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Abstract
This paper presents a relation-centric algorithm for solving arithmetic word problems (AWPs) by synergizing a syntax-
semantics extractor for extracting explicit relations, and a neural network miner for mining implicit relations. This is the first
algorithm that has a specific component to acquire implicit knowledge items for solving AWPs. This paper proposes a three-
phase scheme to decompose the challenging task of designing an algorithm for solving AWPs into three smaller tasks. The
first phase proposes a state-action paradigm; the second phase instantiates the paradigm into a relation-centric approach; and
the third phase implements a relation-centric algorithm for solving AWPs. There are twomain steps in the proposed algorithm:
problem understanding and symbolic solver. By adopting the relation-centric approach, problem understanding becomes a
task of relation acquisition. For conducting the task of relation acquisition, a relaxed syntax-semantics method first extracts
a group of explicit relation candidates. In parallel, a neural network miner acquires implicit relation candidates. The miner
computes the vectors encoded by BERT to determine which implicit relations should be added. Thus, problem understanding
can acquire both explicit relations and implicit relations, which addresses the challenge of building a problem understanding
method that can acquire all the knowledge items to find the solution. In the subsequent step of symbolic solver, a fusion
procedure forms a distilled set of relations from all the candidates by discarding unnecessary relations. Experimentation on
nine benchmark datasets validates the superiority of the proposed algorithm that outperforms the state-of-the-art algorithms.

Keywords Problem solving · State-action paradigm · Relation-centric · Explicit relation · Implicit relation · Syntax-semantics
model

Introduction

Problem solving for basic education has become a hotspot
research problem again in the recent years because of the
confluence of the application demand and the stimulation by
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artificial intelligence (AI) rapid progress [1,2], in which solv-
ing the arithmetic word problems (AWPs) is the most active
research problem.The success of “AlphaGo” further enforces
the belief that AI will have the ability to solve the exer-
cise problems in an intelligence way like human being does.
Besides being the demand technology of building intelligent
tutoring systems, algorithms for solving AWPs are useful
technologies in fact-checking tasks to validate the veracity
of a given claim [3]. In theory, it is still challenging forAI as it
cannot properly solveAWPs yet. Now the problem of solving
AWPs is complicated and tricky. On the one hand, it seems
not to be a difficult research problem because people and
even young kids can often solve AWPs with ease. In another
hand, as two recent survey papers have also pointed out, so
far there are not many satisfactory solvers after over 60 years
of efforts [1,2]. The theoretical significance, its application
demand and its research challenge, motivate our interest in
developing algorithms for solving AWPs.
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The advances in natural language processing and deep
learning now provide a plethora of tools for the develop-
ment of new algorithms for solving AWPs. Based on these
advances, the seq2seq (sequence to sequence) deep neural
networks of solving AWPs has been developed in the past
years [4–13]. This seq2seq approach solves the problem
using single deep neural networks and gives a final answer
without intermediate steps. As a result, it cannot provide the
intermediate steps of tutoring students as instructors do.

Except the algorithms in the seq2seq approach,most of the
existing algorithms for solvingAWPs involve twomain steps:
problem understanding and symbolic solver. Since the two
steps run sequentially, the symbolic solver highly depends
on the output of problem understanding. Hence, there has
been much effort in developing problem understanding. The
methods on problem understanding in the literature can be
divided into four main families: semantic analysis [14–17],
rule based [18–23], machine learning [24–27], and syntax-
semantics models [28–33]. A common shortcoming of these
four families of algorithms is that they do not have any
component to discover implicit knowledge items for solving
AWPs. The existing algorithms have a limited ability in solv-
ing AWPs because they do not have any effective methods
to acquire such implicit knowledge items. Several studies
have been involved the investigation of how implicit rela-
tions could be acquired [21,23,34], but so far it has not been
studied yet how to use both explicit knowledge and implicit
knowledge to form the complete knowledge body for solv-
ing AWPs. In solving AWPs, the explicit knowledge refers
to the quantitative relations stated explicitly in the problem
text; the implicit knowledge refers to the knowledge indis-
pensable to solve problems added by the students based on
their mastered knowledge. As an example, Fig. 1(b) shows
how to add a formula “perimeter = 2(length + width)”
to solve the given AWP, which is an implicit relation from
the formula database. Hence, the implicit knowledge in this
paper differs from the implicit relation triples produced by
the existing relation triples as in [35,36].

This paper proposes a three-phase scheme of developing
the algorithm for solving AWPs to decompose the task of
developing an algorithm for solving AWPs into three phases,
namely creating a state-action paradigm, instantiating the
paradigm into a relation-centric approach, and implement-
ing a solving algorithm by adopting the relation-centric
approach. The state-action paradigm lies on the recognition
that any algorithm of solving AWPs is a loop of the state of
knowledge expression and the algorithm action of transform-
ing states. This paper instantiates the state-action paradigm
into a relation-centric approach using a group of relations
as the intermediate state of the solving process. The pro-
posed algorithm in this paper is a relation-centric algorithm
for solving AWPs. The proposed approach is able to pro-
vide explainable intermediate steps, being the trait required

by the intelligent tutoring systems. Following the existing
algorithms, there are two main steps in the proposed algo-
rithm: problem understanding and symbolic solver. Figure
1 shows that the pipeline and a process of solving a sam-
ple AWP by the proposed algorithm. Problem understanding
is an acquirer that can acquire both explicit relations and
implicit relations. The success of this acquirer lies in syner-
gizing a relaxed syntax-semantics (S2) extractor and a neural
network miner. The symbolic solver first forms a group of
relations by fusing explicit relations and implicit relations.
Then it produces a distilled group of relations by discard-
ing unnecessary relations. Next it transforms the distilled
group of relations into a system of equations. The symbolic
solver finally outputs the values of the unknown for a given
problem by solving the system of equations. The conducted
experiments evaluate the proposed algorithm on a collection
of nine datasets; the experimental results show that the pro-
posed algorithm outperforms the state-of-the-art algorithms
on these datasets. To the best of our knowledge, this is the first
algorithmwhich uses both the extractor for acquiring explicit
relations and the neural network miner for mining implicit
relations separately to solve more AWPs. In summary, this
paper has three contributions as follows:

(1) It proposes the three-phase scheme of building algo-
rithms for solving AWPs, which consists of building
a state-action paradigm, instantiating a relation-centric
approach, and implementing a relation-centric algorithm.

(2) It proposes the first relation-centric algorithm that can
solve both explicit AWPs and implicit AWPs.

(3) It creates an acquirer that synergizes a relaxed S2 extrac-
tor of acquiring explicit relations and a neural network
miner of mining implicit relations.

In the rest of the paper, “Related work” first provides a
review of the related work. “State-action paradigm and rela-
tion-centric approach” then builds the state-action algorithm
paradigm and the relation-centric approach. “A relation–
centric algorithm for solving AWPs” presents the proposed
algorithm for solving AWPs. “Experiments” presents the
algorithm analysis and experimental results. “Conclusions
and future work” concludes the paper.

Related work

This section starts with reviewing the solving approaches
of the existing algorithms because there is no related work
in building the solving algorithm paradigm yet. The existing
algorithms for solvingAWPs are divided into five approaches
according to the different expression forms of the understood
state of AWPs. The algorithm proposed in this paper consists
in two phases of problem understanding and symbolic solver.
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Fig. 1 The pipeline of the proposed algorithm and the process that it solves the given AWP. The pipeline of the proposed relation-centric algorithm
is in (a); the process that the proposed algorithm solves the given AWP is in (b)

Hence, the related work is also about problem understanding
and symbolic solver.

