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Abstract

We propose a holistic approach for deploying Small Language Models (SLMs) as
function-calling agents within vehicles as edge devices, offering a more flexible
and robust alternative to traditional rule-based systems. By leveraging SLMs, we
simplify vehicle control mechanisms and enhance the user experience. Given
the in-vehicle hardware constraints, we apply state-of-the-art model compression
techniques, including structured pruning, healing, and quantization, ensuring that
the model fits within the resource limitations while maintaining acceptable per-
formance. Our work focuses on optimizing a representative SLM, Microsoft’s
Phi-3 mini, and outlines best practices for enabling embedded models, including
compression, task-specific fine-tuning, and vehicle integration. We demonstrate
that, despite significant reduction in model size which removes up to 2 billion
parameters from the original model, our approach preserves the model’s ability
to handle complex in-vehicle tasks accurately and efficiently. Furthermore, by
executing the model in a lightweight runtime environment, we achieve a generation
speed of 11 tokens per second, making real-time, on-device inference feasible
without hardware acceleration. Our results demonstrate the potential of SLMs to
transform vehicle control systems, enabling more intuitive interactions between
users and their vehicles for an enhanced driving experience.

1 Introduction

The rapid evolution of vehicle software has created a complex ecosystem of interconnected Electronic
Control Units (ECUs) via a Controller Area Network (CAN) bus. As consumer demand for advanced
features like virtual voice assistants, interior functions, and ambient settings grows, seamlessly
integrating these features into existing vehicle systems becomes increasingly complex. Traditionally,
each new software feature requires extensive development to interface with core vehicle systems.
Here, leveraging a SLM as intermediary to streamline communication between disparate systems may
facilitate easier integration of new features and adjustments based on driver conditions or external
software updates.

SLMs like Gemma (2B), Microsoft Phi-3 mini (3.8B), Mistral (7B), and Llama-3 (8B) have shown
strong performance on academic benchmarks, despite being significantly smaller than traditional
LLMs [1]]. However, due to the constraints of in-vehicle hardware, deploying these models directly
may still be impractical. In this paper, we focused on optimizing these SLMs by further reducing their
size and fine-tuning them to maintain performance on domain-specific tasks. We employed advanced
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Figure 1: Proposed framework for optimizing and deploying SLM for in-vehicle function-calling. Red
represents the pruning stages, green for healing, and blue for function-calling alignment.

model compression techniques such as pruning, quantization, and lightweight runtime execution.
Recent studies indicate that each of these techniques results in an acceptable performance loss when
used individually. However, there is limited research on the combined use of these techniques while
fine-tuning a model for specific tasks, such as function-calling.

Recently, Patil et al. [2]] demonstrated the enhancement of function-calling capabilities in Llama-based
models [3]] using a retrieval paradigm. Building on this, we extended their approach to the automotive
domain. Specifically, we optimized a representative SLM to control various in-vehicle functions
exposed via gRPC [4], such as seat heating, ambient lighting and more. This enables dynamic control
of vehicle settings, reducing manual intervention and allowing seamless software updates.

Similar to function-calling capabilities, Gromov et al. [5] showed that small models like Phi-2
could maintain baseline accuracy on reasoning tasks. Their approach used pruned decoder heads
with a healing process using parameter efficient fine-tuning techniques like Low-Rank Adaptation
(LoRA) [6]. For in-vehicle deployment, we found that a more robust healing process, including
full fine-tuning, is necessary to maintain acceptable performance across benchmarks and real-world
tasks. Furthermore, similar to the Octopus v2 approach [7]], we introduced special tokens to represent
function calls, aligning our pruned and healed model with in-vehicle function-calling tasks. The
introduced special tokens map the model’s token space to gRPC services, enabling the model
to dynamically trigger specific vehicle settings. Figure [I] presents an overview of our proposed
framework.

In summary, our contributions are as follows:

1. Model Pruning and Healing: We applied similarity-based depth-wise pruning, an optional
width-wise pruning and healing techniques to reduce the size of the Phi-3 mini model while
maintaining acceptable performance across both general and domain-specific tasks.

2. Fine-Tuning for In-Vehicle Function-Calling: We fine-tuned the pruned and healed model
using a custom dataset for in-vehicle function-calling, incorporating specialized tokens to
map language model outputs to gRPC-based vehicle functions.

