

EVLP: LEARNING UNIFIED EMBODIED VISION-LANGUAGE PLANNER WITH REINFORCED SUPERVISED FINE-TUNING

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 In complex embodied long-horizon manipulation tasks, effective task decompo-
 014 sition and execution require synergistic integration of textual logical reasoning
 015 and visual-spatial imagination to ensure efficient and accurate operation. Current
 016 methods fail to adopt a unified generation framework for multimodal planning,
 017 lead to inconsistency in multimodal planning. To address this challenge, we
 018 present **EVLP (Embodied Vision-Language Planner)**, an innovative multimodal
 019 unified generation framework that jointly models linguistic reasoning and visual
 020 generation. Our approach achieves multimodal planning for long-horizon tasks
 021 through a novel training pipeline incorporating dynamic pretraining and reinforced
 022 alignment. Our core innovations consist of three key components: **1) Unified**
 023 **Multimodal Generation Framework**: For understanding, We integrate semantic
 024 information with spatial features to provide comprehensive visual perception. For
 025 generation, we directly learn the joint distribution of discrete images for one-step
 026 visual synthesis, enabling coordinated language-visual modeling through learnable
 027 cross-modal attention mechanisms. **2) Dynamic Perception Pretraining**: We pro-
 028 pose a bidirectional dynamic alignment strategy employing inverse dynamics tasks
 029 and forward dynamics tasks, effectively strengthening multimodal correlations
 030 within a unified feature space. **3) Reinforced Supervised Fine-Tuning**: While con-
 031 ducting instruction-based fine-tuning in the unified generation space, we construct
 032 a reinforce loss to align the spatial logic between textual actions and generated
 033 images, enabling the model to acquire spatio-aware multimodal planning capa-
 034 bilities. Comprehensive evaluations on multiple complex tasks demonstrate that
 035 EVLP significantly outperforms competitive baselines in both instruction execution
 036 accuracy and task success rate, benefiting from its unified multimodal architecture
 037 and well-designed training pipeline. Extensive ablation studies further validate the
 038 rationality of our framework design.

1 INTRODUCTION

040 In the realm of long-term planning for embodied intelligence, current task decomposition methodolo-
 041 gies predominantly adopt two distinct technical paradigms: **language planning** parses high-level
 042 instructions (e.g., “tidy up the room”) into sequential atomic actions (e.g., “pick up clothes → place
 043 them in the closet”) to explicitly specify **what to do** (What) (Ahn et al., 2022; Mu et al., 2023a;
 044 Guo et al., 2024; Zhang et al., 2025b; Zhao et al., 2025), while **visual planning** resolves **how to**
 045 **accomplish it** (How) through generating intermediate visual representations (e.g., depicting “clothes
 046 inside the closet”) (Black et al., 2023b; Du et al., 2023; Soni et al., 2025). In contrast, emerging multi-
 047 modal planning frameworks (Ni et al., 2024b) synergistically produce linguistic action sequences and
 048 corresponding visual targets, thereby bridging the critical gap between procedural execution and goal
 049 achievement. This dual-representation approach demonstrates significant potential for overcoming
 050 existing planning limitations in embodied systems (Black et al., 2023b; Ni et al., 2024b), positioning
 051 them as a pivotal research direction for next-generation intelligent agents.

052 Recent advances in unified multimodal generative models (Ge et al., 2023b;a; Team, 2025) have
 053 demonstrated unprecedented cross-modal generation capabilities, differing from traditional multi-
 054 modal understanding models (Liu et al., 2023a;b; 2024; Li et al., 2022) or architectures that generate

054 through external diffusion (Ge et al., 2023c). These architectures unify text and image generation
 055 within a single Transformer backbone, showcasing unified understanding and generation capabilities
 056 across different modalities (Ma et al., 2025; Zhou et al., 2024; Shi et al., 2025; Wu et al., 2025b).
 057 Their inherent scalability (Wu et al., 2024; Chen et al., 2025) and emergent cross-modal synergy
 058 (Xie et al., 2024) enable mutual reinforcement between text-image comprehension and synthesis
 059 tasks. This naturally raises an important research question: *Can such unified multimodal architectures
 060 be leveraged to construct Vision-Language planners capable of resolving robotic manipulation tasks
 061 that require complex multi-step instruction decomposition?*

062 Developing a unified multimodal planner presents three key technical hurdles. First, while existing
 063 multimodal models excel at matching images with text descriptions (e.g., generating a cat image
 064 from "a cat on a sofa"), embodied planning requires deeper understanding. The model must not
 065 only recognize objects in images (e.g., "cup on table") but also precisely grasp where objects are
 066 located in space—critical for planning physical actions like grasping or moving. Second, traditional
 067 multimodal tasks (e.g., image captioning or visual QA) focus on static understanding. Embodied
 068 planning adds a temporal dimension: successful models must track how actions transform the
 069 environment. Imagine predicting how "pouring water" changes a scene from (1) cup upright to (2)
 070 cup tilted—this demands reasoning about state transitions rather than just recognizing static patterns.
 071 Third, conventional maximum likelihood training treats all visual details equally. While this works
 072 for generating photorealistic images, operational tasks prioritize functional consistency over visual
 073 perfection. For example, when planning "put clothes in closet", we care more about the clothes' final
 074 position (in closet) than their exact folds or shading. Current training paradigms lack mechanisms to
 075 prioritize such task-relevant aspects over irrelevant visual details.

076 To address this challenge, we present **EVLP (Embodied Vision-Language Planner)**, a novel
 077 framework that seamlessly unifies language reasoning and visual imagination within a single multi-
 078 modal architecture for long-term manipulation tasks. EVLP innovatively integrates: 1) A dual-tower
 079 vision module that decouples understanding and generation—employing SigLIP's semantic encoder
 080 enhanced by trainable detail compensators to mitigate systematic visual blind spots, paired with
 081 discrete tokenization via MAGVIT2 (Yu et al., 2024) for direct image synthesis; 2) A bidirectional
 082 dynamics-aware pre-training paradigm that equips the model with coherent reasoning-imagining
 083 capabilities by learning from forward/inverse dynamic prediction tasks; 3) Reinforced Supervised
 084 Fine-Tuning (RSFT), which uses maximum likelihood to supervise the entire token distribution while
 085 dynamically reinforcing spatial consistency between language actions and generated images through
 086 policy gradients. Compared to existing methods, EVLP demonstrates significant improvements in
 087 instruction following and task success rates in complex manipulation tasks, establishing a promising
 088 and inspiring paradigm for long-term operations. We also conducted extensive ablation experiments
 089 to provide references for future research.

090 2 METHOD

092 EVLP leverages pre-trained LLMs through a unified transformer architecture for multimodal genera-
 093 tion, processing both stepwise linguistic instructions and visual subgoal images, which providing
 094 linguistic milestones and perceptual anchors to guide action sequences in long-horizon tasks. Our
 095 technical exposition proceeds systematically: Section 2.1 details the multimodal architecture enabling
 096 unified generation; Section 2.2 examines dynamic perception pre-training for learning environmental
 097 dynamics; and Section 2.3 introduces reinforced supervised fine-tuning phase, which enabling the
 098 model to acquire spatio-aware multimodal planning capabilities. Our overall framwork is illustrated
 099 in Figure 1.

100 2.1 UNIFIED MODEL FOR MULTIMODAL GENERATION

103 Modern unified multimodal generative models predominantly adopt two architectural paradigms:
 104 diffusion-based and autoregressive approaches. Diffusion architectures (Ho et al., 2020; Peebles &
 105 Xie, 2023; Xie et al., 2024) aim to adapt large language models (LLMs) for image denoising through
 106 multi-step iterative refinement (Zhou et al., 2024), while autoregressive methods (Liu et al., 2025;
 107 Team, 2025; Qu et al., 2024; Yu et al., 2024; Wu et al., 2025a) employ unified tokenization strategies
 108 for both modalities under a single learning objective (Wu et al., 2024; 2025b).

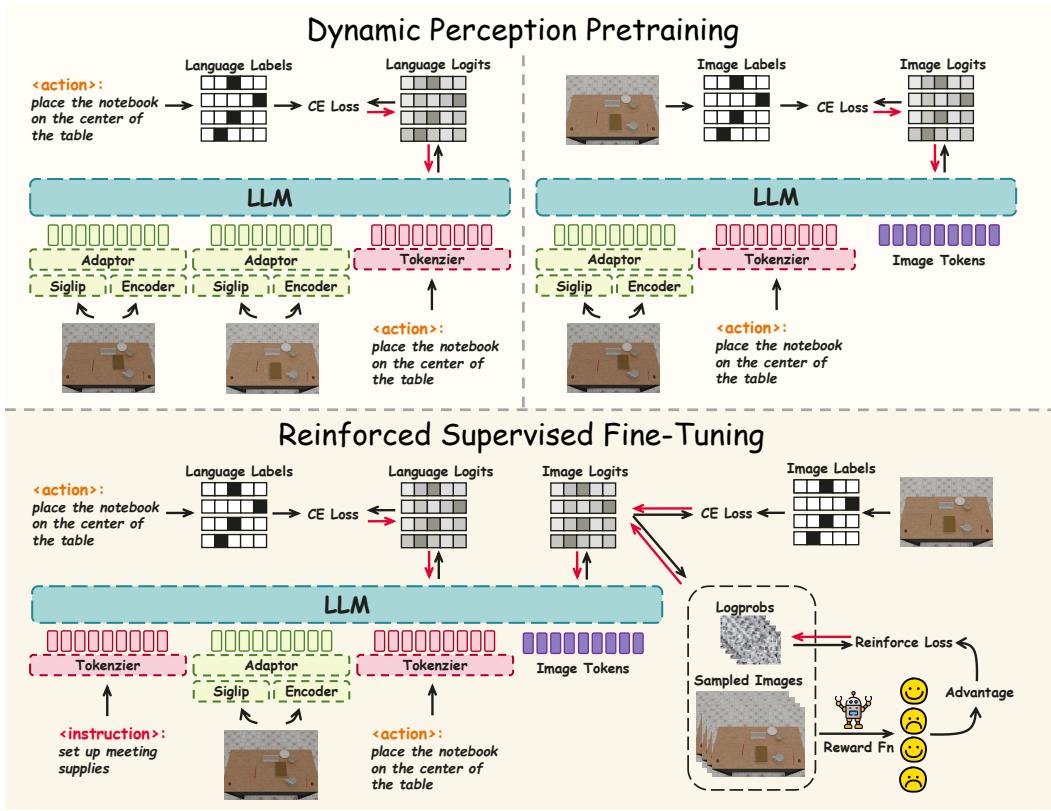


Figure 1: Our overall framework diagram. In terms of the model architecture, we adopt a vision tower design that integrates understanding and generation. For image understanding, we combine SigLIP with a learnable spatial encoder, while for image generation, we introduce image tokens to achieve parallel decoding. Regarding the training pipeline, we design a two-stage framework: dynamic perception pretraining (illustrated above) and reinforced supervised fine-tuning (illustrated below). The black arrows represent the forward process, while the red arrows indicate the backward process.

We identify critical limitations in both frameworks: the diffusion objective exhibits fundamental discrepancy with LLMs' pre-training tasks (Wu et al., 2025a), creating optimization conflicts during multimodal adaptation, while autoregressive modeling imposes artificial sequential dependency on inherently non-sequential visual data. Notably, when applying reinforcement learning for preference optimization (von Werra et al., 2020; Hu et al., 2024; Fan et al., 2023; Black et al., 2023a), both architectures require computationally prohibitive multi-step sampling to generate independent candidates - a bottleneck that scales poorly with model size.