The related work in solving approach

Researchers have proposed many algorithms to solve AWPs.
Through analyzing the process of solving problems, one
can form the following conclusion: solving problems is to
present the knowledge in different states and to use actions
to transform knowledge expression from a state to another
state. For example, some algorithms use a system of equa-
tions as the main intermediate state of AWPs. Their main
actions are to build the system and solve the system. Then,
this paper proposes to mainly use the knowledge expression
forms of the main states to define the approaches of solving
algorithms. According to these forms, the existing algo-
rithms can be divided into five approaches: (1) two-frame,
(2) equation-centric, (3) answer expression, (4) seq2seq, and
(5) relation-centric. The concepts and methods of the five
approacheswill be the base to build the state-action paradigm
proposed in this paper. We review the five approaches as fol-
lows.

(1) Two-frame: Back in 1985,Kintsch et al. [14] proposed a
two-frame approach to solve AWPs. This approach uses
two types of frames to store the outcome of problem
understanding, namely knowledge frames and solution
frames. This approach addressed the representation of
outcome of problem understanding and the scheme of
knowledge inference. It uses the knowledge frames to
store the extracted knowledge items by problem under-
standing; the solution frames to store the inference
schemes. It uses sentence templates to extract knowledge
from problem text in order to fill abstract knowledge
frames. Subsequently, the researchers proposed seman-
tic sentence templates and deep neural networks to
extract knowledge items from problem text [11,15–17].
However, the two-frame approach suffers from a cou-
ple of limitations. The first one is that the number of
sentence templates can become quickly large due to the
large variety of expressions for a given semantic mean-
ing. The other one is that there is no uniformway to infer
knowledge frames according to solution frames.

(2) Equation-centric: Equation-centric approach is to solve
AWPs with methods around equations. Since the math-
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ematical tools can solve the system of equations, the
main phase of this approach is problem understanding,
i.e., how to form such a system of equations. Hence,
many papers studied various methods to form system
of equations. Some methods acquire equations one by
one [18,37–41]. Some other methods acquire all equa-
tions using equations templates. Kushman et al. [24]
first proposed machine learning (ML) method to acquire
all the equations together. The ML method prepares
a pool of equations templates. The trained ML finds
out which template is suitable for the given problem
followed bymatching entities with elements of the equa-
tion template. The ML methods was further studied in
[25–27,42]. However, both ways have the limitation of
acquiring the proper group of equations. The way of
acquiring equations one by one, encounters the difficulty
in assigning the same variable to the same entity because
the same entity may have different appearances in dif-
ferent equations. The way of acquiring equations using
equations templates, encounters difficulty in building a
pool of equation templates that can achieve high prob-
lem accuracy. Another demerit of the equation-centric
approach is that most of the algorithms in this approach
have a limited scope because they can produce only lin-
ear equations [18,24–27,37,38,41,42].

(3) Answer Expression: The approach of answer expres-
sion is to solve the problem by forming the answer
expression from the extracted knowledge items. An
answer expression is an expression of numbers and
operands; the answer is the result of evaluating this
expression with the assumption that a problem requires
a single answer. The algorithms in this approach used
various methods to extract knowledge items and form
the answer expression. Roy et al. [20] first proposed
to use quantity schema and multiple classifiers to map
problem text to answer expression. Subsequently, some
researchers proposed to use unit dependency graph [21],
formula templates [22], or declarative rules [23] to
extract knowledge items for forming answer expres-
sions. In the recent years, some researchers proposed
to use deep reinforcement learning [43] or deep neural
networks [44,45] to form answer expressions. Answer
expression is an indispensable state of this approach and
the methods to extract knowledge items and form this
expression are the corresponding actions.However, such
actions cross a big span from input to answer expression
so they are complicated. Thus, answer expression car-
ries two drawbacks: (i) it can only solve single unknown
problems so far; (ii) it can hardly explain the internal
reason or inference of the expression generation.

(4) Seq2Seq: The seq2seq approach is to solve the prob-
lem using the trained machine to obtain the sequence
of answer expression, which assumes that a problem

requires a single answer so far. This approach is differ-
ent from the approach of answer expression lying in that
it mainly computes vectors, although both approaches
target to acquire answer expressions. It first converts
problem text into vector sequence and then uses the
trained machine to accomplish a transformation from
vector sequence of problem text into vector sequence
of answer expression. Some papers call this approach
as data-driven approach because this approach needs
data to train learning machines [46,47]. Wang et al. [4]
first proposed a seq2seq approach to design algorithms
for solving AWPs. Subsequently, researchers proposed
more deep neural networks to translate problem text
into answer expression [5–10,12,13,48]. The seq2seq
approach suffers a demerit that the actions taken by deep
neural networks are not explainable.

(5) Relation-centric: After learning from the above-listed
four approaches, Yu et al. [28] proposed a relation-
centric approach to solve AWPs and proposed to use
S2 method to extract relations from problem text. More
researchers paid attention to this approach because it
has multiple merits. First, it inherits the merit that the
actions are explainable to students because it adopts
model-based method. Second, it also demonstrates the
advantage of equations because it is easy to convert
relations into equations. Third, acquiring relations is
easier than acquiring equations. Acquiring equations
one by one by S2 method proves to be a much eas-
ier task than directly acquiring a batch of equations.
The relation-centric approach was successfully applied
in understanding plane geometry problems and direct
current circuit problems [31–33], but it has a limited
performance when solving AWPs as it cannot acquire
implicit relations yet [29], which we have tried to tackle
further in this paper.

In a word, this paper adopts the relation-centric approach
to develop an algorithm that can broaden the range of solving
arithmetic word problems and output explainable solutions
that can provide tutoring service to students. Such an algo-
rithm is also applicable to fact-checking task, which validates
the veracity of a given claim [3], because it can output an
algorithmic solution and a series of algorithmic actions from
one state to another. In contrast, the algorithms of adopting
some other approaches, especially seq2seq, do not have such
ability because they cannot give understandable intermediate
results.

The related work in problem understanding

There are four main methods for problem understanding:
template matching, rule searching, machine learning, and S2

model.
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The method of template matching uses a pool of tem-
plates to extract knowledge items from problem text [14].
A large number of templates are needed because templates
are semantic [15]. The rule searching is to search and iden-
tify the various scenarios to produce equations. This method
also needs a large number of rules because there are many
different scenarios [18,23]. The machine learning method
leverages the designed features to search the most proba-
ble equation template [24,25,27]. This method can hardly
explain the internal reason of the equation template selec-
tion. Researchers proposed the S2 model method to work
against the variety of semantics and scenarios [28,29]. The
S2 model method has overcome the dimension disaster of
semantic expressions by increasing the use of syntax patterns
and reducing the use of semantic patterns. However, these
four methods mainly extract the explicit relations, though
they can acquire some implicit relations. Hence, this paper
develops a method to acquire more implicit relations.