3. Efficient Deployment: We leveraged llama.cpp for model conversion and quantization,
enabling efficient deployment on resource-constrained automotive hardware. This ensures
that the language model can operate in real-time environments with limited computational
resources.

The rest of the paper is organized as follows: Section[2]presents the related works on pruning, healing,
and function-calling. Section [3] details our methodology, including model pruning, healing, and
the fine-tuning process for in-vehicle function-calling as well as model conversion and deployment
strategies in vehicle. Finally, before concluding in Section 5} Section[d]presents our evaluation results.

2 Related Work

Model Pruning and Healing: Model pruning reduces the size and complexity of machine learning
models by removing less important weights, neurons, or entire layers [8]. The goal is to create a
model with a reduced memory footprint, lower computational requirements, and faster inference.
This is particularly useful for deploying models on resource-constrained devices, such as mobile
phones or embedded systems like vehicle head units.



Pruning approaches can be broadly categorized into structured pruning and unstructured pruning.
Structured pruning removes entire structures within the network, such as neurons, filters, or layers.
In contrast, unstructured pruning removes individual weights regardless of their position in the
network. While unstructured pruning can reduce the number of parameters, it often results in sparse
networks, which are difficult to accelerate without custom hardware [9], making it impractical for use
in environments like vehicle head units.

In structured pruning, there are two primary approaches: depth-wise and width-wise pruning. Depth-
wise pruning focuses on removing entire layers from the network. For example, ShortGPT [10]
calculates a Block Influence metric on a calibration dataset and removes layers with the smallest
scores. Another example is the layer collapse method [L1], which merges adjacent layers while
ensuring that the output on a calibration dataset remains as close as possible to the original. Gromov
et al. [S]] compute a similarity score between activations before and after a block of several layers and
prune the block with the highest similarity.

Once pruning is performed, the model can experience degraded performance due to the abrupt
removal of layers. To mitigate this, healing is applied through a small amount of fine-tuning to restore
the model’s capabilities. As shown in [5]], after pruning layers based on activation similarity, LoRA is
applied to fine-tune the remaining model on a small subset of the original training data. This step
ensures that the pruned model recovers its performance across tasks. For example, Gromov et al.
demonstrated that up to 45% of layers, depending on the type of the model, could be pruned with
minimal degradation in question-answering tasks when followed by this healing process.

Width-wise pruning aims to reduce the dimensionality of layers. For instance, SliceGPT [12]
leverages the computational invariance of weight matrices to apply Principal Component Analysis
(PCA) and identify rows and columns of the weight matrices that can be deleted. The MINITRON
approach proposed by Muralidharan et al. [13]] first records activation magnitudes for all hidden
neurons and attention heads on a calibration dataset. Then, the neurons and attention heads with the
lowest activation magnitude are pruned across all layers of the model.

Note that it is also possible to combine depth and width pruning strategies. For example, Muralidharan
et al. [13] experimented with using their width pruning approach together with a depth pruning strategy
similar to the one used by Gromov et al. [S]].

Function-Calling: Function-calling is an emergent ability of language models which expands
capabilities beyond text generation allowing them to interact with tools, APIs, and the physical
world. Toolformer [14] showcased the ability of language models to use external tools through simple
API calls, without explicit fine-tuning. Similarly, LangChain [15] provides an interface for chain
of thought with various tools and data sources. Moreover, retrieval-augmented generation (RAG)
techniques, such as REALM [16], have been shown to further enhance the accuracy and reliability of
function-calling by leveraging external knowledge sources during inference.

As a pivotal progress in function-calling by small language models on edge devices, the Octopus
v2 paper [7] introduced a novel methodology by incorporating functional tokens directly into the
tokenizer, thereby streamlining the function-calling process. This approach inspired our work, where
we employed specialized MB tokens, akin to the functional tokens in Octopus v2, to map language
model outputs to specific vehicle functions. We also adopted a strategy similar to Octopus v2’s
negative sample technique, incorporating irrelevant queries into our synthetic dataset to enhance the
robustness of our model against unintended function activations.

