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Abstract

Large language models (LLMs) have revolu-
tionized natural language processing, albeit at
the cost of immense memory and computation
requirements. Post-training quantization (PTQ)
is becoming the de facto method to reduce the
memory footprint and improve the inference
throughput of LLMs. In this work, we aim to
push the boundary of LLM PTQ by optimiz-
ing the weight rounding parameters with the
block reconstruction technique, a predominant
method in previous vision models. We propose
TesseraQ, an advanced PTQ technique, to quan-
tize the weights of LLMs to ultra-low bits. To
effectively optimize the rounding in LLMs and
stabilize the reconstruction process, we intro-
duce progressive adaptive rounding. This ap-
proach iteratively transits the soft rounding vari-
ables to hard variables during the reconstruc-
tion process. Additionally, we optimize the de-
quantization scale parameters to fully leverage
the block reconstruction technique. We demon-
strate that TesseraQ can be seamlessly inte-
grated with existing transformation-based PTQ
algorithms such as AWQ/OmniQuant/QuaRot,
significantly enhancing their performance. For
instance, when compared to AWQ, TesseraQ
improves the Wikitext2 perplexity from 14.65
to 6.82 in 2-bit weight quantization.

1 Introduction

Large Language Models (LLMs) have funda-
mentally transformed natural language processing
through their unprecedented capabilities. Modern
architectures like GPT-4 (Bubeck et al., 2023) and
LLaMA-3 (Meta, 2024) achieve their remarkable
performance by leveraging hundreds of billions
of parameters. However, this immense scale cre-
ates significant deployment challenges (Zhou et al.,
2024). The substantial memory and computational
requirements make these models impractical for
many real-world applications, particularly on con-
sumer devices or in resource-constrained environ-

ments (Dettmers et al., 2022). To address these
deployment challenges, quantization has emerged
as a promising solution. This technique reduces
the precision of model parameters and activations
from 32-bit floating-point (FP32) to more com-
pact representations such as 8-bit or 4-bit integers
(INTS, INT4). By decreasing the model’s mem-
ory footprint, quantization enables increased 1/0
throughput while often maintaining performance
within acceptable margins.

Post-Training Quantization (PTQ) (Gholami
et al., 2022) has perhaps become the most
widespread and the easiest way to compress the
LLM by reducing the bitwidth of the pretrained
model’s parameters. For example, with a sin-
gle GPU and a small number of input sequences,
GPTQ (Frantar et al., 2022) can compress an FP16
LLM into INT4 format by deriving the exact solu-
tion for quantization error minimization. Recent
works like AWQ (Lin et al., 2023), and Omni-
Quant (Shao et al., 2023) have pushed the com-
pression limit further with INT3 weight-only quan-
tization achieving a small performance gap with
respect to the FP16 baseline. However, in a more
challenging scenario like INT2 weight-only quan-
tization, these methods still incur a large perfor-
mance gap compared to the original FP16 model.

We hypothesize that this limitation stems from
the restricted optimization space in existing ap-
proaches. Most current methods confine their opti-
mization to distribution transformation or weight
clipping ranges (Lin et al., 2023; Wei et al., 2023;
Shao et al., 2023). While this approach is straight-
forward, it proves insufficient for ultra-low bit sce-
narios due to its constrained optimization space.
We argue that advancing LLM PTQ performance re-
quires a paradigm shift toward adjusting the entire
weight tensor. However, this ambitious approach
presents two critical technical challenges. First,
the optimization space must be carefully crafted to
provide sufficient exploratory freedom while pre-
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The overall workflow of our proposed method. (a) We apply TesseraQ to optimize the weight

rounding parameters when the transformation scale and clipping range are determined using prior methods like
AWQ/OmniQuant. (b) We propose Progressive Adaptive Rounding (PAR) for block-wise reconstruction, which
iteratively hardens some rounding variables and optimizes the rest soft rounding variables till they are all quantized.

serving the model’s essential behaviors. Second,
optimization through discrete operations necessi-
tates gradient estimation, but current estimation
techniques often lead to training instability.

To this end, we propose TesseraQ, a block re-
construction method tailored for LLM PTQ. To
improve the existing transformation-based method,
we adopt the rounding optimization space (See
Sec. 3.1 for details). A key innovation in TesseraQ
is the introduction of Progressive Adaptive Round-
ing (PAR), which eliminates the need for regular-
ization loss present in conventional rounding opti-
mization approaches (Nagel et al., 2020; Li et al.,
2021). This advancement is crucial for handling the
billions of parameters in modern LLMs. As illus-
trated in Fig. 1(b), PAR employs an iterative strat-
egy: systematically converting selected rounding
variables to binary values while optimizing remain-
ing variables to compensate for quantization errors.
To further enhance quantization quality, we com-
plement PAR with adaptive dequantization scale
tuning, which significantly improves the expres-
sive power of learned rounding parameters. Our
block-wise reconstruction framework enables effi-
cient optimization of individual LLM blocks using
a single GPU, making TesseraQ highly practical
for real-world applications. We summarize our
contributions as follows

1. We propose TesseraQ, a block-wise weight
rounding optimization method for LLMs.
TesseraQ) can be combined with existing trans-
formation or clipping methods like AWQ, Omni-
Quant, and QuaRot to obtain compelling results.

2. TesseraQ contains Progressive Adaptive Round-
ing and Dequantization Scale Tuning. Both can
stabilize the reconstruction process and effec-
tively optimize post-training performance.

3. Our method obtains excellent performance on
both perplexity metric and zero-shot accuracy
metric. For example, our method improves Om-
niQuant perplexity results from 37.4 to 8.0 on
LLaMA-2-7B W2A16 quantization. Moreover,
TesseraQ+QuaRot improves the average accu-
racy by 10% on LLaMA-3.1-8B W3A3 quanti-
zation as compared to GPTQ+QuaRot.