Here we review the methods involving in acquiring
implicit relations. In 2016, two studies attempted to address
the problem of implicit relation acquisition. The first study,
done inMitra et al. [22], relies on a machine learning method
to find equations for three mathematical situations, i.e., 1)
part whole, 2) quantity change, and 3) quantity comparison.
Among these three situations, only thefirst one refers to a type
of implicit relations as problem text normally does not explic-
itly state the relation of part whole. The second study, done in
Yu et al. [49], focuses on adding an additional formula into
outcome of problem understanding. Such a formula corre-
sponds to an implicit relation, as it essentially is a knowledge
point requiring students to add an appropriate formula when
they are solving problems. To test how well students mas-
ter this knowledge point, problem text should not explicitly
state it. However, problem text expressions will often pro-
vide hints of adding the required formula. Based on this fact,
Yu et al. [49] proposed an SVM based method to find addi-
tional formulas to be used in solving AWPs. The proposed
method is not cutting-edge because it relies on bag-of-words
rather than vector features. In another study, Dewappriya et
al. [34] proposed an ontology-based unit system to resolve
unit conflicts. The system mainly aimed at preventing unit
conflict before running themain portion of solving algorithm
and thus acted as a preprocessing step.

Learning from the existing methods, this study proposes
an algorithm for solving AWPs. The algorithm uses a relaxed
S2 method to extract explicit relations and a neural network
to acquire implicit relations. More specifically, the proposed
algorithm relies on a BERT based neural network to find
implicit relations. The phase of problem understanding thus
essentially changes to acquiring a group of relations while
the symbolic solver conducts an equivalent transform of rela-
tions. This is the first algorithm that can solve a large number
of AWPs involving both explicit and implicit relations.

The related work in symbolic solver

Researchers put less effort in developing symbolic solvers
because it is not difficult to solve the outcome of problem
understanding in most cases. For the algorithms of adopting
the equation-centric approach, the outputs of their problem
understanding are systems of linear equations [18,24–27,
37,38,41,42]. Hence, their symbolic solvers are somewhat
simplistic because Gaussian elimination can solve such sys-
tems. For the algorithms of adopting the approach of answer
expression, the outputs of their problem understanding are in
various formats of arithmetic expressions so that they do not
need any complex symbolic solver [20–23,43–45]. The algo-
rithms adopting approach of two-frame used the heuristic
ways to find answers [11,14–17]. The algorithms of adopting
the relation-centric approach have a decent symbolic solver
[28,30,32]. The reason is that the equations produced from
relations might not be linear. Hence, Yu et al. [29] proposed
a method leveraged on the idea of recursively solving the lin-
ear portion of all equations. This paper will continue to use
this method to build the symbolic solver.

State-action paradigm and relation-centric
approach

This paper proposes a three-phase scheme to develop algo-
rithms for solving AWPs, which is a scheme to design algo-
rithms from abstract to concreteness. This section presents
the first two phases. The first phase is to design a solving
paradigm. Concretely, it proposes a state-action paradigm
for solving AWPs as solving paradigm. The second phase
is to define the states of the state-action paradigm to form a
relation-centric approach to solving AWPs.

The goal of this paper is to design high performance algo-
rithms for solving AWPs. Through analyzing the algorithms
in the literature, the loop of states and actions can explain
the process of solving AWPs by algorithms. Hence, this
paper proposes a state-action paradigm as depicted in Fig.
2 and uses it as the algorithm paradigm of solving AWPs.
In this paradigm, the states are different states of knowledge
expression and actions are the algorithm actions to trans-
form from a state to another. This abstract solving paradigm
is a simple diagram, but it can guide us to understand what
the solving algorithms are doing and what the core issues
of solving problems are. It also can explain how we design
approaches and algorithms for solving AWPs. More impor-
tantly, the approach of solving AWPs can be defined based
on the abstract solving paradigm.
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Fig. 2 The state-action
paradigm of solving AWPs

Definition 1 (Approach) An approach is an instance of the
state-action paradigm by determining the main states of the
state-action paradigm and the links to change from a state to
another.

“The related work in solving approach” has classified the
existing algorithms in the literature into five approaches. We
take two approaches as examples to show that all the five
approaches conform to Definition 1. The first approach is
seq2seq. The algorithms in this approach have two related
states: a vector sequence and the sequence of answer expres-
sion. Thus, they have three common links. The first link is
the encoding step to encode the given problem into a vector
sequence. The second link is to transform a vector sequence
of problem text into a vector sequence of answer expression.
The third link is to evaluate answer expression and output the
answer. The second approach is relation-centric. The algo-
rithms in this approach have one common state, which is a
group of relations. Thus, they have two common links. The
first link is to acquiring a group of relations, being another
kind of problem understanding. The second link is to solve
the group of relations.

Building a link from one state to another means that
researchers have found methods to accomplish this state
transformation at least for a corpus of problems. Along this
state-action solving paradigm, designing algorithms means
to propose methods to implement the links of the adopted
approach.

All the states in the state-action solving paradigm are the
states equivalent to the given problem in terms of solving
AWPs. Among these states, researchers want to acquire an
understood state, which is defined as follows.

Definition 2 (Understood State) A state is called an under-
stood state of a given AWP if a symbolic solver can produce
the solution from this state without revisiting the given prob-
lem.

From Definition 2, all the states except the input state and
the vector sequence of problem text in the five approaches
are understood states.

Definition 3 (ProblemUnderstanding) Problem understand-
ing is to produce an understood state of AWPs.

Definition 4 (Relation) A relation is an equation expression
of quantifiable entity, where a quantifiable entity can be a
number, a variable, or a phrase that describes a quantity.

A relation differs from an equation in that its items may
be phrases except variables and numbers. In this paper, a
relation is actually a quantity relation because all its elements
are about quantity.

Proposition 1 Assume that C is a corpus of AWPs. Let P be
an AWP in C. Then there is a group of relations denoted as
Œ= {ri : i = 1 to k} such that it is an understood state of
P .

A theoretical proof for Proposition 1 is not available so
far, but the experimental results in “Experiments” will testify
its correctness. Actually, Proposition 1 is the assumption of
many existing algorithms for solving AWPs.

We define the relation-centric approach formally because
it is a central term of this paper.

Definition 5 (Relation-Centric Approach) A relation-centric
approach is an instance of the state-action paradigmsuch that:
1) it has two links of problem understanding and symbolic
solver; 2) the link of problem understanding is to produce a
group of relations that is an understood state of a problem;
3) the link of the symbolic solver is to find values of the
unknowns in the given problem through transforming the
group of relations.

Definition 5 shows that relation acquisition and relation
transformation are themain operations of the relation-centric
approach. This approach benefit from the fact that relation
extraction from text is more tractable than equation extrac-
tion.
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A relation-centric algorithm for solving
AWPs

This section presents a relation-centric algorithm for solving
AWPs by implementing the relation-centric approach.

Algorithm outline

This section instantiates the relation-centric approach into
a three-step algorithm to solve AWPs. The first step is to
acquire a group of relations. The second step is a symbolic
solver, which solves the group of relations. The last step is to
output the unknowns with found values and an algorithmic
solution, which is a series of actions of acquiring and trans-
forming relations, recorded along the algorithm execution.
These three steps constitute the proposed algorithm, which
is shown in Algorithm I. The proposed algorithm uses five
procedures, namely Procedure I to V, to implement the five
tasks of the algorithm. The process of solving problems by
Algorithm I is explainable because people can understand
all the actions of acquiring and transforming relations. More
importantly, this series of actions can instruct students how
the algorithm solves the problem. Figure 1(b) shows the pro-
cess that Algorithm I solves a given AWP to demonstrate
how Algorithm I works.

