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Abstract001

Large language models (LLMs) have revolu-002
tionized natural language processing, albeit at003
the cost of immense memory and computation004
requirements. Post-training quantization (PTQ)005
is becoming the de facto method to reduce the006
memory footprint and improve the inference007
throughput of LLMs. In this work, we aim to008
push the boundary of LLM PTQ by optimiz-009
ing the weight rounding parameters with the010
block reconstruction technique, a predominant011
method in previous vision models. We propose012
TesseraQ, an advanced PTQ technique, to quan-013
tize the weights of LLMs to ultra-low bits. To014
effectively optimize the rounding in LLMs and015
stabilize the reconstruction process, we intro-016
duce progressive adaptive rounding. This ap-017
proach iteratively transits the soft rounding vari-018
ables to hard variables during the reconstruc-019
tion process. Additionally, we optimize the de-020
quantization scale parameters to fully leverage021
the block reconstruction technique. We demon-022
strate that TesseraQ can be seamlessly inte-023
grated with existing transformation-based PTQ024
algorithms such as AWQ/OmniQuant/QuaRot,025
significantly enhancing their performance. For026
instance, when compared to AWQ, TesseraQ027
improves the Wikitext2 perplexity from 14.65028
to 6.82 in 2-bit weight quantization.029

1 Introduction030

Large Language Models (LLMs) have funda-031

mentally transformed natural language processing032

through their unprecedented capabilities. Modern033

architectures like GPT-4 (Bubeck et al., 2023) and034

LLaMA-3 (Meta, 2024) achieve their remarkable035

performance by leveraging hundreds of billions036

of parameters. However, this immense scale cre-037

ates significant deployment challenges (Zhou et al.,038

2024). The substantial memory and computational039

requirements make these models impractical for040

many real-world applications, particularly on con-041

sumer devices or in resource-constrained environ-042

ments (Dettmers et al., 2022). To address these 043

deployment challenges, quantization has emerged 044

as a promising solution. This technique reduces 045

the precision of model parameters and activations 046

from 32-bit floating-point (FP32) to more com- 047

pact representations such as 8-bit or 4-bit integers 048

(INT8, INT4). By decreasing the model’s mem- 049

ory footprint, quantization enables increased I/O 050

throughput while often maintaining performance 051

within acceptable margins. 052

Post-Training Quantization (PTQ) (Gholami 053

et al., 2022) has perhaps become the most 054

widespread and the easiest way to compress the 055

LLM by reducing the bitwidth of the pretrained 056

model’s parameters. For example, with a sin- 057

gle GPU and a small number of input sequences, 058

GPTQ (Frantar et al., 2022) can compress an FP16 059

LLM into INT4 format by deriving the exact solu- 060

tion for quantization error minimization. Recent 061

works like AWQ (Lin et al., 2023), and Omni- 062

Quant (Shao et al., 2023) have pushed the com- 063

pression limit further with INT3 weight-only quan- 064

tization achieving a small performance gap with 065

respect to the FP16 baseline. However, in a more 066

challenging scenario like INT2 weight-only quan- 067

tization, these methods still incur a large perfor- 068

mance gap compared to the original FP16 model. 069

We hypothesize that this limitation stems from 070

the restricted optimization space in existing ap- 071

proaches. Most current methods confine their opti- 072

mization to distribution transformation or weight 073

clipping ranges (Lin et al., 2023; Wei et al., 2023; 074

Shao et al., 2023). While this approach is straight- 075

forward, it proves insufficient for ultra-low bit sce- 076

narios due to its constrained optimization space. 077

We argue that advancing LLM PTQ performance re- 078

quires a paradigm shift toward adjusting the entire 079

weight tensor. However, this ambitious approach 080

presents two critical technical challenges. First, 081

the optimization space must be carefully crafted to 082

provide sufficient exploratory freedom while pre- 083
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Figure 1: The overall workflow of our proposed method. (a) We apply TesseraQ to optimize the weight
rounding parameters when the transformation scale and clipping range are determined using prior methods like
AWQ/OmniQuant. (b) We propose Progressive Adaptive Rounding (PAR) for block-wise reconstruction, which
iteratively hardens some rounding variables and optimizes the rest soft rounding variables till they are all quantized.

serving the model’s essential behaviors. Second,084

optimization through discrete operations necessi-085

tates gradient estimation, but current estimation086

techniques often lead to training instability.087

To this end, we propose TesseraQ, a block re-088

construction method tailored for LLM PTQ. To089

improve the existing transformation-based method,090

we adopt the rounding optimization space (See091

Sec. 3.1 for details). A key innovation in TesseraQ092

is the introduction of Progressive Adaptive Round-093

ing (PAR), which eliminates the need for regular-094

ization loss present in conventional rounding opti-095

mization approaches (Nagel et al., 2020; Li et al.,096

2021). This advancement is crucial for handling the097

billions of parameters in modern LLMs. As illus-098

trated in Fig. 1(b), PAR employs an iterative strat-099

egy: systematically converting selected rounding100

variables to binary values while optimizing remain-101

ing variables to compensate for quantization errors.102

To further enhance quantization quality, we com-103

plement PAR with adaptive dequantization scale104

tuning, which significantly improves the expres-105

sive power of learned rounding parameters. Our106

block-wise reconstruction framework enables effi-107

cient optimization of individual LLM blocks using108

a single GPU, making TesseraQ highly practical109

for real-world applications. We summarize our110

contributions as follows111

1. We propose TesseraQ, a block-wise weight112

rounding optimization method for LLMs.113

TesseraQ can be combined with existing trans-114

formation or clipping methods like AWQ, Omni-115

Quant, and QuaRot to obtain compelling results.116

2. TesseraQ contains Progressive Adaptive Round-117

ing and Dequantization Scale Tuning. Both can118

stabilize the reconstruction process and effec-119

tively optimize post-training performance.120

3. Our method obtains excellent performance on 121

both perplexity metric and zero-shot accuracy 122

metric. For example, our method improves Om- 123

niQuant perplexity results from 37.4 to 8.0 on 124

LLaMA-2-7B W2A16 quantization. Moreover, 125

TesseraQ+QuaRot improves the average accu- 126

racy by 10% on LLaMA-3.1-8B W3A3 quanti- 127

zation as compared to GPTQ+QuaRot. 128

2 Preliminaries 129

This section briefly introduces the existing research 130

directions in LLM PTQ. We adopt uniform affine 131

quantization, which essentially discretizes the 132

floating-point representation of weights/activations 133

into low-bit fixed-point representation, given by 134

Wq = clamp

(⌊W
s

⌉
+ z, 0, 2N − 1

)
, (1) 135

where s = γmax(W)−βmin(W)
2N−1

and z = 136

−
⌊
βmin(W)

