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Abstract
There is a recent trend towards Knowledge-001
Based VQA (KB-VQA) where different as-002
pects of the question requires different source003
of knowledge including the image’s visual con-004
tent and external knowledge such as common-005
sense concepts and factual information. To ad-006
dress this issue, we propose a novel approach007
that passes knowledge from various sources008
between different pieces of semantic content009
in the question. Questions are first segmented010
into several chunks, and each segment is used011
to generate queries to retrieve knowledge from012
ConceptNet and Wikipedia. Then, a graph neu-013
ral network, taking advantage of the question’s014
syntactic structure, integrates the knowledge015
for different segments to jointly predict the an-016
swer. Our experiments on the OK-VQA dataset017
show that our approach achieves new state-of-018
the-art results.019

1 Introduction020

Over the past few years, Visual Question Answer-021

ing (VQA) has emerged as a challenging task where022

a machine learning system needs to recognize and023

analyze key visual content within the image and024

predict an answer to a natural language question.025

Most recent systems (Yu et al., 2019; Lu et al.,026

2019; Tan and Bansal, 2019; Li et al., 2019; Zhou027

et al., 2020; Chen et al., 2020; Lu et al., 2020) uti-028

lize multi-modal transformers to jointly encode the029

entire question and the visual content, achieving a030

strong performance on various VQA benchmarks031

(Antol et al., 2015; Hudson and Manning, 2019;032

Singh et al., 2019).033

There is a recent trend towards knowledge-based034

VQA (KB-VQA) (Wang et al.; Marino et al., 2019)035

where the information in the image alone is not suf-036

ficient for answering the visual questions. These037

questions cover a wide range of real-world topics,038

and therefore, require VQA systems to incorpo-039

rate various types of external knowledge beyond040

the image content. For example, encyclopedia041

articles provide factual statements, and common- 042

sense knowledge bases offer everyday concepts and 043

their relations. Both knowledge sources have been 044

proven effective and are widely used in previous 045

work (Wang et al.; Marino et al., 2019; Zhu et al., 046

2020; Li et al., 2020b; Marino et al., 2021; Wu 047

et al., 2021). 048

While general VQA systems consider two 049

modalities (i.e. question and image), the informa- 050

tion across more modalities has to be properly uti- 051

lized by KB-VQA systems to accommodate dif- 052

ferent types of knowledge input. This key differ- 053

ence introduces significant challenges to achiev- 054

ing good KB-VQA performance. First, knowledge 055

representations can vary significantly across dif- 056

ferent knowledge sources, including factual sen- 057

tences (Wu et al., 2021; Marino et al., 2019), knowl- 058

edge triples (Wang et al.), concepts (Gardères et al., 059

2020) and images (Wu et al., 2021). More impor- 060

tantly, a system needs to understand which knowl- 061

edge should be used for different semantic seg- 062

ments of the question. As shown in Fig. 1, KB- 063

VQA systems need to link the segment “the veg- 064

etable that garnishes this dish” to the carrot on 065

the plate and then query knowledge bases to find 066

out which “human body part” particularly benefits 067

from the nutrients in carrots. 068

Simply encoding the entire question for either 069

retrieving or filtering the knowledge, as most KB- 070

VQA systems (Wang et al.; Marino et al., 2019; 071

Zhu et al., 2020; Li et al., 2020b; Marino et al., 072

2021; Wu et al., 2021) do, can cause confusion 073

since different parts of the question focus on dif- 074

ferent aspects that can be either outside or inside 075

the image. As depicted in Fig. 1, searching for 076

“human body part” and “other surfaces” within the 077

image may cause VQA systems to focus on irrel- 078

evant aspects of the image. To address this issue, 079

we introduce a break-down VQA approach that 080

segments visual questions into several semantic 081

chunks, assuming that each chunk focuses on a sin- 082
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General VQA:
Q: What color is the bowl?
A: White

KB-VQA:
Q: the vegetable that garnishes this dish 
is nutritious for what human body part?
A: Eye

General VQA
Q:What sport is being played??
A:  Tennis

KB-VQA
Q: What other surfaces might this sport 
be played on?
A: Clay

Figure 1: Examples of general and knowledge-based (KB) visual questions. The question and answer segments that
focus on visual content within the image are highlighted in red, and the segments that requires external knowledge
are highlighted in blue.