Algorithm I: The Algorithm for Solving AWPs.
Input: An AWP in text format.

Output: Answers and an algorithmic solution.

Step 1: (acquiring relations) Use Procedure I and II to

acquire explicit and implicit relations separately;

Step 2: (symbolic solver)

Step 2.1: Use Procedure III to fuse the acquired

relation candidates by Procedure I

and II;

Step 2.2: Use Procedure IV and V to solve the

group of relations of the given prob-

lem;

Step 3: (outputting) Output the unknowns of the prob-

lem with their values and an algorithmic solu-

tion, the series of algorithmic actions froma state

to another, recorded along the algorithm execu-

tion; terminate.

Procedure I: Extracting Explicit Relations from Prob-

lem Text.
Input: Problem text T .

Output: A group of explicit relations.

Step 1: Load � = {Mi |i = 1, 2, ...,m}; Initialize � as

empty;

Step 2: Annotate T , namely parse T into phrases and

label each phrase with a POS;

Step 3: for i = 1 to m do

Mi match each of the portions of T ; For each

matched portion, use the entities in the text to

instantiate the elements in the model, then put

an instance of Ri of Mi into �.

Acquiring relations of AWPs

This sectionpresents themethoddetails of acquiring relations
from AWPs. It comprises two aspects: (1) extracting explicit
relations, and (2) acquiring implicit relations.

Definition 6 (Explicit and Implicit Relation) Let R be a set
of relations that is an understood state of a given AWP. A
relation in R is an explicit relation if it explicitly states in
problem text; otherwise, it is an implicit relation.

Extracting explicit relations using relaxed S2 method

This section designs a relaxed S2 method by enhancing the S2

method. Compared with the original S2 method, the relaxed
S2 method relaxes the requirement that each piece of text can
match only one S2 model and delays the action of judging
whether an extracted relation is used by the coming symbolic
solver. Procedure I uses the proposed relaxed S2 method to
extract explicit relations. The syntax portions of S2 models
are comprised of patterns of POS (part-of-speech) and punc-
tuation while the semantic portions are keyword structures.
Procedure I can work only after a pool of S2 models are
prepared appropriately for a natural language.

Definition 7 (S2 Model) A syntax-semantics model, shorted
as S2 model, is defined as a quadruple M = (K , P, Q; R),
where K represents semantics keyword structures, P repre-
sents POS, Q represents the punctuation, and R is the relation
as model output. Let � = {Mi = (Ki , Pi , Qi ; Ri ) |i =
1, 2, ...,m} denote the set of all the prepared S2 models,
called as a pool of S2 models for AWPs.
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Fig. 3 The process of using S2

method to extract explicit
relations from a sample AWP

Definition 8 (Matching Action) A matching action is an
action which matches the structure of K , P, Q from a
quadruple M = (K , P, Q; R) to a portion of problem text.

After loaded with a pool of S2 models, Procedure I can
extract explicit relations from a given input text. To acquire
all explicit relations, it is necessary to match all the models
in the pool with all potential portions of text. The crucial
point of the procedure is to judge whether a model matches
a portion of problem text. The outcome of this procedure is a
set of explicit relations. Figure 3 uses an example to illustrate
how Procedure I extracts explicit relations from AWPs. This
whole process is called as an S2 method.

When using the S2 method, the main job of model match-
ing is to match the POS change pattern with a portion of text.
There are eight types of frequently used POS in S2 models in
English: n (nouns), v (verbs), a (adjectives), p (pronouns), m
(numerals), c (conjunctions), r (particles), and w (punctua-
tion marks). Each POS type corresponds to one of the twelve
universal POS tags from natural languages.

This paper prepares pools of S2 models for Chinese and
English respectively. The pools of S2 models for Chinese and
for English consists of 220 and 360 S2 models respectively.
Table 1 lists eight frequently used S2 models for solving
problems in English.

Neural network miner for acquiring implicit relations

This section develops a procedure to acquire the implicit
relations from problems. There are two cases of the implicit
relations considered in this paper: unit conversion and arith-
metic formula. Unit conversion is to add the relations that

convert the different units of the same measurement appear-
ing in the same problem. Arithmetic formula targets to
add appropriate formula about corresponding scenarios. For
example, when a problem appears to a scenario of calculat-
ing the area of a rectangular object, the component adds the
formula of the rectangle area.

For the unit conversion, Dewappriya et al. [34] considered
it as an issue of unit conflict and proposed a procedure to
solve it. This paper adopts this procedure and uses it as a
prior process to obtain the entire unit conversion relations
for each measurement system involved in a given problem
without giving the detail of this process.

For the arithmetic formula, the neural network miner can
be a useful tool for such types of tasks since it can acquire
the hints from the problem text. As it is known, the implicit
relation belonging to the arithmetic scenario is highly related
with quantity words. Hence, this paper proposes a neural
network miner based on quantity to relation attention neural
network (QRAN) to mine implicit relations (Procedure II).
The procedure consists of three steps:

The first step is to encode the given problem into a
sequence of vectors. A given problem can be tokenized as
P = {wi }ni=1, each token wi can be represented as a word-
context feature vector vi by BERT [50]. Thus, P can be
denoted by a sequence of vectors as V = {vi }ni=1. The next
process is to select the vectors related to quantity, includ-
ing the numeric words like “100”, “1/2” and the descriptive
words like “double”, “half”. Let N denote the set of the
quantity vectors in the problem, and place vi intoN if wi is
a quantity word. Thus,N = {qi }ki=1 contains all the quantity
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vectors, where k is the total number of the quantity words in
a problem.

The second step is to obtain the goal vector vg representing
implicit relations by adopting the quantity-relation attention
mechanism. The concrete computing process is as follows:

μi = α · tanh(Wr · [v̄, qi ]) f or i = 1, 2, ..., k. (1)

ai = exp(μi )
∑k

j=1 exp(μ j )
(2)

vg =
k∑

i=1

ai · qi (3)

where v̄ is the average vector of the sequence V , μi is the
relevance score between the whole problem and a quantity
related word, ai is the attention score of each quantity in a
softmax manner, α and Wr are parameters trained for each
specific implicit mathematical relation.

The goal vector vg can be transformed to a indicator ŷ
through a dense layer, judging whether an implicit relation
needs to be added. The ŷ is defined as Eq. (4). As ŷ is the
predicted value of the implicit relation category, we can get
the corresponding relation from the prepared implicit relation
knowledge base.

ŷ = σ(Wc · vg + βc) (4)

where σ is the sigmoid function, Wc and βc are trainable
parameters.

A knowledge base D consisting of pairs of implicit cat-
egory with a corresponding formula (abstract relation) is
constructed. We assume that the ground truth label of a prob-
lem is y ∈ D

C , where yi = {0, 1} denotes whether label i
appears in the problem or not. The whole network is trained
using the multi-label classification loss as follow

Procedure II: Discovering and Adding Implicit Rela-

tions.
Input: A problem in text format.

Output: A collection of implicit relations �.

Step 1: Initialize � as empty;

BERT converts the problem text into the vector

sequence;

Step 2: QRAN discovers the abstract relations from the

vector sequence to be added;

Step 3: Instantiate the variables in the abstract relations

with the entities in problem text. Add all the

instanced relations into �.

