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Abstract

Machine learning guided protein engineering,
which consists of high-throughput screening and
deep sequencing of protein mutagenesis libraries
combined with machine learning is a powerful
approach for engineering proteins and interrogat-
ing their fitness landscapes. Uncertainty quan-
tification enhances the trustworthiness of model
predictions by indicating reliability and thus can
be used to guide downstream experimental work.
Aleatoric uncertainty identifying inherent obser-
vational noise in protein properties and epistemic
uncertainty revealing gaps in the model’s knowl-
edge based on the amount of training data. Al-
though uncertainty quantification has been inves-
tigated in the application of protein engineering,
systematic benchmarks for probabilistic machine
learning model selection and the benefits of differ-
ent types of uncertainty in protein fitness predic-
tions are lacking. Addressing this gap, our study
benchmarks six advanced probabilistic modeling
techniques across eleven diverse protein-fitness
datasets, employing evaluation metrics on predic-
tion accuracy and uncertainty quality to assess
performance for both in-distribution and out-of-
distribution scenarios. Our findings offer valu-
able insights into the application of uncertainty-
aware machine learning in high-throughput pro-
tein screening experiments. Our study supports
more robust, efficient experimental processes and
enhances the practical usability of machine learn-
ing models in real-word protein fitness related
tasks such as therapeutic antibody optimization
and viral evolution.
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1. Introduction
Depicting protein fitness landscapes from amino acid se-
quences is crucial for both evolutionary biology and protein
engineering. Traditional experimental approaches to char-
acterize protein fitness can be laborious and resource inten-
sive. For example, high-throughput methods such as deep
mutational scanning (DMS) rely on high-throughput screen-
ing and deep sequencing of mutagenesis libraries(Fowler
& Fields, 2014). However, despite being relatively high-
throughput compared to other assessment methods, these
approaches still cannot feasibly scan the entire combinato-
rial sequence space of target proteins. The integration of
machine learning with such screening methods has emerged
as a valuable approach to interrogating combinatorial pro-
tein sequence space at greater depth by predicting the fitness
of sequences not captured by experiments and extrapolat-
ing higher-order mutations(Yang et al., 2019). While In-
tegrating machine learning into protein fitness landscape
predictions requires bridging computational and laboratory
efforts, the reliability of the model and the quality of the
data should inform further steps and reduce probability of
experimental failures and model overfitting. Identifying the
aleatoric and epistemic uncertainty can indicate the noise
inherent in the observations and the model confidence based
on the knowledge learned from training data(Kendall & Gal,
2017). In the scenario of protein engineering, quantification
of uncertainty could also help to guide subsequent valida-
tion experiments by balancing the exploration–exploitation
trade-off(Vornholt et al., 0). Several studies have attempted
to apply uncertainty-aware methods to protein engineer-
ing. However, these efforts often involve single probability
machine learning models that narrowly address specific
goals(Yang et al., 2019; Zeng & Gifford, 2019) or focus on
downstream applications without systematically estimating
uncertainty quality(Hie et al., 2020).Greenman et al. pro-
vided a benchmark for uncertainty quantification in protein
engineering based on three datasets and tested it in an active
learning setting (Greenman et al., 2023). The study con-
cluded that none of the methods tested preform consistently
well and the quality of uncertainty does not necessarily
correlate to gains provided by active-learning. Thus a com-
prehensive framework is still needed to fully evaluate the
potential benefits of aleatoric and epistemic uncertainty Ad-
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ditionally, methods incorporating Bayesian neural networks
have not yet been applied to protein fitness-related tasks. To
address these gaps we predict protein fitness by leveraging
the following probabilistic approaches: Bayes by Backprop,
Gaussian Process, Mean-Variance Estimation, Deep Ensem-
ble, Monte Carlo dropout, and Stochastic Weight Averaging.
These methods not only provide a prediction but also an
uncertainty score. Furthermore, predictive uncertainty can
be decomposed into aleatoric and epistemic types. Aleatoric
uncertainty encompasses inherent data noise, which can
arise from both biological variability, such as protein sta-
bility, and non-biological variability, such as measurement
errors. Epistemic uncertainty, on the other hand, results
from a lack of sufficient training data.This approach enables
us to address data noise and model generalization while
guiding subsequent experimental designs to efficiently im-
prove protein functionality with reduced cost and time.

The main contributions of this study are :

• Benchmark different types of probabilistic modeling
methods first in synthetic toy dataset and then in real-
world protein fitness prediction task.

• Decompose the uncertainty into aleatoric and epistemic
and test how they are related to noise in the dataset and
model’s extrapolation ability.

• Provide insights in how to select probabilstic modeling
methods in protein fitness prediciton tasks.

2. Problem setup
Let x denote the onehot encoding of an amino acid se-
quence, and y as the fitness value of the protein from a
high-throughput screening experimental assessment, where
y ∈ R for regression. The parameter θ indicates the whole
parameters used in a machine learning model. Our goal is to
learn a predictive model p(θ | x1:n, y1:n) based on the train-
ing samples D = {(xn, yn)}Nn=1. The probabilistic model
output will be the mean value µ and the standard deviation
σ instead of a single value predicted by point estimation.