3 Methodology

We selected Phi3-min which is a decoder-only transformer language model with L = 32 hidden
layers, as a representative of an SLM due to its small size of 3.8B parameters, its strong performance
across public benchmarks, and its ability to run across various software stacks [[17].

"https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/tree/
££07dc01615£8113924aed013115ab2abd32115b, Note that we used the pre-July-update version of
Phi3-mini.
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Model Parameters # Layers Hiddendim MLP dim Attention heads

Phi3-mini 3.8B 32 3072 8192 32
Phi3-2.8B 2.8B 24 3072 8192 32
Phi3-1.8B 1.8B 24 2688 5120 28

Table 1: Model architecture details for original phi3-mini and its pruned variants.
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Figure 2: Heatmap of distances for all 32 decoder layers of Phi-3, with varying block sizes n €
{1,...,24}, calibrated with the fineweb dataset. Dark purple indicates regions of minimum distance
or maximum similarity. Layers 21-29 (highlighted in green) were found to be the optimal block of
size n = 8 to prune.

3.1 Model Pruning

We used both width and depth pruning in our experiments to produce two different variants of the
original Phi3-mini: Phi3-2.8B and Phi3-1.8B. Table[T|contains details regarding the architecture of
the two variants and the original Phi3-mini.

For depthwise pruning, we pruned a contiguous block of size n = 8 which minimized cumulative
layer distance between decoder layers. Here we followed general guidance from Gromov et al. [5],
where it was noted that dropping more than 30% of the layers across different model families (Llama,
Qwen, Mistral, Phi2, etc) resulted in collapse of the underlying model. Let h; represent the i-th
hidden state of the model and n the chosen block size. Then, for all i € {1,..., L — n}, where L is
the number of hidden layers in the model, we computed the angular distance between hidden states as

d(h;, hitn) := arccos (W) Figure |2 shows the resulting distances for different block sizes

calculated against the fineweb dataset [18]. Layers 21-29 were maximally similar, and thus pruned.
The resulting model is denoted as Phi3-2.8B.

Phi3-1.8B was then created by applying the width pruning approach from Muralidharan et al. [13]]
to Phi3-2.8B by recording activations on each layer (block) in the same manner as the depth-wise
approach. Next, for the attention heads, we calculated the L2 norm along the head dimension and
computed the mean across the sequence and batch dimensions for all activations. This gives us a
score for each hidden neuron, each neuron in the intermediate layer of the multi-layer perceptron
(MLP), and each attention head. Finally, we pruned the neurons and attention heads with the lowest
score: the hidden dimension from 3072 to 2688, the MLP dimension from 8192 to 5120, and the
number of attention heads from 32 to 28.

3.2 Healing and Instruction Tuning

After pruning, the resulting models struggle to generate coherent sentences and lose their alignment.
As described in Gromov et al. [3]], this can be remedied by applying a healing training afterwards.
The authors suggest training for 5000 steps using QLoRA on only the MLP weights with a
diverse web-scale dataset, for which we used fineweb dataset. We denote the models produced by
this step with hgper.



However, we determined that this was not sufficient to fully recuperate the model. While the resulting
models were able to form correct and meaningful sentences again, the factual knowledge of the
original Phi3-mini was almost entirely lost. Moreover, we observed that the healing loss was still
decreasing. As a result, we continued training the pruned models on fineweb-edu [20] for another
45000 steps/ 15B tokens, denoting the result as hjong. This roughly matches the approach from
Muralidharan et al. [[13]] who heal their pruned models for 10B tokens.

Afterwards, we instruction tuned the models for one epoch on the OpenHermes-2.5 dataset [21]].
The resulting models are marked with SFT (Supervised Fine-Tuning). We will further discuss
the importance of longer fine-tuning and instruction-tuning (Phi3-2.8B + hiong + SFT) on getting
noticeable improvement on the quality of responses generated by the model in results presented in
section [4]

For the Phi3-1.8B model, note that we first applied healing to the pruned Phi3-2.8B model before the
width pruning step, i.e., we used Phi3-2.8B + hjong as the base model and then applied width pruning
and instruction fine-tuning (SFT) on top of that.