Our solution introduces a lightweight multimodal architecture that seamlessly integrates multimodal capabilities into existing LLM frameworks. The key innovation lies in a sampling-efficient generator that produces multiple independent samples through **single-forward propagation**, enabling joint optimization of supervised and reinforcement learning objectives during fine-tuning as detailed in Section 2.3.

Vision Tower To enable large language models to understand and generate images, we developed our Vision Tower. For **image understanding**, we utilize Siglip to extract high-level semantic information from images. Additionally, to address the spatial detail information that Siglip may overlook (Tong et al., 2024b), we incorporated a low-level visual encoder, initialized from the encoder of Open-MAGVIT2, focusing on the intricacies within the images. During training, we keep Siglip's weights frozen while allowing the low-level visual encoder to participate in the process. Our goal is for both components to focus on different levels of visual signals, which are then fed into the LLM through an adapter. For **image generation**, to seamlessly integrate with the existing training objectives of the LLM, we trained a lookup-free quantizer within the Open-MAGVIT2 framework

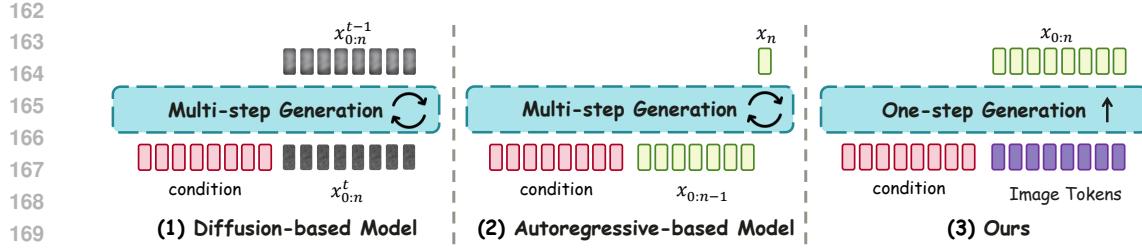


Figure 2: (1) **Diffusion-based Model** formulates image generation as $x_{0:N}^{t-1} \sim p(\cdot|c, x_{0:N}^t)$. When sampling n samples from distribution $p(\cdot|c)$, the model requires $n \times T$ forward passes, where T denotes the diffusion denoising steps. (2) **Autoregressive-based Model** formulates image generation as $x_{0:N}^{t-1} \sim p(\cdot|c, x_{0:N}^t)$. When sampling n samples from distribution $p(\cdot|c)$, the model requires $n \times N$ forward passes, where N represents the token count. (3) **Our Model** directly models $p(\cdot|c)$, enabling the sampling of n samples with only **one forward pass**.

(Luo et al., 2025). This quantizer maintains a codebook of size $K = 262,144$ and encodes images with a resolution of 256×256 into 16×16 discrete tokens.

Generation Architecture To build a unified modality model, we combine Vision Tower with a pretrained large language model (LLM). For image generation, we adopt a parallel decoding approach: as shown in Figure 2. We assume that images can be processed as N discrete or continuous tokens. The Diffusion-based Model and Autoregressive-based Model model the generation process as $x_{0:N}^{t-1} \sim p(\cdot|c, x_{0:N}^t)$ and $x_N \sim p(\cdot|c, x_{0:n-1})$ respectively. To obtain the complete conditional distribution $x_{0:N} \sim p(\cdot|c)$, the model needs to perform multiple autoregressive forward passes. In this paper, we take a direct approach: we allow the LLM to model $x_{0:N} \sim p(\cdot|c)$ directly. Practically, we introduce a set of learnable image tokens that are input into the transformer along with the conditions, and use the image tokens to directly predict the discrete token IDs of the image. This modeling approach avoids introducing unnecessary priors and seamlessly integrates with the original learning objectives of the LLM. By integrating the Vision Tower with the LLM, we have developed a unified multimodal generation model.

2.2 DYNAMIC PERCEPTION PRETRAINING

To enable the model to learn the understanding and generation of multimodal interactions, we designed a dynamic perception pre-training phase. For embodied agents, understanding the environment is crucial. This not only requires agents to comprehend images and text individually but also to grasp the interactions between them. The model must understand the differences between two distinct states and be able to infer how taking a specific action will alter the state.

Based on these considerations, we collected a dataset $\mathcal{D} = \{\mathcal{T}_0, \mathcal{T}_1, \dots, \mathcal{T}_l\}$ with transitions defined as $\mathcal{T} = \{x_t, a_t, x_{t+1}\}$, where x represents image observations and a denotes language actions. Building on this foundation, we designed a pre-training phase based on Inverse Dynamic Learning and Forward Dynamic Learning.

Inverse Dynamic Task To train the model’s perceptual capabilities while maintaining its text generation abilities, we designed the Inverse Dynamic task. Specifically, given the dataset \mathcal{D} and a prompt \mathcal{P} such as: “*What is the action between <ImageHere> and <ImageHere> ? Please infer the actions that took place*”, the objective function is the conditional log-likelihood of the action token sequence:

$$\mathcal{L}_{\text{Inverse Dynamic}} = -\mathbb{E}_{(x_t, a_t, x_{t+1}) \sim \mathcal{D}} \left[\frac{1}{L} \sum_{i=1}^L \log P(a_t^{(i)} | a_t^{(<i)}, x_t, x_{t+1}; \theta) \right], \quad (1)$$

where L represents the token length of the action sequence a_t , $a_t^{(i)}$ denotes the i -th token in the action sequence, $a_t^{(<i)}$ refers to all historical tokens before position i , and θ represents the model’s trainable

parameters. By optimizing the Inverse Dynamic Loss $\mathcal{L}_{\text{Inverse Dynamic}}$, we enhance the model's image understanding and dynamic comprehension abilities while maintaining its text generation capabilities.

Forward Dynamic Task To enable the model to learn image generation and understanding while enhancing its reasoning capabilities, we designed the Forward Dynamic task. The model needs to infer the next observation x_{t+1} based on the current observation x_t and the language action a_t . Specifically, given the dataset \mathcal{D} and a prompt \mathcal{P} such as: “*What will happen if <ImageHere> takes the action like <ActionHere>? Please generate an image of the next state*”, the objective function is the conditional log-likelihood of the image token sequence:

$$\mathcal{L}_{\text{Forward Dynamic}} = -\mathbb{E}_{(x_t, a_t, x_{t+1}) \sim \mathcal{D}} \left[\log P(x_{t+1}^{(0:N)} \mid x_t, a_t; \theta) \right], \quad (2)$$

where N represents the token length of the image sequence x_t , a_t denotes the action sequence, and θ represents the model's trainable parameters. By optimizing the Forward Dynamic Loss $\mathcal{L}_{\text{Forward Dynamic}}$, we enhance the model's ability for image generation and understanding while improving its dynamic reasoning capabilities.

Joint Pretraining During the pre-training phase, we employed a dual-task curriculum where inverse dynamics modeling and forward dynamics prediction were co-trained on identical multimodal datasets. This co-optimization strategy establishes a unified framework for processing multimodal inputs and generating coordinated outputs, effectively forming the foundation for the model's emergent world modeling capabilities through integrated cross-modal reasoning.

2.3 REINFORCED SUPERVISED FINE-TUNING

After pre-training, the model has acquired the ability to unify the processing of visual and textual information, along with a preliminary dynamic understanding capability. Next, we need to leverage the model's perception and reasoning abilities to construct a multimodal planning agent. We require the model not only to understand the objective environmental transition functions but also to make proactive inferences based on given goals, breaking down complex tasks into simpler actions. Based on these considerations, we collected a dataset $\mathcal{D} = \{\mathcal{T}_0, \mathcal{T}_1, \dots, \mathcal{T}_l\}$ containing high-level instructions and low-level language actions, where the basic elements are $\mathcal{T} = \{g, x_t, a_t, x_{t+1}\}$, with g representing the high-level instruction, x denoting the image observation, and a indicating the language action. On this basis, we designed a Reinforced Supervised Fine-Tuning(RSFT) phase.

Maximum Likelihood for Vision-Language Planning To learn the model's perception and reasoning abilities while applying our multimodal framework for vision-language joint planning, we first perform supervised fine-tuning (SFT) on the model. Specifically, the model needs to infer the appropriate language action a_t based on the given high-level instruction and the current observation x_t , as well as the observation x_{t+1} that results from taking action a_t . Given the dataset \mathcal{D} and a prompt \mathcal{P} such as: “*You are given the current image observation <ImageHere> and the given task instruction: <TaskHere>. Please make the next step action decision and generate the next state image*”, the objective function is the joint conditional log-likelihood of the action tokens and image tokens:

$$\mathcal{L}_{\text{SFT}} = -\mathbb{E}_{(g, x_t, a_t, x_{t+1}) \sim \mathcal{D}} \left[\frac{1}{L} \sum_{i=1}^L \log P(a_t^{(i)} \mid a_t^{(<i)}, g, x_t; \theta) + \log P(x_{t+1}^{(0:N)} \mid g, x_t, a_t^{0:L}; \theta) \right], \quad (3)$$

where L represents the token length of the action sequence a_t , $a_t^{(i)}$ denotes the i -th token in the action sequence, $a_t^{(<i)}$ indicates all historical tokens before position i , N is the token length of the image sequence x_t , and θ are the model's trainable parameters. By optimizing the joint conditional log-likelihood \mathcal{L}_{SFT} , the model learns multimodal reasoning capabilities.

270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
Policy Gradient for Dynamic Alignment The supervised objective \mathcal{L}_{SFT} minimizes cross-entropy between the conditional joint distribution of the model $p_{\theta}(x_{0:N}|c)$ and the target data distribution. While effective for static pattern alignment, maximum likelihood estimation suffers from two critical limitations in dynamic reasoning tasks: (1) *perceptual over-specification* - enforcing unnecessary constraints on task-irrelevant details (e.g., table texture consistency), and (2) *causal under-constraint* - failing to model physical dynamics that govern state transitions. Reinforcement learning (Sutton & Barto, 1998) addresses this mismatch through reward-weighted policy gradients, where human preferences guide the learning of physically plausible trajectories. Our key innovation seamlessly integrates this paradigm by exploiting the model's single-forward multi-sample generation capability to compute advantage-weighted gradients without additional computational overhead.

287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 Since our model directly models $x_{0:N} \sim p(\cdot|c)$, we can independently sample multiple samples in a single forward pass. Specifically, we designed a Dynamic Alignment reward function $r = R(x)$. This function performs change detection between the observation and the goal image and computes the reward based on the similarity between the detected changes and the ground truth used to measure whether the dynamics of the generated image is consistent with the real dynamics; the specific definition of the reward function can be found in the Appendix C.1. During the forward pass, we sample K samples $x^k \sim P(x_{t+1}^{(0:N)} | g, x_t, a_t^{0:L})$ and obtain the reward for each sample using the reward function. We normalize these rewards within each batch to calculate the advantage for each sample and optimize with equation 4.

302
 303
 304
 305
 306
 Due to the use of high-variance gradient estimators, reinforcement learning exhibits instability during training, which can lead to training collapse. We combine maximum likelihood with policy gradients to achieve stable joint optimization.