s

⌉
denote the quantization step size and 137

the zero point (γ, β ∈ (0, 1] control the clipping 138

range). The resulting Wq is in the INT-N format. 139

To restore it back to its original range, the dequan- 140

tization step is given by Ŵ = s× (Wq − z). 141

Optimization Objective. The plain rounding- 142

to-nearest (RTN) method directly quantifies the 143

model weights to integers without further optimiza- 144

tion. However, this method usually results in signif- 145

icantly low task performance. To improve the LLM 146

PTQ performance, parameters related to quantiza- 147

tion are optimized with different objectives. For ex- 148

ample, GPTQ (Frantar et al., 2022) and AWQ (Lin 149

et al., 2023) utilize the layer-wise reconstruction 150

objective, given by 151

min
ϵ

∑L

ℓ=1

∣∣∣∣Ŵ(ℓ)X(ℓ) −W(ℓ)X(ℓ)
∣∣∣∣2
F
, (2) 152

2



where ℓ ∈ {1, 2, . . . , L} is the layer index and X is153

the input activations. While this layer-wise objec-154

tive can provide efficient and exact solutions (Fran-155

tar et al., 2022), the objective does not consider156

inter-layer correlation like self-attention and resid-157

ual connections in LLM. To this end, the block-158

wise reconstruction objective has been proposed (Li159

et al., 2021), as160

min
ϵ

∑B

b=1

∣∣∣∣blk(θ̂(b),X(b))− blk(θ(b),X(b))
∣∣∣∣2
F
.

(3)161

where, blk refers to one decoder block in LLMs162

comprising self-attention, projection, feed-forward163

and normalization layers. θ̂(b) and θ(b) denote164

the whole quantized and full-precision parameters165

within the block. In practice, both layer-wise and166

block-wise objectives enable efficient calibration167

on a single GPU due to their local computation168

attributes. However, block-wise objectives exhibit169

better performance than layer-wise objectives as170

they account for contributions from multiple layers.171

Optimization Space. Generally, three kinds172

of optimization spaces are explored in LLM PTQ,173

(1) the scale transformation, (2) the clipping range174

(i.e., finding the suitable γ, β), and (3) the weight175

values. They can be tied with either layer-wise or176

block-wise objectives. For instance, AWQ (Lin177

et al., 2023) and OS+ (Wei et al., 2023) optimize178

transformation and clipping range using Eq. (2),179

while OmniQuant (Shao et al., 2023) does similar180

optimization with Eq. (3). Since scale/clipping op-181

timization methods are well-explored, in this paper,182

we aim to optimize weight values using block-wise183

objectives to further push the compression limits184

of LLM PTQ.185

3 TesseraQ: Ultra Low-Bit PTQ186

3.1 Problem Statement187

Previous research has explored various optimiza-188

tion spaces for element-wise weight parameter ad-189

justment. One prevalent approach, adopted by190

methods like AdaQuant (Hubara et al., 2020) and191

GPTQ (Frantar et al., 2022), involves learning192

an unrestricted weight update ∆θ combined with193

rounding-to-nearest (RTN) operations. However,194

this optimization framework encounters significant195

limitations with block-wise objectives. AdaQuant’s196

reliance on the Straight-Through Estimator for gra-197

dient computation becomes highly unstable at LLM198

scale (see Appendix A), while GPTQ cannot derive199

a closed-form solution for a whole block.200

Given these challenges, we explore an alternative 201

weight optimization framework based on rounding 202

optimization (Nagel et al., 2020; Li et al., 2021), 203

which offers a fundamentally different optimiza- 204

tion space compared to GPTQ. Within our block 205

reconstruction objective (Eq. (3)), we define the 206

quantization function as: 207

θq = clamp
(
⌊θ
s
⌋+ α+ z, 0, 2N − 1

)
, (4) 208

where α ∈ {0, 1} represents the binary rounding 209

variables. This rounding optimization framework 210

presents both advantages and challenges. On the 211

positive side, it constrains the range of each weight 212

parameter, enabling incremental improvements to 213

existing PTQ models like AWQ, OmniQuant, and 214

QuaRot through fine-grained weight adjustments. 215

However, the framework also faces some signifi- 216

cant limitations. For instance, optimizing binary 217

rounding variables necessitates either continuous 218

relaxation with regularization loss (Nagel et al., 219

2020) or the use of STE (Hubara et al., 2020). 220

These requirements make the optimization of bil- 221

lions of rounding variables particularly challeng- 222

ing. Further evidence of the scaling difficulties 223

with traditional rounding optimization in LLMs is 224

presented in Appendix A. 225

3.2 Progressive Adaptive Rounding 226

We introduce Progressive Adaptive Rounding 227

(PAR), a novel differentiable framework for op- 228

timizing rounding variables α that overcomes key 229

limitations of previous approaches. At its core, 230

PAR begins by transforming the discrete round- 231

ing problem into a continuous optimization task 232

through Sigmoid reparameterization, where we ex- 233

press α as α = σ(ν). We initialize the continuous 234

variable ν using the inverse Sigmoid function ap- 235

plied to the fractional part of the scaled weights: 236

ν = σ−1(θ/s− ⌊θ/s⌋). This initialization ensures 237

that our initial quantized weights match the original 238

weights exactly: θ̂ = θ. 239

PAR’s key innovation lies in its dynamic treat- 240

ment of rounding variables through two comple- 241

mentary sets: SHard and SSoft. These sets corre- 242

spond to variables that have been committed to 243

binary values (hard rounding) and those that re- 244

main continuous (soft rounding), respectively. We 245

formalize this dual approach through the following 246

rounding function: 247

αi =

{
σ(νi) =

1
1+exp(−ν) if i ∈ SSoft

σ′(νi) = 1νi>0 if i ∈ SHard
. (5) 248
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The optimization process begins with an empty249