3.3 Fine-tuning for In-Vehicle Function-Calling

Fine-tuning language models has become a standard practice, with various approaches being explored.
Both full fine-tuning (FFT) and LoRA [22] are widely used methods, each with its own strengths and
weaknesses. FFT offers comprehensive model adaptation but can be computationally expensive, while
LoRA provides a more parameter-efficient alternative, particularly beneficial when GPU resources
are limited. In our research, we leveraged both full model training and LoRA training, allowing
us to compare their performance and understand their trade-offs. LoRA’s ability to extend model
functionalities further highlights its potential for adapting our framework to a broader range of
applications. In addition to being more computationally efficient, the modularity of LoRA adapters
opens up the possibility of seamlessly switching between different adapters, allowing for dynamic
customization and adaptation of the model to various tasks or domains, as explored in works like
LoRA-Switch [23]. Building on the methodology of Octopus v2 [[7], we fine-tuned the pruned and
healed phi3-mini model to enhance its function-calling capabilities for in-vehicle operations.

Synthetic Dataset Generation for Fine-Tuning: We generated a comprehensive synthetic
dataset inspired by the Octopus v2 model’s technique of integrating functional tokens
into the tokenizer. Eight MB tokens were defined for specific vehicle functions, such as
set_ambient_light_color_program mapped to <MB_1> and set_seat_heating_intensity
mapped to <MB_2>. To ensure both diversity and naturalness, we utilized a multi-step prompt design
for generating positive and negative examples.

Positive Examples: We used a prompt template to generate 25,000 examples evenly distributed
across all vehicle functions. For example:

Query:

Warm up my seat and set the mood to Malibu Sunset before I get in the car
Response:

<MB_2>(seat_position="FRONT_LEFT", intensity=3);
<MB_1>(color_program="MalibuSunset") ;

<MB_0>(message="I’ve warmed up your seat and set the ambient lighting

to Malibu Sunset. Your car will be inviting when you get in.")<MB_end>

Negative Examples: To improve model robustness, 500 irrelevant queries were generated using a
negative sampling strategy. These queries were plausible but unsolvable by the provided functions
(e.g., "Can you teleport the car to Hawaii?"). The assistant responds by politely declining the request.

Quality Control: To ensure the generated dataset reflects real-life spoken user queries, we manually
curated a subset of examples derived from common user questions and included them in the prompt
to the LLM. We enforced an even distribution of function calls across different functions to avoid
imbalance. Specific rules were added to the prompts to ensure high-quality dataset generation, and
this, combined with de-duplication and post-processing, maintained a high standard for the final
examples.



The dataset thus reflects natural in-vehicle commands, ensuring both accuracy in function-calling and
robustness to unsupported queries. Examples of the functions vehicle services are provided in the
supplementary materials.

Fine-Tuning Settings: We fine-tuned both the 2.8B and 1.8B pruned models using LoRA fine-tuning
and full fine-tuning, with the specific settings outlined in Table 2| Additionally, we fine-tuned the
original Phi-3 Mini model using LoRA for comparison purposes. It is important to note that for FFT,
we limited the training to just one epoch and used a smaller learning rate along with a weight decay of
0.1 as a form of regularization [[24]. This approach aimed to prevent overfitting to the function-calling
dataset, which is a common concern with FFT due to its tendency to aggressively adapt to the training
data.

In contrast, LoRA fine-tuning required at least two epochs of training without any weight decay and
with a larger learning rate to achieve satisfactory results on function-calling tests. This difference in
training regimes can be attributed to the nature of LoRA, which introduces a smaller set of trainable
parameters compared to FFT, and that is why it may necessitate more training epochs and a higher
learning rate to effectively capture the nuances of the function-calling task.

Parameter LoRA FFT
Rank 96 -
Alpha 16 -
Batch Size 4 4
Learning Rate 5e-5 Se-6
Number of Epochs 2 1
Weight Decay 0 0.1

Target Modules embed_tokens, gkv_proj, o_proj, mlp (up/down), Im_head -

Table 2: Fine-tuning settings for LoORA and FFT

3.4 Model Deployment

There are various lightweight libraries optimized for on-device inference, such as: MLX, tensorflow-
lite, ONNX, and ExecuTorch [25][26][27][28]]. We chose to leverage the open source on-device
runtime, 1llama.cpp, to host our resulting pruned Phi-3 model.