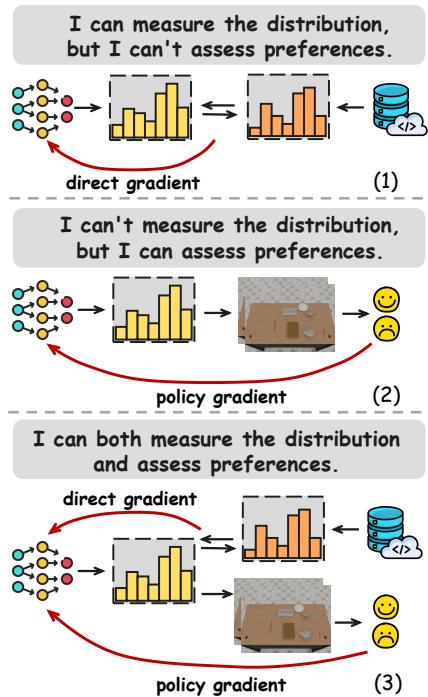


Figure 3: (1) SFT optimize model by minimizing KL divergence between model outputs and dataset distributions. It lacks per-sample preference alignment. (2) Reinforcement Learning (RL) aligns preferences through per-sample feedback, focusing on reward maximization but risking distribution shifts. (3) Reinforcement Supervised Fine-Tuning (RSFT) combines distribution constraints with sample optimization, enforcing preference alignment under maximum likelihood constraints.

$$\mathcal{L}_{\text{RL}} = -\mathbb{E}_{(g, x_t, a_t) \sim \mathcal{D}, x_{t+1}^k \sim P(\cdot | g, x_t, a_t; \theta)} \left[\frac{1}{K} \sum_{k=1}^K A_k \cdot \log P(x_{t+1}^k | g, x_t, a_t^{0:L}; \theta) \right]. \quad (4)$$

313
Joint optimization In practice, we constrain the overall distribution using maximum likelihood
 314 and leverage policy gradient to enhance dynamic alignment capabilities (Figure 3). Specifically, we
 315 optimize our model with the following objective:

$$\mathcal{L} = -\mathbb{E}_{(g, x_t, a_t, x_{t+1}) \sim \mathcal{D}} [\mathcal{L}_{\text{SFT}} + \lambda \cdot \mathcal{L}_{\text{RL}}]. \quad (5)$$

321
 322
 323
 The first term enforces global alignment between language and vision, while the second improves
 324 dynamic consistency via preference-aware sampling. Together, they enable physically plausible action
 325 sequences and subgoal-conditioned images from high-level instructions, supporting autonomous
 326 planning under real dynamics. Implementation details and pseudocode are provided in Appendix C.3.

324 Table 1: The evaluation of success rate between baselines and we report the mean and variance across 5 seeds.
325

326 327 328 Model	329 330 331 332 Blocks			333 334 335 336 337 Letters		
	338 Stacking	339 Sort	340 Matching	341 Shape	342 Orders	343 Spell
344 CLIPort	345 18.4 ± 3.2	346 19.2 ± 4.6	347 17.8 ± 2.9	348 9.8 ± 1.4	349 8.1 ± 2.7	350 2.3 ± 0.8
351 PAR	352 34.7 ± 5.5	353 32.8 ± 6.3	354 31.1 ± 4.4	355 31.5 ± 5.8	356 30.7 ± 4.9	357 27.3 ± 7.2
358 EmbodiedGPT	359 48.6 ± 6.7	360 49.1 ± 5.9	361 43.4 ± 7.8	362 40.9 ± 6.4	363 48.2 ± 7.5	364 52.7 ± 6.2
365 SuSIE	366 34.1 ± 3.8	367 32.6 ± 4.1	368 33.2 ± 5.7	369 37.8 ± 6.6	370 35.2 ± 4.3	371 34.1 ± 7.4
372 CoTDiffusion	373 47.9 ± 6.0	374 44.3 ± 7.6	375 56.6 ± 5.2	376 46.1 ± 6.5	377 53.9 ± 4.8	378 44.8 ± 7.9
379 PERIA	380 63.9 ± 5.8	381 65.0 ± 6.4	382 72.3 ± 7.1	383 60.6 ± 5.2	384 65.2 ± 6.7	385 71.1 ± 7.5
386 EVLP (ours)	387 79.4 ± 7.9	388 77.3 ± 4.3	389 82.5 ± 6.1	390 75.3 ± 4.4	391 78.2 ± 7.3	392 81.8 ± 6.5

338
339 3 EXPERIMENTS
340341 3.1 EXPERIMENT SETUP
342

343 **Benchmark & Settings** We evaluate across long-horizon manipulation environments, configuring
344 the model to generate language-guided actions and visual subgoals from high-level instructions,
345 with a low-level policy executing the plans (implementation details in Appendix G). Experiments
346 use **LoHoRavens** (Zhang et al., 2023), a Ravens-based benchmark where we consider 11 language-
347 conditioned *block* tasks and extend with 9 challenging *letter* tasks, and **Meeting Preparation**, an
348 in-house simulator for arranging desktop objects under varied backgrounds, table types, and object
349 categories, enabling deeper analysis of planning in realistic, diverse settings.

350 **Baselines** We compare against four planning paradigms: (i) **end-to-end** imitation learning with *CLIPort*
351 (Shridhar et al., 2022), which directly maps high-level instructions to actions without an explicit
352 planner; (ii) **language planning**, including *PAR* (Zhang et al., 2023), which uses a VLM reporter
353 and an LLM planner, and *EmbodiedGPT* (Mu et al., 2023b), which replaces the LLM+VLM stack
354 with a stronger MLLM after instruction tuning; (iii) **vision planning**, represented by *SuSIE* (Black
355 et al., 2023b), which edits images to form subgoals for simple steps, and *CoTDiffusion* (Ni et al.,
356 2024a), which introduces a semantic alignment module for chain-of-thought subgoal generation; and
357 (iv) **multimodal planning** with *PERIA* (Ni et al., 2024b), which jointly plans language actions and
358 image conditions with an LLM while a diffusion model renders visual subgoals.

360 3.2 MAIN QUANTITATIVE RESULTS OF SUCCESS RATE
361

362 The results on LoHoRavens are shown in Table 1. As expected, end-to-end learning methods
363 performed the worst, struggling to complete tasks due to a lack of intermediate guidance. In
364 contrast, the language planning paradigm explicitly decomposes tasks into stepwise instructions and
365 employs a hierarchical framework consisting of a language planner and a language-conditioned policy,
366 demonstrating greater potential and clearly outperforming the end-to-end approach. Meanwhile,
367 EmbodiedGPT achieved stronger performance through fine-tuning.

368 The visual planning paradigm generates intermediate keyframes. For example, SuSIE uses an
369 image editing model to directly generate subgoals, while CoTDiffusion produces more refined
370 images through Chain of Thought (CoT) reasoning, enhancing the performance of visual planning.
371 However, CoTDiffusion does not explicitly reason about the instructions, which may lead to semantic
372 inconsistencies in the generated subgoal images. In comparison, PERIA further enhances performance
373 through multimodal planning. This method provides rich subgoal information by jointly planning
374 with language and vision. However, PERIA is limited by its visual perception capabilities and the
375 interaction between modalities, which may result in inaccuracies in the generated target images.

376 In contrast, our EVLP algorithm integrates the processing of textual instructions and image observa-
377 tions, introducing richer visual perception and designing a framework for unified interaction between
378 text and images. Additionally, we developed a dynamic alignment reward function to optimize the

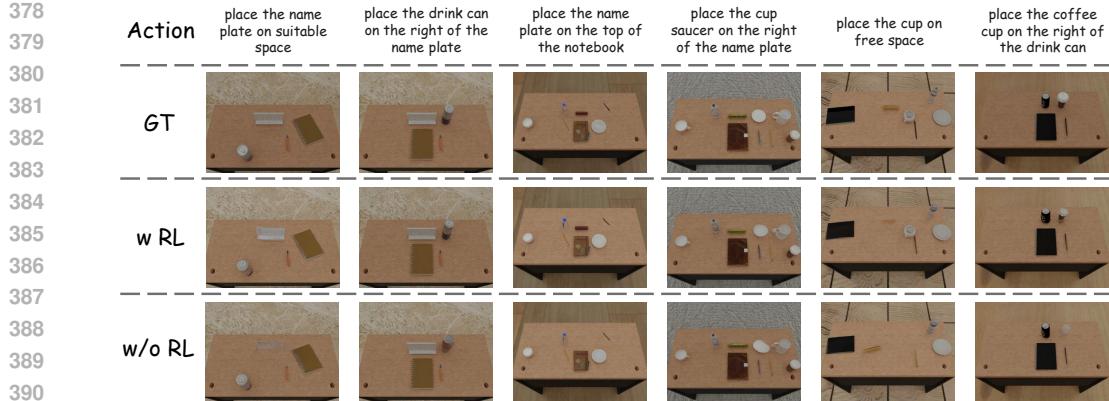


Figure 4: Comparison of generation effects between RSFT and SFT shows that RSFT generates more finely detailed results with better dynamic consistency.

model’s dynamic reasoning capabilities through reinforcement learning. Our approach surpasses the baselines across all tasks, achieving optimal performance.

3.3 FURTHER ANALYSIS

This section trained multiple variants of EVLP and conducted two sets of experiments on the Meeting Preparation task: first, given instructions and the observation, we tested the model’s planning capabilities by measuring the success rate (SR), language accuracy (LA), and LPIPS, SSIM on test set(Table 2). We also tested the image generation capabilities by providing the observation along with actions, asking the model to generate the next state, and evaluated the LPIPS and SSIM(Table 3).

Ablation on Vision Tower To validate the effectiveness of our vision tower, we created two variants: one removing the spatial encoder from the vision tower (EVLP w/o En) and the other excluding Siglip from the architecture (EVLP w/o Se). We first compared their generation performance (Exps. A, B, and C in Table 3). It is evident that the image generation capability of EVLP w/o En significantly declines, as relying solely on Siglip information lacks crucial details regarding positional context. Meanwhile, although EVLP w/o Se shows less degradation

in image generation tasks, it becomes clear in specific multimodal reasoning tasks (Exps. A, B, and C in Table 2) that the absence of Siglip significantly reduces the model’s language planning abilities, leading to suboptimal overall performance. This is due to the spatial encoder alone lacking essential semantic information, making it challenging for the LLM to process. In contrast, the combination of both components achieves the best results.

Ablation on Generation Architecture To test if parallel decoding(Fig. 2) improves quality, we build EVLP-AR, which keeps the same components but generate autoregressively, following (Wu et al., 2024). Comparing EVLP with EVLP-AR (Exps. A,D in Tab. 3) shows the AR variant markedly degrades fidelity and increases hallucinations. We believe this is primarily due to two reasons: (i) imposing an unnatural causal-sequence prior on images and (ii) cumulative AR errors that hinder precise operations.

Ablation on Pretraining We further disentangle the contributions of two pretraining objectives—IDM for predicting action commands and FDM for predicting state transitions. Using the

Table 2: Comparative analysis of task planning performance across different variants.

Method	SR ↑	LA ↑	LPIPS ↓	SSIM ↑
A EVLP	67.6	87.0	0.051	0.95
B - w/o En	56.5	82.9	0.092	0.92
C - w/o Se	50.1	73.9	0.116	0.89
D - w/o IDM	63.9	83.6	0.052	0.95
E - w/o FDM	26.8	72.1	0.192	0.84
F - w/o RL	62.2	87.4	0.054	0.95
G - RL only	0.0	14.0	0.712	0.29
H - w/o Gen	53.7	80.1	-	-

Table 3: Comparative analysis of image generation performance across different variants.

