mhigher memory. The maximum number of layers that can be kept in higher precision is
then calculated as:

Nhigher = ⌊Mavailable −Mlower

Mhigher −Mlower
∗Nlayers⌋

For example, if we have 20GB of VRAM available; a model with 32 layers takes 17GB in lower
precision (e.g., 2-bits) and 34GB in higher precision (e.g., 4-bits), then the number of layers using
higher precision is: Nhigher = ⌊ 20−17

34−17 ∗ 32⌋ = 5. This means that 5 of the layers can be in
4-bit precision and the other 32 − 5 = 27 have to be in 2-bit precision, for a total memory of
19.65GB < 20GB. This also underscores the practicality of our technique, as we do not add an
extra hyper-parameter that requires tuning and we make use of most of the available memory.

3.3 QUANTIZATION TECHNIQUES

To show that our meta quantization approach is independent of the underlying quantization tech-
nique, we couple it with two well-known post-training quantization techniques: GPT-Q and Quanto.
While our focus is not on low-level quantization methods, we summarize both methods below for
completeness.

3.3.1 QUANTO

Quanto is a fast-acting quantization method3 that simplifies the process of reducing precision after
training. In practice, Quanto achieves quicker quantization by applying uniform scaling factors across
all layers of a model, avoiding the need for detailed data-driven analysis of each layer’s distribution.
Similarly to most techniques, it allows for int2, int4, int8, and fp8 quantization. The Quanto library
is part of Hugging Face, with symmetric per-tensor or per-channel projection for int8 and float8,
and group-wise affine (with a shift or ’zero-point’) for lower bit-widths, such as int2 or int4. In this
paper, we used Quanto in the 2-bit and 4-bit setting, utilizing an asymmetric quantization method
with RTN (round to the nearest), with the exception of Table 5 where we used 4-bit and 8-bit settings.
In our implementation for variable quantization of different layers, we quantized the same model to
two different bit levels (int2 and int4). Then, based on the layer importance order, we selected less
important layers from the int2 quantized sets and more important layers from the int4 quantized sets.
2 We use multiple different random seeds for stability. 3 https://github.com/huggingface/optimum-quanto
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Quanto Quantization
Model Avg. Layers WNGD ARC PIQA HLSWG MMLU Avg.Acc.

bits 2-bits 4-2 bits

LLaMa-7B 4.0 0 67.9 74.2 77.3 55.9 38.4 62.7
Mistral-7B 4.0 0 72.5 78.8 79.8 59.3 55.5 69.2

LLaMa-13B 4.0 0 71.0 78.7 79.2 59.0 50.0 67.6
QWEN-7B 4.0 0 68.7 79.0 79.2 57.7 66.3 70.2

L
IM

O
rd

er
in

g

LLaMa-7B
3.68 5 65.6 68.7 74.6 53.7 36.6 59.8
3.37 10 65.3 61.9 70.6 49.8 34.3 56.4
3.06 15 60.8 45.6 64.3 42.2 27.6 48.1

Mistral-7B
3.68 5 71.7 74.0 76.7 56.4 54.9 66.7
3.37 10 69.3 61.8 70.0 50.1 51.7 60.6
3.06 15 59.4 43.6 61.2 37.6 26.4 45.6

LLama-13B
3.75 5 70.2 76.6 78.0 57.7 48.9 66.3
3.50 10 69.1 72.9 76.3 55.7 47.4 64.3
3.25 15 69.7 66.9 73.7 52.6 45.8 61.7

Qwen-2-7B
3.64 5 51.1 46.3 67.3 40.9 24.1 46.0
3.28 10 51.7 31.0 57.4 29.8 23.4 38.6
2.92 15 48.2 25.7 53.1 26.1 24.5 35.5

Z
-s

co
re

O
rd

er
in

g

LLama-7B
3.68 5 65.7 68.7 74.9 53.0 33.5 59.1
3.37 10 64.1 59.2 69.7 48.7 31.2 54.6
3.06 15 55.4 43.8 61.4 36.4 24.5 44.3

Mistral-7B
3.68 5 70.7 74.2 77.5 56.3 53.0 66.3
3.37 10 53.3 39.3 60.0 30.5 23.4 41.3
3.06 15 51.7 27.5 53.3 27.2 23.5 36.6

LLama-13B
3.75 5 70.3 76.0 77.2 57.1 48.1 65.7
3.50 10 70.7 72.3 75.8 54.6 47.0 64.1
3.25 15 68.9 66.8 72.1 51.9 47.0 61.3

Qwen-2-7B
3.64 5 63.1 61.0 70.5 48.4 55.6 59.7
3.28 10 51.5 29.3 53.6 27.0 25.3 37.3
2.92 15 49.9 26.0 52.5 26.0 25.0 35.9

Table 1: Accuracy on full evaluation datasets of different models quantized with Quanto. All layers start at
4-bits; we then quantize N number of layers in 2-bits where N is mentioned in the “Layers 2-bits” column. We
also show results for 8 to 4 bit quantization in Appendix in table 5. Average performances within 90% of the
4-bit model are highlighted in bold.