Ilama.cpp is a wrapper around the ggml tensor library, which has native support for transformer
model operations [29]]. The framework makes use of the gguf file format to serialize language models
and respective metadata (tokenizer, model type, quantization, etc.) into a single artifact, which is then
executed against the ggml tensor library. It is flexible in its implementation and operations can be
removed or composed depending on the model graph being executed.

Specifically, we took the following steps to convert our model into the target format: merge LoRA into
HF base model (If LoRA is used), convert safetensors artifact to gguf, quantize resulting gguf to 4-bit,
test resulting artifact, and quantify distance between gguf and original safetensors implementation.

While gguf artifacts can be quantized from 2-bit to 8-bit, we chose a 4-bit quantization strategy. In
doing so, we balanced token throughput and generation with minimal added perplexity. Additionally,
in this format a pruned Phi3 model uses less than 2gb of RAM.

4 Experimental Results

4.1 Evaluation Results on the Original Format

To assess the model’s general language understanding, after various pruning, healing, and training
steps, we used the lm—evaluation—harnessﬂ framework to evaluate models in their original
safetensor format. The evaluation covered multiple benchmarks, including standard tasks such as
question answering, natural language understanding, and reasoning. Specifically we evaluated our
models on Winogrande [30], Truthful QA [31], MMLU [32], HellaSwag [33]], and ARC [34]]. The
results are outlined in Table

https://github.com/EleutherAI/lm-evaluation-harness
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Model Winogrande TruthfulQA MMLU HellaSwag ARC Avg

Phi3-3.8B 0.74 0.36 0.70 0.59 054 059
Phi3-2.8B + hghort 0.69 0.34 0.65 0.47 042 0.1
Phi3-2.8B + hgwort + SFT 0.71 0.29 0.55 0.49 0.41  0.49
Phi3-2.8B + hjong + SFT 0.68 0.27 0.56 0.51 0.46  0.50
Phi3-1.8B + hjong + SFT 0.62 0.27 0.42 0.44 036 042
Phi3-3.8B + LoRA (4-bit) 0.72 0.33 0.66 0.57 053 0.56
Phi3-2.8B + hiong + SFT + LoRA (4-bit)  0.67 0.25 0.50 0.48 041 0.46
Phi3-2.8B + hiong + SFT + FFT (4-bit)  0.66 0.26 0.51 0.47 041 0.46
Phi3-1.8B + hiong + SFT + LoRA (4-bit)  0.60 0.28 0.32 0.41 034 0.39
Phi3-1.8B + hiong + SFT + FFT (4-bit)  0.60 0.28 0.35 0.41 034 0.40

Table 3: Benchmark results across model variations

Impact of Pruning and Healing: Depth-wise pruning led to a modest decline in model performance
- considering that approximately 1B parameters were removed. Moreover it is seen that longer healing
yields better scores on MMLU, HellaSwag, and ARC for (Phi3-2.8B + hjoyg) Vs (Phi3-2.8B + Agnor)-
However, width-wise pruning on top of the 2.8B model caused significant degradation in model
capabilities across all benchmarks regardless of the healing and alignment strategy applied to it. As a
result, it can be inferred that regardless of the healing strategy applied, the upper limit of parameter
removal is roughly 30% of the original model parameters. This falls in-line with the findings from
Gromov et al. [5]].

Impact of Instruction Tuning: Instruction tuning following healing improves performance in some
benchmarks (e.g., Winogrande up to 0.71 for hgpore + SFT), though the overall average score
remains close to 0.50 for most configurations. This suggests that instruction tuning can partially
recover performance in certain tasks, although the improvements are task-specific and not universal
across all benchmarks.

Although the benchmark results in Table indicate that longer training and instruction tuning (hiong +
SFT) lead to only slight improvements in benchmark performance, direct interaction with the model
revealed noticeable enhancements compared to shorter training with QLoRA (hghore + SFT). We
observed that, compared to the depth-pruned 2.8B Phi3 Mini model, the combination of long healing
together with instruction tuning denoted as hiong + SFT, helps recover some of the performance lost
due to pruning across various datasets. This is why we selected this configuration as the baseline for
the next step, which involves further fine-tuning for function-calling.