Method	LPIPS ↓	SSIM ↑
A EVLP	0.046	0.95
B - w/o En	0.087	0.87
C - w/o Se	0.074	0.91
D - AR	0.197	0.84

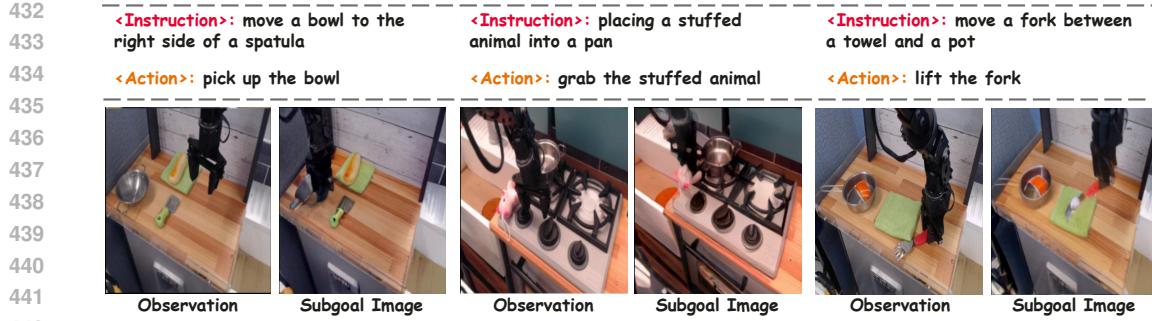


Figure 5: Visualization of Real-World Dataset experiments, showcasing EVLP’s planning quality in complex, real-world scenes.

same architecture, we compare three settings: joint dual-task pretraining (IDM+FDM), w/o FDM and w/o IDM (Exps. A,D,E in Tab. 2). Results show that the joint model performs best overall, underscoring the necessity of combined supervision. Ablations indicate that removing IDM weakens language planning, while removing FDM markedly degrades multimodal planning. Together, these findings highlight the pivotal role of bidirectional pretraining in modality alignment.

Ablation on RSFT In Section 2.3, we introduced the Reinforcement Supervised Fine-Tuning (RSFT) framework, which optimizes both likelihood and dynamic rewards. Comparative analysis (Exps. A, F, and G in Table 2) of RSFT (learning by Equation 5), traditional supervised fine-tuning (SFT) (learning by Equation 3), and RL-only (learning by Equation 4) shows that RSFT performs similarly to SFT on standard image metrics but significantly improves task success rates. Notably, the RL-only baseline exhibits catastrophic policy collapse without SFT regularization, underscoring the necessity of dynamic consistency constraints for stable learning – a key advantage preserved by our hybrid approach. Reward curves on the test set (Figure 6) further confirm our algorithm’s effectiveness in reward accumulation compared to traditional SFT methods. The actual generated results (Figure 4), demonstrating that RSFT perform better in dynamic consistency.

Real-World Evaluation We constructed a real-world robotic manipulation dataset based on BridgeData v2. This dataset includes diverse household tasks (e.g., object grasping and stacking) and records robotic arm observations along with natural language instructions. We evaluated EVLP’s multimodal planning capabilities using LA and LPIPS. As shown in Table 4, EVLP achieves the best performance across both modalities. In language planning, EVLP attains an LA of 0.78, surpassing EmbodiedGPT and PERIA, indicating stronger alignment with task intent. In visual planning, EVLP reduces LPIPS to 0.11, compared with 0.23 for SuSIE and 0.17 for PERIA, demonstrating more spatially consistent visual subgoals.

Building on this, we deployed our method on the SO101 robotic arm. Specifically, we set up a “table arrangement” task in a real-world environment, where the model is required to neatly organize scattered tableware. We collected 60 demonstrations to train our EVLP model. For the low-level policy, we trained a goal-conditioned π_0 , which takes in language actions and a goal image as input and outputs the corresponding robot actions. The execution process of our framework is presented in the Appendix B.3.

Ablation on Multimodal Planning In this section, we designed experiments to explore the advantages of multimodal tasks compared to unimodal tasks. Specifically, we conducted the EVLP w/o Gen experiment, in which the image generation task was removed from all stages, transforming

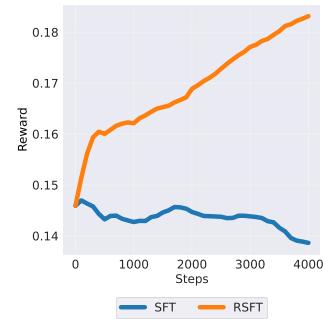


Figure 6: The reward curve on test set during training.

Table 4: Comparative analysis in Real-World Dataset.

Method	LA \uparrow	LPIPS \downarrow
A EVLP	0.78	0.11
B PERIA	0.75	0.17
C SuSIE	–	0.23
D EmbodiedGPT	0.68	–

486 the model into a purely language-planning system. We compared the success rates and language
 487 accuracy (Exps. A and H in Table 2). The results clearly demonstrate that multimodal tasks not only
 488 enhance the overall success rate but also significantly improve language accuracy, underscoring the
 489 positive impact of multimodal tasks on unimodal performance.
 490

491 **Sample Efficiency** EVLP’s single-step generative design can draw multiple *independent*
 492 samples in a single forward pass, dramatically
 493 increasing sampling throughput compared with
 494 diffusion and autoregressive (AR) models. Ta-
 495 ble 5 reports wall-clock generation time for pro-
 496 ducing 1 vs. 8 images. EVLP is orders of mag-
 497 nitude faster in both 1.5B and 7B scales, and
 498 its advantage *widens* as model size grows. As
 499 shown, EVLP outpaces diffusion and AR by
 500 large margins (e.g., 0.15s vs. 21.37s for 7B, sin-
 501 gle image), and the gap further enlarges when
 502 generating batches (8 images: 0.40s vs. 172.96s).
 503

504 4 CONCLUSION

505 We introduced **EVLP (Embodied Vision-Language Planner)**, a unified multimodal generation
 506 framework that integrates language reasoning and visual imagination for long-horizon manipulation
 507 tasks. Through dynamic perception pre-training, EVLP learns spatial relations and environmen-
 508 tal dynamics, while our reinforced supervised fine-tuning (RSFT) enables dynamically consistent
 509 multimodal planning. Extensive experiments on challenging benchmarks show that EVLP achieves
 510 superior instruction-following accuracy and task success rates compared to strong baselines. Ad-
 511 ditionally, we conducted detailed analyses to validate the effectiveness of our design. We believe
 512 that EVLP highlights the potential of holistic language and vision planning, and we hope this novel
 513 paradigm can provide valuable insights for robotics research in long-horizon tasks with complex
 514 instructions, moving toward more open embodied scenarios.
 515

516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

Table 5: Image sampling time (seconds) for generating 1 and 8 images. Diffusion corresponds to SuSIE; AR refers to autoregressive baselines. EVLP uses a parallel decoding way.

Method	1 Image (s)	8 Images (s)
A EVLP-7B	0.15	0.40
B EVLP-1.5B	0.05	0.13
C AR-7B	21.37	172.96
D AR-1.5B	5.31	42.64
E Diffusion (SuSIE)	4.41	35.36

540 REFERENCES

541

542 Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
543 Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
544 Grounding language in robotic affordances. *arXiv preprint arXiv:2204.01691*, 2022.

545 Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe,
546 Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al. Openflamingo: An open-source framework for
547 training large autoregressive vision-language models. *arXiv preprint arXiv:2308.01390*, 2023.

548

549 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
550 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
551 Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
552 Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
553 Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
554 Training a helpful and harmless assistant with reinforcement learning from human feedback, 2022.
555 URL <https://arxiv.org/abs/2204.05862>.

556 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
557 with reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2023a.

558

559 Kevin Black, Mitsuhiro Nakamoto, Pranav Atreya, Homer Walke, Chelsea Finn, Aviral Kumar, and
560 Sergey Levine. Zero-shot robotic manipulation with pretrained image-editing diffusion models.
561 *arXiv preprint arXiv:2310.10639*, 2023b.

562 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
563 editing instructions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
564 Recognition*, pp. 18392–18402, 2023.

565

566 Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
567 Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
568 scaling, 2025. URL <https://arxiv.org/abs/2501.17811>.

569

570 Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, and Yong Wang. Gpg: A simple and strong
571 reinforcement learning baseline for model reasoning, 2025. URL <https://arxiv.org/abs/2504.02546>.

572

573 Yilun Du, Mengjiao Yang, Pete Florence, Fei Xia, Ayzaan Wahid, Brian Ichter, Pierre Sermanet,
574 Tianhe Yu, Pieter Abbeel, Joshua B. Tenenbaum, Leslie Kaelbling, Andy Zeng, and Jonathan
575 Tompson. Video language planning, 2023. URL <https://arxiv.org/abs/2310.10625>.

576

577 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
578 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
579 fine-tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems*,
36:79858–79885, 2023.

580

581 Yuying Ge, Yixiao Ge, Ziyun Zeng, Xintao Wang, and Ying Shan. Planting a seed of vision in large
582 language model. *arXiv preprint arXiv:2307.08041*, 2023a.

583

584 Yuying Ge, Sijie Zhao, Ziyun Zeng, Yixiao Ge, Chen Li, Xintao Wang, and Ying Shan. Making
585 llama see and draw with seed tokenizer. *arXiv preprint arXiv:2310.01218*, 2023b.

586

587 Yuying Ge, Sijie Zhao, Ziyun Zeng, Yixiao Ge, Chen Li, Xintao Wang, and Ying Shan. Making llama
588 see and draw with seed tokenizer, 2023c. URL <https://arxiv.org/abs/2310.01218>.

589

590 Qiushan Guo, Shalini De Mello, Hongxu Yin, Wonmin Byeon, Ka Chun Cheung, Yizhou Yu,
591 Ping Luo, and Sifei Liu. Regiongpt: Towards region understanding vision language model.
592 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
593 13796–13806, 2024.

594

595 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
596 <https://arxiv.org/abs/2006.11239>.

594 Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An
 595 easy-to-use, scalable and high-performance rlhf framework. *arXiv preprint arXiv:2405.11143*,
 596 2024.

597 Runhui Huang, Chunwei Wang, Junwei Yang, Guansong Lu, Yunlong Yuan, Jianhua Han, Lu Hou,
 598 Wei Zhang, Lanqing Hong, Hengshuang Zhao, and Hang Xu. Illume+: Illuminating unified mllm
 599 with dual visual tokenization and diffusion refinement, 2025. URL <https://arxiv.org/abs/2504.01934>.

600 Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei,
 601 Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation with multimodal
 602 prompts. In *NeurIPS 2022 Foundation Models for Decision Making Workshop*, 2022.

603 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image
 604 pre-training for unified vision-language understanding and generation. In *ICML*, 2022.

605 Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video
 606 and language with blockwise ringattention, 2025. URL <https://arxiv.org/abs/2402.08268>.

607 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 608 tuning, 2023a.

609 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023b.

610 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 611 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.

612 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 613 arXiv:1711.05101*, 2017.

614 Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang, Limin Wang, and Ying Shan. Open-magvit2:
 615 An open-source project toward democratizing auto-regressive visual generation, 2025. URL
 616 <https://arxiv.org/abs/2409.04410>.

617 Yiyang Ma, Xingchao Liu, Xiaokang Chen, Wen Liu, Chengyue Wu, Zhiyu Wu, Zizheng Pan,
 618 Zhenda Xie, Haowei Zhang, Xingkai Yu, Liang Zhao, Yisong Wang, Jiaying Liu, and Chong Ruan.
 619 Janusflow: Harmonizing autoregression and rectified flow for unified multimodal understanding
 620 and generation, 2025. URL <https://arxiv.org/abs/2411.07975>.

621 Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
 622 language-conditioned policy learning for long-horizon robot manipulation tasks. *IEEE Robotics
 623 and Automation Letters (RA-L)*, 7(3):7327–7334, 2022.