3. Experimental setup
Figure1 provides an illustrative overview of the pipeline of
applying probabilistic modeling in protein fitness landscape
predictions. There are six probabilistic modeling algorithms
tested plus the multilayer perception as the deterministic
baseline. After hyper-parameter searching for each dataset,
we evaluate both the mean prediction and uncertainty quality
using nice metrics. Additionally, we further decompose the
uncertainty score into aleatoric uncertainty and epistemic
uncertainty, representing the uncertainty caused by the noise

inherent in the dataset and the lack of data respectively:

Var[y∗ | x1:n,y1:n,x
∗] = E [Var[y∗ | x∗, θ]]︸ ︷︷ ︸

Aleatoric uncertainty

+ Var [E[y∗ | x∗, θ]]︸ ︷︷ ︸
Epistemic uncertainty

(1)

In this study, we benchmark the probabilistic modeling in
both synthetic toy dataset and the real world protein fitness
landscape task with datasets obtained via deep mutational
scanning.

3.1. Synthetic dataset

The toy setting uses a Gaussian Process to generate syn-
thetic data D = {(xn, yn)}Nn=1. To match the fact that
there exists noises in the deep mutational scanning, we also
introduce the heteroskedastic noise, which can be aligned
with the aleatoric uncertainty in equation 1. We design
two evaluation settings to test the uncertainty quality and
uncertainty separation in in-distribution(ID) scenario and
out-of-distribution(OOD) scenario. The training dataset is
sampled in certain range of x, ID test set would also be
sampled from that range and the OOD test set would be
sampled outside of that region (figure1b bottom panel).

3.2. Protein fitness dataset

We perform our computational analysis using Prote-
inGym(Notin et al., 2024), which curated over 250 stan-
dardized DMS assays for different types of proteins and
their mutation effects related to protein properties such as
binding affinity to a target. To evaluate probabilistic mod-
eling for both ID and OOD, we only retain datasets that
contain mutations larger than two. This results in 11 DMS
datasets targeting various sequence lengths and functions of
proteins, including properties such as binding affinity and
fluorescence of GFP (Table2). Single and double mutations
can often be recovered in DMS experiments; however, typ-
ically higher-order mutations (i.e. triple or more) are not
captured by DMS due to exponential diversity of combi-
natorial sequence space. To align with this situation, we
train our models on data with mutations involving fewer
than two positions and test the model completion ability
within two or fewer mutations (ID test setup). We also test
the model’s extrapolation ability on the mutations involving
more than two positions (OOD test setup). Additionally, the
amount of data varies among the DMS datasets. To simulate
realistic conditions where data collection is expensive and
time-consuming, and to reduce computational costs during
training, we restrict the training data to 1000 samples for any
dataset exceeding this number. This constraint ensures the
training process operates within a low data regime, which
can be processed in a reasonable amount of time.
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Figure 1. Illustration of the pipeline for leveraging the probabilistic modeling in protein fitness landscape prediction. a. Schematic
of the approach for deep mutational scanning. Basically, it includes generating plasmids that encode the mutated target protein, choosing a
proper system to display the protein, selection based on the interested property and comparing the sequencing results between pre-selection
and post-selection. b. The modeling step after collecting the data. A panel of probabilistic modeling methods are evaluated using multiple
metrics in both in-distribution test set and out-of-distribution test set. The uncertainty is decomposed into aleatoric uncertainty and
epistemic uncertainty and evaluated separately. c. Decision making after the modeling training and evaluation.

3.3. Probabilistic modeling methods

Here we provide a high-level overview of the probabilistic
modeling methods used in this study, leaving the detailed
description to the supplementary material.Gaussian Pro-
cess (GP) is a non-parametric model that specifies a mul-
tivariate normal distribution over functions. We use the
GP model with the RBF kernel and the likelihood func-
tion as Gaussian noise(MacKay et al., 1998). Bayes by
Backprop (BBP) is a Bayesian neural network model that
uses Gaussian reparameterization trick to approximate the
posterior distribution of the weights directly through back-
propagation(Blundell et al., 2015). Instead of a single value
prediction, Mean-Variance Estimation (MVE) outputs
the parameters of a Gaussian distribution with mean and
variance. Deep Ensemble (Ensemble) uses an ensemble
of neural networks instead of a single one. Here, we also
apply the bootstrap method to generate different training
sets for each network, enhancing robustness and improv-
ing uncertainty estimates(Lakshminarayanan et al., 2017).
MC Dropout(Dropout) approximates a Bayesian infer-
ence by randomly dropping out neurons in multiple forward
passes, providing a means to estimate the uncertainty in the
model’s predictions (Gal & Ghahramani, 2016). Stochastic
Weight Averaging (SWAG) estimates the Gaussian pos-

teriors over BNN weights by utilizing stochastic weight
averaging (Zellers et al., 2018).