3.3.2 GPT-Q

GPT-Q is a post-training quantization technique specifically designed for GPT models (Frantar et al.,
2023). Utilizing a dataset, it calculates the necessary scaling factors for quantization. After training,
GPT-Q assesses the distribution of weights using this dataset to determine optimal scaling factors for
converting floating-point representations to lower-bit formats such as int8 or int4. We only used a
few data points for GPT-Q as it adds significant execution time overhead to our experiments. We
modified the GPT-Q implementation in the Hugging Face library (Wolf et al., 2019) for our use-case
in the same way as described above for Quanto.

4 EXPERIMENTS

4.1 MODELS AND HYPERPARAMETERS

We studied quantization on 5 LLMs from different model families and different sizes – LLaMa-2-7b
(Touvron et al., 2023), LLaMa-2-13B, Mistral-7b (Jiang et al., 2023), QWEN-1.8b, and QWEN-7b
(Bai et al., 2023). We evaluated these LLMs on 8 A100 GPUs with a batch size of 1 for inference
using an LLM harness library (Gao et al., 2023).
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GPT-Q Quantization
Model Avg. Layers WNGD ARC PIQA HLSWG MMLU Avg.Acc

bits 2 bits

L
IM

O
rd

er
in

g
LLama-7B

3.68 5 67.1 73.4 76.2 54.9 37.5 61.8
3.37 10 67.6 67.5 73.4 52.9 35.2 59.3
3.06 15 65.1 56.0 68.0 46.4 31.5 53.4

Mistral-7B
3.68 5 73.1 77.4 78.0 59.1 55.4 68.6
3.37 10 70.6 74.8 76.9 56.8 54.9 66.8
3.06 15 66.1 65.3 72.9 50.7 42.0 59.4

LLama-13B
3.75 5 71.4 77.5 78.5 59.0 49.3 67.1
3.50 10 71.8 76.4 77.7 58.2 48.2 66.5
3.25 15 72.6 73.7 75.7 56.7 47.3 65.2

Qwen-2-7B
3.64 5 62.0 67.2 77.0 52.0 56.6 63.0
3.28 10 56.7 53.1 71.4 45.5 29.4 51.2
2.92 15 53.4 45.0 66.4 42.0 25.0 46.4

Z
-s

co
re

O
rd

er
in

g

LLama-7B
3.68 5 67.2 71.1 75.9 54.9 38.1 61.4
3.37 10 68.0 66.9 73.1 52.1 33.7 58.8
3.06 15 62.9 56.7 67.8 46.2 28.5 52.4

Mistral-7B
3.68 5 72.9 77.7 78.8 59.2 55.1 68.7
3.37 10 69.1 72.1 74.8 53.2 38.9 61.6
3.06 15 62.0 52.7 65.6 39.5 25.1 49.0

LLama-13B
3.75 5 - - - - - -
3.50 10 71.3 75.0 76.4 57.4 48.2 65.6
3.25 15 72.3 73.5 76.2 56.4 45.7 64.8

Qwen-2-7B
3.64 5 69.1 71.1 75.2 54.0 64.3 66.8
3.28 10 65.6 65.2 71.6 48.2 47.5 59.6
2.92 15 54.8 50.0 66.7 42.8 30.4 49.4

Table 2: Comparison of 4 models and their performance across various tasks with GPT-Q quantization.

4.2 EVALUATION DATASETS

We select five diverse NLP tasks for evaluating the quantization effects: Winogrande (Sakaguchi et al.,
2021), ARC-easy (Clark et al., 2018), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), and
MMLU (Hendrycks et al., 2020). We also evaluate our approach on two generation datasets to cover
diverse tasks of reasoning and answer generation: GSM8K (Cobbe et al., 2021), which contains math
questions, and the Natural Questions (open) dataset (Kwiatkowski et al., 2019), which consists of
open-domain answer generation task. To calibrate the LIM score we used 50 samples from PG19
(Rae et al., 2019b), a data-set that is comprised of books published before 1919.