Impact of Function-Calling Fine-Tuning: We evaluated the fine-tuned models with function-
calling dataset on these benchmarks after 4-bit quantization denoted as (4-bit). Notably, there
was no significant performance drop when comparing the phi3-3.8B model to its LoRA fine-tuned
counterpart, phi3-3.8B + LoRA. Similarly, across different benchmarks, the transition from hjong +
SFT t0 hiong + SFT + (FFT / LoRA) did not result in substantial degradation for both the phi3-2.8B
and phi3-1.8B models.

4.2 Evaluation on Target Format

Since the models will run with llama.cpp in vehicle, it is imperative to check performance after
conversion from safetensor to 4-bit gguf. Unfortunately, the lm-evaluation-harness cannot
interface with models in this format. So, we used llama.cpp’s own evaluation tool for running
standard benchmarks on the converted models. Additionally, to evaluate model performance on
function-calling tasks, we used an exact match metric which measures accuracy for both the function
name and arguments. Table 4] presents the results of evaluations on 4-bit gguf models.

Results on General Language Understanding: The benchmark results across TruthfulQA, MMLU,
and HellaSwag reveal a clear correlation between model size and performance on general language
understanding tasks. As the model size decreases from 3.8B to 2.8B to 1.8B parameters, there’s a
consistent decline in performance across all three benchmarks. The data indicates that reducing the
model size from 3.8B to 2.8B results in a performance drop of about 4.5 to 5 points on MMLU, while
further reducing to 1.8B leads to an additional drop of approximately 3 points.



Model function-calling  TruthfulQA MMLU HellaSwag

Phi3-3.8B + LoRA 0.86 32.44 39.10 74.82
Phi3-2.8B + hiong + SFT - 26.81 34.51 65.86
Phi3-2.8B + hiong + SFT + FFT 0.88 26.57 34.30 63.05
Phi3-2.8B + hiong + SFT + LORA  0.88 25.70 34.15 63.93
Phi3-1.8B + hiong + SFT - 26.32 31.18 55.54
Phi3-1.8B + hiong + SFT + FFT 0.84 25.70 30.78 54.47
Phi3-1.8B + hiong + SFT + LORA  0.86 27.54 31.03 54.65

Table 4: Benchmark results across model variations (4bit gguf)

However, within models of the same size (e.g., Phi3-2.8B and Phi3-1.8B variants), the performance
differences before and after fine-tuning are minimal. For example, Phi3-2.8B + SFT achieves an
MMLU score of 34.51, while its fine-tuned variant, Phi3-2.8B + SFT + FFT, scores 34.30, showing
little impact from function-calling fine-tuning. This suggests that the fine-tuning process does not
negatively affect general language understanding and is applied effectively without diminishing the
models’ performance on these benchmarks.

Results on Function-Calling Performance: The fine-tuning process leads to considerable improve-
ments in function-calling accuracy across all models. Fine-tuning the Phi3-2.8B model with LoRA
achieves a function-calling accuracy of 0.88 similar to FFT score. Even in the case of the smallest
model, Phi3-1.8B, function-calling accuracy remains high, with LoRA achieving 0.86 and FFT
scoring 0.84. These results highlight the efficiency of fine-tuning in enhancing task-specific perfor-
mance, particularly for function-calling in vehicular systems. The minor variations in function-calling
accuracy among models of different sizes suggests that even smaller models, such as Phi3-1.8B, can
effectively handle specialized tasks like function-calling. Considering the current production speech
system for function calling, which achieves an accuracy of 0.75 across various vehicle functions,
the function-calling accuracy of 0.85 or higher demonstrated by the SLM presents a promising
improvement over the existing system.

It should be noted that the message in <MB_0> is not evaluated in function-calling performance
since the ability for general language understanding was already evaluated. Although it degraded
after fine-tuning for in-vehicle function-calling, the message remains fluent and explains what
functions are activated based on human evaluation. The following example is from Phi3-2.8B
hiong + SFT + LoraFT (4-bit) which clearly depicts how a function activation addresses user
needs:

Query:

It’s stuffy here, can you do something?

Response:

<MB_4>(zone="FRONT_LEFT", fan_value=3);

<MB_0>(message="I’m increasing the fan speed to help circulate
air in your area.")