SHard and proceeds through alternating phases: a250

Harden Phase where selected variables from SSoft251

are committed to binary values by moving them252

to SHard, followed by a Soften Phase where the253

remaining continuous variables are optimized to254

compensate for any accuracy loss introduced by the255

hardened variables. We detail these complementary256

phases in the following subsections.257

Harden Phase. The key to effective progres-258

sive rounding lies in identifying which variables259

can be safely committed to binary values while260

minimizing the impact on reconstruction accuracy.261

To make this determination systematic, we intro-262

duce a scoring metric that quantifies how "ready" a263

variable is for binary rounding:264

HS(ν) = |σ(ν)− 0.5|. (6)265

This score provides a decent measure of rounding266

readiness: variables whose soft rounding values267

(σ(ν)) are close to 0.5 receive low scores, indi-268

cating that forcing them to binary values would269

likely cause significant reconstruction error. Con-270

versely, variables already close to binary values (0271

or 1) receive high scores, suggesting they are prime272

candidates for hardening. Leveraging this insight,273

the Harden Phase proceeds by ranking all parame-274

ters according to their HS scores and transferring275

the top P% of candidates to SHard. The progres-276

sion rate P follows a carefully designed schedule,277

starting at 0 and approaching 100 during block re-278

construction. This schedule is not uniform: we279

can advance rapidly in the early stages when many280

variables are far from 0.5, but must proceed more281

cautiously in later stages as we handle the more282

challenging cases with fewer remaining soft vari-283

ables to compensate for errors. Importantly, our284

empirical analysis shows that TesseraQ exhibits285

robust performance across different progression286

schedules for P , provided they follow the princi-287

ple of gradually decreasing progression rate. We288

present a detailed investigation of various schedul-289

ing strategies in our ablation study (Sec. 4.3).290

Soften Phase. After committing certain vari-291

ables to binary values in the Harden Phase, we need292

to optimize the remaining soft variables to compen-293

sate for any introduced quantization errors. We294

formulate this as a gradient-descent optimization295

problem:296

min
νi,i∈SSoft

∣∣∣∣blk(θ̂,X)− blk(θ,X)
∣∣∣∣2
F
. (7)297

Algorithm 1: TesseraQ Calibration process
Input: FP16 LLM; Calibration dataset,

PAR iteration K, training steps T
for all b = 1, 2, . . . , B-th block do

Collect input data to the block X, the FP
output block(θ,X) ;

Initialize ν and v;
for all k = 1, 2, . . . ,K-iteration do

Calculate score (Eq. (6)) and
hard-round the variables with
highest Pk% scores;

for all t = 1, 2, . . . , T steps do
Gradient Descend Eq. (7);
Update νi for i ∈ SSoft and v;

Hard rounding all ν and merge them into
original parameters and apply RTN;

return Quantized model;

This minimization objective seeks to maintain the 298

block’s output as close as possible to the origi- 299

nal unquantized version by adjusting the remain- 300

ing soft variables. While a straightforward imple- 301

mentation might use masking operations to dif- 302

ferentiate between soft and hard rounding vari- 303

ables, this approach would be computationally ex- 304

pensive at LLM scale. Instead, we developed a 305

memory-efficient implementation strategy: we set 306

hard-rounding variables to extreme values (∞ or 307

−∞), leveraging the fact that the sigmoid function 308

naturally produces zero gradients for these values. 309

In general, we found that approximately 200 opti- 310

mization steps consistently achieve sufficient reduc- 311

tion in block reconstruction error. This empirically 312

determined step count provides a reliable balance 313

between optimization quality and computational 314

efficiency. 315

Post-Processing. After the entire PAR proce- 316

dure is finished, we apply hard-rounding σ′(·) to 317

all variables and merge their values into the origi- 318

nal weights, and then we can use the standard RTN 319

(i.e., Eq. (1)). The merging can be effectively im- 320

plemented by 321

θ ← θ + s× (σ′(ν)− 0.5) (8) 322

We provide a pseudocode for the learning process 323

in Algorithm 1. 324

3.3 Dequantization Scale Tuning 325

During the PAR process, the quantized tensor θq 326

undergoes continuous changes. To accommodate 327
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these dynamic adjustments, we propose Dequan-328