2 Preliminaries

This section briefly introduces the existing research
directions in LLM PTQ. We adopt uniform affine
quantization, which essentially discretizes the
floating-point representation of weights/activations
into low-bit fixed-point representation, given by
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the zero point (7, 8 € (0, 1] control the clipping
range). The resulting W¥ is in the INT-N format.
To restore it back to its original range, the dequan-
tization step is given by W = s x (W7 — z).
Optimization Objective. The plain rounding-
to-nearest (RTN) method directly quantifies the
model weights to integers without further optimiza-
tion. However, this method usually results in signif-
icantly low task performance. To improve the LLM
PTQ performance, parameters related to quantiza-
tion are optimized with different objectives. For ex-
ample, GPTQ (Frantar et al., 2022) and AWQ (Lin
et al., 2023) utilize the layer-wise reconstruction
objective, given by
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where ¢ € {1,2,..., L} is the layer index and X is
the input activations. While this layer-wise objec-
tive can provide efficient and exact solutions (Fran-
tar et al., 2022), the objective does not consider
inter-layer correlation like self-attention and resid-
ual connections in LLM. To this end, the block-
wise reconstruction objective has been proposed (Li
et al., 2021), as
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3)
where, blk refers to one decoder block in LLMs
comprising self-attention, projection, feed-forward
and normalization layers. 6® and 6® denote
the whole quantized and full-precision parameters
within the block. In practice, both layer-wise and
block-wise objectives enable efficient calibration
on a single GPU due to their local computation
attributes. However, block-wise objectives exhibit
better performance than layer-wise objectives as
they account for contributions from multiple layers.
Optimization Space. Generally, three kinds
of optimization spaces are explored in LLM PTQ,
(1) the scale transformation, (2) the clipping range
(i.e., finding the suitable v, 3), and (3) the weight
values. They can be tied with either layer-wise or
block-wise objectives. For instance, AWQ (Lin
et al., 2023) and OS+ (Wei et al., 2023) optimize
transformation and clipping range using Eq. (2),
while OmniQuant (Shao et al., 2023) does similar
optimization with Eq. (3). Since scale/clipping op-
timization methods are well-explored, in this paper,
we aim to optimize weight values using block-wise
objectives to further push the compression limits
of LLM PTQ.

3 TesseraQ: Ultra Low-Bit PTQ

3.1 Problem Statement

Previous research has explored various optimiza-
tion spaces for element-wise weight parameter ad-
justment. One prevalent approach, adopted by
methods like AdaQuant (Hubara et al., 2020) and
GPTQ (Frantar et al., 2022), involves learning
an unrestricted weight update A combined with
rounding-to-nearest (RTN) operations. However,
this optimization framework encounters significant
limitations with block-wise objectives. AdaQuant’s
reliance on the Straight-Through Estimator for gra-
dient computation becomes highly unstable at LLM
scale (see Appendix A), while GPTQ cannot derive
a closed-form solution for a whole block.

Given these challenges, we explore an alternative
weight optimization framework based on rounding
optimization (Nagel et al., 2020; Li et al., 2021),
which offers a fundamentally different optimiza-
tion space compared to GPTQ. Within our block
reconstruction objective (Eq. (3)), we define the
quantization function as:

01 — clamp(LZJ fa+2,02N - 1), (4)
where o € {0, 1} represents the binary rounding
variables. This rounding optimization framework
presents both advantages and challenges. On the
positive side, it constrains the range of each weight
parameter, enabling incremental improvements to
existing PTQ models like AWQ, OmniQuant, and
QuaRot through fine-grained weight adjustments.
However, the framework also faces some signifi-
cant limitations. For instance, optimizing binary
rounding variables necessitates either continuous
relaxation with regularization loss (Nagel et al.,
2020) or the use of STE (Hubara et al., 2020).
These requirements make the optimization of bil-
lions of rounding variables particularly challeng-
ing. Further evidence of the scaling difficulties
with traditional rounding optimization in LLMs is
presented in Appendix A.

3.2 Progressive Adaptive Rounding

We introduce Progressive Adaptive Rounding
(PAR), a novel differentiable framework for op-
timizing rounding variables « that overcomes key
limitations of previous approaches. At its core,
PAR begins by transforming the discrete round-
ing problem into a continuous optimization task
through Sigmoid reparameterization, where we ex-
press « as &« = o(v). We initialize the continuous
variable v using the inverse Sigmoid function ap-
plied to the fractional part of the scaled weights:
v=o0"%60/s— |0/s]). This initialization ensures
that our initial quantized weights match the original
weights exactly: 6=0.

PAR'’s key innovation lies in its dynamic treat-
ment of rounding variables through two comple-
mentary sets: Sparg and Ssoe. These sets corre-
spond to variables that have been committed to
binary values (hard rounding) and those that re-
main continuous (soft rounding), respectively. We
formalize this dual approach through the following
rounding function:
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The optimization process begins with an empty
Shara and proceeds through alternating phases: a
Harden Phase where selected variables from Sgof
are committed to binary values by moving them
to Spard, followed by a Soften Phase where the
remaining continuous variables are optimized to
compensate for any accuracy loss introduced by the
hardened variables. We detail these complementary
phases in the following subsections.

Harden Phase. The key to effective progres-
sive rounding lies in identifying which variables
can be safely committed to binary values while
minimizing the impact on reconstruction accuracy.
To make this determination systematic, we intro-
duce a scoring metric that quantifies how "ready" a
variable is for binary rounding:

HS(v)=|o(v)—0.5]. (6)

This score provides a decent measure of rounding
readiness: variables whose soft rounding values
(o(v)) are close to 0.5 receive low scores, indi-
cating that forcing them to binary values would
likely cause significant reconstruction error. Con-
versely, variables already close to binary values (0
or 1) receive high scores, suggesting they are prime
candidates for hardening. Leveraging this insight,
the Harden Phase proceeds by ranking all parame-
ters according to their H.S scores and transferring
the top P% of candidates to Syug- The progres-
sion rate P follows a carefully designed schedule,
starting at 0 and approaching 100 during block re-
construction. This schedule is not uniform: we
can advance rapidly in the early stages when many
variables are far from 0.5, but must proceed more
cautiously in later stages as we handle the more
challenging cases with fewer remaining soft vari-
ables to compensate for errors. Importantly, our
empirical analysis shows that TesseraQ exhibits
robust performance across different progression
schedules for P, provided they follow the princi-
ple of gradually decreasing progression rate. We
present a detailed investigation of various schedul-
ing strategies in our ablation study (Sec. 4.3).