3.4. Evaluation metrics

We evaluate the models using the following metrics: Mean
Absolute Error (MAE), Mean Squared Error (MSE), Pear-
son correlation coefficient (Pearson), Spearman correla-
tion coefficient (SPCC), Percentage of coverage of 95%
confidence interval (Per Co), average width relative to
range (AVR), Spearman correlation of uncertainty and error
(SPCC unc), Negative Log-Likelihood (NLL), and miscali-
bration area (Mis area), which are well defined in other UQ
studies(Tran et al., 2020; Greenman et al., 2023) and further
details can be found in the appendix.

4. Results
Synthetic dataset: Table 1 presents the performance of
the probabilistic modeling methods on the synthetic dataset.
In the in-distribution (ID) test setting, the Gaussian Pro-
cess (GP) model and the Mean-Variance Estimation (MVE)
model outperform the other models in terms of Mean Ab-
solute Error (MAE) and Pearson correlation. However,
while the GP model’s uncertainty quality is generally poor
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Figure 2. Spearman correlation of the probabilistic modeling methods on the protein fitness datasets in both ID and OOD settings.

Figure 3. Spearman correlation of the probabilistic modeling methods on the protein fitness datasets in both ID and OOD settings.

compared to the others, the MVE model excels in uncer-
tainty evaluation. The ensemble method shows performance
slightly inferior to the MVE model in both prediction ac-
curacy and uncertainty evaluation.In the out-of-distribution
(OOD) test setting, the ensemble approach emerges as the
best method, indicating its robustness in extrapolation sce-
narios. Although the MVE model provides good prediction
performance, it fails to accurately identify uncertainty.

We further decompose the uncertainty into aleatoric and
epistemic uncertainty (Figure 4). For both the GP and
ensemble models, the epistemic uncertainty is well esti-
mated in both ID and OOD settings. However, while the GP
model struggles to capture aleatoric uncertainty, the ensem-
ble model appears to depict aleatoric uncertainty to some
extent (Figures 4a and 4b). Nonetheless, the relationship
between aleatoric uncertainty and the true noise is not clear
(Figure 4c), suggesting that aleatoric uncertainty may only
provide a rough estimation of the true noise, capturing some
trends but lacking granularity. Regarding epistemic uncer-

Figure 4. The model evaluation on the toy datasets. a. The pre-
dicted mean and uncertainty for GP model and b. for ensemble
model. c. The scatter plot of aleatoric uncertainty and true noise
for ensemble model. d. The boxplot of epistemic uncertainty of
ID and OOD test sets for GP, swag, BBP, dropout and ensemble
models.
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Table 1. Model evaluation on the synthetic dataset
Method MAE MSE Pearson SPCC Per Co AVR SPCC unc NLL Mis area

In Distribution
swag 0.140 0.050 0.910 0.920 0.990 0.290 0.530 0.450 0.130
dropout 0.120 0.040 0.910 0.930 1.000 0.290 0.670 0.470 0.210
ensemble 0.120 0.040 0.910 0.930 0.980 0.200 0.620 0.840 0.100
gp 0.110 0.040 0.920 0.940 0.800 0.110 0.070 -0.660 0.110
mlp 0.180 0.050 0.880 0.830 - - - - -
mve 0.110 0.030 0.920 0.930 0.970 0.180 0.750 0.980 0.080
bbp 0.280 0.110 0.740 0.650 1.000 0.470 0.420 -0.280 0.050

Out of Distribution
swag 0.450 0.240 -0.860 -0.670 0.660 0.320 0.390 -2.280 0.320
dropout 0.440 0.230 -0.320 -0.270 0.700 0.350 0.370 -1.100 0.320
ensemble 0.250 0.110 0.750 0.720 0.730 0.480 -0.040 -0.900 0.090
gp 0.630 0.630 -0.760 -0.790 0.790 0.730 0.420 -1.150 0.120
mlp 0.540 0.360 -0.480 -0.540 - - - - -
mve 0.310 0.180 0.750 0.720 0.510 0.380 -0.130 -448.68 0.160
bbp 0.880 0.820 -0.790 -0.720 0.150 0.360 -0.350 -5.080 0.460

tainty, the boxplot in Figure 4d shows that it is generally
higher in the OOD setting than in the ID setting. This is
expected, as the model is more uncertain in extrapolation
scenarios.

Protein fitness dataset Tables 3 to 13 and Figures 2 and 3
present the performance of the probabilistic modeling meth-
ods on the protein fitness datasets. While no single model
consistently outperforms the others across all datasets, some
trends are evident. The Gaussian Process (GP) model gen-
erally performs the best in both model prediction and un-
certainty quality, achieving the top results in 8 out of 11
datasets in both ID and OOD settings.

The point estimation method, Multi-Layer Perceptron
(MLP), demonstrates robust performance in the ID
setting but sometimes drops significantly in OOD
settings. In contrast, models like GP maintain
similar performance across both ID and OOD set-
tings (e.g., datasets CAPSD AAV2S Sinai 2021 and
F7YBW7 MESOW Ding 2023). This suggests that incor-
porating uncertainty estimation into modeling can enhance
extrapolation ability and mitigate overfitting by attributing
error to larger variance. The MVE and ensemble approaches
also show relatively good performance in both ID and OOD
settings, albeit slightly lower than the GP method. Inter-
estingly, they demonstrate good uncertainty estimation, as
indicated by the Spearman correlation between uncertainty
and error.