624 Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhui Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng
 625 Dai, Yu Qiao, and Ping Luo. Embodiedgpt: Vision-language pre-training via embodied chain of
 626 thought. *Advances in Neural Information Processing Systems*, 36:25081–25094, 2023a.

627 Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhui Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng
 628 Dai, Yu Qiao, and Ping Luo. Embodiedgpt: Vision-language pre-training via embodied chain of
 629 thought. *Advances in Neural Information Processing Systems*, 36, 2023b.

630 Suraj Nair, Eric Mitchell, Kevin Chen, Silvio Savarese, Chelsea Finn, et al. Learning language-
 631 conditioned robot behavior from offline data and crowd-sourced annotation. In *Conference on
 632 Robot Learning*, pp. 1303–1315. PMLR, 2022.

633 Fei Ni, Jianye Hao, Shiguang Wu, Longxin Kou, Liu Jiashun, Yan Zheng, Bin Wang, and Yuzheng
 634 Zhuang. Generate subgoal images before act: Unlocking the chain-of-thought reasoning in
 635 diffusion model for robot manipulation with multimodal prompts. *Computer Vision and Pattern
 636 Recognition*, 2024a.

648 Fei Ni, Jianye Hao, Shiguang Wu, Longxin Kou, Yifu Yuan, Zibin Dong, Jinyi Liu, MingZhi Li,
 649 Yuzheng Zhuang, and Yan Zheng. Peria: Perceive, reason, imagine, act via holistic language
 650 and vision planning for manipulation. *Advances in Neural Information Processing Systems*, 37:
 651 17541–17571, 2024b.

652 William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL <https://arxiv.org/abs/2212.09748>.

653 Liao Qu, Huichao Zhang, Yiheng Liu, Xu Wang, Yi Jiang, Yiming Gao, Hu Ye, Daniel K. Du, Zehuan
 654 Yuan, and Xinglong Wu. Tokenflow: Unified image tokenizer for multimodal understanding and
 655 generation, 2024. URL <https://arxiv.org/abs/2412.03069>.

656 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 657 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 658 models from natural language supervision. In *International conference on machine learning*, pp.
 659 8748–8763. PMLR, 2021.

660 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 661 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
 662 mathematical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

663 Weijia Shi, Xiaochuang Han, Chunting Zhou, Weixin Liang, Xi Victoria Lin, Luke Zettlemoyer, and
 664 Lili Yu. Lmfusion: Adapting pretrained language models for multimodal generation, 2025. URL
 665 <https://arxiv.org/abs/2412.15188>.

666 Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
 667 manipulation. In *Conference on robot learning*, pp. 894–906. PMLR, 2022.

668 Achint Soni, Sreyas Venkataraman, Abhranil Chandra, Sebastian Fischmeister, Percy Liang, Bo Dai,
 669 and Sherry Yang. Videoagent: Self-improving video generation, 2025. URL <https://arxiv.org/abs/2410.10076>.

670 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. MIT Press,
 671 Cambridge, MA, 1st edition, 1998. ISBN 978-0262193986.

672 Chameleon Team. Chameleon: Mixed-modal early-fusion foundation models, 2025. URL <https://arxiv.org/abs/2405.09818>.

673 Shengbang Tong, David Fan, Jiachen Zhu, Yunyang Xiong, Xinlei Chen, Koustuv Sinha, Michael
 674 Rabbat, Yann LeCun, Saining Xie, and Zhuang Liu. Metamorph: Multimodal understanding and
 675 generation via instruction tuning, 2024a. URL <https://arxiv.org/abs/2412.14164>.

676 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 677 shut? exploring the visual shortcomings of multimodal llms, 2024b. URL <https://arxiv.org/abs/2401.06209>.

678 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 679 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 680 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

681 Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
 682 Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
 683 learning. <https://github.com/huggingface/trl>, 2020.

684 Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda
 685 Xie, Xingkai Yu, Chong Ruan, and Ping Luo. Janus: Decoupling visual encoding for unified
 686 multimodal understanding and generation, 2024. URL <https://arxiv.org/abs/2410.13848>.

687 Junfeng Wu, Yi Jiang, Chuofan Ma, Yuliang Liu, Hengshuang Zhao, Zehuan Yuan, Song Bai, and
 688 Xiang Bai. Liquid: Language models are scalable and unified multi-modal generators, 2025a.
 689 URL <https://arxiv.org/abs/2412.04332>.

702 Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng
 703 Zhu, Enze Xie, Hongxu Yin, Li Yi, Song Han, and Yao Lu. Vila-u: a unified foundation model
 704 integrating visual understanding and generation, 2025b. URL <https://arxiv.org/abs/2409.04429>.

705

706 Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
 707 Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
 708 to unify multimodal understanding and generation, 2024. URL <https://arxiv.org/abs/2408.12528>.

709

710 Lijun Yu, José Lezama, Nitesh B. Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
 711 Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, Alexander G. Hauptmann, Boqing Gong,
 712 Ming-Hsuan Yang, Irfan Essa, David A. Ross, and Lu Jiang. Language model beats diffusion –
 713 tokenizer is key to visual generation, 2024. URL <https://arxiv.org/abs/2310.05737>.

714

715 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 716 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 717 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 718 Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying
 719 Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-source
 720 llm reinforcement learning system at scale, 2025. URL <https://arxiv.org/abs/2503.14476>.

721

722 Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian, Travis
 723 Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, et al. Transporter networks: Rearranging
 724 the visual world for robotic manipulation. In *Conference on Robot Learning*, pp. 726–747. PMLR,
 725 2021.

726

727 Jianke Zhang, Yanjiang Guo, Yucheng Hu, Xiaoyu Chen, Xiang Zhu, and Jianyu Chen. Up-
 728 vla: A unified understanding and prediction model for embodied agent, 2025a. URL <https://arxiv.org/abs/2501.18867>.

729

730 Shengqiang Zhang, Philipp Wicke, Lütfi Kerem Şenel, Luis Figueroedo, Abdeldjallil Naceri, Sami
 731 Haddadin, Barbara Plank, and Hinrich Schütze. Lohoravens: A long-horizon language-conditioned
 732 benchmark for robotic tabletop manipulation. *arXiv preprint arXiv:2310.12020*, 2023.

733

734 Wenqi Zhang, Mengna Wang, Gangao Liu, Xu Huixin, Yiwei Jiang, Yongliang Shen, Guiyang Hou,
 735 Zhe Zheng, Hang Zhang, Xin Li, Weiming Lu, Peng Li, and Yueling Zhuang. Embodied-reasoner:
 736 Synergizing visual search, reasoning, and action for embodied interactive tasks, 2025b. URL
 737 <https://arxiv.org/abs/2503.21696>.

738

739 Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo
 740 Li, Qianli Ma, Song Han, Chelsea Finn, Ankur Handa, Ming-Yu Liu, Donglai Xiang, Gordon
 741 Wetzstein, and Tsung-Yi Lin. Cot-vla: Visual chain-of-thought reasoning for vision-language-
 742 action models, 2025. URL <https://arxiv.org/abs/2503.22020>.

743

744 Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie Jin,
 745 Qin Liu, Yuhao Zhou, Limao Xiong, Lu Chen, Zhiheng Xi, Nuo Xu, Wenbin Lai, Minghao Zhu,
 746 Cheng Chang, Zhangyue Yin, Rongxiang Weng, Wensen Cheng, Haoran Huang, Tianxiang Sun,
 747 Hang Yan, Tao Gui, Qi Zhang, Xipeng Qiu, and Xuanjing Huang. Secrets of rlhf in large language
 748 models part i: Ppo, 2023. URL <https://arxiv.org/abs/2307.04964>.

749

750 Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob
 751 Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and
 752 diffuse images with one multi-modal model, 2024. URL <https://arxiv.org/abs/2408.11039>.

753

756 **A RELATED WORK**
757758 **A.1 UNIFIED MLLM FOR MULTIMODAL GENERATION**
759

760 The success of large language models (LLMs) has spurred growing interest in harnessing them for
761 image generation, leading to a variety of architectural approaches. One straightforward approach
762 is integrating LLMs with image generation models, where the LLM produces conditions to guide
763 the generation process (Ge et al., 2023c; Tong et al., 2024a; Huang et al., 2025). However, these
764 models require additional generative models, which is not conducive to unified multimodal repre-
765 sentation and model scaling. To address this, many works have attempted to use a single model for
766 multimodal understanding and generation. Some have explored combining diffusion models with
767 LLMs (Xie et al., 2024; Zhou et al., 2024). Others have focused on discretizing images and using a
768 unified autoregressive objective to model both text and images. Within this area, some works have
769 concentrated on image discretization methods (Wu et al., 2025b;a; Qu et al., 2024), while others have
770 focused on the integration of multimodal tokens with LLMs (Liu et al., 2025; Team, 2025; Wu et al.,
771 2024; Chen et al., 2025). In this paper, we propose a novel image generation method that achieves
772 better generation quality while enabling efficient sampling, promising to become a new paradigm for
773 multimodal unified models.

774 **A.2 HIERARCHICAL PLANNING FOR LONG-HORIZON MANIPULATION**
775

776 In long-sequence embodied operations, directly implementing end-to-end actions can lead to error
777 accumulation due to a lack of intermediate guidance (Shridhar et al., 2022; Jiang et al., 2022; Nair
778 et al., 2022). Therefore, many studies have adopted hierarchical planning, breaking down complex
779 instructions into sequential subtasks for execution. Language planning utilizes large language models
780 (LLMs) to transform reasoning into sequentially interpretable instructions in natural language (Ahn
781 et al., 2022; Mu et al., 2023b). Some work also introduces explicit Chain of Thought (CoT) processes
782 before generating actions (Zhang et al., 2025b; Zhao et al., 2025). Visual planning decomposes
783 complex instructions into sequential subgoal images (Black et al., 2023b; Ni et al., 2024a), with
784 additional efforts employing video generation models for task planning (Du et al., 2023; Soni et al.,
785 2025). Multimodal planning integrates both approaches, generating interpretable instructions and
786 subgoal images simultaneously, thereby providing rich planning information (Ni et al., 2024b; Zhang
787 et al., 2025a).

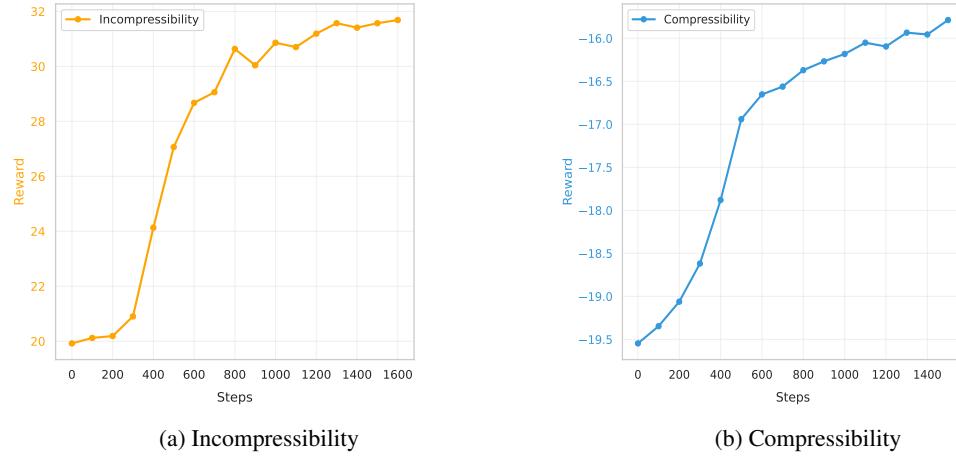
788 **A.3 REINFORCEMENT LEARNING IN LLM AND IMAGE GENERATION**
789

790 Reinforcement learning (RL) (Sutton & Barto, 1998) provides gradient-based policy optimization
791 for non-differentiable learning objectives such as human preference alignment (Bai et al., 2022).
792 However, applying RL to large language models (LLMs) remains challenged by inefficient sampling
793 (Hu et al., 2024) and training instability (Zheng et al., 2023), driving substantial research efforts to
794 develop robust policy gradient algorithms (Shao et al., 2024; Yu et al., 2025; Chu et al., 2025). While
795 RL applications in image generation (Black et al., 2023a; Fan et al., 2023) have demonstrated partial
796 success, existing approaches suffer from prohibitive computational costs due to iterative sampling
797 requirements of autoregressive architectures, coupled with persistent convergence challenges. In this
798 work, we address these limitations through an efficient sampling framework for unified multimodal
799 generation, integrating RL with supervised learning objectives to enable reward maximization under
800 strict maximum likelihood constraints.