Fig. 4 The architecture of the main part of Procedure II

Loss(y, ŷ) = − 1

C

C∑

i=1

[yi log(ŷi )+ (1− yi )log(1− ŷi )] (5)

where C denotes the number of categories of formula
(implicit relations).

The third step is to instantiate the variables in the formula
by connecting the entities in problem text. Each variable in
implicit relation are transformed to word vectors through
BERT, represented as a vector Ii . And each entity in the
problem text obtained in extraction of explicit relation can

be represented as a word vector E j = ¯{v}l , where l is the
token length of the word. The cosine similarity cos(Ii , E j ) is
adopted to calculate the semantic similarity between variable
in implicit relation and the entity in text. Once the similarity
cos(Ii , E j ) get the max value, the i-th variable in abstract
relation would be substituted by the j-th entity in problem
text. A instantiated implicit relation would be obtained after
all the variables connecting to the corresponding entity. For
a problem, all the instantiated implicit relations would be
added to the output collection � finally.

Procedure II adds implicit relations to complement the
problem understanding relying on the trained QRAN to dis-
cover the requiring abstract relations. Figure 4 illustrates an
architecture of the main part of Procedure II. The implemen-
tation details of QRAN are presented in Appendix A.

Symbolic solver

Symbolic solver takes three steps to transform the group of
relations to find the values of unknowns. The first step is to
acquire the group of distilled relations (Procedure III). The
second step is to build a system of equations (Procedure IV)
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Procedure III: Acquiring the Fused Set of Relations.
Input: The group of relations candidates, denoted as

Gc.

Output: A fused group of relations, denoted as G f .

Step 1: Add all the unit conversion relations of the unit

systems appeared in relation candidates into

empty G f ;

Step 2: Identify the unknowns of the problem;

Step 3: Build a graph of relation relevance;

Step 4: Identify the solution graph;

Add all the relations in the solution graph into

G f .

and the third step solves the system of equations (Procedure
V).

Distillation of explicit and implicit relations

Procedure I and II together produce a set of candidate rela-
tions from a given problem text. These candidate relations
might contain relations that symbolic solver does not use
and they might lead the solver to produce wrong results.
Hence, a procedure needs to discard asmany as possible these
unnecessary relations. Procedure III proposes to perform the
selection from the set of candidate relations based on global
and connection characteristics. The main idea lies in iden-
tifying the necessary relations according to their link with
problem unknowns. The detailed process is as follows: First,
it builds a relation graph, whose nodes are all the candidate
relations and whose links indicate whether two relations are
relevant. We start to build this graph from the relations that
contain the unknowns; add a node for a relation and add links
if it has the sharing quantity objects with the built nodes in the
graph and it is consistent with nodes in terms of arithmetic
formulas. In otherwords,whether two relations are relevant is
equivalent to whether two relations have the sharing quantity
objects and they are involved in the same arithmetic formula.
Then it identifies the solution graph, which is a partial graph,
contains all problem unknowns and all nodes connecting to
any unknown, and all the links among these nodes. The rela-
tions in the solution graph forms a set of distilled relations.

Forming a system of equations

To obtain the system of equations for a given problem, we
need to list all entities that appear in the distilled relations.
Then we assign a variable to each entity. The assigned vari-
ables replace all the entities in the distilled relations. Each

relation thus turns into an equation and all the relations form
a system of equations. The system of equations and the
entity-variable table represent the given problem together.
The detailed process is given in Procedure IV.

Procedure IV: Forming a System of Equations.
Input: The group of relations G f .

Output: A system of equations, denoted as SE and the

correspondence table between entities in the

problem text and variables in the equations

with their domains L(E, V ).

Step 1: Make a list of all the entities denoting it as L(E),

declare a list of variables corresponding to L(E)

denoting it as L(V ), and form a corresponding

table between L(E) and L(V )with the domains

of variables denoting it as L(E, V );

Step 2: Form a system of equations SE from G f by

replacing the entities with the corresponding

variables listed in L(E, V ).

Solving the equation system

The system of equations always contain some linear equa-
tions, though the whole system may not be a linear system.
Gaussian elimination can solve these linear equations. The
new linear equations forms when the solution of the lin-
ear equations replaces variables. This recurring manner will
solve the whole system of equations. The detailed process is
shown in Procedure V.

Experiments

This paper prepares ninedatasets fromauthoritative resources
and chooses five baseline algorithms as benchmarks. Then
it compares the proposed algorithm with the five baseline
algorithms on the nine datasets.

Experimental settings

Datasets: An explicit AWP is an AWP such that a group of
explicit relations is its understood state; an implicit AWP is
an AWP that is not explicit. Thus, each of the datasets can
be divided into an explicit set and an implicit set; the explicit
set (the implicit set) contains all the explicit problems (the
implicit problems). Assume that X is the name of a dataset.
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Procedure V: Solving the System of Equations.
Input: The system of equations SE .

Output: The values of all the unknowns in the system.

Step 1: Divide SE into linear part L and non-linear part

H ;

Step 2: Solve linear part L by Gaussian elimination;

Goto Step 3 if no new variables get their values;

Add values of solved variables into values set;

Substitute values set into H and update SE ;

Goto Step 1 if SE is not empty;

Step 3: Output all the pairs of the unknowns and their

corresponding values.

Then X:E, X:I and X:3 denote three partial sets of X. X:E
denotes the explicit set of X that contains only explicit prob-
lems; X:I denotes the implicit set of X that contains only
implicit problems; X:3 denotes the special set of X that con-
tains problemswhose equivalent relation group needs at least
one relation of part whole, time distance, and interest. Table
2 gives a list of sample problems corresponding to the three
partial sets X:E, X:I, and X:3. In addition, each dataset has
its English and Chinese versions, no matter the language in
which its original version is.

Table 3 lists the prepared nine datasets: PEP, BNU, and
USC are three datasets from textbooks, which include all
problems from textbooks for primary students published by
People’s Education Press in 2018, byBeijingNormalUniver-
sity in 2018 both in China, and used in California of USA in
2018, respectively. EEP is a dataset that includes all problems
from entrance exam papers for high school in 34 provinces
of China from 2010 to 2019. M23K, Ape5kT, MAWPS,
Dol2K, and Arith are five datasets of AWPs from the generic
research community. Math23K is a popular dataset in Chi-
nese. Ape210K is currently the largest dataset in Chinese.
M23K is fromMath23K by discarding pure numerical prob-
lems and special symbol calculation because both baseline
algorithms and the proposed algorithm are not designed for
such problems. Ape5kT is the test set of Ape210K, which is
the test portion of Ape210K in [9]. The baseline algorithm in
[9] was tested on Ape5kT, after it used Ape210K as training
set. Hence, Ape5kT is chosen as test set instead of Ape210K
because the existing algorithms have never been tested on
Ape210K. MAWPS, Dol2K, and Arith are another three test
datasets used by the baseline algorithms.

Baseline algorithms: The algorithm presented in this paper
is denoted as PROPOSED in this section. This paper com-
pares PROPOSED with five baseline algorithms described
below. PROPOSED fully compares with the first four of

five baseline algorithms on the nine datasets because their
implementations are provided by the authors of the papers or
prepared by us.

• MaAlg: MaAlg is an algorithm presented in [15], being
the best one among the algorithms of adopting two-frame
approach. It improved Kintsch’s algorithm presented in
[14] in twoaspects. First, the algorithmextends thedefini-
tion of knowledge frame so that it can solve problems that
require multiple steps. Second, it uses more than 1600
sentence templates to extract knowledge from problem
text.