Other methods like Bayes by Backprop (BBP) and Stochas-
tic Weight Averaging-Gaussian (SWAG) perform relatively
worse in both prediction and uncertainty estimation. In real-
world applications such as protein engineering or drug dis-
covery, the confidence region of the prediction is often more
relevant than point estimation. We report the percentage
of coverage and the average width of the 95% confidence
interval for each model to align with real-world applications.
These two metrics should be considered together due to the
trade-off between them: larger coverage and narrower width
are preferred, but achieving both simultaneously is challeng-

ing. GP tends to have narrower widths but lower coverage,
while ensemble and MVE methods have larger coverage
but wider widths (Figure 7). Our analysis also shows that
different metrics for evaluating uncertainty estimation are
not always consistent. For example, while the GP models
excel in terms of Negative Log-Likelihood (NLL) and mis-
calibration area, their Spearman correlation of uncertainty
collapses (Table 5, OOD setting).

We further explore uncertainty types using the
CAPSD AAV2S Sinai 2021 dataset, which has a large
amount of data in both ID and OOD settings and contains a
diverse number of mutations. For epistemic uncertainty, we
expect higher values in the OOD setting compared to the ID
setting, as the model has not seen the data in the OOD test
set. The epistemic uncertainty predicted by all models is
generally higher in the OOD setting, as expected, with the
GP model showing a clear trend of increasing uncertainty
with the number of mutations (Figure 5a and 5b). With
the better deciption of the epistemic uncertainty, GP also
shows highest generalization ability in this case(Table
4). For aleatoric uncertainty, we assume it correlates
with the inherent noise in the datasets, caused by factors
such as experimental noise, protein stability, and the data
collection process. We tested the relationship between
aleatoric uncertainty and mutational position and found
some variability, but further investigation of positions with
higher or lower aleatoric uncertainty is needed to draw
definitive conclusions (Figure 6).

Figure 5. a. Epistemic uncertainty comparison between ID and
OOD b. Epistemic uncertainty from GP vs the number of muta-
tions.

5. Discussion
In this study, we benchmarked six advanced probabilistic
modeling techniques across eleven protein fitness datasets
and a synthetic toy dataset. To evaluate the impact of un-
certainty quantification on model performance and gener-
alization, we designed both in-distribution (ID) and out-of-
distribution (OOD) settings. Our results reveal that ensem-
ble models can accurately predict aleatoric and epistemic
uncertainty in both ID and OOD settings while maintaining
high model performance.

However, when applied to real-world protein fitness datasets,



Submission and Formatting Instructions for ML4LMS @ ICML 2024

the Gaussian Process (GP) model generally outperforms
other models in terms of both prediction performance and
uncertainty quality. This may be due to the higher dimen-
sionality of the input data in real-world scenarios, making
the GP model more suitable for high-dimensional data. This
finding underscores the importance of carefully considering
and testing data representations during the model selection
process. Instead of one-hot encoding, we could explore
representations from pre-trained models, such as large pro-
tein language models, which have been shown to benefit
downstream tasks (Rives et al., 2021).

Our results also indicate that different metrics for evaluating
uncertainty estimation are not always consistent, highlight-
ing the complexity of uncertainty estimation and the need
for further investigation. Currently, metric selection should
align with the specific goals of the modeling task.

For future work, we plan to test the models with varying
training data sizes, hypothesizing that the GP model may
be more robust in low-data regimes, whereas Bayesian neu-
ral networks and dropout techniques might perform better
with larger datasets. Additionally, there is a need for a
standardized framework to evaluate model performance and
uncertainty estimation to accelerate protein engineering and
other real-world applications.

It is also worth exploring the application of uncertainty
values in next-round experimental design using strategies
such as active learning or Bayesian optimization.
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Table 2. Summary of the deep mutational scanning data

DMS id seq len region
mutated

selection
type

selection assay id test ood test train

CAPSD AAV2S Sinai 2021 735 561-588 nan viability for AAV
capsid production

2273 30963 1000

D7PM05 CLYGR Somermeyer 2022 235 2-235 FACS Fluorescence 2263 13198 1000
F7YBW7 MESOW Ding 2023 93 48-82 nan growth enrichment 33 7756 133
F7YBW8 MESOW Aakre 2015 93 59-64 Growth fitness 107 8656 429
GCN4 YEAST Staller 2018 281 101-144 FACS Binding 18 2550 70
GFP AEQVI Sarkisyan 2016 238 3-237 FACS Fluorescence 2772 37853 1000
HIS7 YEAST Pokusaeva 2019 220 6-211 Growth Growth 329 494494 1000
PHOT CHLRE Chen 2023 118 1-118 FACS Fluorescence 460 165231 1000
Q6WV13 9MAXI Somermeyer 2022 222 2-222 FACS Fluorescence 3427 14268 1000
Q8WTC7 9CNID Somermeyer 2022 238 2-238 FACS Fluorescence 2492 21049 1000
SPG1 STRSG Wu 2016 448 265-280 binding Binding (IgG) 433 147193 1000

Table 3. Performance Metrics for Different Predictors for D7PM05 CLYGR Somermeyer 2022