Soften Phase. After committing certain vari-
ables to binary values in the Harden Phase, we need
to optimize the remaining soft variables to compen-
sate for any introduced quantization errors. We
formulate this as a gradient-descent optimization
problem:

min  ||blk(d, X) — blk(8,X)|[% ()

Vi i€ Sgoft

Algorithm 1: TesseraQ Calibration process
Input: FP16 LLM; Calibration dataset,
PAR iteration K, training steps T’

forallb =1,2,..., B-th block do
Collect input data to the block X, the FP

output block(6, X) ;
Initialize v and v;

forallk =1,2,..., K-iteration do
Calculate score (Eq. (6)) and

hard-round the variables with

highest Py % scores;

forallt =1,2,...,T steps do
Gradient Descend Eq. (7);

L Update v; for i € Ssoft and v;

Hard rounding all v and merge them into
original parameters and apply RTN;

return Quantized model,

This minimization objective seeks to maintain the
block’s output as close as possible to the origi-
nal unquantized version by adjusting the remain-
ing soft variables. While a straightforward imple-
mentation might use masking operations to dif-
ferentiate between soft and hard rounding vari-
ables, this approach would be computationally ex-
pensive at LLM scale. Instead, we developed a
memory-efficient implementation strategy: we set
hard-rounding variables to extreme values (co or
—00), leveraging the fact that the sigmoid function
naturally produces zero gradients for these values.
In general, we found that approximately 200 opti-
mization steps consistently achieve sufficient reduc-
tion in block reconstruction error. This empirically
determined step count provides a reliable balance
between optimization quality and computational
efficiency.

Post-Processing. After the entire PAR proce-
dure is finished, we apply hard-rounding o’(-) to
all variables and merge their values into the origi-
nal weights, and then we can use the standard RTN
(i.e., Eq. (1)). The merging can be effectively im-
plemented by

0« 0+sx (o (v)—0.5) (8)

We provide a pseudocode for the learning process
in Algorithm 1.
3.3 Dequantization Scale Tuning

During the PAR process, the quantized tensor 649
undergoes continuous changes. To accommodate



these dynamic adjustments, we propose Dequan-
tization Scale Tuning (DST), a process that exe-
cutes concurrently with PAR. Specifically, for the
dequantization step, we introduce an additional pa-
rameter v and represent it as

0 =20(v) xsx (07 —z). )

By initializing v to zero vectors (0), we begin with
a neutral dequantization scale factor (20(v)) of 1,
allowing the optimization process to adaptively ad-
just this value within a controlled range of (0, 2).
This sigmoid reparameterization serves two crucial
purposes: it ensures smooth training dynamics and
reduces the sensitivity to learning rate selection,
making the optimization process more robust. Im-
portantly, we deliberately chose to optimize the de-
quantization scale rather than the quantization scale
s in Eq. (1) for two fundamental reasons. First,
modifying s would alter the underlying rounding
mechanism itself (Nagel et al., 2020), potentially
destabilizing the optimization process. Second, op-
timizing s would necessitate the use of STE, which
introduces bias into gradient calculations, poten-
tially leading to suboptimal solutions.

4 Experiments

4.1 Experiements Setup

Most of our experiment setups are similar to Om-
niQuant (Shao et al., 2023), which also adopts
block reconstruction loss function. Specifically,
we employ asymmetric uniform quantization with
2/3/4-bit integers. We test both per-group and per-
channel weight quantization. For example, we use
the notation W2A16g64 to denote the 2-bit per-
group (group size is set to 64) weight-only quan-
tization. In weight-activation quantization experi-
ments, defaults are W4A4, W3A3, and W4AS8 with
per-channel weight and per-token activation quan-
tization (Dettmers et al., 2022; Shao et al., 2023).

Calibration Data and Comparison. We re-
port two types of evaluation metrics, the perplex-
ity metric for evaluating the upstream datasets
like WikiText2 (Merity et al., 2016), C4 (Raffel
et al., 2020), and the average accuracy of 5 down-
stream reasoning tasks including PIQA (Bisk et al.,
2020), ARC easy/challenge (Clark et al., 2018),
WinoGrande (Sakaguchi et al., 2021) and Hel-
laSwag (Zellers et al., 2019). The perplexity is
evaluated with 2048 sequences. We use 512 2048-
token segments from the WikiText2 training dataset
as calibration data for perplexity comparison and

for downstream task comparison, we sample cali-
bration data from the C4 training dataset. We use
Im_eval (ver(0.4.2) to evaluate accuracy.

Training. We set the total PAR number of
iterations K to 20 and gradually increase the Py
from O to 100%. In each iteration, we optimize
the learnable parameters (v and v) for 250 training
steps. We use the Adam optimizer with a fixed
learning rate of 1e — 3. The batch size is set to 4.
We use AWQ transformation (Lin et al., 2023) to
initialize our model since we find AWQ initializa-
tion is slightly better than OmniQuant across all
configurations except W2A16 quantization.

Models and Baselines.  For the upstream
tasks, we follow OmniQuant (Shao et al., 2023) to
test weight-only quantization results on LLaMA-1-
7B/13B/30B/65B (Touvron et al., 2023a), LLaMa-
2-7B/13B/70B (Touvron et al., 2023b) and LLaMA-
3-8B/70B (Meta, 2024). In this case, we compare
GPTQ (Frantar et al., 2022), OmniQuant (Shao
et al, 2023), AWQ (Lin et al., 2023), Sign-
Round (Cheng et al., 2023) and GPTQ with
QuaRot (Ashkboos et al., 2024). For downstream
tasks, we test LLaMA-2-7B, LLaMA-3-8B/70B
across 5 downstream tasks. We compare GPTQ,
AWQ, OmniQuant, and SignRound.