4.3 Token Generation Performance Gains

Table [5] summarizes the token generation results of Phi3-mini across all experiments. It is worth
noting that depth-wise pruning yields a 2x increase in token-generation vs width-wise pruning. It can
be inferred that removing decoder blocks altogether is more consequential in the model’s ability to
generate high quality responses, as well as generation speed. Additionally, the 1.8B parameter model
achieves a token generation speed of 11 tokens/sec on CPU. For reference, a Llama model running on
an NPU achieves the same performance [35]. Figure [3]shows the CPU usage of the 1.8B model on a
vehicle head unit. At inference, the pruned model uses 400% CPU (the underlying CPU is an ARM
processor with 7 cores). It can be inferred then that even a standard Phi3 which is typically regarded
as a small language model would use all available cores during inference, further demonstrating the
need for a pruning step pre-deployment. While the spike is significant, it is only sustained for the
duration of inference and can be further mitigated by dynamically allocating resources to the LLM
process before inference. Moreover given the magnitude of the model and applications which it can
unlock, the tradeoff is reasonable. As a result we demonstrate the benefit and feasibility of running
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Figure 3: CPU usage of LLM process during inference on the vehicle head unit. The horizontal lines show
binned values of the process across time. The Top 10% average (black line) shows the top 10% of CPU usage of
the process.

Model t/s

Phi3 (base) 6.76
Phi3 (2.8B) 9.44
Phi3 (1.8B) 11.02

Table 5: Benchmark results for 4-bit gguf model (tokens per second)

smaller language models on-device, for an out-of-distribution use case (function-calling) without any
hardware acceleration.

5 Conclusion

This work demonstrates the effective optimization of Small Language Models (SLMs) for in-vehicle
function-calling, delivering high task accuracy and real-time performance on resource-constrained
automotive hardware. Through structured pruning, healing, and fine-tuning, we significantly reduced
the size of the Phi-3 mini model while preserving its ability to handle both general language tasks
and specific vehicle functions. Our method shows that pruned and quantized models can efficiently
perform real-time function execution, generating up to 11 tokens per second without hardware
acceleration. This offers a scalable, flexible solution for modern vehicle control systems, enabling
more intuitive user interactions. Future work can focus on enhancing general language understanding
and further refining these models for specific automotive tasks.
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Supplementary Material

Vehicle function examples:

def set_ambient_light_color_program(color_program: str):
nmnn

Set ambient light program in the car.

Parameters:

- colorProgram (str): Color programs options are
["OceanBlue", "MiamiRose", "MalibuSunset", "BurningBlue",
"VenicePink", "ChromeShine", "RedMoon", "JungleGreen",
"Ultramarin", "FreshCyan", "RacingYellow", "RacingRed",
"AmethystHeat", "RoseGoldSparkle"]

mnn

def set_seat_heating_intensity(seat_position: str, intensity: int):

mwmnn

Set seat heating intensity in the car.

Parameters:

- seatPosition (str): Seat position options are
["FRONT_LEFT", "FRONT_RIGHT", "REAR_LEFT", "REAR_RIGHT"]
- intensity (str): Intensity options are [0, 1, 2, 3]

mwnn

def set_temperature(zone: str, temperature: float, unit: str):
nnn

Set temperature in the car.

Parameters:

- zome (str): Zome options are

["FRONT_LEFT", "FRONT_RIGHT", "REAR_LEFT", "REAR_RIGHT"]
- temperature (float): Temperature range s

from 60 to 84 for FAHRENHEIT and 16 to 28 for CELSIUS

- unit (str): Unit options are ["CELSIUS", "FAHRENHEIT"]

mwnn

def set_window_position(window_position: str, operation: str):
namnn

Set window position in the car.

Parameters:

- windowPosition (str): Window position options are
["FRONT_LEFT", "FRONT_RIGHT", "REAR_LEFT", "REAR_RIGHT"]

- operation (str): Operation options are ["OPEN", "CLOSE"]

mwnn

def respond_chat(message: str):
namnn

Respond to the user’s query, for example to
provide an answer or ask for more information.

Parameters:

- message (str): The message that should be returned to the user.
namnn
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