Method MAE MSE Pearson SPCC Per Co AVR SPCC uncLL Mis area

In Distribution
bbp 1.195 2.398 0.181 0.139 1.000 0.601 -0.114 -2.054 0.177
ensemble 1.308 2.208 0.651 0.596 1.000 0.383 -0.255 -1.828 0.103
gp 0.763 1.022 0.757 0.732 0.834 0.153 0.300 -1.617 0.094
mlp 0.765 1.159 0.718 0.624 - - - - -
mve 1.210 2.194 0.666 0.593 1.000 0.359 -0.414 -1.816 0.094
dropout 1.300 2.188 0.465 0.412 1.000 0.460 -0.308 -1.888 0.114
swag 2.314 6.504 0.275 0.249 0.996 0.433 -0.079 -2.470 0.211

Out of Distribution
bbp 1.990 4.864 0.058 0.056 1.000 0.553 0.034 -2.225 0.096
ensemble 1.883 4.242 0.591 0.609 1.000 0.382 -0.298 -2.199 0.191
gp 1.480 3.294 0.691 0.684 0.725 0.227 0.332 -2.425 0.217
mlp 1.647 4.479 0.575 0.585 - - - - -
mve 1.949 4.813 0.590 0.608 0.999 0.357 -0.362 -2.360 0.197
dropout 1.848 4.073 0.483 0.477 1.000 0.455 -0.162 -2.125 0.140
swag 1.404 2.784 0.231 0.211 0.997 0.423 0.194 -1.939 0.039
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Table 4. Performance Metrics for Different Predictors for
CAPSD AAV2S Sinai 2021
Method MAE MSE Pearson SPCC Per Co AVR SPCC uncLL Mis area

In Distribution
bbp 2.834 10.582 0.190 0.193 0.987 0.056 0.019 -2.604 0.061
swag 2.845 10.604 0.169 0.175 0.976 0.049 0.142 -2.603 0.096
ensemble 2.908 11.043 0.439 0.449 0.992 0.056 0.207 -2.621 0.069
dropout 2.872 10.765 0.167 0.175 0.978 0.049 0.183 -2.610 0.099
mlp 1.478 3.518 0.821 0.825 - - - - -
gp 1.479 3.453 0.828 0.838 0.910 0.025 0.045 -2.084 0.056
mve 2.874 10.776 0.391 0.406 0.977 0.049 0.198 -2.613 0.101

Out of Distribution
bbp 2.652 8.860 0.021 0.028 0.988 0.052 0.001 -2.524 0.080
swag 2.687 9.107 -0.074 -0.081 0.994 0.055 0.016 -2.542 0.077
ensemble 2.612 8.671 -0.219 -0.148 0.997 0.055 0.052 -2.520 0.070
dropout 2.633 8.732 0.091 0.072 0.987 0.048 0.124 -2.501 0.091
mlp 4.347 30.079 0.362 0.255 - - - - -
gp 2.115 7.252 0.626 0.679 0.866 0.033 0.451 -2.449 0.069
mve 2.635 8.748 -0.207 -0.141 0.987 0.048 0.040 -2.504 0.091

Table 5. Performance Metrics for Different Predictors for
F7YBW7 MESOW Ding 2023

Method MAE MSE Pearson SPCC Per Co AVR SPCC uncLL Mis area

In Distribution
bbp 0.222 0.088 0.554 0.552 1.000 1.329 0.075 -0.305 0.147
dropout 0.227 0.092 0.567 0.562 0.912 0.940 0.012 -0.207 0.069
mve 0.220 0.088 0.671 0.634 0.971 0.961 0.117 -0.193 0.064
ensemble 0.227 0.093 0.657 0.623 0.912 0.927 0.268 -0.219 0.063
gp 0.167 0.054 0.653 0.687 0.941 0.573 0.367 0.047 0.029
swag 0.231 0.096 0.332 0.428 0.882 0.916 0.117 -0.231 0.087
mlp 0.179 0.060 0.657 0.681 - - - - -

Out of Distribution
bbp 0.582 0.403 0.020 -0.015 0.909 1.372 -0.065 -1.161 0.243
dropout 0.591 0.413 0.383 0.371 0.389 0.966 0.217 -1.886 0.338
mve 0.557 0.366 0.452 0.468 0.508 0.995 0.244 -1.563 0.326
ensemble 0.575 0.389 0.522 0.565 0.405 0.966 0.429 -1.753 0.336
gp 0.250 0.083 0.703 0.669 0.979 0.988 -0.031 -0.211 0.044
swag 0.591 0.414 -0.064 -0.060 0.516 1.030 -0.205 -1.831 0.320
mlp 0.535 0.382 0.370 0.273 - - - - -
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Table 6. Performance Metrics for Different Predictors for
F7YBW8 MESOW Aakre 2015
Method MAE MSE Pearson SPCC Per Co AVR SPCC uncLL Mis area