4.2 Main Results

Perplexity Evaluation. We summarized the Wiki-
text2 perplexity (PPL) results in Table 1. Our
method consistently outperforms existing meth-
ods like AWQ and OmniQuant, particularly for
the low-bit W2A16 configuration. On LLaMA-2-
7B with W2A16 quantization, OmniQuant only ob-
tains 37.37 PPL while our method largely improves
this result to 8.05. In addition, LLaMA-3-8B
demonstrates extremely low quantization resiliency,
where the AWQ model crashed in W2A16g128
quantization. Our method, on the other hand, sig-
nificantly improves the perplexity from 334 to
10.03. We observe that in general, the lower the
bitwidth, the more improvement we can obtain
from TesseraQ. This confirms our initial intuition
that extremely low-bit weight quantization requires
a thorough adjustment of each weight element.
Additionally, the C4 (Raffel et al., 2020) PPL re-
sults are provided in Appendix: Table 7. Overall,
C4 PPL results concur with the Wikitext2 results,
demonstrating a similar trend in performance im-
provement. For example, TesseraQ improves the
PPL of LLaMA-2-7B model from 90.64 to 14.82
with W2A16 quantization.



Table 1: Weight-only quantization results of LLaMA-1/2/3 models. We report WikiText2 perplexity (PPL |). *,
T, 1 means initialized from AWQ, OmniQuant, and QuaRot, respectively.

LLaMA1&2 Method L1-7B L1-13B L1-30B LI1-65B L12—-7B L2—13B L2-70B L3—-8B L3—70B
FP16 - 5.68 5.09 4.10 3.53 5.47 4.88 331 6.14 2.85
GPTQ 2.1e3 5.5¢3 499.75 55.91 7.7¢3 2.1e3 71.95 8.4e4 1.6e4
GPTQ? 11.13 9.14 7.04 5.91 18.77 10.84 5.68 24.98 16.29
W2A16 AWQ 1.1e5 7002 1.2¢5 6.3¢6 2.9¢6 6.2¢3 3973 4.1e5 8.6e4
OmniQuant  15.47 13.21 8.71 7.58 37.37 17.21 7.81 - -
TesseraQ' 7.56 6.56 5.75 5.21 8.05 6.55 5.26 17.88* 11.56*
GPTQ 44.01 15.60 10.92 9.51 36.77 28.14 NAN 226.7 16.06
GPTQ! 16.25 8.14 6.62 5.61 16.10 9.29 5.32 17.43 30.89
W2A16 AWQ 13.08 10.02 7.46 6.08 14.65 8.93 572 334.1 10.98
2128 SignRound  641.8 8.36 7.13 5.52 NAN 7.64 NAN - -
OmniQuant  9.72 7.93 7.12 5.95 11.06 8.26 6.55 - -
TesseraQ* 6.92 6.07 5.26 4.83 6.82 5.92 4.73 10.03 7.47
GPTQ 22.10 10.06 8.54 8.31 20.85 22.44 NAN 86.32 11.78
W2A16 GPTQ! 11.44 7.70 6.23 5.26 15.30 9.17 5.19 16.58 21.50
264 AWQ 10.65 8.66 6.65 5.58 11.87 7.81 5.30 53.07 9.04
OmniQuant  8.90 7.34 6.59 5.65 9.62 7.56 6.11 - -
TesseraQ* 6.78 5.97 5.18 4.70 6.67 5.81 4.60 9.28 6.96
GPTQ 8.06 6.76 5.84 5.06 8.37 6.44 4.82 16.84 18.94
GPTQ? 6.15 5.45 453 4.01 6.13 5.35 3.72 7.54 5.22
W3A16 AWQ 8.49 6.38 5.89 6.03 14.17 6.42 422 11.79 12.28
OmniQuant  6.49 5.68 474 4.04 6.58 5.58 3.92 - -
TesseraQ* 5.99 5.35 4.44 3.89 5.84 5.16 3.68 7.46 5.12
GPTQ 6.55 5.62 4.80 4.17 6.29 5.42 3.85 9.58 5.25
GPTQ? 6.07 5.41 448 3.92 5.99 5.28 3.65 7.42 4.98
W3A16 AWQ 6.38 5.52 459 3.92 6.19 5.30 372 8.24 4.63
g128 SignRound 6.28 5.45 4.50 3.90 8.09 5.23 3.68 - -
OmniQuant  6.15 5.44 4.56 3.94 6.03 5.28 3.78 - -
TesseraQ* 5.95 5.32 4.40 3.82 5.71 5.11 3.61 6.90 4.13
GPTQ 6.13 5.40 448 3.83 5.83 5.13 3.58 7.28 4.94
GPTQ? 5.78 5.20 424 3.65 5.61 5.00 3.42 6.57 3.59
WAAL6 AWQ 5.99 5.24 430 3.71 5.82 5.07 3.49 7.09 5.19
OmniQuant  5.86 521 425 3.71 5.74 5.02 3.47 - -
SignRound 5.93 5.21 423 3.65 5.81 5.00 3.40 - -
TesseraQ* 5.78 5.17 4.20 3.63 5.56 4.96 3.40 6.48 3.33

Weight-Activation Quantization Evaluation.
We test weight-activation quantization scenarios
with per-channel weight quantization and per-
token activation quantization. We experiment
with W4A4, and W4AS8 quantization and com-
pare with three baselines, Atom, QuaRot, and
QuaRot+GPTQ, which are best practice utilizing
rotation. We also test our method on QuaRot trans-
formations. The results are provided in Table 2,
which summarizes the perplexity on WikiTex2, C4
and average accuracy on downstream tasks. We ob-
serve a slightly better performance of our method
with TesseraQ compared to GPTQ. Additionally,
on the more challenging 3-bit quantization scenario,
TesseraQ also exceeds GPTQ by 10% accuracy on
the 8B model. Detailed accuracy results are given
in Appendix B.