• RoyAlg: Roy et al. [20] proposed an answer expres-
sion approach that lies in mapping obtained quantities
and operands to an expression. RoyAlg is reported in
[23], being a representative algorithm among the multi-
ple algorithms in this approach [20–23].

• ZhaoAlg: ZhaoAlg is a seq2seq algorithm proposed
in [9]. ZhaoAlg leverages on an open Neural Machine
Translation (NMT) tool with a copying mechanism. The
largest dataset of AWPs is used to train NMT, however,
the trained network is tested only on Ape5kT.

• LinAlg: LinAlg is another seq2seq algorithm in [12].
It uses a hierarchical structure to enhance the ability to
understand math word problems. Unlike the previous
seq2seq model that encodes the text into a single vec-
tor sequence for decoding [4,7,8,10], this model uses
a hierarchical coding structure to encode the contex-
tual semantics of the words in the clauses, the semantic
dependencies in the clauses, and the inter-clause relation,
respectively. The decoder decodes the vector sequences
formed in different levels of hierarchy to enhance the
decoder’s attention to different levels of semantic infor-
mation.

• ShiAlg: ShiAlg is an equation-centric algorithm in [18]
and uses the formal language as its intermediate form.
The design of this algorithm requires DOL (abbreviation
of dolphin language) as an intermediate language. Given
a problem, the algorithm first converts it into its inter-
mediate expression in DOL. Then it derives a system of
equations from the DOL expression of problems.

Mandal et al. [44] proposed an another answer expression
algorithm. It uses a BiLSTM to classify operations among
four basic operations and an irrelevant-information removal
unit to identify the relevant quantities to form an expression
to solve AWPs. It conducts experiment on AddSub and Sin-
gleOp, being two subsets ofMAWPS, where all the problems
only require a single equation with a single operation to be
solved. This paper does not select the algorithm presented in
[44] as a baseline because it targets to solve a limited scope
of AWPs.
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Table 2 The list of sample problems corresponding to the three partial sets X:E, X:I, and X:3

Name Problem text Explicit relation Implicit relation

X:E There are 14 poplar trees in the school. Poplar Poplar = 14 —

trees are 2 times pines. Willow trees are 4 more Poplar = 2 × pine

than pines. How many willow trees are there? Willow = 4 + pine

X:I A rectangular forest with a length of 96 meters and Length = 96 Rectangle_area =
a width of 58 meters. If a forest can produce 75 Width = 58 Length × Width

grams of oxygen per square meter per day, how Oxygen_yield = 75 Production = Y ield × Area

many oxygen can it produce per day?

X:3 Ming walk to university takes 0.5 hours. T ime = 0.5 Distance = Speed × T ime

The average speed is 10.5 kilometers per hour. Speed = 10.5

How many kilometers did he walk?

Tom has 9.0 balloons. Sara has 8.0 balloons. Tom = 9.0 × balloon Whole = ∑ j
i=1 Parti

How many balloons do they have in total? Sara = 8.0 × balloon

How much interest is earned on a principal of $863 Principal = 863 I nterest = Principal×
invested at an interest rate of 4% for 5 years? I nterest_rate = 4% I nterest_rate × T ime

T ime = 5 × years

Table 3 The prepared nine datasets and their sources

Datasets Explicit problems Implicit problems Original language Source of collecting
problems

Name Size Name Size Name Size

PEP 504 PEP:E 226 PEP:I 278 Chinese Textbook published by
People’s Education
Press in 2018

BNU 436 BNU:E 293 BNU:I 143 Chinese Textbook published by
Beijing Normal
University Press in
2018

EEP 2722 EEP:E 1641 EEP:I 1081 Chinese Entrance Exam Papers
from 2010 to 2019

M23K 20910 M23K:E 16568 M23K:I 4342 Chinese Cleaned from Math23K
in [4]

Ape5kT 4570 Ape5kT:E 3431 Ape5kT:I 1139 Chinese Cleaned from Ape210K
test set in [9]

MWP 2373 MWP:E 2299 MWP:I 74 English Called as MAWPS in
[51]

USC 497 USC:E 436 USC:I 61 English US California Textbook
in 2018

Dol2K 1878 Dol2K:E 1809 Dol2K:I 69 English Called as Dolphin1878
in [18]

Arith 1541 Arith:E 1053 Arith:I 488 English Called as AllArith in
[23]
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The implementationof thebaseline algorithms:This study
implements MaAlg, ZhaoAlg, and LinAlg algorithms on our
own test platform. Since both ZhaoAlg [9] and LinAlg [12]
algorithms are a deep learningmodel, we set the same param-
eters as their original papers respectively. For RoyAlg, this
study uses the source code provided by [23], taking prob-
lems in English as its input. Hence, RoyAlg can run on all
the English datasets.

Experimental results

An arithmetic word problem (AWP) is an arithmetic exercise
problem in the primarymathematics described in natural lan-
guage. An algorithm is said that it can solve an AWP if it can
output the correct pairs of all the unknowns of the problem
and their values after a series of correct transforms.

An algorithm also called as a solver of AWPs if it can
solve a decent percentage of AWPs from a dataset.

This paper comparesPROPOSEDwith the baseline algo-
rithms mainly using two evaluation indicators: (i) The first
indicator is the correct accuracy, which is the percentage that
an algorithm can correctly solve the AWPs from a dataset. So
far the most solving algorithms have mainly focused on gen-
erating the correct answer and adopted the correct accuracy
as the main evaluation indicator. (ii) The second indicator is
the number of models and the corresponding correct accu-
racy. BothMaAlg andShiAlg use a pool of templates or rules.
The number of models or templates is a key indicator when
evaluating these algorithms. Hence, PROPOSED also com-
pares with MaAlg and ShiAlg on the number of templates
or models because only these two baseline algorithms use
templates or models to extract the knowledge from problem
text.

PROPOSED compares with the baseline algorithms on
the accuracy of solving problems in three cases for each of
datasets: (i) on whole dataset; (ii) on explicit problems only;
and (iii) on implicit problems only.

PROPOSED emphasizes on its application to learning
systems. Hence, it outputs not only the answers of unknowns
but also the understandable algorithmic solution. It shows
that PROPOSED can output the understandable algorithmic
solution that can explain to students how to solve the given
AWPs used an example in Fig. 1(b).

Table 4 displays the analytical comparison of accuracy
of solving problems between PROPOSED and the four
baseline algorithms, namely MaAlg, RoyAlg, ZhaoAlg, and
LinAlg, on the nine datasets. The analytical comparison is
to find out the performances of the involved algorithms on
explicit problems, implicit problems and problemswith three
types of relations.PROPOSED is tested on bothChinese and
English version of every datasetwhereas a baseline algorithm
is tested on Chinese (English) version of every dataset as it
actually did in the reference paper.

InTables 4 and5, “–” indicates that the corresponding item
is not available; a number in “Size” column/row indicates
the number of the problems in the corresponding dataset; a
number in “%” column indicates that the percent of problems
that the corresponding algorithm can solve on the involved
dataset. Table 4 reveals the four important conclusions:

• First, the component of acquiring implicit relations plays
a critical role in enhancing the accuracy of PROPOSED.
In accuracy,PROPOSED is at least 6.5%higher than any
of four baseline algorithms on the nine datasets. PRO-
POSED achieves an accuracy of 78.3% on the Chinese
version of the union of the nine datasets, whereas LinAlg
achieves an accuracy of 71.8%, being the highest accu-
racy among the four baseline algorithms.