tization Scale Tuning (DST), a process that exe-329

cutes concurrently with PAR. Specifically, for the330

dequantization step, we introduce an additional pa-331

rameter v and represent it as332

θ̂ = 2σ(v)× s× (θq − z). (9)333

By initializing v to zero vectors (0), we begin with334

a neutral dequantization scale factor (2σ(v)) of 1,335

allowing the optimization process to adaptively ad-336

just this value within a controlled range of (0, 2).337

This sigmoid reparameterization serves two crucial338

purposes: it ensures smooth training dynamics and339

reduces the sensitivity to learning rate selection,340

making the optimization process more robust. Im-341

portantly, we deliberately chose to optimize the de-342

quantization scale rather than the quantization scale343

s in Eq. (1) for two fundamental reasons. First,344

modifying s would alter the underlying rounding345

mechanism itself (Nagel et al., 2020), potentially346

destabilizing the optimization process. Second, op-347

timizing s would necessitate the use of STE, which348

introduces bias into gradient calculations, poten-349

tially leading to suboptimal solutions.350

4 Experiments351

4.1 Experiements Setup352

Most of our experiment setups are similar to Om-353

niQuant (Shao et al., 2023), which also adopts354

block reconstruction loss function. Specifically,355

we employ asymmetric uniform quantization with356

2/3/4-bit integers. We test both per-group and per-357

channel weight quantization. For example, we use358

the notation W2A16g64 to denote the 2-bit per-359

group (group size is set to 64) weight-only quan-360

tization. In weight-activation quantization experi-361

ments, defaults are W4A4, W3A3, and W4A8 with362

per-channel weight and per-token activation quan-363

tization (Dettmers et al., 2022; Shao et al., 2023).364

Calibration Data and Comparison. We re-365

port two types of evaluation metrics, the perplex-366

ity metric for evaluating the upstream datasets367

like WikiText2 (Merity et al., 2016), C4 (Raffel368

et al., 2020), and the average accuracy of 5 down-369

stream reasoning tasks including PIQA (Bisk et al.,370

2020), ARC easy/challenge (Clark et al., 2018),371

WinoGrande (Sakaguchi et al., 2021) and Hel-372

laSwag (Zellers et al., 2019). The perplexity is373

evaluated with 2048 sequences. We use 512 2048-374

token segments from the WikiText2 training dataset375

as calibration data for perplexity comparison and376

for downstream task comparison, we sample cali- 377

bration data from the C4 training dataset. We use 378

lm_eval (ver0.4.2) to evaluate accuracy. 379

Training. We set the total PAR number of 380

iterations K to 20 and gradually increase the Pk 381

from 0 to 100%. In each iteration, we optimize 382

the learnable parameters (ν and v) for 250 training 383

steps. We use the Adam optimizer with a fixed 384

learning rate of 1e − 3. The batch size is set to 4. 385

We use AWQ transformation (Lin et al., 2023) to 386

initialize our model since we find AWQ initializa- 387

tion is slightly better than OmniQuant across all 388

configurations except W2A16 quantization. 389

Models and Baselines. For the upstream 390

tasks, we follow OmniQuant (Shao et al., 2023) to 391

test weight-only quantization results on LLaMA-1- 392

7B/13B/30B/65B (Touvron et al., 2023a), LLaMa- 393

2-7B/13B/70B (Touvron et al., 2023b) and LLaMA- 394

3-8B/70B (Meta, 2024). In this case, we compare 395

GPTQ (Frantar et al., 2022), OmniQuant (Shao 396

et al., 2023), AWQ (Lin et al., 2023), Sign- 397

Round (Cheng et al., 2023) and GPTQ with 398

QuaRot (Ashkboos et al., 2024). For downstream 399

tasks, we test LLaMA-2-7B, LLaMA-3-8B/70B 400

across 5 downstream tasks. We compare GPTQ, 401

AWQ, OmniQuant, and SignRound. 402

4.2 Main Results 403

Perplexity Evaluation. We summarized the Wiki- 404

text2 perplexity (PPL) results in Table 1. Our 405

method consistently outperforms existing meth- 406

ods like AWQ and OmniQuant, particularly for 407

the low-bit W2A16 configuration. On LLaMA-2- 408

7B with W2A16 quantization, OmniQuant only ob- 409

tains 37.37 PPL while our method largely improves 410

this result to 8.05. In addition, LLaMA-3-8B 411

demonstrates extremely low quantization resiliency, 412

where the AWQ model crashed in W2A16g128 413

quantization. Our method, on the other hand, sig- 414

nificantly improves the perplexity from 334 to 415

10.03. We observe that in general, the lower the 416

bitwidth, the more improvement we can obtain 417

from TesseraQ. This confirms our initial intuition 418

that extremely low-bit weight quantization requires 419

a thorough adjustment of each weight element. 420

Additionally, the C4 (Raffel et al., 2020) PPL re- 421

sults are provided in Appendix: Table 7. Overall, 422

C4 PPL results concur with the Wikitext2 results, 423

demonstrating a similar trend in performance im- 424

provement. For example, TesseraQ improves the 425

PPL of LLaMA-2-7B model from 90.64 to 14.82 426

with W2A16 quantization. 427
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Table 1: Weight-only quantization results of LLaMA-1/2/3 models. We report WikiText2 perplexity (PPL ↓). *,
†, ‡ means initialized from AWQ, OmniQuant, and QuaRot, respectively.

LLaMA1&2 Method L1−7B L1−13B L1−30B L1−65B L2−7B L2−13B L2−70B L3−8B L3−70B

FP16 - 5.68 5.09 4.10 3.53 5.47 4.88 3.31 6.14 2.85

W2A16

GPTQ 2.1e3 5.5e3 499.75 55.91 7.7e3 2.1e3 77.95 8.4e4 1.6e4
GPTQ‡ 11.13 9.14 7.04 5.91 18.77 10.84 5.68 24.98 16.29
AWQ 1.1e5 7002 1.2e5 6.3e6 2.9e6 6.2e3 3973 4.1e5 8.6e4
OmniQuant 15.47 13.21 8.71 7.58 37.37 17.21 7.81 - -
TesseraQ† 7.56 6.56 5.75 5.21 8.05 6.55 5.26 17.88‡ 11.56‡

W2A16
g128

GPTQ 44.01 15.60 10.92 9.51 36.77 28.14 NAN 226.7 16.06
GPTQ‡ 16.25 8.14 6.62 5.61 16.10 9.29 5.32 17.43 30.89
AWQ 13.08 10.02 7.46 6.08 14.65 8.93 5.72 334.1 10.98
SignRound 641.8 8.36 7.13 5.52 NAN 7.64 NAN - -
OmniQuant 9.72 7.93 7.12 5.95 11.06 8.26 6.55 - -
TesseraQ* 6.92 6.07 5.26 4.83 6.82 5.92 4.73 10.03 7.47

W2A16
g64

GPTQ 22.10 10.06 8.54 8.31 20.85 22.44 NAN 86.32 11.78
GPTQ‡ 11.44 7.70 6.23 5.26 15.30 9.17 5.19 16.58 21.50
AWQ 10.65 8.66 6.65 5.58 11.87 7.81 5.30 53.07 9.04
OmniQuant 8.90 7.34 6.59 5.65 9.62 7.56 6.11 - -
TesseraQ* 6.78 5.97 5.18 4.70 6.67 5.81 4.60 9.28 6.96

W3A16

GPTQ 8.06 6.76 5.84 5.06 8.37 6.44 4.82 16.84 18.94
GPTQ‡ 6.15 5.45 4.53 4.01 6.13 5.35 3.72 7.54 5.22
AWQ 8.49 6.38 5.89 6.03 14.17 6.42 4.22 11.79 12.28
OmniQuant 6.49 5.68 4.74 4.04 6.58 5.58 3.92 - -
TesseraQ* 5.99 5.35 4.44 3.89 5.84 5.16 3.68 7.46 5.12

W3A16
g128

GPTQ 6.55 5.62 4.80 4.17 6.29 5.42 3.85 9.58 5.25
GPTQ‡ 6.07 5.41 4.48 3.92 5.99 5.28 3.65 7.42 4.98
AWQ 6.38 5.52 4.59 3.92 6.19 5.30 3.72 8.24 4.63
SignRound 6.28 5.45 4.50 3.90 8.09 5.23 3.68 - -
OmniQuant 6.15 5.44 4.56 3.94 6.03 5.28 3.78 - -
TesseraQ* 5.95 5.32 4.40 3.82 5.71 5.11 3.61 6.90 4.13

W4A16

GPTQ 6.13 5.40 4.48 3.83 5.83 5.13 3.58 7.28 4.94
GPTQ‡ 5.78 5.20 4.24 3.65 5.61 5.00 3.42 6.57 3.59
AWQ 5.99 5.24 4.30 3.71 5.82 5.07 3.49 7.09 5.19
OmniQuant 5.86 5.21 4.25 3.71 5.74 5.02 3.47 - -
SignRound 5.93 5.21 4.23 3.65 5.81 5.00 3.40 - -
TesseraQ* 5.78 5.17 4.20 3.63 5.56 4.96 3.40 6.48 3.33