5 DISCUSSION OF RESULTS

Our main results are shown in Figure 2 and 3 (please also see Figure 8, 9, and 10 in Appendix). In both
these figures, we ranked the layers in the respective LLMs in descending order of their importance
score. The left most point in the plots indicates that all layers of Mistral-7b and LLaMa2-7B are
quantized in 4-bits; as we move to the right on x-axis, we quantize the next least important layer
to 2-bits. For example, the overall bit size of 3.75 mentioned on the x-axis represents 28 (most
important) layers in 4-bit and 4 (least important) layers in 2-bit. The horizontal red dotted lines
indicate the performance of the entire model represented in 8-bit precision; as shown, this performs
very similarly to the full model in 4-bit precision (the top left most point in Figure 2 and 3). Because
the gap between the full model in 8-bit vs. 4-bit precision was less than 1% across the majority of the
datasets, we focus mostly on quantizing below 4-bits precision in our experiments.

We draw the following observations from our experiments:

(1) Variable quantization is useful: The first key finding of our work is that a fixed quantization
technique can be extended to a variable number of bits by quantizing different layers at different bits
according to their importance. This allows LLMs to retain more of the original performance while
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4 to 2 bits 8 to 4 bits
Models Layers GSM8K NQ_open GSM8K NQ_open

2-bits F1 F1

L
IM

O
rd

er
in

g

LLama-Ins
5 7.5 15.0 10.5 36.6

10 1.5 6.7 13.5 37.9
15 0.5 3.1 11.0 35.4

Mistral-Ins
5 24.5 16.2 34.5 29.6

10 20.0 9.2 36.5 29.8
15 4.5 5.1 34.0 27.7

Z
O

rd
er

in
g LLama-Ins

5 6.0 11.7 12.5 37.3
10 3.5 5.3 12.5 36.9
15 1.0 1.8 10.0 34.7

Mistral-Ins
5 25.0 15.4 37.0 28.5

10 10.5 8.7 34.5 30.1
15 1.0 2.2 34.0 29.3

Table 3: Performance comparison of LLaMa-instruct-7b and Mistral-instruct-7b across two generation tasks -
GSM8K and Natural Questions open split.

Method Layers / Threshold Avg. Bits Wikitext Perplexity C4 Perplexity

O
ur

M
et

ho
d

32 3.94 5.6134 7.5941
27 3.90 5.6439 7.6101
22 3.85 5.6597 7.6326
17 3.81 5.6631 7.6487
12 3.76 5.6848 7.6737
6 3.71 5.7009 7.6938
0 3.65 5.7145 7.7126

Sp
Q

R

1.00% 3.94 5.6134 7.5941
0.85% 3.90 5.6403 7.6523
0.70% 3.85 5.6929 7.6878
0.55% 3.80 5.6883 7.7041
0.40% 3.75 5.7054 7.7060
0.25% 3.71 5.7151 7.7140
0.10% 3.65 5.7145 7.7126

Table 4: Comparison of our method and SpQR (Dettmers et al., 2023) on LLaMa2-7B on the same
avg. bit level/memory requirement. Our technique aims to optimize performance given memory
constraints, allowing quantization to fit more precisely within available memory, which, as shown,
improves results over fixed bit-width quantization. For SpQR, we fixed the bit levels to 3 and beta
values to 4, varying the outlier threshold from 0.1% to 1%. For our method, we applied SpQR with
thresholds of 0.1% to less important layers and 1% to more important layers based on LIM ordering.
The second column indicates the number of layers with a higher threshold for our method and the
outlier threshold for SpQR. We bold the higher values and we use italics to denote identical values.
Note that each row in the “Our Method” block should be compared with the row at the same position
in the “SpQR” block. That is, our setting with 32 layers in higher precision is comparable to SpQR
with the 1.00% outlier threshold; our setting with 0 layers in higher precision is comparable with
SpQR with all layers using 0.10% outlier threshold.

fitting in a reduced memory budget. Overall, our method of layer-wise quantization, guided by layer
importance, proves to be an efficient strategy for attaining adaptable precision bit levels.