In Distribution
bbp 0.335 0.141 0.498 0.567 1.000 1.315 0.167 -0.500 0.089
mve 0.323 0.127 0.853 0.861 1.000 0.974 0.591 -0.381 0.112
gp 0.094 0.016 0.949 0.950 1.000 1.430 -0.314 -0.324 0.360
ensemble 0.324 0.133 0.847 0.851 1.000 1.027 0.373 -0.412 0.086
dropout 0.343 0.143 0.599 0.646 1.000 1.021 0.293 -0.446 0.114
swag 0.331 0.151 0.720 0.749 1.000 1.322 -0.356 -0.531 0.072
mlp 0.118 0.024 0.931 0.922 - - - - -

Out of Distribution
bbp 0.386 0.153 -0.061 -0.056 1.000 1.369 -0.151 -0.543 0.190
mve 0.387 0.151 0.476 0.361 1.000 0.975 -0.375 -0.479 0.268
gp 0.081 0.014 0.579 0.374 1.000 1.824 -0.305 -0.552 0.402
ensemble 0.342 0.118 0.487 0.383 1.000 1.028 -0.144 -0.363 0.236
dropout 0.403 0.164 0.250 0.203 1.000 1.022 -0.072 -0.517 0.273
swag 0.333 0.112 0.067 0.079 1.000 1.329 -0.256 -0.448 0.204
mlp 0.361 0.167 0.526 0.412 - - - - -

Table 7. Performance Metrics for Different Predictors for
GCN4 YEAST Staller 2018
Method MAE MSE Pearson SPCC Per Co AVR SPCC uncLL Mis area

In Distribution
bbp 0.227 0.170 0.210 0.404 0.944 0.916 -0.377 -0.738 0.290
mve 0.242 0.147 0.347 0.509 0.944 0.378 -0.141 -0.552 0.118
gp 0.296 0.168 0.117 0.267 0.889 0.346 -0.168 -1.022 0.105
dropout 0.253 0.151 0.051 0.356 0.944 0.796 0.013 -0.611 0.217
ensemble 0.246 0.147 0.314 0.529 0.944 0.403 -0.125 -0.511 0.113
swag 0.570 0.364 0.263 0.521 1.000 1.078 0.022 -0.996 0.131
mlp 0.211 0.122 0.465 0.655 - - - - -

Out of Distribution
bbp 0.243 0.103 0.043 0.073 0.995 0.869 -0.002 -0.627 0.229
mve 0.204 0.077 0.101 0.182 0.987 0.403 -0.102 -0.154 0.065
gp 0.718 0.769 0.089 0.149 0.812 0.700 0.707 -1.384 0.174
dropout 0.204 0.079 0.084 0.109 0.994 0.794 -0.018 -0.529 0.252
ensemble 0.202 0.076 0.097 0.169 0.990 0.428 -0.131 -0.162 0.090
swag 0.447 0.271 0.048 0.053 0.998 1.022 0.001 -0.895 0.097
mlp 0.268 0.127 0.026 0.052 - - - - -
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Table 8. Performance Metrics for Different Predictors for
GFP AEQVI Sarkisyan 2016

Method MAE MSE Pearson SPCC Per Co AVR SPCC uncLL Mis area

In Distribution
bbp 17.182 295.678 0.166 0.113 1.000 - 0.296 -19.725 0.474
mve 0.677 0.565 0.636 0.401 0.952 0.412 0.231 -1.130 0.130
ensemble 0.356 0.480 0.607 0.393 0.891 0.392 0.349 -1.045 0.253
gp 0.274 0.194 0.772 0.564 0.922 0.198 0.296 -0.486 0.089
dropout 0.405 0.449 0.577 0.368 0.893 0.403 0.234 -1.022 0.192
swag 0.570 0.500 0.242 0.186 0.999 0.530 0.137 -1.156 0.122
mlp 0.312 0.231 0.726 0.491 - - - - -

Out of Distribution
bbp 15.455 241.441 -0.063 -0.056 1.000 - 0.064 -18.872 0.474
mve 1.022 1.322 0.585 0.570 0.751 0.414 0.405 -1.780 0.224
ensemble 1.153 2.216 0.578 0.566 0.474 0.393 0.413 -2.693 0.158
gp 0.550 0.487 0.758 0.753 0.922 0.341 0.300 -1.054 0.024
dropout 1.109 1.999 0.532 0.508 0.484 0.403 0.317 -2.424 0.145
swag 1.089 1.783 0.177 0.165 0.937 0.564 -0.013 -1.789 0.099
mlp 0.859 1.368 0.589 0.568 - - - - -

Table 9. Performance Metrics for Different Predictors for
PHOT CHLRE Chen 2023
Method MAE MSE Pearson SPCC Per Co AVR SPCC uncLL Mis area

In Distribution
bbp 119.690 14325.819 0.045 0.097 0.000 9.520 0.078 -

134.379
0.474

mve 0.302 0.133 0.214 0.277 0.943 0.464 0.105 -0.408 0.046
gp 0.206 0.083 0.581 0.537 0.913 0.331 0.138 -0.175 0.050
ensemble 0.271 0.125 0.197 0.344 0.928 0.463 0.156 -0.377 0.040
swag 0.404 0.199 0.059 0.175 1.000 0.647 -0.036 -0.624 0.091
dropout 0.291 0.129 0.102 0.107 0.952 0.524 0.002 -0.409 0.050
mlp 0.249 0.103 0.493 0.490 - - - - -