Weight-Activation Quantization Evaluation.428

We test weight-activation quantization scenarios429

with per-channel weight quantization and per-430

token activation quantization. We experiment431

with W4A4, and W4A8 quantization and com-432

pare with three baselines, Atom, QuaRot, and433

QuaRot+GPTQ, which are best practice utilizing434

rotation. We also test our method on QuaRot trans-435

formations. The results are provided in Table 2,436

which summarizes the perplexity on WikiTex2, C4437

and average accuracy on downstream tasks. We ob-438

serve a slightly better performance of our method439

with TesseraQ compared to GPTQ. Additionally,440

on the more challenging 3-bit quantization scenario,441

TesseraQ also exceeds GPTQ by 10% accuracy on442

the 8B model. Detailed accuracy results are given443

in Appendix B.444

4.3 Ablation Studies445

All ablation studies are conducted on LLaMA-2-7B446

model with W2A16g128 quantization.447

Calibration Data. In this section, we compare448

the performance of different calibration datasets 449

and sizes. We sample calibration data from either 450

WikiText2 (Merity et al., 2016) or C4 (Raffel et al., 451

2020) training dataset. We also experiment with 452

the different sample sizes, ranging from 128 to 453

512. Meanwhile, we change the batch size during 454

rounding optimization, ranging from 1 to 4. 455

Table 3 demonstrates the task performance (PPL 456

and average accuracy metric) as well as the cali- 457

bration costs (algorithm runtime and GPU memory 458

footprint). First, we find that the source of calibra- 459

tion data will impact the perplexity evaluation. The 460

performance benefits if evaluation data and calibra- 461

tion data are from the same dataset. For example, 462

the C4-calibrated model has 1.2 higher WikiText2 463

PPL than the WikiText2-calibrated model. Second, 464

increasing the number of samples and the batch 465

size consistently improves the task performance. 466

However, it may also lead to higher runtime and 467

GPU memory consumption, which may be allevi- 468

ated via multi-GPU calibration. Nevertheless, it is 469

worthwhile to note that even with 128 samples and 470
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Table 2: W4A4/W3A3 quantization results of LLaMA-1/2/3. We use per-channel weight quantization and
per-token activation quantization *, † means initialized from AWQ, QuaRot.

Bitwidths Methods LLaMA-7B LLaMA-2-7B LLaMA-3-8B

WT2(↓) C4(↓) Avg. (↑) WT2(↓) C4(↓) Avg. (↑) WT2(↓) C4(↓) Avg. (↑)

FP16 Pretrained 5.68 7.08 62.30 5.47 6.97 64.87 6.24 9.54 69.25

W4A4

Atom (W4A4g128) 6.16 7.70 60.17 6.14 - - - - -
QuaRot 8.37 11.44 55.38 14.19 19.72 47.57 17.83 28.08 51.83
GPTQ† 6.10 8.01 61.37 6.00 8.19 61.45 7.85 12.70 62.87
TesseraQ† 6.07 8.00 61.92 5.92 8.03 61.75 7.45 11.35 65.12

W3A3

Atom (W3A3g128) 11.77 15.43 49.28 - - - - - -
QuaRot 2315 1665 35.53 10996 10940 35.18 91551 65662 35.25
GPTQ† 11.57 13.89 50.82 13.90 15.08 44.62 79.06 106.23 37.87
TesseraQ† 10.79 13.68 51.10 9.09 12.76 50.13 27.80 30.81 47.33

Table 3: Ablation studies of calibration data source and data sizes. We report the LLaMA-2-7B W2A16g128
quantization results with task performances and calibration costs.

#Samples Batch Runtime/ Calib. Data: WikiText2 Calib. Data: C4

Size GPU Mem. WikiText2(↓) C4(↓) Avg.(↑) WikiText2(↓) C4(↓) Avg.(↑)

128 1 3.2h/17.5GB 7.33 11.39 56.58 8.54 10.83 56.87
256 2 3.9h/28.6GB 7.10 11.16 57.17 8.32 10.66 57.85
512 2 4.0h/40.4GB 7.14 11.22 57.42 8.22 10.47 58.56
512 4 6.0h/65.4GB 6.82 10.77 58.35 8.05 10.29 59.27

a batch size of 1, our TesseraQ can significantly471

improve the baseline AWQ results.472

PAR Schedule. We investigate how to adjust473

the P during progressive adaptive rounding. In474

our implementation, we use a handcrafted design,475

which manually decreases the soft rate (i.e., the476

percentage of soft rounding variable) as shown in477

Fig. 2. Our handcrafted design gradually decays the478

soft rate. To demonstrate that our PAR is quite ro-479

bust to the schedule of soft rate, we also test several480

rule-based adjustments, which adjust the soft rate481

as 1
exp(tx) , where x ∈ (0, 1] is the scaled iteration482

number and t is the temperature hyper-parameter.483

We test t = {2, 3, 4, 5, 6, 7} and compare it with484

our handcrafted implementation with LLaMA-2-485

7B W2A16g128 quantization. The results in Fig. 2486

show that t = 4, 5 and our handcrafted adjustments487

obtain the best performance. Overall, we find that488

our algorithm is not sensitive to the scheduling,489

and has consistently superior performance than the490

AWQ initialized model.491

Algorithm choices. We also test the algorithm492

choices in TesseraQ . To be more specific, we ex-493

periment with block reconstruction with or without494

progressive adaptive rounding (PAR) and dequanti-495

zation scale tuning (DST) and compare their final496

task performance. As shown in Table 4, both PAR497

and DST contribute a lot to the final perplexity498

metric (denoted by WT2 (WikiText2) and C4) and499

average accuracy (denoted by Avg.). Remarkably,500

applying one of them solely can also improve the501

Table 4: TesseraQ Algorithm choices.

PAR DST WT2 C4 Avg.