4.3 Ablation Studies

All ablation studies are conducted on LLaMA-2-7B
model with W2A16g128 quantization.
Calibration Data. In this section, we compare

the performance of different calibration datasets
and sizes. We sample calibration data from either
WikiText2 (Merity et al., 2016) or C4 (Raffel et al.,
2020) training dataset. We also experiment with
the different sample sizes, ranging from 128 to
512. Meanwhile, we change the batch size during
rounding optimization, ranging from 1 to 4.

Table 3 demonstrates the task performance (PPL
and average accuracy metric) as well as the cali-
bration costs (algorithm runtime and GPU memory
footprint). First, we find that the source of calibra-
tion data will impact the perplexity evaluation. The
performance benefits if evaluation data and calibra-
tion data are from the same dataset. For example,
the C4-calibrated model has 1.2 higher WikiText2
PPL than the WikiText2-calibrated model. Second,
increasing the number of samples and the batch
size consistently improves the task performance.
However, it may also lead to higher runtime and
GPU memory consumption, which may be allevi-
ated via multi-GPU calibration. Nevertheless, it is
worthwhile to note that even with 128 samples and



Table 2: W4A4/W3A3 quantization results of LLaMA-1/2/3. We use per-channel weight quantization and
per-token activation quantization *, T means initialized from AWQ, QuaRot.

Bitwidths Methods LLaMA-7B LLaMA-2-7B LLaMA-3-8B
WT2(}) C4()) Avg. (1) WT2(}) C4()) Avg (1) WT2(}) C4() Ave (1)
FP16 Pretrained 5.68 7.08 62.30 5.47 6.97 64.87 6.24 9.54 69.25
Atom (W4A4g128) 6.16 7.70 60.17 6.14 - - - - -
WA4A4 QuaRot 8.37 11.44 55.38 14.19 19.72 47.57 17.83 28.08 51.83
GPTQ' 6.10 8.01 61.37 6.00 8.19 61.45 7.85 12.70 62.87
TesseraQ' 6.07 8.00 61.92 5.92 8.03 61.75 7.45 11.35 65.12
Atom (W3A3g128) 11.77 15.43 49.28 - - - - - -
W3A3 QuaRot 2315 1665 35.53 10996 10940 35.18 91551 65662 35.25
GPTQ' 11.57 13.89 50.82 13.90 15.08 44.62 79.06 106.23 37.87
TesseraQ' 10.79 13.68 51.10 9.09 12.76 50.13 27.80 30.81 47.33

Table 3: Ablation studies of calibration data source and data sizes. We report the LLaMA-2-7B W2A16g128
quantization results with task performances and calibration costs.

#Samples Batch Runtime/ Calib. Data: WikiText2 Calib. Data: C4

Size GPUMem.  WikiText2(}) C4()) Avg.(?) WikiText2(}) C4(l) Avg.(1)
128 1 3.2h/17.5GB 7.33 11.39 56.58 8.54 10.83 56.87
256 2 3.9h/28.6GB 7.10 11.16 57.17 8.32 10.66 57.85
512 2 4.0h/40.4GB 7.14 11.22 57.42 8.22 10.47 58.56
512 4 6.0h/65.4GB 6.82 10.77 58.35 8.05 10.29 59.27

a batch size of 1, our TesseraQ can significantly
improve the baseline AWQ results.

PAR Schedule. We investigate how to adjust
the P during progressive adaptive rounding. In
our implementation, we use a handcrafted design,
which manually decreases the soft rate (i.e., the
percentage of soft rounding variable) as shown in
Fig. 2. Our handcrafted design gradually decays the
soft rate. To demonstrate that our PAR is quite ro-
bust to the schedule of soft rate, we also test several
rule-based adjustments, which adjust the soft rate
as Wl(m), where z € (0, 1] is the scaled iteration
number and ¢ is the temperature hyper-parameter.
We test t = {2,3,4,5,6,7} and compare it with
our handcrafted implementation with LLaMA-2-
7B W2A16g128 quantization. The results in Fig. 2
show that ¢ = 4, 5 and our handcrafted adjustments
obtain the best performance. Overall, we find that
our algorithm is not sensitive to the scheduling,
and has consistently superior performance than the
AWQ initialized model.

Algorithm choices. We also test the algorithm
choices in TesseraQ . To be more specific, we ex-
periment with block reconstruction with or without
progressive adaptive rounding (PAR) and dequanti-
zation scale tuning (DST) and compare their final
task performance. As shown in Table 4, both PAR
and DST contribute a lot to the final perplexity
metric (denoted by WT2 (WikiText2) and C4) and
average accuracy (denoted by Avg.). Remarkably,
applying one of them solely can also improve the

Table 4: TesseraQ Algorithm choices.

PAR DST WT2 C4 Avg.
X X 14.65 18.67 50.52
4 X 7.72 1195 56.79
X 4 8.58 13.14 54.45
4 4 6.82 10.77 58.35

AWQ baseline (first row) results by a large margin.

4.4 Hardware Evaluation

To demonstrate the weight compression effect and
the inference throughput change, we test LLaMA-
3-8B/70B under different GPU environments, ker-
nel backend and different bitwidths. Table 5 sum-
marizes the results of inference throughput (gen-
erated token per second) with batch size 1 or 16.
Remarkably, W2A16g128 reduces the weight mem-
ory of the 70B model from 132GB to 21GB. For
inference speed, the INT2 dequantization kernel (in
Triton (JonathanSalwan) support) is currently less
optimized, especially for larger models, expend-
ing lower throughput compared to FP16 on 70B
model. Remarkably, on smaller scale like 8B, INT2
can significantly increase the inference speed. We
find that INT4 with Exllama kernel can increase
the throughput when batch size is 1 and achieve
similar throughput with FP16 model when batch
size is 16. Nonetheless, it is worthwhile to note
that our TesseraQ complies with standard uniform
quantization formats and can be deployed with var-
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Figure 2: Ablation study of PAR schedule. We experiment several rule-based P adjustments and one handcrafted
adjustment. (AWQ baseline results: average PPL: 16.66, average acc.: 50.52).