801 **B MORE RESULTS AND ANALYSIS OF ADDITIONAL EXPERIMENTS**
802803 **B.1 OTHER CASES OF RSFT**
804

805 In this section, we conducted additional experiments with RSFT, referencing the experiments in
806 DDPO (Black et al., 2023a). We designed two simple reward functions: compressibility and
807 incompressibility, and implemented them using the same computation method as in DDPO. In
808 practice, we performed the SFT task using an expert dataset and employed these two rewards to
809 encourage the model to optimize for compressibility (or incompressibility). We present the reward
curves(Figure 7) from the training along with the generation results.

810
 811 The experimental curves demonstrate RSFT's robust convergence under both reward objectives,
 812 with visualization analysis revealing reward-specific generation patterns: images synthesized under
 813 the incompressibility objective exhibit sharpened features and intricate background complexity,
 814 while the compressibility-driven objective produces simplified outputs with attenuated background
 815 details. Crucially, these divergent behaviors remain anchored to coherent image structures through the
 816 maximum likelihood constraint – a core mechanism preventing arbitrary deviation from fundamental
 817 visual semantics. This effect originates from the method's dual optimization dynamics: reward
 818 gradients steer style adaptation while the likelihood penalty preserves content fidelity, achieving
 819 stable exploration within semantically grounded manifolds regardless of reward surface geometry.
 820



835 Figure 7: RSFT training curves with Incompressibility (a) and Compressibility (b) as reward functions.
 836
 837
 838

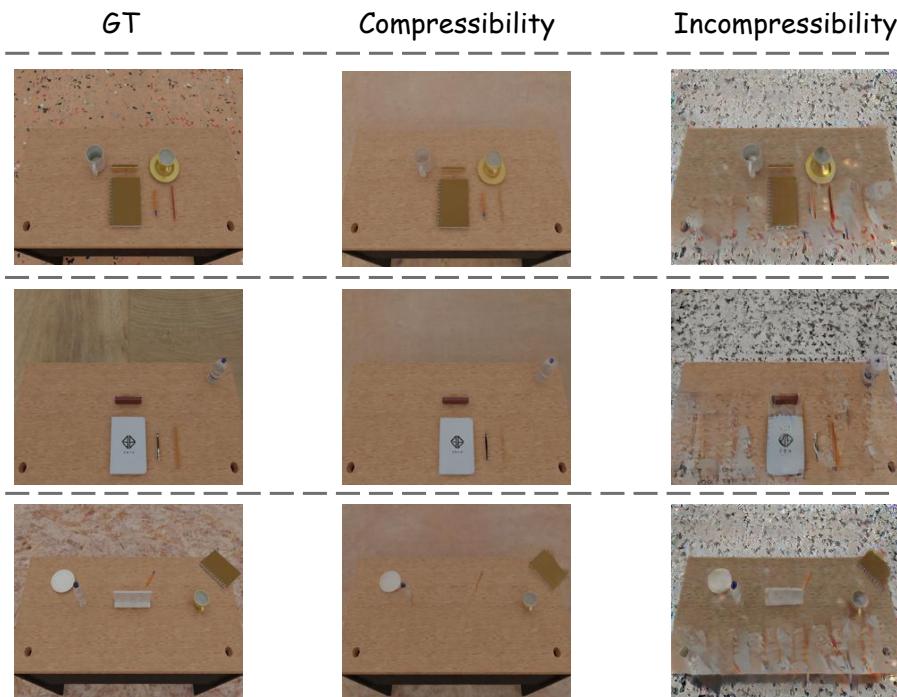


Figure 8: The generation effects on other rewards.

864
865

B.2 VISUALIZATION OF DIFFERENT VARIANTS

866

867 Our ablation study reveals critical insights through visual comparisons of four variants: EVLP,
 868 EVLP-AR, EVLP-w/o-Se, and EVLP-w/o-En. EVLP achieves superior synthesis quality with precise
 869 semantic alignment and geometrically consistent layouts, whereas EVLP-AR suffers severe perfor-
 870 mance degradation due to error accumulation in autoregressive decoding – each iterative prediction
 871 step propagates spatial distortions that compound across generation steps. While EVLP-w/o-Se
 872 maintains basic object recognition, it fails to preserve fine-grained part relationships, producing
 873 anatomically implausible structures. Similarly, EVLP-w/o-En generates blurred textures with incon-
 874 sistent lighting patterns, demonstrating the quantizer’s role in disentangling high-frequency details
 875 from latent representations. These results quantitatively validate our architectural decisions through
 876 controlled component deactivation.

877

878

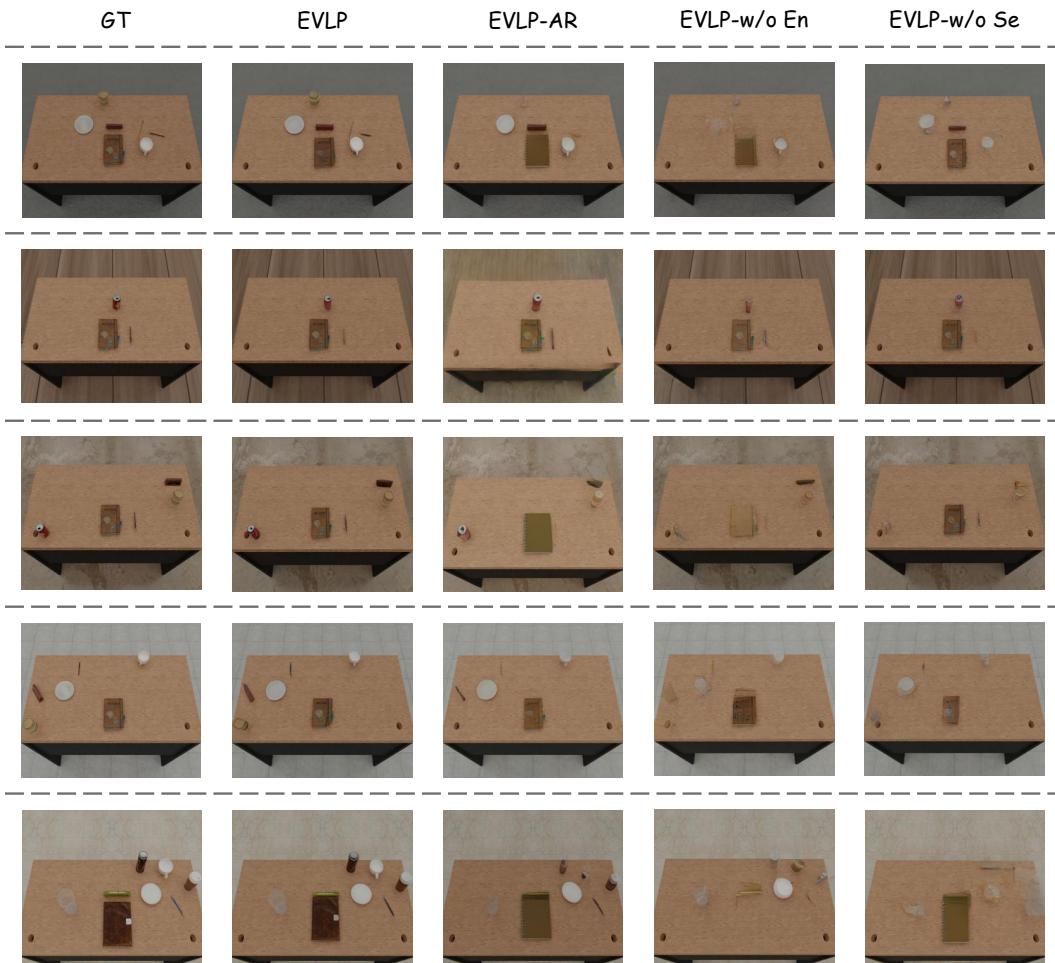


Figure 9: The generation effects of different variants.

909

910

911

912

913

914

B.3 REAL-WORLD ROBOT EXECUTION

915

916

917

We deployed our planner on the SO101, coupled with a goal-conditioned π_0 for generating real robot actions. We conducted experiments on a tabletop organization task and demonstrated the robot’s execution process.

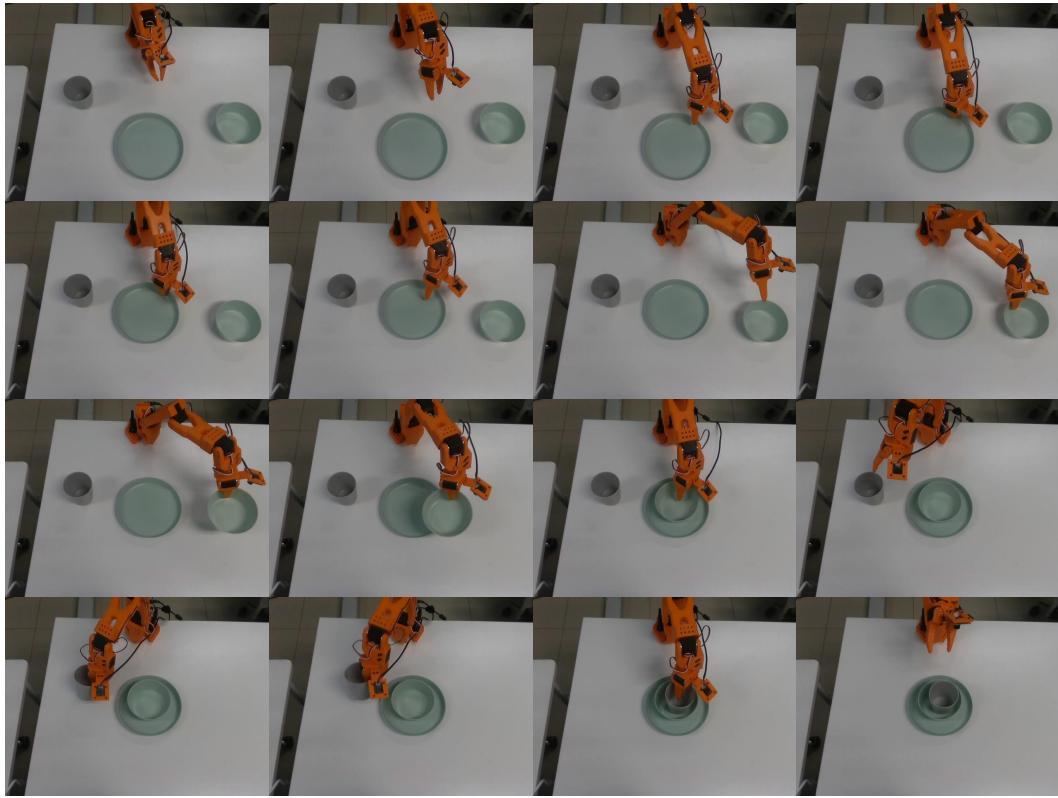


Figure 10: Real-World robot execution.