✗ ✗ 14.65 18.67 50.52
✓ ✗ 7.72 11.95 56.79
✗ ✓ 8.58 13.14 54.45
✓ ✓ 6.82 10.77 58.35

AWQ baseline (first row) results by a large margin. 502

4.4 Hardware Evaluation 503

To demonstrate the weight compression effect and 504

the inference throughput change, we test LLaMA- 505

3-8B/70B under different GPU environments, ker- 506

nel backend and different bitwidths. Table 5 sum- 507

marizes the results of inference throughput (gen- 508

erated token per second) with batch size 1 or 16. 509

Remarkably, W2A16g128 reduces the weight mem- 510

ory of the 70B model from 132GB to 21GB. For 511

inference speed, the INT2 dequantization kernel (in 512

Triton (JonathanSalwan) support) is currently less 513

optimized, especially for larger models, expend- 514

ing lower throughput compared to FP16 on 70B 515

model. Remarkably, on smaller scale like 8B, INT2 516

can significantly increase the inference speed. We 517

find that INT4 with Exllama kernel can increase 518

the throughput when batch size is 1 and achieve 519

similar throughput with FP16 model when batch 520

size is 16. Nonetheless, it is worthwhile to note 521

that our TesseraQ complies with standard uniform 522

quantization formats and can be deployed with var- 523
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Figure 2: Ablation study of PAR schedule. We experiment several rule-based P adjustments and one handcrafted
adjustment. (AWQ baseline results: average PPL: 16.66, average acc.: 50.52).

Table 5: Comparison of weight memory compression
and inference throughput. We measure LLaMA-3 se-
ries model under various bitwidth/backend. WM stands
for weight memory, TPn denotes inference throughput
with a batch size of n (output token/s).

Model BitWidth Backend WM TP1 TP16

L3-8B
FP16 Pytorch 15GB 49.23 358.1
W4A16g128 Exllama 5.5GB 57.54 361.1
W2A16g128 Triton 3.9GB 165.3 545.5

L3-70B
FP16 Pytorch OOM N/A N/A
W4A16g128 Exllama 39GB 26.23 86.94
W2A16g128 Triton 21GB 4.93 54.35

ious kernels that support uniform quantization on524

various devices.525

5 Related Work526

Quantization has been a primary method to com-527

press and accelerate off-the-shelf large models. Sur-528

vey papers by (Gholami et al., 2022) and (Nagel529

et al., 2021) have systematically summarized the530

progress of quantization. Here, we list several ma-531

jor quantization works, especially for LLMs.532

Post-Training Quantization for LLMs. While533

Quantization aware Training (QAT) guarantees bet-534

ter task performance in low-bit quantization, PTQ535

is more suitable for LLM due to its less reliance on536

computing resources and training data. PTQ meth-537

ods like (Frantar et al., 2022; Lin et al., 2023; Wei538

et al., 2022, 2023; Shao et al., 2023; Chee et al.,539

2023; Liu et al., 2023a) improve the uniform quan-540

tization performance by optimizing weights, trans-541

formation scales, and clipping ranges. Our method542

continues improving the uniform quantization ef-543

fect by incorporating rounding optimization. Other544

works try to improve PTQ in LLMs in different545

ways. For example, AQLM and GPTVQ (Egiazar-546

ian et al., 2024; van Baalen et al., 2024) explore547

non-uniform quantization schemes for weight-only548

quantization, which may better match the distribu-549

tion of weights. LLM.int8 (Dettmers et al., 2022),550

BiLLM (Huang et al., 2024a), SiLLM (Huang et al., 551

2024b) apply mixed-precision quantization to keep 552

salient weights in high precision and maintain the 553

accuracy. However, these methods cannot be ap- 554

plied to quantize activations and thus cannot sup- 555

port integer MatMul. QuaRot (Ashkboos et al., 556

2024), SpinQuant (Liu et al., 2024) target activa- 557

tion outliers and eliminate them through the rota- 558

tion matrix. We have demonstrated that our method 559

can also be combined with them. 560

QAT for LLM. Recent works also explore QAT- 561

based quantization for LLMs. To reduce data ac- 562

cess, LLM-QAT (Liu et al., 2023b) generates lan- 563

guage data for data-free QAT. To prevent massive 564

weight memory usage, Q-LoRA (Dettmers et al., 565

2023) applies quantization-aware low-rank adap- 566

tation for finetuning. Recently, BitNet and BitNet 567

b.158 (Wang et al., 2023; Ma et al., 2024) trained 568

a 1-bit and 1.58-bit model from scratch, enabling 569

multiplication-free LLM. However, these methods 570

are hard to scale up due to the massive memory 571

and computation requirements, especially for more 572

than 70B models. As a result, they only focus on 573

1B∼3B-scale models. 574

6 Conclusion 575

In this paper, we have proposed TesseraQ, a PTQ 576

method for effectively calibrating large language 577

models. Based on block reconstruction, TesseraQ 578

optimizes weight rounding through a progressive 579

approach that iteratively hardens and softens the 580

rounding variables. Together with dequantization 581

scale tuning, TesseraQ can be seamlessly com- 582

bined with other PTQ methods like transformation, 583

clipping, and rotation, to reach compelling perfor- 584

mance. We demonstarte TesseraQ’s superiority on 585

open source LLaMA models. TesseraQ pushes 586

the performance boundaries of quantized LLMs, 587

in terms of perplexity, downstream accuracy, and 588

hardware performance. 589
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Limitations590

TesseraQ shares some limitations in terms of al-591

gorithm runtime, which may require longer pro-592

cessing time than existing baselines. For example,593

the LLaMA-2-7B takes 3∼6 hours to finish the594

calibration process, while for AWQ/GPTQ, the cal-595

ibration time is around 0.5 hours. Nevertheless,596

compared to QAT, our method still exhibits remark-597

able resource efficiency in required data and GPU598

memory. We leave how to accelerate rounding op-599

timization in our future directions.600
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A Ablation Study on Rounding 773

Optimization 774

In order to demonstrate the effectiveness of our 775

proposed PAR, we compare our method with the 776

several rounding optimization variants here. 777

AdaRound (Nagel et al., 2020). For AdaRound, 778

the optimization is formulated by 779

min
ν

∣∣∣∣ŴX−WX
∣∣∣∣2
F
+ λ

∑
i,j

1− |2σ(νi,j)− 1|β,

s.t. Ŵ = s× (Wq − z),

Wq = clamp
(
⌊W
s
⌋+ σ(ν) + z, 0, 2N − 1

)
.

(10)

780

This method utilizes the layer-wise reconstruction 781

objective and a regularization loss. Both λ and β 782

control the strength of the regularization loss dur- 783

ing optimization, which encourages the rounding 784

variables to move towards 0 and 1. 785

AdaQuant (Hubara et al., 2020). This method 786

directly utilizes the STE method to optimize the 787

weighs, given by 788

min
V

∣∣∣∣ŴX−WX
∣∣∣∣2
F
,

s.t. Ŵ = s× (Wq − z),

Wq = clamp
(
⌊W +V

s
⌉+ z, 0, 2N − 1

)
,

∂⌊x⌉
∂x

= 1.