(2) Layer importance scoring is crucial: In the figures we compare layer ranking using our LIM
and ZD importance scores with ranking using a reverse LIM and random ordering. As seen in fig. 2
and 3 the quantization of least important layers from 4-bit to 2-bit as per the LIM score ranking shows
strong performance retention. In contrast, quantizing based on the reverse of LIM score shows much
worse performance when most important layers are quantized to 2-bit, highlighting the strength of
meaningful layer ranking. Further, LIM and ZD ranking performs substantially better than random
ordering of layers baseline where we quantize layers to lower bits randomly. Lastly, LIM performs
better than ZD on average, but the differences are not large. In some cases, i.e., Figure 9, ZD performs
considerably better. We conjecture this is due to the fact that for this LLM the information gathered
from the dataset used to calibrate LIM transferred less well to the evaluation datasets. All in all, we
consider this a success for ZD, which is simpler and does not require calibration data.
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(3) Improving dynamic quantization techniques: Table 4 shows that we can use our technique
to further improve quantization techniques that are inherently dynamic. Although this is not the
main goal of the paper, it further underscores its usefulness and flexibility. The reason why this
works is because the SOTA quantization technique SpQR (Dettmers et al., 2023), similarly to most
dynamic techniques, choose a fixed percentage of values that will be quantized to higher precision in
each layer, while our techniques adds the fact that not all layers are equally important on top of it.
This also further shows that our proposed technique can be used an enhancement to any category of
quantization techniques.
(4) Layer-wise quantization is useful until 3.0–3.25-bits: As shown in fig. 2 and 3, our first key
observation is that quantization to 8-bits barely affects performance (red vs. purple line in each plot).
While there is marginal drop in performance when models are quantized to 4-bits, we observed really
noticeable drops only after the models are dropped below 3.0–3.25 bits on average using Quanto.
For example, the bit size for which performance drops below 90% on Winogrande for Mistral-7b,
LLaMa-7b, QWEN-7b, and LLaMa2-13b are 3.2, 3.1, 3.85, and 2.85 respectively.

(a) Quantizing from 8 to 4 bits against pruning (b) Quantizing from 4 to 2 bits against pruning

Figure 4: We compare quantization against pruning as a method to reduce the memory requirement
of a model (LLaMa-2-7b here). One increment means two layers moved to lower quantization for the
blue line (quantization), and one layer removed for the red and orange lines (pruning), thus reducing
the same amount of memory. We show the average accuracy over MMLU, Winogrande, PIQA, and
Hellaswag.

(5) Quantization is more useful for larger LLMs: Variable quantization of larger models (fig. 2)
using our importance score shows much better retention of performance with lower quantization bit
precision compared to moderately-sized LLMs such as LLaMa-7B (fig. 8 in appendix) and Mistral-7B
(fig. 3). Further, as we go down to even smaller LLMs such as QWEN-1.8B (see fig. 10 in Appendix)
with only 20 layers, we observed layer importance ranking to be not as effective. This observation
aligns with many other previous works that have shown quantization to be substantially more effective
for larger LLMs when compared to their smaller counterparts Jin et al. (2024).
(6) Our method is applicable to different quantization techniques: Tables 1 and 2 summarize
the overall results when quantizing individual layers with Quanto and GPT-Q, respectively. The
tables show that our method can be coupled with any other quantization techniques. On average,
GPT-Q leads to an average of 4% better accuracy than Quanto across all 5 tasks. Additionally, GPT-Q
enables models such as LLaMa2-13B to be quantized down from 4-bits to 3.25-bits with less than a
3% loss in average accuracy, as seen in Table 2.
(7) Effect on generation tasks: We also evaluate our approach of variable quantization of different
layers on generation tasks. As shown in table 3, we observe substantial drop in performance on both
GSM8K and NQ_open generation tasks when quantizing more layers in 2-bits. Importantly, the
performance drop in these generation tasks is more drastic when compared to the average performance
drop in classification tasks (table 1), emphasizing the need for more dedicated research in quantization
for generation tasks.

6 ANALYSES

We present several analyses to further spotlight on benefits from variable layer-wise quantization.
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6.1 PRUNING VS. QUANTIZATION

Figure 5: Comparison of LLaMa2-7b quantized be-
tween 8 and 4 bits with LLaMa2-13b quantized between
4 and 2 bits to check when the performance intersects.