C DETAILS OF METHOD

C.1 REWARD FUNCTION

This reward function employs a dual-constraint mechanism to guide generative models in achieving both physical dynamic consistency and visual coherence. The core design principles are: (1) Ensuring spatiotemporal alignment of object motion trajectories between generated and real images; (2) Enforcing that appearance changes during object motion adhere to physical interaction principles. The implementation comprises three critical phases:

Dynamic Region Detection: The pipeline processes input image pairs (x_t, x_{t+1}) through Gaussian blurring to enhance robustness against imaging noise, followed by differential computation and morphological closing operations to extract significant change regions. Adaptive thresholding combined with contour analysis identifies candidate bounding boxes, with non-maximum suppression eliminating overlapping regions to produce final dynamic region set \mathcal{B} .

Joint Feature Matching: For ground truth and generated dynamic regions ($\mathcal{B}_{\text{label}}$ and \mathcal{B}_{gen} respectively), we construct an IoU similarity matrix and apply the Hungarian algorithm for optimal bipartite matching. Valid matches undergo pixel-level discrepancy analysis:

$$d_{ij} = -\text{MSE}(c_{ij}^{\text{label}}, c_{ij}^{\text{gen}}) \quad (6)$$

where c_{ij} denotes normalized image patches.

Multimodal Reward Computation: Integrating spatial alignment and pixel-wise consistency, we formulate the composite reward function:

$$r = \frac{\sum_{(i,j) \in \mathcal{M}} (\text{IoU}_{ij} + \lambda d_{ij}) - \tau(|\mathcal{B}_{\text{label}}| + |\mathcal{B}_{\text{gen}}| - 2|\mathcal{M}|)}{\min(|\mathcal{B}_{\text{label}}|, |\mathcal{B}_{\text{gen}}|)} \quad (7)$$

972
973 **Algorithm 1:** Dynamic-Aware Reward Computation
974 **Input:**
975 • Current state image x_t
976 • Generated image x_{t+1}^{gen}
977 • Real image x_{t+1}^{real}
978 • Hyperparameters: IoU threshold τ , MSE weight λ , penalty coefficient γ
979 **Output:** Reward r
980 **Initialize dynamic regions:**
981 $\mathcal{B}_{\text{label}} = \text{DetectRegions}(x_t, x_{t+1}^{\text{real}})$;
982 $\mathcal{B}_{\text{gen}} = \text{DetectRegions}(x_t, x_{t+1}^{\text{gen}})$;
983 **Compute region matching:**
984 $\mathbf{M} = \text{PairwiseIoU}(\mathcal{B}_{\text{label}}, \mathcal{B}_{\text{gen}})$
985 $(\text{row_ind}, \text{col_ind}) = \text{Hungarian}(-\mathbf{M})$;
986 $\mathcal{M} = \{(i, j) | \mathbf{M}[i, j] \geq \tau\}$;
987 **Calculate multi-scale reward:**
988
$$\text{score} = \sum_{(i, j) \in \mathcal{M}} [\mathbf{M}[i, j] - \lambda \cdot \text{MSE}(c_{ij}^{\text{label}}, c_{ij}^{\text{gen}})]$$

989 where $c_{ij}^{\text{label}} = \text{Crop}(x_{t+1}^{\text{real}}, \mathcal{B}_{\text{label}}^i)$, $c_{ij}^{\text{gen}} = \text{Crop}(x_{t+1}^{\text{gen}}, \mathcal{B}_{\text{gen}}^j)$
990 **Apply penalty normalization:**
991
$$r = \frac{\text{score} - \gamma(|\mathcal{B}_{\text{label}}| + |\mathcal{B}_{\text{gen}}| - 2|\mathcal{M}|)}{\max(1, \min(|\mathcal{B}_{\text{label}}|, |\mathcal{B}_{\text{gen}}|))}$$

992 **return** r

C.2 DETAILS OF PRETRAINING

1000 During the dynamic perception pretraining phase, EVLP focuses on developing foundational multimodal generation capabilities through inverse and forward dynamic reasoning while enhancing spatial comprehension, change detection, and dynamic imagination. For generation, we employ Open-MAGVIT2-f16-262144¹ as our image tokenizer, utilizing pretrained weights fine-tuned on our dataset for one epoch. The understanding module integrates SigLIP² as the semantic encoder and leverages the tokenizer’s encoder for spatial encoding, with a convolutional pooling adapter (stride=2) bridging feature hierarchies. The architecture adopts Qwen2.5-1.5B-Instruct³ as the LLM backbone, augmented with an auxiliary image head to project features into pixel probability distributions.

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710<br

1026	Algorithm 2: Reinforced Supervised Fine-Tuning (RSFT)
1027	
1028	Input:
1029	• Training dataset $\mathcal{D} = \{(g, x_t, a_t, x_{t+1})\}$
1030	• Pretrained model P_θ with parameters θ
1031	• Reward function $R(\cdot)$
1032	• Hyperparameters: batch size B , learning rate η , reward samples K , loss weight λ
1033	Output: Optimized model parameters θ^*
1034	Initialize optimizer (e.g., Adam) with learning rate η ;
1035	while not converged do
1036	Sample a batch $\{(g^{(b)}, x_t^{(b)}, a_t^{(b)}, x_{t+1}^{(b)})\}_{b=1}^B$ from \mathcal{D} ;
1037	Compute SFT Loss \mathcal{L}_{SFT} :
1038	$\mathcal{L}_{\text{SFT}} = -\frac{1}{BL} \sum_{b=1}^B \sum_{i=1}^L \log P(a_t^{(i)} a_t^{(<i)}, g, x_t) - \log P(x_{t+1} g, x_t, a_t)$
1039	Compute Reinforcement Loss \mathcal{L}_{RL} : for each sample $b \in [1, B]$ do
1040	Generate K image samples: $\{x_{t+1}^k\}_{k=1}^K \sim P(x_{t+1} g^{(b)}, x_t^{(b)}, a_t^{(b)})$;
1041	Compute rewards: $r_k = R(x_{t+1}^k)$;
1042	Normalize rewards per batch: $\tilde{r}_k = \frac{r_k - \mu_r}{\sigma_r}$ where μ_r, σ_r are batch mean/std;
1043	Compute advantage: $A_k = \tilde{r}_k$;
1044	Compute policy gradient loss:
1045	$\mathcal{L}_{\text{RL}} = -\frac{1}{BK} \sum_{b=1}^B \sum_{k=1}^K A_k \cdot \log P(x_{t+1}^k g^{(b)}, x_t^{(b)}, a_t^{(b)})$
1046	Joint Optimization: Total loss: $\mathcal{L} = \mathcal{L}_{\text{SFT}} + \lambda \mathcal{L}_{\text{RL}}$;
1047	Update $\theta \leftarrow \theta - \eta \nabla_\theta \mathcal{L}$;
1048	

We further contextualize our algorithm against established RL baselines, specifically analyzing GPG (Chu et al., 2025) and the online variant of GRPO (Shao et al., 2024). The vanilla policy gradient method (GPG) directly optimizes action probabilities based on advantage estimates, fundamentally lacking stabilization mechanisms against high-variance gradient updates. GRPO-onpolicy addresses this instability through KL-divergence constraints between the optimized policy and a reference model – the latter pretrained on expert data via maximum likelihood estimation. While this prevents policy collapse, it introduces substantial computational overhead from maintaining dual models and propagating gradients through KL-divergence estimation. In contrast, RSFT circumvents these intermediate steps by directly incorporating expert supervision through maximum likelihood constraints on demonstration actions \bar{a} , seamlessly integrated into the policy gradient objective. This design eliminates the memory/computational bottlenecks of KL constraints while preserving expert alignment, as the additive log-probability terms explicitly regularize policy updates without reference model dependency. The absence of auxiliary models makes RSFT particularly advantageous in deployment scenarios requiring frequent policy updates or cross-domain adaptation, where GRPO-online’s dependence on pretrained reference models becomes prohibitive due to potential expert data fitting errors and cascading approximation errors in KL estimation.

RL Method	Loss Function	Constraint
GPG (Chu et al., 2025)	$\mathcal{L} = -\mathbb{E} \left[\frac{1}{K} \sum_{k=1}^K A_k \cdot \log \pi_\theta(a s) \right]$	No Constraint
GRPO-onpolicy (Shao et al., 2024)	$\mathcal{L} = -\mathbb{E} \left[\frac{1}{K} \sum_{k=1}^K A_k \cdot \log \pi_\theta(a s) - \lambda D_{\text{KL}}(\pi_\theta(\cdot s) \pi_{\text{ref}}(\cdot s)) \right]$	KL Divergence
RSFT(Ours)	$\mathcal{L} = -\mathbb{E} \left[\frac{1}{K} \sum_{k=1}^K A_k \cdot \log \pi_\theta(a s) + \lambda \log \pi_\theta(\bar{a} s) \right]$	Maximum Likelihood

Table 6: Comparison of some RL methods.

1080
1081

D DETAILS OF BENCHMARKS AND TASKS

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092

LoHoRavens LoHoRavens (Zhang et al., 2023) is a benchmark dataset based on the Ravens robot simulator, containing various long-horizon manipulation tasks. We categorize these tasks into three types: *Stacks*, *Sort*, and *Matching*. In *Stacks* tasks, the goal is to place blocks in absolute or relative positions; *Sort* tasks require sorting blocks or bowls with similar attributes; while *Matching* tasks involve attribute matching, such as placing blocks of corresponding colors into matching bowls. These tasks encompass multiple aspects of long-horizon reasoning, including color, size, space, arithmetic, and reference. To successfully complete each task, the robot must effectively integrate various reasoning capabilities and develop an appropriate long-term plan. In addition, we have extended a series of Letters tasks, which require the agent to understand information such as the shape and position of objects. We designed three types of tasks within this category: *Shape*, *Orders*, and *Spell*. Detailed task descriptions can be found in Table 7.

1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106

Meeting Preparation Meeting Preparation is an in-house universal operational benchmark designed for real-world office scenarios, challenging agents to accomplish conference preparation tasks in highly diversified desktop environments. The test environment incorporates diverse office supply variants, with key item categories (e.g., cups) exhibiting rich morphological variations (mugs, glasses, vacuum flasks, etc.), combined with multiple environmental variables: desktop backgrounds of different materials, multiple camera perspectives, and dynamic object layouts. The core task demands agents to transcend superficial feature recognition and establish a semantic conceptualization framework—for instance, abstracting the common characteristics of "cups" from objects with varying heights, transparencies, and handle configurations, then strategically positioning them in task-appropriate areas according to conference requirements. This benchmark rigorously evaluates agents' capabilities in cross-domain generalization, fine-grained object recognition, and contextual reasoning, presenting critical challenges including (1) maintaining categorical cognitive stability when object functionality decouples from morphology, (2) interpreting scene intentions amidst multimodal interference. Examples of both benchmarks can be found in the Figure 11.