Out of Distribution
bbp 112.834 12737.275 0.280 0.271 0.000 7.504 0.037 -

233.218
0.474

mve 0.377 0.201 0.467 0.451 0.878 0.452 0.351 -0.677 0.118
gp 0.352 0.171 0.651 0.669 0.995 0.568 0.067 -0.530 0.044
ensemble 0.432 0.252 0.549 0.542 0.823 0.455 0.474 -0.873 0.173
swag 0.297 0.131 0.005 0.006 0.999 0.613 -0.088 -0.471 0.068
dropout 0.386 0.210 0.006 0.007 0.950 0.522 -0.136 -0.658 0.081
mlp 0.367 0.175 0.717 0.706 - - - - -
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Table 10. Performance Metrics for Different Predictors for
HIS7 YEAST Pokusaeva 2019
Method MAE MSE Pearson SPCC Per Co AVR SPCC uncLL Mis area

In Distribution
bbp 0.164 0.062 0.289 0.175 0.945 0.572 0.269 -0.045 0.164
mve 0.122 0.055 0.680 0.259 0.942 0.460 0.401 0.093 0.222
ensemble 0.181 0.063 0.551 0.289 0.945 0.567 0.213 -0.043 0.133
gp 0.116 0.032 0.705 0.274 0.894 0.284 0.078 0.247 0.079
dropout 0.140 0.059 0.515 0.229 0.942 0.514 0.236 0.007 0.194
swag 0.173 0.063 0.271 0.221 0.945 0.657 0.221 -0.100 0.175
mlp 0.106 0.028 0.741 0.292 - - - - -

Out of Distribution
bbp 0.385 0.301 0.025 0.018 0.657 0.549 0.084 -1.523 0.104
mve 0.385 0.312 0.415 0.304 0.638 0.451 0.235 -2.229 0.117
ensemble 0.375 0.262 0.314 0.266 0.666 0.562 0.194 -1.210 0.076
gp 0.320 0.153 0.519 0.473 0.944 0.718 0.349 -0.469 0.030
dropout 0.380 0.298 0.414 0.356 0.652 0.511 0.264 -1.669 0.107
swag 0.381 0.241 0.080 0.074 0.679 0.636 0.128 -0.914 0.080
mlp 0.483 0.371 0.511 0.381 - - - - -

Table 11. Performance Metrics for Different Predictors for
SPG1 STRSG Wu 2016
Method MAE MSE Pearson SPCC Per Co AVR SPCC uncLL Mis area

In Distribution
bbp 1.371 2.029 0.144 0.231 1.000 0.383 0.098 -1.969 0.177
gp 0.205 0.206 0.785 0.807 0.977 0.122 -0.019 -0.827 0.331
mve 0.358 0.487 -0.122 0.029 0.938 0.107 0.027 -1.058 0.206
ensemble 0.394 0.473 -0.053 0.023 0.935 0.099 -0.004 -1.055 0.154
swag 0.412 0.470 0.251 0.191 0.945 0.109 -0.000 -1.042 0.160
mlp 0.190 0.137 0.846 0.827 - - - - -
dropout 0.408 0.471 0.030 0.044 0.940 0.103 -0.090 -1.046 0.159

Out of Distribution
bbp 1.201 1.815 0.002 -0.004 0.997 0.351 0.009 -1.894 0.088
gp 0.082 0.141 0.370 0.371 0.987 0.132 -0.153 -0.832 0.436
mve 0.232 0.165 0.032 0.112 0.985 0.107 -0.309 -0.703 0.283
ensemble 0.302 0.189 -0.003 0.024 0.984 0.099 -0.464 -0.689 0.237
swag 0.319 0.197 -0.006 -0.005 0.986 0.109 -0.006 -0.751 0.235
mlp 0.146 0.141 0.435 0.466 - - - - -
dropout 0.329 0.202 0.000 -0.001 0.985 0.103 -0.081 -0.725 0.240
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Table 12. Performance Metrics for Different Predictors for
Q6WV13 9MAXI Somermeyer 2022

Method MAE MSE Pearson SPCC Per Co AVR SPCC uncLL Mis area

In Distribution
bbp 1.378 2.037 0.256 0.196 1.000 0.712 -0.135 -2.006 0.182
ensemble 0.806 0.950 0.738 0.515 0.904 0.278 0.246 -1.391 0.106
gp 0.306 0.241 0.874 0.708 0.760 0.055 0.115 -2.620 0.120
mve 0.669 0.897 0.759 0.532 0.902 0.299 0.394 -1.374 0.126
dropout 0.715 0.924 0.576 0.417 0.983 0.369 -0.111 -1.460 0.145
swag 0.641 0.985 0.223 0.207 1.000 0.595 -0.452 -1.778 0.282
mlp 0.351 0.286 0.855 0.651 - - - - -