(11)
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Note that AdaRound and AdaQuant have not790

implemented their method on LLMs before. There-791

fore, we implement their method on our own and792

use the default hyper-parameters in their paper.793

Specifically, we experiment with the LLaMA-2-7B794

W2A16g128 quantization case, where the model795

is uniformly initialized from the AWQ checkpoint.796

Each weight tensor will be optimized for 5000 iter-797

ations for a fair comparison. We compare 3 meth-798

ods, AdaRound, AdaQuant, and our PAR, with799

either layer-wise objective (Eq. (2)) or block-wise800

objective (Eq. (3)). For AdaRound, we set the801

learning rate the same as our method and while for802

AdaQuant the learning rate was 1e-5. The results803

are shown in the Table below.804

Generally, we find that PAR consistently outper-805

forms the other two rounding methods regardless806

of which objective. We think the reason is that807

we explicitly control the hardness of rounding vari-808

ables through the progressive approach. While809

AdaRound and AdaQuant, they are less optimized810

on LLMs and may require more hyper-parameter811

search.812

Table 6: Ablation study on rounding method. The
results are reported on LLaMA-2-7B W2A16g128 quan-
tization.

Rounding Method Objective WT2(↓) C4(↓)

None (AWQ) Layer 14.65 18.67
AdaRound Layer 10.68 15.67
AdaQuant Layer 16.78 21.34
PAR Layer 9.43 12.79

None (OmniQuant) Block 11.06 16.34
AdaRound Block 9.05 11.45
AdaQuant Block 10.05 14.87
PAR Block 6.82 10.77

B More Experimental Results813

In this section, we include additional experimental814

results from the main section.815

B.1 Detailed Accuracy of W4A4/W3A3816

Quantization817

Table 10 provides the detailed accuracy of each818

zero-shot tasks in W4A4/W3A3 quantization.819

B.2 Results on C4820

We demonstrate the perplexity results on the C4821

datasets in Table 7. Note that the OmniQuant re-822

sults are re-evaluated using the official checkpoint,823

which is slightly higher than the original paper824

results (Shao et al., 2023). Since the evaluation pro-825

tocol can be different across different papers, we826

ensure use of the same evaluation protocol to com- 827

pare different methods. Note, we restrict all models 828

here from using the WikiText2 calibration data as 829

the calibration data will affect the perplexity metric 830

as shown in our ablation study. The improvements 831

of our method over existing approaches are consis- 832

tent with the results on the WikiText2 dataset. 833

Results on Smaller-Size LLM for Edge Infer- 834

ence. In addition to LLMs that are deployed on 835

GPUs, we also test the performance of smaller-size 836

LLMs geared for edge devices. We test LLaMA- 837

3.2-1/3B models and compare them with AWQ 838

in Table 6. We observe that our method signifi- 839

cantly outperforms AWQ across different bitwidths 840

in WikiText2 perplexity and average downstream 841

task performance. 842

B.3 W4A8 Quantization 843

We also provide the W4A8 quantization in Table 8. 844

Overall we find a small difference in W4A8 quanti- 845

zation due to the 8-bit per-token activation quanti- 846

zation. 847
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Table 7: Weight-only quantization results of LLaMA-1 and LLaMA-2 Models. We report C4 perplexity in this
table. *, † means initialized from AWQ, and OmniQuant, respectively.

LLaMA1&2 / PPL↓ 1−7B 1−13B 1−30B 1−65B 2−7B 2−13B 2−70B

FP16 - 7.08 6.61 5.98 5.62 6.97 6.46 5.52

W2A16

RTN 1.3e5 5.6e4 2.7e4 2.2e4 4.8e4 7.2e4 2.4e4
GPTQ 689.13 2.5e3 169.80 40.58 NAN 323.12 48.82
OmniQuant 26.03 18.94 14.55 11.47 90.64 26.76 13.33
TesseraQ† 13.28 11.43 10.81 8.52 14.82 11.96 9.15

W2A16
g128

RTN 1.0e3 447.64 99.45 17.15 4.9e3 139.65 42.13
GPTQ 27.71 15.29 11.93 11.99 33.70 20.97 NAN
AWQ 16.35 12.93 10.07 8.78 18.67 11.88 8.49
OmniQuant 14.06 11.27 10.37 8.65 16.34 12.14 9.33
TesseraQ* 10.64 9.36 8.36 7.64 10.77 9.48 7.63

W2A16
g64

RTN 151.43 76.00 30.07 11.34 475.35 28.69 13.43
GPTQ 17.71 11.70 9.92 10.07 19.40 12.48 NAN
AWQ 13.47 11.35 9.12 8.11 15.13 10.85 7.77
OmniQuant 12.79 10.60 9.46 8.18 13.79 11.02 8.61
TesseraQ* 10.32 9.05 8.18 7.48 10.50 9.23 7.44

W3A16

RTN 28.26 13.22 28.66 12.79 402.35 12.51 10.02
GPTQ 9.49 8.16 7.29 6.71 9.81 8.02 6.57
AWQ 11.16 8.37 7.91 8.62 16.25 8.90 6.50
OmniQuant 8.73 7.68 6.86 6.31 9.24 7.89 6.31
TesseraQ* 8.15 7.38 6.60 6.16 8.30 7.41 6.08

Table 8: Weight-activation quantization Results of various LLMs. We report the accuracy of 5 reasoning tasks
(↑).

Models Bitwidths Methods PiQA ArcE ArcC HellaSwag WinoGrande Avg.