• Second, PROPOSED has a much better performance in
solving implicit problems than the baseline algorithms. It
is at least 18.2% higher than any of baseline algorithms
on all the implicit subsets of the nine datasets. PRO-
POSED achieves an accuracy of 81.9% on the union of
the Chinese implicit subsets of the nine datasets, whereas
LinAlg achieves an accuracy of 63.7%, being the highest
accuracy among the four baseline algorithms. On the set
of all Chinese implicit problems with three types of rela-
tions of the nine datasets, PROPOSED is still at least
13.7% higher than any of baseline algorithms is.

• Third, PROPOSED has a better performance in solving
problems on any particular dataset that even favors the
particular algorithm. For example, Arith favors RoyAlg
because problems in Arith have only types of the implicit
relations discussed by RoyAlg. Hence, RoyAlg achieves
an accuracy of 85.5%, being the highest percent among
the nine datasets. Even so, PROPOSED is 2.8% higher
than RoyAlg on the same dataset in accuracy of solving
problems, which achieves an accuracy of 88.3%.

• Fourth, PROPOSED is just slightly better than LinAlg
on the Chinese explicit problems of the nine datasets.
Specifically, PROPOSED is 77.3% and LinAlg 74.0%
for this accuracy. This can be partially explained by the
fact that PROPOSED is even 0.1% lower than LinAlg
in solving the problems in M23K:E, being one of nine
explicit datasets.

Among the five baseline algorithms, Ma et al. [15] has
listed the sentence templates so that this study implements it
on our test platform. Hence, PROPOSED can compare with
MaAlg on solving explicit problems because the sentence
templates can extract only explicit relations. MaAlg claims
that it has correctly understood a problem if the frames filled
by MaAlg contain all knowledge items needed by symbolic
solver, whilePROPOSED can understand a problem if it can
acquire a group of relations as an understood state. Table 5
shows two parts of comparisons. The first part is that PRO-
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Table 4 The analytical
comparison on the accuracy of
solving problems considering
PROPOSED against the four
baseline algorithms on the nine
datasets

Language of versions Chinese version English version

Algorithms MaAlg ZhaoAlg LinAlg PROPOSED RoyAlg PROPOSED

Name Size % % % % % %

PEP 504 35.5 64.3 62.1 83.3 45.4 77.6

BNU 436 49.1 67.4 67.7 83.5 61.2 79.4

EEP 2722 42.1 68.9 69.3 79.1 53.2 75.4

M23K 20910 34.6 73.1 74.1 77.7 28.4 75.4

Ape5kT 4570 34.9 70.1 70.9 76.6 38.2 75.3

MWP 2373 54.7 83.2 83.7 84.2 74.8 83.9

USC 497 57.5 71.4 69.2 76.3 73.8 79.9

Dol2K 1878 54.5 27.6 31.2 70.8 0.3 84.0

Arith 1541 46.9 82.9 83.0 88.3 85.5 89.3

Sum 35431 38.7 70.9 71.8 78.3 37.0 77.2

PEP:E 226 79.2 74.3 79.2 84.1 63.3 74.3

BNU:E 293 73.0 72.4 77.1 82.9 66.6 78.8

EEP:E 1641 69.8 76.4 76.3 82.6 64.3 79.0

M23K:E 16568 43.7 75.1 75.7 75.6 32.3 74.5

Ape5kT:E 3431 46.4 75.6 76.8 78.0 39.7 77.0

MWP:E 2299 56.5 84.2 84.6 84.9 74.9 84.5

USC:E 436 65.6 70.9 68.6 75.5 75.0 78.7

Dol2K:E 1809 56.6 27.6 31.1 70.8 0.3 83.6

Arith:E 1053 68.7 84.1 84.7 86.2 85.0 87.0

Sum 27756 49.3 73.1 74.0 77.3 39.9 77.1

PEP:I 278 0.0 56.1 48.2 82.7 30.9 80.2

BNU:I 143 0.0 57.3 48.3 84.6 50.3 80.4

EEP:I 1081 0.0 57.6 58.7 73.8 36.3 69.9

M23K:I 4342 0.0 65.7 68.1 85.5 13.6 78.9

Ape5kT:I 1139 0.0 53.5 52.9 72.5 33.5 70.1

MWP:I 74 0.0 52.7 54.1 59.5 70.3 67.6

USC:I 61 0.0 75.4 73.8 82.0 65.6 88.5

Dol2K:I 69 0.0 29.0 33.3 72.5 0.0 94.2

Arith:I 488 0.0 80.3 79.3 92.8 86.7 94.3

Sum 7675 0.0 62.8 63.7 81.9 26.6 77.5

PEP:3 75 0.0 66.7 69.3 90.7 64.0 74.7

BNU:3 76 0.0 73.7 72.4 86.8 61.8 69.7

EEP:3 585 0.0 63.6 62.4 78.3 56.8 68.7

M23K:3 3591 0.0 71.1 76.7 89.8 15.5 84.1

Ape5kT:3 567 0.0 70.9 70.2 85.7 64.4 82.0

MWP:3 74 0.0 52.7 54.1 59.5 70.3 67.6
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Table 4 continued
Language of versions Chinese version English version

Algorithms MaAlg ZhaoAlg LinAlg PROPOSED RoyAlg PROPOSED

Name Size % % % % % %

USC:3 61 0.0 75.4 73.8 82.0 65.6 88.5

Dol2K:3 0 – – – – − –

Arith:3 488 0.0 80.3 79.3 92.8 86.7 94.3

Sum 5517 0.0 70.9 74.3 87.9 33.8 82.7

POSED compares with MaAlg on Chinese versions of the
nine datasets. The other part is that PROPOSED compares
with ShiAlg on English versions of Dol2K dataset. We only
implements MaAlg whereas the numbers on ShiAlg in Table
5 are cited from [18].

In Table 5, “1600+m” and “220m” mean that the corre-
sponding algorithms use more than 1600 and 220 models
respectively. Table 5 mainly presents the accuracy of solving
problems on datasets with the number of used models. The
accuracy is in the format of X%. For example, the first accu-
racy 79.2% means that MaAlg achieves 79.2% when it uses
1600+ models to work on PEP:E dataset in Chinese. Table 5
shows that PROPOSED is 4.9% higher than MaAlg on the
accuracy on PEP:E in Chinese under the condition that the
number of S2 models used in PROPOSED is only one sev-
enth of the number of sentence templates used in MaAlg.
PROPOSED needs a smaller number of models because
its models use syntax as much as possible, thus overcom-
ing the variety of semantic expressions. Table 5 also shows
that PROPOSED is much better than ShiAlg in both solving
accuracy and the number of models. ShiAlg needs 9600 rules
because these rules are semantics based.

After we have compared PROPOSED with the baseline
algorithms, we conduct an ablation experiment to show the
contribution of the relaxed S2 method and QRAN to the
accuracy of PROPOSED solving AWPs. Concretely, we
investigate howmuch the relaxed S2 method andQRANcon-
tribute to increase the accuracy of the whole PROPOSED.
Table 6 presents the results of this ablation experiment.
In Table 6, “Not-Relaxed” means the PROPOSED uses
the original S2 method but not the relaxed S2 method;
“No-QRAN” means that we run PROPOSED without the
function of adding implicit relations; “No-Both” means the
PROPOSED does not use either the relaxed S2 method or
the function of adding implicit relations.