Table 5: Comparison of weight memory compression
and inference throughput. We measure LLaMA-3 se-
ries model under various bitwidth/backend. WM stands
for weight memory, T'P,, denotes inference throughput
with a batch size of n (output token/s).

Model BitWidth Backend WM TP TP
FP16 Pytorch  15GB 49.23 358.1
L3-8B  W4A16g128 Exllama 5.5GB 57.54 361.1
W2A16g128 Triton 39GB 1653 545.5
FP16 Pytorch OOM N/A N/A
L3-70B W4A16g128 Exllama 39GB 26.23 86.94
W2A16g128 Triton 21GB 493 5435

ious kernels that support uniform quantization on
various devices.

5 Related Work

Quantization has been a primary method to com-
press and accelerate off-the-shelf large models. Sur-
vey papers by (Gholami et al., 2022) and (Nagel
et al., 2021) have systematically summarized the
progress of quantization. Here, we list several ma-
jor quantization works, especially for LLMs.
Post-Training Quantization for LLMs. While
Quantization aware Training (QAT) guarantees bet-
ter task performance in low-bit quantization, PTQ
is more suitable for LLM due to its less reliance on
computing resources and training data. PTQ meth-
ods like (Frantar et al., 2022; Lin et al., 2023; Wei
et al., 2022, 2023; Shao et al., 2023; Chee et al.,
2023; Liu et al., 2023a) improve the uniform quan-
tization performance by optimizing weights, trans-
formation scales, and clipping ranges. Our method
continues improving the uniform quantization ef-
fect by incorporating rounding optimization. Other
works try to improve PTQ in LLMs in different
ways. For example, AQLM and GPTVQ (Egiazar-
ian et al., 2024; van Baalen et al., 2024) explore
non-uniform quantization schemes for weight-only
quantization, which may better match the distribu-
tion of weights. LLM.int8 (Dettmers et al., 2022),

BiLLM (Huang et al., 2024a), SiLLM (Huang et al.,
2024b) apply mixed-precision quantization to keep
salient weights in high precision and maintain the
accuracy. However, these methods cannot be ap-
plied to quantize activations and thus cannot sup-
port integer MatMul. QuaRot (Ashkboos et al.,
2024), SpinQuant (Liu et al., 2024) target activa-
tion outliers and eliminate them through the rota-
tion matrix. We have demonstrated that our method
can also be combined with them.

QAT for LLM. Recent works also explore QAT-
based quantization for LLMs. To reduce data ac-
cess, LLM-QAT (Liu et al., 2023b) generates lan-
guage data for data-free QAT. To prevent massive
weight memory usage, Q-LoRA (Dettmers et al.,
2023) applies quantization-aware low-rank adap-
tation for finetuning. Recently, BitNet and BitNet
b.158 (Wang et al., 2023; Ma et al., 2024) trained
a 1-bit and 1.58-bit model from scratch, enabling
multiplication-free LLM. However, these methods
are hard to scale up due to the massive memory
and computation requirements, especially for more
than 70B models. As a result, they only focus on
1B~3B-scale models.

6 Conclusion

In this paper, we have proposed TesseraQ, a PTQ
method for effectively calibrating large language
models. Based on block reconstruction, TesseraQ
optimizes weight rounding through a progressive
approach that iteratively hardens and softens the
rounding variables. Together with dequantization
scale tuning, TesseraQ can be seamlessly com-
bined with other PTQ methods like transformation,
clipping, and rotation, to reach compelling perfor-
mance. We demonstarte TesseraQ’s superiority on
open source LLaMA models. TesseraQ pushes
the performance boundaries of quantized LLMs,
in terms of perplexity, downstream accuracy, and
hardware performance.



Limitations

TesseraQ shares some limitations in terms of al-
gorithm runtime, which may require longer pro-
cessing time than existing baselines. For example,
the LLaMA-2-7B takes 3~6 hours to finish the
calibration process, while for AWQ/GPTQ, the cal-
ibration time is around 0.5 hours. Nevertheless,
compared to QAT, our method still exhibits remark-
able resource efficiency in required data and GPU
memory. We leave how to accelerate rounding op-
timization in our future directions.
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A Ablation Study on Rounding
Optimization

In order to demonstrate the effectiveness of our
proposed PAR, we compare our method with the
several rounding optimization variants here.

AdaRound (Nagel et al., 2020). For AdaRound,
the optimization is formulated by

min |[[WX - WX||7 + 21— [20(v) — 117,
V)
st. W=sx (W7—z),

Wi = C]&mp(tgj +o(v) +2,0,2Y — 1).
(10)

This method utilizes the layer-wise reconstruction
objective and a regularization loss. Both A and 3
control the strength of the regularization loss dur-
ing optimization, which encourages the rounding
variables to move towards 0 and 1.

AdaQuant (Hubara et al., 2020). This method
directly utilizes the STE method to optimize the
weighs, given by

i [ WX~ W[

st. W=sx (W?—2z),

Wi = clamp(LMW +12,0,2N — 1),
s
0|z
— =1.
ox

(11
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Note that AdaRound and AdaQuant have not
implemented their method on LLMs before. There-
fore, we implement their method on our own and
use the default hyper-parameters in their paper.
Specifically, we experiment with the LLaMA-2-7B
W2A16g128 quantization case, where the model
is uniformly initialized from the AWQ checkpoint.
Each weight tensor will be optimized for 5000 iter-
ations for a fair comparison. We compare 3 meth-
ods, AdaRound, AdaQuant, and our PAR, with
either layer-wise objective (Eq. (2)) or block-wise
objective (Eq. (3)). For AdaRound, we set the
learning rate the same as our method and while for
AdaQuant the learning rate was le-5. The results
are shown in the Table below.