LLaMA-7B

FP16 - 77.47 52.48 41.46 73.00 67.07 62.30

W4A8

SmoothQuant 75.19 70.45 37.45 51.06 64.87 59.81
OS+ 78.42 74.49 40.61 55.53 69.37 63.75
AWQ 77.63 73.31 41.89 55.50 69.85 63.65
TesseraQ* 78.89 75.33 41.55 56.11 69.14 64.21

LLaMA-2-7B

FP16 - 78.07 76.34 43.51 57.17 69.21 64.87

W4A8

SmoothQuant 75.24 70.95 38.39 51.30 63.85 59.95
Outlier Supp.+ 77.09 74.74 42.57 56.37 68.51 63.86
AWQ 77.09 74.36 42.32 56.25 69.53 63.91
TesseraQ* 77.42 76.26 41.63 56.42 69.22 64.19

LLaMA-3-8B

FP16 - 79.54 80.09 50.17 60.13 73.24 68.64

W4A8

SmoothQuant 71.98 66.37 34.55 50.46 67.40 58.16
Outlier Supp.+ 77.91 78.78 48.03 58.83 72.53 67.22
AWQ 79.00 78.40 48.63 58.81 72.45 67.46
TesseraQ* 78.99 79.88 47.61 59.09 72.77 67.67

Mistral-8B W4A8

SmoothQuant 79.59 77.56 46.50 57.62 71.11 66.48
OS+ 80.35 79.04 48.03 60.18 72.45 68.02
AWQ 79.92 79.79 47.35 58.80 74.26 68.03
TesseraQ* 80.36 79.92 49.57 60.54 73.79 68.84
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Table 9: Weight-activation quantization Results of Mistral-7B. We report the accuracy of 5 reasoning tasks (↑).

Models Bitwidths Methods PiQA ArcE ArcC HellaSwag WinoGrande Avg.

Mistral-7B

FP16 - 80.68 80.93 50.42 61.26 73.79 69.42

W2A16
g128

GPTQ 64.20 45.74 22.35 36.68 55.02 44.80
AWQ 68.44 56.73 27.44 40.60 56.03 49.06
SignRound 75.84 70.88 30.73 50.87 62.90 58.24
TesseraQ* 76.87 71.67 39.59 54.09 68.11 62.07

W3A16
g128

GPTQ 79.70 78.70 48.41 59.15 71.98 67.19
AWQ 80.19 78.62 45.56 58.28 71.58 66.85
SignRound 79.54 78.70 46.33 59.60 72.85 67.40
TesseraQ* 79.59 78.36 47.44 59.87 71.98 67.45

W4A4

SmoothQuant 57.94 35.14 21.75 30.51 48.30 38.73
OS+ 66.70 56.73 30.20 42.39 52.01 49.61
AWQ 66.26 54.16 30.80 43.45 53.67 49.67
TesseraQ* 72.19 65.90 33.78 49.02 57.61 55.71
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Table 10: Detailed W4A4/W3A3 quantization results on each commonsense tasks of LLaMA-1/2/3. We use
per-channel weight quantization and per-token activation quantization *, † means initialized from AWQ, QuaRot.

Models Bitwidths Methods PiQA ArcE ArcC HellaSwag WinoGrande Avg.

LLaMA-7B

FP16 - 78.67 75.33 41.80 56.96 69.85 64.53

W4A4

SmoothQuant 55.49 31.22 21.16 27.31 49.88 37.02
OS+ 67.46 57.74 31.05 41.83 54.38 50.50
AWQ 65.56 57.36 26.10 9.02 53.98 48.41
OmniQuant 66.15 45.20 31.14 56.44 53.43 50.47
QLLM 68.77 45.20 31.14 57.43 56.67 51.84
TesseraQ* 71.98 64.77 32.67 47.59 60.22 55.45

Atom (W4A4g128) 76.28 52.10 38.99 69.81 63.69 60.17
QuaRot 71.70 64.81 30.88 48.25 61.24 55.38
GPTQ† 76.55 72.60 37.11 53.67 66.93 61.37
TesseraQ† 76.22 73.31 39.25 54.45 66.38 61.92

W3A3

Atom (W3A3g128) 65.56 41.41 30.72 53.19 55.56 49.28
QuaRot 52.72 26.09 20.82 26.06 51.93 35.53
GPTQ† 68.98 58.92 26.87 43.90 55.40 50.82
TesseraQ‡ 68.93 57.78 27.30 43.24 58.24 51.10

LLaMA-2-7B

FP16 - 78.07 76.34 43.51 57.17 69.21 64.87

W4A4

SmoothQuant 53.04 25.71 20.22 25.71 51.77 35.29
OS+ 66.86 56.52 29.60 41.93 56.19 50.23
AWQ 64.80 53.87 30.20 43.11 57.93 49.99
OmniQuant 65.94 43.94 30.80 53.53 55.09 49.86
QLLM 67.68 44.40 30.89 58.45 56.59 51.60
TesseraQ* 70.89 63.34 32.93 48.28 60.14 55.12

QuaRot 66.54 55.51 25.76 37.80 52.25 47.57
GPTQ† 75.89 71.96 39.85 54.12 65.43 61.45
TesseraQ* 76.22 74.20 39.50 53.80 65.03 61.75

W3A3
QuaRot 51.74 25.54 22.86 25.84 49.88 35.18
GPTQ† 64.31 47.21 22.18 36.08 53.27 44.62
TesseraQ‡ 68.28 56.82 28.58 41.96 55.01 50.13

LLaMA-3-8B

FP16 - 79.54 80.09 50.17 60.13 73.24 68.64

W4A4

SmoothQuant 54.24 27.90 19.79 26.87 51.61 36.09
OS+ 57.34 40.99 20.22 33.19 51.77 40.71
AWQ 59.68 44.90 22.09 34.53 51.30 42.51
TesseraQ* 67.08 59.09 27.13 43.88 57.14 50.87
QuaRot 69.85 58.03 28.07 43.37 59.82 51.83
GPTQ† 76.22 73.94 41.21 55.47 67.48 62.87
TesseraQ† 77.64 77.27 44.80 56.03 69.85 65.12

W3A3
QuaRot 52.28 26.59 20.56 26.11 50.67 35.25
GPTQ† 56.96 33.62 20.47 28.87 49.40 37.87
TesseraQ† 66.05 51.59 24.40 40.59 53.98 47.33

LLaMA-3-70B

FP16 - 83.13 87.12 60.92 66.47 79.56 75.44

W4A4

SmoothQuant 57.45 38.46 24.23 30.22 54.93 41.06
OS+ 53.04 25.79 22.01 25.88 48.85 35.12
AWQ 69.91 61.71 34.04 47.98 54.61 53.65
TesseraQ* 78.29 69.15 38.12 53.74 61.16 60.09
QuaRot 57.88 36.36 19.02 28.13 53.19 38.92
GPTQ† 79.76 80.17 50.59 60.71 73.08 68.87
TesseraQ† 81.84 82.64 54.07 63.90 65.64 69.62

W3A3
QuaRot 52.06 24.87 20.05 25.55 49.25 34.26
GPTQ† 55.98 34.80 19.45 28.38 51.46 38.02
TesseraQ† 74.80 66.03 36.42 51.34 58.43 57.42
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