gle aspect. Those segments serve as semantic units083

and are used to gather knowledge from various084

sources. Finally, using a dependency parser (Hon-085

nibal and Montani, 2017), a Graph Convolutional086

Network (GCN) (Veličković et al., 2018) is con-087

structed which assembles the retrieved knowledge088

to predict the answer.089

We evaluate our framework, break-down VQA,090

on the OK-VQA dataset (Marino et al., 2019), the091

largest KB-VQA dataset to date and our approach092

achieves state-of-the-art results. This demonstrates093

that breaking down questions and understanding094

the role of each segment is especially important in095

answering knowledge-based visual questions. In096

summary, our main contributions are: (1) a novel097

graph-based system that allows different seman-098

tic segments in the questions to access different099

sources of knowledge; and (2) we show that our100

system, by integrating multiple sources of knowl-101

edge, achieves state-of-the-art performance on OK-102

VQA.103

2 Related Work104

2.1 Visual Question Answering105

Visual Question Answering (VQA) has witnessed106

significant progress with the introduction of multi-107

modal transformers (Yu et al., 2019; Zhou et al.,108

2020; Lu et al., 2020, 2019; Tan and Bansal, 2019;109

Liu et al., 2019; Li et al., 2019, 2020a; Chen et al.,110

2020). These transformers are pretrained on aux-111

iliary tasks, including VQA, referring-expression112

interpretation, image captioning, etc., using vari-113

ous multi-modal datasets (Sharma et al., 2018; An-114

tol et al., 2015; Hudson and Manning, 2019; Suhr115

et al., 2017; Yu et al., 2016; Young et al., 2014).116

Cross attention modules are built over the textual117

and visual modalities to learn a joint representation118

for the entire question and the detected objects.119

2.2 Knowledge-Based Visual Question 120

Answering 121

While VQA involves visual questions whose an- 122

swers can be directly found within the image, there 123

is a recent trend toward Knowledge-Based Visual 124

Question Answering (KB-VQA) that requires VQA 125

systems to incorporate knowledge from various ex- 126

ternal sources. 127

Recent high-performing KB-VQA systems are 128

mainly learning-based following general VQA sys- 129

tems, and incorporate additional modules to re- 130

trieve external knowledge. One (Narasimhan and 131

Schwing, 2018) learns to retrieve facts from a 132

knowledge base. Another (Narasimhan et al., 2018) 133

utilizes a GCN (Tompson et al., 2014) over the fact 134

graph where each node is a representation of an 135

image-question-entity triplet. A third (Li et al., 136

2020b) introduces a knowledge-graph augmenta- 137

tion model to retrieve context-aware knowledge 138

sub-graphs, and then learns to aggregate the useful 139

visual and question relevant knowledge. 140

Although the knowledge is obtained from a wide 141

range of sources and encoded in different formats, 142

these previous systems simply learn to mine rel- 143

evant facts based on the entire question, which, 144

as mentioned above, could cause confusion. In 145

contrast, we present an approach that breaks the 146

question down into several segments and then uses 147

each of these segments to gather the appropriate 148

knowledge, which is then integrated to answer the 149

overall question. 150

The most similar work to ours is KRISP (Marino 151

et al., 2021), which combines knowledge from 152

both implicit question-image embeddings and ex- 153

plicit symbolic information from knowledge bases. 154

While KRISP aims to build a shared knowledge 155

graph for all KB questions, we build a question 156

graph for each specific visual question to address 157

two main issues with a shared knowledge graph: (1) 158

The knowledge is not question-specific and may 159
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mislead the answer predictor since some knowl-160