Generally, we find that PAR consistently outper-
forms the other two rounding methods regardless
of which objective. We think the reason is that
we explicitly control the hardness of rounding vari-
ables through the progressive approach. While
AdaRound and AdaQuant, they are less optimized
on LLMs and may require more hyper-parameter
search.

Table 6: Ablation study on rounding method. The
results are reported on LLaMA-2-7B W2A16g128 quan-
tization.

Rounding Method Objective ~ WT2(]) C4(])
None (AWQ) Layer 14.65 18.67
AdaRound Layer 10.68 15.67
AdaQuant Layer 16.78 21.34
PAR Layer 9.43 12.79
None (OmniQuant) Block 11.06 16.34
AdaRound Block 9.05 11.45
AdaQuant Block 10.05 14.87
PAR Block 6.82 10.77

B More Experimental Results

In this section, we include additional experimental
results from the main section.

B.1 Detailed Accuracy of W4A4/W3A3
Quantization

Table 10 provides the detailed accuracy of each
zero-shot tasks in W4A4/W3A3 quantization.

B.2 Results on C4

We demonstrate the perplexity results on the C4
datasets in Table 7. Note that the OmniQuant re-
sults are re-evaluated using the official checkpoint,
which is slightly higher than the original paper
results (Shao et al., 2023). Since the evaluation pro-
tocol can be different across different papers, we
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ensure use of the same evaluation protocol to com-
pare different methods. Note, we restrict all models
here from using the WikiText2 calibration data as
the calibration data will affect the perplexity metric
as shown in our ablation study. The improvements
of our method over existing approaches are consis-
tent with the results on the WikiText2 dataset.

Results on Smaller-Size LLM for Edge Infer-
ence. In addition to LLMs that are deployed on
GPUs, we also test the performance of smaller-size
LLMs geared for edge devices. We test LLaMA-
3.2-1/3B models and compare them with AWQ
in Table 6. We observe that our method signifi-
cantly outperforms AWQ across different bitwidths
in WikiText2 perplexity and average downstream
task performance.

B.3 'W4AS8 Quantization

We also provide the W4AS8 quantization in Table 8.
Overall we find a small difference in W4A8 quanti-
zation due to the 8-bit per-token activation quanti-
zation.



Table 7: Weight-only quantization results of LLaMA-1 and LLaMA-2 Models. We report C4 perplexity in this
table. *, ¥ means initialized from AWQ, and OmniQuant, respectively.

LLaMA1&2/PPL| 1-7B 1-13B 1-30B  1-65B 2-7B  2-13B  2-70B
FP16 - 7.08 6.61 5.98 5.62 6.97 6.46 5.52
RTN 1.3¢5 5.6¢4 2.7e4 2.2¢4 4.8¢4 7.2¢4 2.4e4
woale  GPTQ 689.13  2.5¢3 169.80  40.58 NAN 32312 4882
OmniQuant  26.03 18.94 14.55 11.47 90.64 26.76 13.33
TesseraQ' 13.28 1143 10.81 8.52 14.82 11.96 9.15
RTN 1.0e3  447.64 9945 17.15 4.9¢3 139.65 4213
woale  GPTQ 27.71 15.29 11.93 11.99 33.70 20.97 NAN
o128 AWQ 16.35 12.93 10.07 8.78 18.67 11.88 8.49
OmniQuant 1406 11.27 1037 8.65 16.34 12.14 9.33
TesseraQ* 10.64 9.36 8.36 7.64 10.77 9.48 7.63
RTN 15143 76.00 30.07 1134 47535  28.69 13.43
woale  GPTQ 17.71 11.70 9.92 10.07 19.40 12.48 NAN
264 AWQ 13.47 11.35 9.12 8.11 15.13 10.85 7.77
OmniQuant 1279 10.60 9.46 8.18 13.79 11.02 8.61
TesseraQ* 10.32 9.05 8.18 7.48 10.50 9.23 7.44
RTN 28.26 13.22 28.66 1279 40235 1251 10.02
wialg  OPTQ 9.49 8.16 7.29 6.71 9.81 8.02 6.57
AWQ 11.16 8.37 7.91 8.62 16.25 8.90 6.50
OmniQuant  8.73 7.68 6.86 6.31 9.24 7.89 6.31
TesseraQ* 8.15 7.38 6.60 6.16 8.30 7.41 6.08

Table 8: Weight-activation quantization Results of various LLMs. We report the accuracy of 5 reasoning tasks

(1)

Models Bitwidths Methods PiQA ArcE ArcC HellaSwag WinoGrande Avg.
FP16 - 7747 5248 4146 73.00 67.07 62.30

SmoothQuant 75.19 7045 3745 51.06 64.87 59.81

LLaMA-7B WAAS OS+ 7842 7449 4061 55.53 69.37 63.75
AWQ 7763 7331  41.89 55.50 69.85 63.65

TesseraQ* 78.89 7533 4155 56.11 69.14 64.21

FP16 - 7807 7634 4351 57.17 69.21 64.87

SmoothQuant 7524 7095  38.39 51.30 63.85 59.95

LLaMA-2-7B WAAS Outlier Supp.+  77.09 7474 42,57 56.37 68.51 63.86
AWQ 77.09 7436 4232 56.25 69.53 63.91

TesseraQ* 7742 7626  41.63 56.42 69.22 64.19

FP16 - 79.54  80.09  50.17 60.13 73.24 68.64

SmoothQuant 7198 6637 3455 50.46 67.40 58.16

LLaMA-3-8B WAAS Outlier Supp.+ 7791  78.78  48.03 58.83 72.53 67.22
AWQ 79.00 7840  48.63 58.81 72.45 67.46

TesseraQ* 78.99  79.88 4761 59.09 72.77 67.67

SmoothQuant 79.59 7756 46.50 57.62 71.11 66.48

. 0S+ 80.35  79.04  48.03 60.18 72.45 68.02
Mistral-8B WAA8 AwQ 7992 7979 4735 58.80 74.26 68.03
TesseraQ* 80.36  79.92  49.57 60.54 73.79 68.84
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Table 9: Weight-activation quantization Results of Mistral-7B. We report the accuracy of 5 reasoning tasks (1).