We compare our variable quantization against
variable pruning (using the same layer impor-
tance ranking) as an alternative for the same
goal of reducing model memory requirement. In
Figure 4a, we show that for less extreme quan-
tization levels, it is significantly better to move
layers into lower quantization levels instead of
removing them. For example, when 2 least im-
portant layers are removed resulting in remain-
ing 30 layers (each in 8-bit) of LLaMa2-7b, the
average performance drops to 62.7% (shown by
red line denoting work by Gromov et al. (2024)).
But on the quantization counterpart with same
memory i.e., when 4 layers are quantized to 4-
bit and remaining 28 layers are in 8-bit (shown
by blue line), performance remains intact close
to 66.8% as shown in fig. 4a. When 12 layers are removed, the performance drops around 53% on
average while having 8 layers in 8-bits and 24 layers quantized to 4-bits (shown by blue curve) to
maintain the same size, average performance still remains intact and close to 66%. This highlights
the important finding that quantization until 4-bits overall is a substantially more effective strategy
compared to pruning for model compression.

On the other hand, in case of extreme levels of quantization (i.e., < 4−bits) as shown fig. 4b, it
is better to plainly remove layers. For example, as shown in fig. 4b where the model is initially
quantized with 4-bits, removing > 7 layers results in better average performance when compared to
quantizing > 14 layers in 2-bits. Thus, when model compression is requires to be the equivalent of
< 3-bits, pruning maybe the more effective strategy.

6.2 QUANTIZING LARGER VS. SMALLER LLMS

We further evaluate and compare feasibility of quantizing larger LLMs more drastically (i.e., < 4-bits
by quantizing less important layers in 2-bits and keeping more important in 4-bits) or quantizing
smaller LLMs moderately (i.e., < 8-bits by quantizing less important layers in 4-bits and keeping
more important in 8-bits). As shown in fig. 5, we quantize LLaMa2-13B < 4-bits and LLaMa2-7B
< 8-bits and compare them across different memory sizes. Our empirical finding suggests it is more
beneficial to quantize larger LLMs to smaller bits but only until a certain point, after which layer-wise
quantizing smaller LLMs moderately (≈ 6-bits) shows better performance.

7 CONCLUSION

We introduced a simple, flexible quantization approach that quantizes different layers at different bits
based on their importance. We presented two layer importance scoring techniques which when used
to select more important layers for quantizing them in 4 bits and less important layers in 2-bits lead to
strong performance retention across several LLMs even until 2.85 overall bit size. Our work presents
several key practical findings such as layer-wise quantization is more effective for larger LLMs (with
more number of layers), in the same memory setting; quantization is better than pruning until a
certain bit precision level, text generation tasks are affected more with quantization, etc. Overall,
our work introduces layer-wise quantization and presents detailed empirical findings for motivating
future research in this direction.
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A APPENDIX

A.1 QUANTIZING LAYERS USING 3 LEVELS

In all of our experiments, we have focused on two level quantization, i.e., either less important layers
are quantized in 2-bits and more important layers in 4-bits or less important in 4-bits and more
important in 8-bits. As a plausible variant, LLM layers can also be easily quantized using three levels,
i.e., least important layers in 2-bits, moderately important in 4 bits, and the most important ones in
8-bits. In our study, we observed three level quantization almost always performs worse than two
level quantization. We show three level quantization of LLaMa2-7b with fixed overall model bit size
of 4-bits. We first quantize all the 32 layers in 4-bits as shown by the leftmost bar of appendix A.1.
We then convert two least important layers to 2-bits each and one most important layer to 8-bits, thus
maintaining the overall bit size of the model to 4-bits. This is represented by second bar from the left
in fig. 7. We repeat the same process of converting two more layers in 2-bits and a more important
layer to 8-bits represented by the consecutive bars in fig. 7. As observed, three level quantization
always performs worse than one level quantization when the target bit-level is the same, thus we
don’t propose the technique as a way to achieve better performance for a set quantization level, but as
a way to achieve a variable level of quantization while retaining maximum performance.

A.2 LLAMA2 AND QWEN PLOTS

We show 4-bits to 2-bits variable layer-wise quantization for LLaMa2-7b and QWEN-7B in fig. 8
and fig. 9 respectively. All notations are same as in fig. 2. These curves were also generated on 2K
evaluation instances from each of the datasets.