edge may not be appropriate for a specific question;161

(2) The size of the knowledge graph is not scalable162

as it is hard to cover and process all the required163

knowledge for all questions.164

2.3 Breaking Down Visual Questions.165

Previous work has explored both rule-based (An-166

dreas et al., 2016; Wolfson et al., 2020) and167

learning-based (Hu et al., 2017, 2018; Mao et al.,168

2019; Wolfson et al., 2020) approaches to break169

down visual questions. Rule-based approaches typ-170

ically define a set of decomposition rules and a full171

decomposition is obtained by recursively applying172

these rules until no rule is matched. In particular,173

one method (Andreas et al., 2016) parses the ques-174

tions and breaks it into a sequence of programs to175

execute. Another (Wolfson et al., 2020) breaks the176

question into several steps, each of which is en-177

coded as a natural language expression. Learning-178

based approaches either learn to recursively rank179

some predefined modules to synthesize the entire180

network layout for solving a visual question (Hu181

et al., 2017, 2018) or directly learn to generate the182

steps using a seq2seq method (Mao et al., 2019;183

Wolfson et al., 2020). These approaches work es-184

pecially well for datasets that represent queries as185

programs, including CLVER (Johnson et al., 2017)186

and GQA (Hudson and Manning, 2019).187

2.4 Graph Convolutional Networks188

Graph Convolutional Networks (GCNs) (Kipf and189

Welling, 2017) generalize Convolutional Networks190

(CNN) to accommodate graph-structured input.191

Various types of graph input for VQA have been192

explored including scene graphs generated by an193

object and relation detector (Ren et al., 2015; Yang194

et al., 2018), and knowledge graphs retrieved from195

a wide range of sources, such as DB-Pedia (Auer196

et al., 2007), ConceptNet (Liu and Singh, 2004),197

VisualGenome (Krishna et al., 2017) and hasPart198

KB (Bhakthavatsalam et al., 2020). Most KB-VQA199

systems (Ramnath and Hasegawa-Johnson, 2021;200

Narasimhan et al., 2018; Li et al., 2020b; Marino201

et al., 2021) build their GCNs on top of these knowl-202

edge graphs and extract relevant evidence using the203

entire question representation. Here, we explore an204

approach that constructs a reasoning graph from the205

question, where each node is a semantic segment of206

the question. Our graph utilizes the syntactic struc-207

ture of the questions to better integrate the question208

segments that utilize both the visual content in the209

image and relevant external knowledge. 210

3 Approach 211

We present the break-down VQA approach, a three- 212

step framework. First, it segments visual questions 213

into semantic chunks. Next, each segment, serving 214

as a semantic unit, is used to retrieve knowledge 215

from different external sources. Finally, a Graph 216

Neural Network (GCN) integrates this retrieved 217

knowledge to predict an answer. Fig. 2 illustrates 218

the approach. 219

We instantiate our approach on top of the high- 220

performing ViLBERT-multi-task as a base system 221

(Lu et al., 2020) that provides a set of answer candi- 222

dates A = {a1, ..., an} for each question-image pair. 223

We also extract the product of its pooled features 224

for the textual and visual BERT output, z, as a joint 225

representation of the question and the image. 226

3.1 Breaking Down Visual Questions 227

Given a visual question q that consists of l to- 228

kens (q1, ..., ql) where a token is either a word or a 229

WordPiece produced by a tokenizer (Vaswani et al., 230

2017), and its question segmentation is a set of 231

token chunks X = (x1, ..., xm) where each xi con- 232

sists of a sub-sequence of q, i.e. xi = (qi1, ..., q
i
li
). 233

Since different parts of a knowledge-based vi- 234

sual question need to focus on different sources of 235

knowledge, encoding the entire question as a whole 236

leads to inefficiency in both knowledge retrieval 237

and answer prediction. To address this issue, our 238

approach breaks down the question into segments 239

where each segment contains only one semantic 240

unit that can either be grounded in the image, or 241

linked to external knowledge bases. Note that, we 242

do not restrict each segment to only retrieve from 243

a single knowledge source but let the VQA model 244

choose the right source. 245

To this end, we first extract nouns, noun chunks, 246

and verbs in the question as knowledge segments. 247

For example, ‘other surfaces’, ‘this sport’, and 248

‘play’ are extracted for the second example in Fig. 249

1. Specifically, we utilize the ‘en_core_web_sm’ 250

sPacy parser (Honnibal and Montani, 2017) to de- 251

pendency parse the question and POS-tag each 252

word. Then, we extract the noun chunks (i.e. flat- 253

tened phrases with a noun head in the parse tree) 254

and lemmatized verbs. We also group any tokens 255

between those extracted knowledge segments as 256

additional segments to ensure completeness. 257
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What other surfaces might this sport be played on?

Question Graph

what other surfaces might this sport be played on

ViLBERT

Knowledge Retrieval (Sec. 3.2) and Embedding (Sec 3.3.1-2) 

Wikipedia graph

Interactions between blocks

this sport
Search words:This sport, tennis

Wikipedia 
sentences

SGA

Concept 
sentences

Text: 
this sport

SGA

what

...be played on

Text graph Concept graph

Clay

......