Out of Distribution
bbp 1.133 1.736 0.127 0.110 1.000 0.633 -0.032 -1.901 0.127
ensemble 1.020 1.615 0.731 0.671 0.772 0.279 0.407 -1.729 0.079
gp 0.535 0.649 0.830 0.802 0.648 0.072 0.166 -4.659 0.195
mve 0.971 1.783 0.746 0.678 0.766 0.299 0.536 -1.764 0.073
dropout 0.997 1.761 0.634 0.574 0.968 0.368 -0.143 -1.706 0.076
swag 1.051 1.842 0.172 0.174 0.999 0.509 -0.069 -1.797 0.104
mlp 0.535 0.680 0.823 0.752 - - - - -

Table 13. Performance Metrics for Different Predictors for
Q8WTC7 9CNID Somermeyer 2022

Method MAE MSE Pearson SPCC Per Co AVR SPCC uncLL Mis area

In Distribution
bbp 0.851 0.922 0.137 0.097 1.000 0.565 -0.040 -1.702 0.189
mve 0.573 0.711 0.670 0.488 0.907 0.276 0.380 -1.257 0.138
gp 0.300 0.239 0.844 0.686 0.880 0.095 0.173 -0.749 0.049
ensemble 0.871 0.920 0.657 0.494 0.988 0.297 0.152 -1.380 0.128
swag 1.430 2.211 0.213 0.186 1.000 0.475 -0.110 -1.823 0.176
dropout 0.648 0.733 0.401 0.305 0.993 0.362 -0.019 -1.373 0.151
mlp 0.357 0.322 0.773 0.597 - - - - -

Out of Distribution
bbp 0.822 1.459 0.058 0.054 1.000 0.638 -0.027 -1.851 0.229
mve 0.742 1.189 0.679 0.579 0.820 0.276 0.480 -1.522 0.108
gp 0.429 0.434 0.813 0.753 0.868 0.129 0.267 -1.055 0.040
ensemble 0.913 1.098 0.634 0.575 0.980 0.297 0.296 -1.465 0.088
swag 1.296 1.923 0.162 0.151 1.000 0.477 -0.043 -1.775 0.118
dropout 0.783 1.133 0.466 0.389 0.988 0.361 -0.076 -1.504 0.103
mlp 0.599 0.769 0.746 0.645 - - - - -
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Figure 6. Aleatoric Uncertainty vs. Position in the Protein Sequence

Figure 7. Scatter plot of the coverage and width of the 95% confi-
dence interval.
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A.1. Evaluation metrics

In our study, we use a comprehensive set of metrics to
evaluate the performance of our models. These metrics
assess both the accuracy of the predictions and the quality
of the uncertainty estimates. The metrics are as follows:

Mean Absolute Error (MAE)

MAE is the average of the absolute differences between the
predicted and actual values. It is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi| (2)

where yi is the actual value and ŷi is the predicted value.

Mean Squared Error (MSE)

MSE is the average of the squared differences between the
predicted and actual values. It is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (3)

Pearson Correlation Coefficient (Pearson)

The Pearson correlation coefficient measures the linear cor-
relation between the predicted and actual values. It is de-
fined as:

Pearson =

∑n
i=1(yi − ȳ)(ŷi − ¯̂y)√∑n

i=1(yi − ȳ)2
∑n

i=1(ŷi − ¯̂y)2
(4)

where ȳ and ¯̂y are the means of the actual and predicted
values, respectively.

Spearman Correlation Coefficient (SPCC)

The Spearman correlation coefficient measures the rank
correlation between the predicted and actual values. It is
defined as:

SPCC =

∑n
i=1(R(yi)− R̄(y))(R(ŷi)− R̄(ŷ))√∑n

i=1(R(yi)− R̄(y))2
∑n

i=1(R(ŷi)− R̄(ŷ))2

(5)

where R(yi) and R(ŷi) are the ranks of the actual and pre-
dicted values.

Percentage of Coverage of 95% Confidence Interval
(Per Co)

This metric measures the percentage of true values that fall
within the predicted 95% confidence interval. It is defined
as:

Per Co =
1

n

n∑
i=1

1(yi ∈ [ŷi − 1.96σi, ŷi + 1.96σi]) (6)

where 1 is the indicator function, and σi is the predicted
standard deviation.

Average Width Relative to Range (AVR)

AVR measures the average width of the predicted confidence
intervals relative to the range of the actual values. It is
defined as:

AVR =
1

n

n∑
i=1

2× 1.96σi
max(y)−min(y)

(7)

Spearman Correlation of Uncertainty and Error (SPCC
unc)

This metric measures the rank correlation between the pre-
dicted uncertainties and the absolute errors. It is defined
as:

SPCC unc = SPCC(σi, |yi − ŷi|) (8)

Negative Log-Likelihood (NLL)

NLL measures the fit of the predicted distribution to the
observed data. It is defined as:

NLL =
1

n

n∑
i=1

(
1

2
log(2πσ2

i ) +
(yi − ŷi)2

2σ2
i

)
(9)

Miscalibration Area (Mis area)

The miscalibration area quantifies the discrepancy between
predicted and observed confidence intervals. Intuitively,
calibration refers that the true value falls within the pre-
dicted confidence interval with the same frequency as the
predicted confidence level. The miscalibration area iden-
tifies the difference between the calibration curve and the
ideal calibration curve(Kuleshov et al., 2018).