Table 6 tells three conclusions. The first conclusion is
that the relaxed S2 method increases the accuracy of PRO-
POSED solving AWPs by at least 6.3% at any dataset.
The second one is that QRAN increases the accuracy of
PROPOSED solving AWPs by from 1.9% to 45.6% on the
different datasets. The third one is that the relaxed S2 method

and QRAN together increase the accuracy of PROPOSED
solving AWPs by from 8.8% to 48.6% on the different
datasets.
Discussions on experimental results: For a given dataset,
the implicit ratio is the ratio of implicit problems to total
problems. The implicit ratio of EEP dataset is 39.7%.We use
this ratio as the reference ratio because the problems in EEP
dataset are from entrance exam papers. The implicit ratios
of M23K, Dol2K, and Arith are 20.8%, 3.7%, and 31.7%,
respectively. Implicit ratios of M23K and Dol2K can thus
be deemed low, compared with the reference ratio. This dis-
closes the fact that most of the existing algorithms focus on
solving explicit problems because they are tested only on the
datasets with low implicit ratio. Arith is the only dataset that
is used to test the algorithm that can extract some implicit
relations. Hence, its implicit ratio is higher than the other
datasets, though it is still lower than the reference ratio by 8%.
Interestingly, RoyAlg achieved high accuracy, being 73.8%
and 85.5% on USC and Arith in English, respectively. How-
ever, the accuracies that RoyAlg works on other datasets are
lower than 62%. It seems that RoyAlg is sensitive to the
problem type.

For the evaluation in the baseline algorithms, an algorithm
is said that it can correctly solve an AWP if its output can
correctly match to the ground-truth, but they do not check
whether all the transforms of producing the correct answers
are correct. Thus, we discover the phenomenon that some
seq2seq algorithms may give correct answers using wrong
answer expressions. Table 7 shows two examples of this phe-
nomenon. In the first example, the algorithm does not figure
out the concept of “average speed of round trip”, and mis-
takenly takes n3 as a multiple of total distance. In the second
example, the model does not understand the concept of “half
of the book”, and coincidentally takes n3 as a multiple of the
number of pages read. Such confusion of mathematical con-
cepts would lead towrong answers while problem statements
might have some changes.

For the task of acquiring implicit relation by neural net-
work miner, this paper has tried other models, such as
Word2Vec, GLOVE, and FastText, but we find that the BERT
model suits the task. The BERT model can capture the over-
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all semantic differences of the problem text and the semantic
differences of entities in different scenarios, thus it achieves
better experimental results. For example, when the feature
word “rectangle” appears in the problem text, it needs to
figure out that the arithmetic scene is about the area or the
perimeter. There are some other improved models after the
BERT model, such as RoBERTa, GPT3, XLNET, and T5.
These models maybe improve the accuracy of our algorithm
in acquiring implicit relations. However, the main objective
of this paper is to verify the effectiveness of the idea of trans-
forming the complex task of solving AWPs into the smaller
task of relation acquisition and transformation. The experi-
mental results demonstrate that the relation-centric solving
algorithm has achieved better results using the BERTmodel.
Thus, we have not explored themodels proposed after BERT.
On the other hand, these models are similar in principle to
the BERT model, although they may use some techniques
for specific tasks and enhance the training data.

Among the five baseline algorithms, the seq2seq algo-
rithms have claimed the highest performances in terms of
answer accuracy. However, this accuracy is not a reliable
accuracy because these algorithms have some false posi-
tive instances. This paper has given two examples of false
positive instances in Table 7. Compared with the five base-
line algorithms, the proposed algorithm has three common
main advantages. The first one is that it has no false posi-
tive instances. The second one is that it broadens the range
of solving arithmetic word problems, especially in solving
implicit problems, outperforming state-of-the-art algorithms
on all nine datasets. The third is that it is explainable
because its actions of acquiring and transforming relations
are understandable. More importantly, this series of actions
can instruct students on how to solve the problem.

Conclusions and future work

This paper has taken the decomposition strategy to tackle the
research problem of designing algorithms for solving AWPs.
Following this notion, it has innovated a three-phase scheme
of designing ahighperformance algorithm for solvingAWPs.
This three-phase scheme can break the heavy task of develop-
ing algorithms for solvingAWPs into three smaller tasks. The
first phase is to build a solving algorithm paradigm that sum-
marizes and explains all algorithms for solving AWPs. The
second phase is to form relation-centric approach by instan-
tiating the solving algorithm paradigm. The third phase is
to instantiate the relation-centric approach by proposing the
methods to acquire the relations and to transform relations.

The proposed algorithm designed using three-phase
scheme has three desired characteristics. The first one is that
it is explainable, thanks to the fact that it solves AWPs with
explicitly stated rules, models and algorithm actions. It is a Ta
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very important characteristics that the algorithms output the
explainable solution because it is an indispensable character-
istics for building the tutoring function. In contrast, ZhaoAlg
in [9] and LinAlg in [12] are not explainable because they
solve the problems within a pure seq2seq approach. The
second one is that the proposed algorithm has a neural net-
work miner dedicated to acquiring implicit relations. Thus,
it formed a procedure that synergizing the S2 extractor for
extracting explicit relations and the neural network miner for
acquiring implicit relations. The last one is that it is a high
performance algorithm. It outperforms all the baseline algo-
rithms in terms of the number of used models and accuracy
of solving AWPs. In addition to, it outputs an algorithmic
solution to show a correct transforming process when it can
solve the given AWP.

This paper has four technical contributions. First, it
designed and implemented a three-phase scheme of design-
ing solving algorithms. Second, it proposed a state-action
algorithm paradigm. Third, it formed the relation-centric
approachof solvingAWPs. Fourth, it built a procedure of syn-
ergizing a relaxed S2 method for extracting explicit relations
and a neural network miner for acquiring implicit relations.

Three research areas among many potential ones could be
further investigated in the near future. First, it is expected to
adopt the three-phase scheme to design more solving algo-
rithms. Second, it is feasible to develop the vector computing
procedure to replace the text processing part of S2 method.
Third, it is anticipated to develop novel intelligent tutoring
systems based on the new solving algorithms,which has been
the ultimate motivation of our research.
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Appendix A Implementation details of QRAN

Here, we first present the parameters setting of the train-
ing process of QRAN and then choose the optimal training
parameters for our training results. Figure 5 shows the loss
and accuracy graph of the training and validation of QRAN.
During the training process of QRAN, the Adam optimizer
with learningrate = 2e − 4, β1 = 0.9, β2 = 0.999 is
adopted. The batch size of the samples is set to 64, and
the epochs are set to 50. The datasets used in training
the QRAN are combination of 5 Chinese dataset (29142

Fig. 5 The loss and accuracy graph of the training and validation of QRAN. Variation of accuracy with epochs is in (a); variation of loss with
epochs is in (b)
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Chinese instances) and 4 English dataset (6289 English
instances), respectively. The train set contains 80% instances
randomly sampled from the whole dataset, while the remain-
ing instances form the test set. From the results of Fig. 5,
we set the optimization epochs to 20, because the validation
accuracy has converged.
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