A.3 COMMONALITY BETWEEN LAYER IMPORTANCE

To the best of our knowledge, we are the first one to propose layer importance and utilize the
importance order to quantize different layers at different bits. in Figure 6, we show the intensity bars
below for each layer based on their importance for four different LLMs with different number of
layers and sizes. As observed, there is a substantial pattern overlap of least important layers across
multiple LLMs. We observe that first and the last layer are the most two important layers. Many of
the important layers also tend to be the initial few set of layers. Lesser important layers (shown by
block of layers with faded intensity) tend to be towards halfway of middle and end of the network.
These observations suggest generalized patterns in layer importance across LLMs and pre-computed
layer importance orders can be roughly utilized to quantize a wide variety of LLMs.
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32 layers

Mistral-7B
32 layers

QWEN-7B
28 layers

So
rte

d 
by

 L
ay

er
 In

de
x

Figure 6: Visualization of the layer importance score for four different LLMs. Shown here is our Layer Input
Modification (LIM) score. The color intensity of each layer, which represents their LIM importance score
(darker color indicates higher importance score), highlights that the original layer structure does not have the
layers sorted according to their importance.

Figure 7: We compare different ways to achieve 4-bit quantization using three quantization levels.
Each bar going from left to right represents adding one important layer in 8 bits and moving two less
important layers to 2 bits, thus keeping an average of 4-bit quantization for all of the bars. Each bar
having a value x on the x-axis represents the most important x layers in 8-bits, the least important
2*x in 2-bits and the rest in 4-bits.

It is worth noting that (unpublished) concurrent works like Gromov et al. (2024) have presented an
empirical finding that layers towards the end of the model can be removed except the last layer. The
reverse order of layers indexes surprisingly has overlap with the importance order calculated with
our LIM score but we believe our LIM score is more broadly applicable to any LLM where even the
layers towards the end can be more important.
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Figure 8: Similarly to the other bit plots the graphs showcase the accuracy on four distinct data sets
when quantizing LLaMa2-7b from full 4-bits quantization to 2-bit by moving less important layers in
2-bits quantization

Figure 9: Qwen2 quantized with quanto between 4 and 2 bits. All notations are same as in fig. 2.

A.4 RESULTS OF 8-BITS TO 4-BITS QUANTIZATION ON DIFFERENT DATASETS

We show results of quantizing models lower than 8-bits. Following our proposed methodology, the
same techinque can be applied to have the more important layers in 8-bits and the least important ones
in 4-bits. While this does still increase the performance that can be fit within a memory requirement,
the results are not as major as the ones for the 4-2 bit range, thus we mainly focus on that range.
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Figure 10: Qwen1.5-1.8b quantized with quanto between 4 and 2 bits. All notations are same as in
fig. 2.

Models Layers WNGD ARC PIQA HLSWG MMLU Average
low-bits Accuracy

B
IO

rd
er

in
g

LLaMa2-7B
5 69.06 75.88 77.69 57.05 41.28 64.2

10 68.82 76.3 77.42 57.11 41.96 64.3
15 68.82 76.3 77.42 57.11 41.96 64.3

Mistral-7B
5 73.87 81.01 80.9 61.13 58.56 71.1

10 73.95 80.3 80.95 61.28 58.39 71.0
15 73.79 80.42 80.79 61.17 58.14 70.9

LLaMa2-13B
5 72.29 79.33 79.16 60.15 50.49 68.3

10 71.74 79.08 79.32 59.96 50.53 68.1
15 71.74 79.37 79.32 59.96 50.55 68.2

Qwen-2-7B
5 70.71 79.2 80.03 58.66 68.06 71.3

10 70.95 79.2 79.97 58.44 67.68 71.2
15 68.82 78.32 79.81 58.26 67.66 70.6

Z
O

rd
er

in
g

LLaMa2-7B
5 68.82 76.13 77.91 57.02 40.85 64.1

10 68.66 75.92 77.63 57.09 40.6 64.0
15 68.27 75.54 77.42 57.09 39.7 63.6

Mistral-7B
5 73.87 80.76 80.9 61.24 58.62 71.1

10 74.19 80.47 81.12 61.03 58.2 71.0
15 74.42 80.47 80.84 60.89 58.31 71.0

LLaMa2-13B
5 72.29 79.54 78.94 60 50.54 68.3

10 72.21 79.58 79.16 59.99 50.51 68.3
15 72.05 79.46 79.37 59.98 50.59 68.3

Qwen-2-7B
5 71.58 79.2 79.76 59.2 69.44 71.8

10 71.5 79.08 80.35 58.82 69.01 71.8
15 71.58 78.61 79.92 58.54 68.65 71.5

Table 5: Accuracy results of different models across various tasks for 8bit and 4bit quantization using
Quanto as the quantization technique.
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