Wikipedia 
prediction Text

prediction Concept
prediction ViLBERT

prediction

Max
Pooling

(Sec. 3.3.3) 

(Sec. 3.3.4) 

Figure 2: Model overview of the BreakDown VQA approach. The question is segmented into semantic chunks (left
top). These chunks are used to retrieve external information from Wikipedia and ConceptNet. Each retrieved piece
of knowledge is then encoded as a vector (right top), and fed to a graph neural net (left middle) to predict an answer
for each knowledge source. The individual results are then max-pooled to get the final prediction (left bottom).

3.2 Knowledge Retrieval258

We retrieve knowledge from Wikipedia and Con-259

ceptNet for each extracted segment inspired by260

the answer-guided knowledge retrieval (Wu et al.,261

2021) that ensure the relevancy of the external262

knowledge. Note that although our knowledge re-263

trieval process is similar to (Wu et al., 2021), our264

main contribution lies in allowing different aspects265

of a question to access knowledge from different266

sources while (Wu et al., 2021) mine important267

knowledge using the entire question.268

Search Word Extraction. We first remove the269

stop words in the segment and regard the remaining270

tokens as the search words. Then, we enrich these271

search words with object annotations, including272

linking the segment to objects in the image, text273

extracted using OCR, and brand detection follow-274

ing (Wu et al., 2021).1 In particular, a pretrained275

ViLBERT-multi-task model (Lu et al., 2020) is276

used as the object linker. This system can gen-277

erate linking scores indicating the confidence of278

linking phrases to detected objects. The linking is279

approved when its score is over 0.5. With the linked280

objects, a Google API is used to recognize words281

in text regions using OCR and company brands. In282

addition, we also detect common attributes of these283

objects using a Faster-RCNN (Ren et al., 2015) on284

a Detectron platform pretrained on Visual-Genome285

1See section “S1: Answer-Agnostic Search Word Extrac-
tion”

data.2 This process results in a set of search words 286

for each segment. For example, the search-word set 287

for the segment ‘the vegetable’ for the first example 288

in Fig. 1 is {’vegetable’, ’carrot’, ’red vegetable’}. 289

Knowledge Retrieval. We use two knowledge 290

sources to extract information about the question 291

segments in X , i.e. relevant textual facts and com- 292

monsense concepts as in (Wu et al., 2021). In 293

contrast to (Wu et al., 2021), we retrieve knowl- 294

edge independently for each segment instead of for 295

the entire question. This ensures that the retrieved 296

knowledge provides information about the given 297

segment, and allows the VQA system to determine 298

whether a particular piece of external knowledge 299

about this segment is important. 300

Retrieving from Wikipedia. For each segment 301

xi, we query its search words and collect all sen- 302

tences from the retrieved Wikipedia articles. We 303

use answer-guided knowledge retrieval (Wu et al., 304

2021) to filter out irrelevant sentences. Specifi- 305

cally, we first keep the Wikipedia sentences that 306

contain both at least one of the search words and 307

one of the top 5 answer candidates predicted by 308

ViLBERT-multi-task. Then, the remaining sen- 309

tences are ranked according to the highest precision 310

BERT-scores (Zhang et al., 2020) between the sen- 311

tence and the question converted to a declarative 312

statement (Demszky et al., 2018) and the top-5 an- 313

2We were careful to remove the OK-VQA test images from
the training data for the Faster-RCNN system.
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swer candidates. We keep the top-80 sentences in314