Models Bitwidths = Methods PiQA  ArcE  ArcC HellaSwag  WinoGrande Avg.
FP16 - 80.68 80.93 50.42 61.26 73.79 69.42

GPTQ 64.20 45.74 22.35 36.68 55.02 44.80

W2A16 AWQ 68.44  56.73 27.44 40.60 56.03 49.06

g128 SignRound 75.84 70.88 30.73 50.87 62.90 58.24

TesseraQ* 76.87 71.67  39.59 54.09 68.11 62.07

W3A16 GPTQ 79.70 78.70 48.41 59.15 71.98 67.19

Mistral-7B 0128 AWQ 80.19 78.62  45.56 58.28 71.58 66.85
SignRound 79.54 78.70 46.33 59.60 72.85 67.40

TesseraQ* 79.59 7836 47.44 59.87 71.98 67.45

SmoothQuant  57.94 35.14  21.75 30.51 48.30 38.73

WA4AL OS+ 66.70  56.73 30.20 42.39 52.01 49.61

AWQ 66.26 54.16  30.80 4345 53.67 49.67

TesseraQ* 72.19 6590  33.78 49.02 57.61 55.71
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Table 10: Detailed W4A4/W3A3 quantization results on each commonsense tasks of LLaMA-1/2/3. We use
per-channel weight quantization and per-token activation quantization *, T means initialized from AWQ, QuaRot.

Models Bitwidths Methods PiQA ArcE  ArcC HellaSwag WinoGrande Avg.
FP16 - 78.67 7533  41.80 56.96 69.85 64.53
SmoothQuant 55.49 31.22 21.16 27.31 49.88 37.02

OS+ 6746 5774  31.05 41.83 54.38 50.50

AWQ 6556 5736 26.10 9.02 53.98 48.41

OmniQuant 66.15 45.20 31.14 56.44 53.43 50.47

WAA4 QLLM 68.77 4520  31.14 57.43 56.67 51.84

LLaMA-7B TesseraQ* 7198  64.77  32.67 47.59 60.22 55.45
Atom (W4A4g128) 76.28 52.10  38.99 69.81 63.69 60.17

QuaRot 71.70 64.81 30.88 48.25 61.24 55.38

GPTQT 76.55 72.60 37.11 53.67 66.93 61.37

TesseraQ' 7622 7331  39.25 54.45 66.38 61.92

Atom (W3A3g128) 65.56 41.41 30.72 53.19 55.56 49.28

W3A3 QuaRot 52.72 26.09  20.82 26.06 51.93 35.53

GPTQf 6898 5892  26.87 43.90 55.40 50.82

TesseraQ* 68.93 57.78 27.30 43.24 58.24 51.10

FP16 - 78.07 7634 4351 57.17 69.21 64.87
SmoothQuant 53.04  25.71 20.22 25.71 51.77 35.29

OS+ 66.86 56.52 29.60 41.93 56.19 50.23

AWQ 64.80 53.87 30.20 43.11 57.93 49.99

OmniQuant 65.94 4394  30.80 53.53 55.09 49.86

W4A4 QLLM 67.68 4440  30.89 58.45 56.59 51.60
LLaMA-2-7B TesseraQ* 7089 6334 3293 48.28 60.14 55.12
QuaRot 66.54 55.51 25.76 37.80 52.25 47.57

GPTQT 75.89 71.96 39.85 54.12 65.43 61.45

TesseraQ* 7622 7420  39.50 53.80 65.03 61.75

QuaRot 51.74 25.54 22.86 25.84 49.88 35.18

W3A3 GPTQf 64.31 47.21 22.18 36.08 53.27 44.62

TesseraQ* 68.28 56.82  28.58 41.96 55.01 50.13

FP16 - 79.54 80.09  50.17 60.13 73.24 68.64
SmoothQuant 54.24 27.90 19.79 26.87 51.61 36.09

OS+ 5734 40.99  20.22 33.19 51.77 40.71

AWQ 59.68 44.90 22.09 34.53 51.30 42.51

2 W4A4 TesseraQ* 67.08 59.09 27.13 43.88 57.14 50.87
LLaMA-3-88 QuaRot 69.85 58.03 28.07 43.37 59.82 51.83
GPTQf 7622  73.94  41.21 55.47 67.48 62.87

TesseraQ' 77.64 7727  44.80 56.03 69.85 65.12

QuaRot 52.28 26.59 20.56 26.11 50.67 35.25

W3A3 GPTQT 56.96 33.62 20.47 28.87 49.40 37.87

TesseraQ' 66.05 51.59 24.40 40.59 53.98 47.33

FP16 - 83.13 87.12 60.92 66.47 79.56 75.44
SmoothQuant 57.45 38.46 24.23 30.22 54.93 41.06

OS+ 53.04 25.79 22.01 25.88 48.85 35.12

AWQ 69.91 61.71 34.04 47.98 54.61 53.65

LLaMA-3-70B W4A4 TesseraQ* 7829  69.15  38.12 53.74 61.16 60.09
QuaRot 57.88 36.36 19.02 28.13 53.19 38.92

GPTQT 79.76 80.17 50.59 60.71 73.08 68.87

TesseraQ' 81.84  82.64 54.07 63.90 65.64 69.62

QuaRot 52.06 24.87 20.05 25.55 49.25 34.26

W3A3 GPTQ' 55.98 34.80 19.45 28.38 51.46 38.02

TesseraQ' 7480 66.03  36.42 51.34 58.43 57.42
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