1107

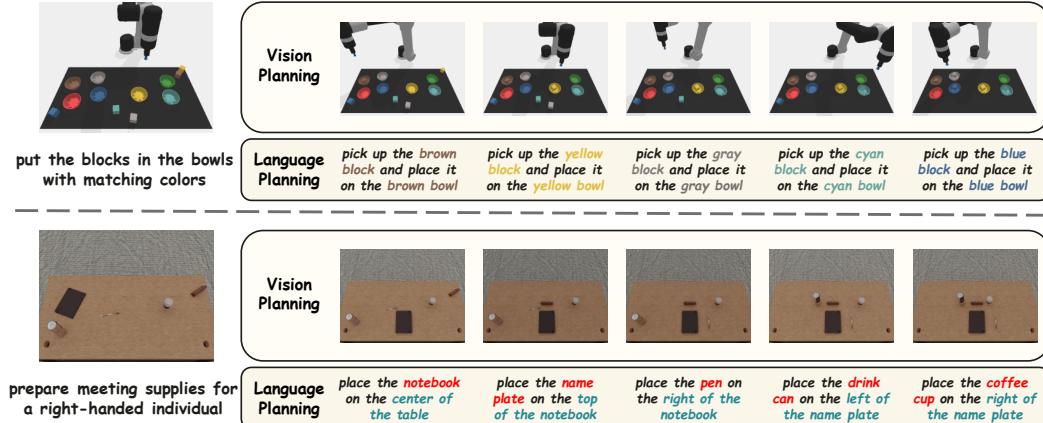
1112
1113

Figure 11: The example of benchmarks.

1114
1115
1116
1117
1118

E DETAILS OF DATASETS

1119
1120
1121
1122
1123
1124
1125
1126

For the LoHoRavens and Meeting Preparation datasets, we utilize the provided oracle engines to collect expert demonstration data. It is worth noting that if there are multiple correct answers or multiple ways to complete the task, we only focus on whether the instruction-specified complex task is ultimately accomplished and include all correct demonstrations as training data. For the 20 tasks in LoHoRavens, we collect 2,000 demonstrations per task, resulting in a total of 40,000 long-horizon demonstrations with sub-task counts ranging from 2 to 10+. In the Meeting Preparation environment, we gather 3,000 demonstrations. For all collected data, we split it into a 90% training dataset and a 10% testing dataset.

Table 7: Overview of three main task types, including **Blocks**, **Letters** and **Meeting**.

Task Type	Description	Horizon	Color	Size	Spatial	Semantic
Blocks						
Move	Move all the blocks to the [ABS POS] area	4~15	✗	✗	✓	✗
Move	Move all blocks of a color to the red zone	2~15	✗	✗	✓	✗
Move	Move all the blocks in the [ABS POS] area to the [ABS POS] area	2~15	✗	✗	✓	✗
Move	Move all the blocks on the corner/side	4~15	✗	✗	✓	✗
Stack	Stack all the blocks	4~15	✗	✗	✓	✗
Stack	Stack blocks of the same size.	4~15	✗	✓	✓	✗
Stack	Stack blocks in alternate colors.	2~15	✓	✗	✓	✗
Stack	Stack only the primary color blocks on the left side.	2~12	✓	✗	✓	✗
Matching	Put the blocks in the bowls with matching colors	2~12	✓	✗	✓	✗
Matching	Put the blocks in the bowls with mismatching colors	2~12	✓	✗	✓	✗
Matching	Put blocks of the same color in the zone with matching color	2~12	✓	✗	✓	✗
Letters						
Shape	Sort the vertically symmetrical letters to the bottom side	2~15	✗	✗	✓	✗
Shape	Sort the horizontal symmetrical letters to the blank space	2~15	✗	✗	✓	✗
Shape	Sort the central symmetrical letters to the corner	2~15	✗	✗	✓	✗
Orders	Put the letters on the tables in alphabetical order	2~15	✗	✓	✓	✗
Orders	Put the letters on the tables in reverse alphabetical order	2~15	✗	✓	✓	✗
Orders	Sort the consonants from all letters in orders	2~15	✗	✓	✓	✗
Spell	Sort words that are as long as possible	4~15	✓	✗	✓	✗
Spell	Spell out the name of a top CS conference	4~10	✓	✗	✓	✗
Spell	Spell out the name of a common transportation	4~15	✓	✗	✓	✗
Meeting						
Set up	Set up meeting supplies	4~10	✓	✓	✓	✓

During the dataset initialization process, we document each step’s utilized assets and annotate their corresponding attributes, enabling precise identification of the color, size, and spatial relationships of the manipulated objects in each subtask’s pick-and-place operations, thereby constructing accurate language actions. However, during testing, the model cannot access underlying environmental information, such as the exact count of real blocks or letters and their various attributes. The model must directly perceive from visual observations and reason based on these critical visual details, which significantly increases the task’s difficulty.

F DETAILS OF BASELINES

CLIPort CLIPort (Shridhar et al., 2022) is a popular end-to-end algorithm that functions as a language-conditioned imitation learning agent, directly processing high-level language instructions without requiring a planner. It integrates the broad semantic understanding of CLIP (Radford et al., 2021) with the spatial precision of Transporter (Zeng et al., 2021). As an end-to-end baseline, we employ CLIPort without modifications, training it by directly pairing high-level instructions with corresponding actions from the dataset.

PAR PAR (Zhang et al., 2023) (Planner-Actor-Reporter) is a paradigm that replaces the skill predictor with a large language model (LLM) and employs a vision-language model (VLM) as a reporter for visual observations. Instructions and generated captions are then fed into the LLM for linguistic planning. In PAR, Llama 2 13B (Touvron et al., 2023) and the VLM OpenFlamingo (Awadalla et al., 2023) serve as the planner and reporter, respectively, using few-shot prompting. Notably, the Actor (or low-level foundational model) is precisely the language-conditioned CLIPort trained with step-by-step sub-instructions, as mentioned earlier. To ensure fair comparison, we make no modifications to it and keep the low-level foundational model consistent with CLIPort across all other baselines.

EmbodiedGPT EmbodiedGPT (Mu et al., 2023b) represents a standard paradigm that integrates multimodal large language models (MLLMs) for language planning. The key distinction between EmbodiedGPT and PAR lies in replacing the LLM+VLM combination with a more advanced MLLM, which exhibits superior visual reasoning capabilities. EmbodiedGPT leverages a constructed embodied chain-of-thought dataset to train the MLLM, enabling it to perceive visual details in hidden

1188 layers, similar to LLaVA (Liu et al., 2023b). To ensure fair comparison, we maintain consistency in
 1189 the low-level foundational model across all baselines by using CLIPort as the common base.
 1190

1191 **SuSIE** SuSIE (Black et al., 2023b) introduces a hierarchical framework that employs an image-
 1192 editing diffusion model as a high-level planner to generate intermediate subgoals for a low-level
 1193 controller to execute. The method adopts InstructPix2Pix (Brooks et al., 2023) as its pre-trained
 1194 image-editing model and fine-tunes it using language-annotated video clips and robot trajectory
 1195 data from CALVIN (Mees et al., 2022). However, due to the sensitivity of image-editing models to
 1196 training data, we observed limited generative performance in the Ravens domain. To address this, we
 1197 conducted additional fine-tuning while strictly maintaining the same number of training iterations
 1198 and dataset composition as in EVLP.

1199 **CoTDiffusion** CoTDiffusion (Ni et al., 2024a) represents a standard visual planning paradigm
 1200 capable of translating complex instructions prompts—into visual subgoal images through a chain-of-
 1201 thought reasoning process. The most notable distinction from SuSIE lies in CoTDiffusion’s explicit
 1202 incorporation of a semantic alignment module within its diffusion model. This module ensures
 1203 correspondence and semantic coherence between generated images and high-level instructions,
 1204 enabling chain-of-thought generation. Similar to SuSIE, we fine-tune CoTDiffusion on our collected
 1205 dataset and employ the same low-level image-conditioned policy—specifically, the image-conditioned
 1206 variant of CLIPort—for consistent implementation.

1207 **PERIA** PERIA (Ni et al., 2024b) represents a standard multimodal planning paradigm that inte-
 1208 grates LLMs with image generation models to achieve unified multimodal planning. It supports the
 1209 conversion of complex general instructions into multimodal sub-instructions (combining language
 1210 actions with visual goals) while ensuring planning correctness through multimodal alignment. We fine-
 1211 tune PERIA on our collected dataset and employ a multimodal conditioning strategy—specifically,
 1212 the multimodal-conditioned variant of CLIPort—for implementation.

1215 G DETAILS OF LOW-LEVEL POLICY LEARNING

1216 To execute multimodal planning, we implement a low-level policy using CLIPort, chosen for its
 1217 native $SE(2)$ action space that is particularly suitable for Ravens benchmarks. We develop two
 1218 variants: a language-conditioned policy trained with stepwise sub-instructions and an image-goal-
 1219 conditioned policy trained with coherent keyframes, both serving as foundation models for planning
 1220 tasks. For multimodal integration, we design a novel architecture that simultaneously processes
 1221 image subgoals and language instructions through a 4-layer cross-attention network (4 heads, 768-
 1222 dim embeddings). Training samples consist of expert trajectories a , observations o , instructions e ,
 1223 and subgoal images v from \mathcal{D}^{train} . The policy ψ minimizes the action prediction loss: $\mathcal{L}_{action} =$
 1224 $\sum_{t=1}^T \|\hat{a}_t - p_\psi(a_t|o_t, e_t, x_t)\|_2$, optimized with AdamW (lr = 1e-4, 500-step warmup, weight
 1225 decay 0.01) for 10^4 steps (batch size 64). This approach provides dual advantages: (1) explicit
 1226 subgoals reduce effective horizon complexity, and (2) combined language-visual conditioning enables
 1227 segmented action prediction without requiring full-sequence conditioning on global instructions,
 1228 significantly simplifying policy learning while maintaining execution quality.

1230 H LIMITATION & FUTURE WORK

1231 While EVLP demonstrates significant improvements in long-horizon manipulation tasks with complex
 1232 instructions, several limitations warrant attention in future research:

- 1233 • **Data Dependency:** The current implementation relies on pre-collected datasets for training the
 1234 Multimodal Large Language Model (MLLM). While this approach effectively develops reasoning
 1235 and planning capabilities, it may constrain the framework’s adaptability to novel environments or
 1236 tasks that substantially deviate from the training distribution. Future research could explore online
 1237 learning paradigms or adaptive fine-tuning methods to enhance EVLP’s generalization capacity in
 1238 unseen scenarios.
- 1239 • **Sim-to-Real Gap:** Although EVLP exhibits strong performance in simulated environments,
 1240 its effectiveness in real-world applications remains to be validated. Practical implementation

1242 introduces additional challenges including sensor noise, dynamic environmental changes, and
1243 physical interaction constraints that may impact system performance. Subsequent work should
1244 investigate EVLP's deployment on physical robotic platforms and rigorously evaluate its robustness
1245 and operational efficacy in authentic settings.

1246 Despite these limitations, EVLP establishes a novel paradigm for robotic manipulation under general
1247 task instructions. By addressing these challenges through continued refinement, we anticipate that
1248 EVLP will inspire new research directions in long-horizon task execution with free-form instructions.
1249 This progression may ultimately contribute to developing more intelligent and versatile robotic
1250 systems capable of operating effectively across diverse real-world applications.
1251

1252 I SOCIAL IMPACT

1253 The ALG framework enhances human-robot collaboration in manufacturing, healthcare, and do-
1254 mestic services by enabling natural instruction comprehension, boosting productivity and quality
1255 of life while creating new job opportunities. In education, ALG-powered robots guide children
1256 through adaptive learning activities like puzzle-solving, fostering cognitive development through
1257 personalized interactive tutoring. While advancing embodied AI capabilities, its deployment requires
1258 prioritized safety protocols, ethical compliance, and equitable accessibility to ensure responsible
1259 societal integration.
1260

1261 J LLM USAGE

1262 Large language models (LLMs) were used solely to polish the writing (e.g., grammar correction and
1263 phrasing improvements). They did not contribute to research ideation.
1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295