total for each visual question and regard the other315

sentences as irrelevant.316

Retrieving from ConceptNet. Commonsense con-317

cepts provide structured knowledge that is usually318

not covered in factual Wikipedia sentences. Similar319

to Wikipedia-article retrieval, we query the search320

words for each segment and collect the retrieved321

concepts. First, we keep all the concept triples322

whose subjects and objects contain the search word323

and one of the answer candidates from A. Then,324

we convert other concept triples to sentences and325

rank them according to the highest precision BERT-326

scores between the sentence and the statements327

from the question and answers. We also keep the328

top-80 sentences in total for each visual question329

and regard the other concepts as irrelevant.330

Matching Textual Knowledge. For each query,331

the sentences from Wikipedia and the concepts332

from ConceptNet with a mean recall greater than333

0.6 are matched to the search words. Mean recall334

is defined as the average cosine similarity between335

the GloVe embedding of the words in the search336

word and their most similar word in the sentence337

or in the concept. To ensure knowledge relevance,338

we remove sentences that are matched to only a339

single search word. We keep the top kw sentences340

Si
w = {siw,1, ..., s

i
w,kw

} according to the mean recall341

as the textual facts for segment xi from its search342

word set, where siw,j denotes the j-th Wikipedia343

sentence for the i-th segment. Similarly, for con-344

cepts, we keep the top kc concept sentences Si
c =345

{sic,1, ..., sic,kc} for segment xi, where sic,j denotes346

the j-th concept sentence for the i-th segment.347

3.3 VQA model348

This section describes the final VQA system that349

incorporates the retrieved knowledge for each of350

the semantic segments. We first generate features351

for each knowledge sentence from Wikipedia and352

ConceptNet. Then a representation of each source353

for each segment is computed using these sentence354

features. Finally, a GCN is employed that utilizes355

the syntactic structure of the visual question and356

produces joint features for predicting the answer.357

3.3.1 Knowledge Sentence Embedding358

We use a word embedding matrix initialized by359

GloVe vectors (Pennington et al., 2014) to com-360

pute a word vector for each token in the knowl-361

edge sentence. Then, a single layer LSTM with362

a hidden states of 768 is built on top of the word363

embeddings and the features for the last token are 364

extracted. This process produces a 768-d feature 365

vector for each sentence from both Wikipedia Si
w 366

and ConceptNet Si
c, resulting in knowledge fea- 367

ture matrices Si
w ∈ Rkw×768 and Si

c ∈ Rkc×768 for 368

segment i, respectively. 369

3.3.2 Segment Embedding 370

We produce an embedding for each segment by 371

integrating three representations, a content repre- 372

sentation of the text of the segment in the question 373

and two representations of relevant external knowl- 374

edge (Wikipedia + ConceptNet). 375

Content Embedding. To preserve all of the 376

information in the question, we employ the text 377

of each segment as input to the VQA model. We 378

use the GloVe embedding approach to encode seg- 379

ments. Similar to the knowledge sentence embed- 380

ding, an LSTM is used to sequentially encode the 381

GloVe vectors and the hidden state of the last token 382

is extracted as the content representation sit. The 383

final content embedding of segment i is computed 384

as the element-wise summation of sit and the pro- 385

jection of z, i.e. zit = st+fc(z), where fc denotes 386

a fully connected layer. 387

Knowledge Embedding. As shown in Eqs. 1 388

and 2, we embed the knowledge matrices Si
w and Si

c 389

for segment xi into vector representations ziw and 390

zic that contain the question-relevant information 391

from the external knowledge source sentences Si
w 392

and Si
c . In particular, we utilize a Self- and Guided- 393

Attention (SGA) module (Yu et al., 2019) where 394

the question and image representation z from ViL- 395

BERT is used as a query, and the knowledge ma- 396

trices serve as keys and values. The SGA modules 397

provide a trainable method for mining question- 398

relevant knowledge from the retrieved materials 399

in contrast to the rule-based method used in the 400

knowledge retrieval process. In order to prevent 401

the case where the retrieved knowledge is empty, 402

we add the content embedding to the knowledge 403

embedding for each source. 404

ziw = SGA(z,Si
w) + zit (1) 405

zic = SGA(z,Si
c) + zit (2) 406

3.3.3 Graph Neural Networks 407

Building the Graph Structure. We treat the seg- 408

ments’ embeddings {zik} as nodes, where i denotes 409

the segment’s index and k indexes the knowledge 410

source, and establish an edge between each pair if 411

there is a direct connection between tokens from 412

5



the two segments in the dependency parse tree.413

Given the parse tree Eq of question q, which es-414

tablishes edges between tokens in q, the edges of415

the segments E are defined in Eq. 3:416

E = {(zik, zjk)| ∃(q
m ∈ xi, qn ∈ xj)(qm, qn) ∈ Eq}

(3)417

This produce a graph structure Gk = ({zik}, E)418

for each modality k.419

Graph Neural Networks Architectures. The net-420

works consists of kout blocks, where each block421

contains kin graph layers. The node features within422

each block interact with other nodes’ features from423

the same modality, determining its importance to424

solve the visual question. The knowledge from425

different external modalities is fused outside the426

blocks to build connections to other types of knowl-427

edge.428

Graph Neural Networks within Blocks. We formal-429

ize the input to the graph neural networks as Hk
i,0430

where k denotes the source of the question seg-431

ments’ features, and i is the index of the block. For432

layer l within block i, we use a graph layer that op-433

erates a non-linear function F(Hk
i,l,Gk), producing434

the input to the next graph layer Hk
i,l+1, i.e. Hk

i,l+1435

= F(Hk
i,l,Gk). The input Hk

i,0 for block i is the out-436

put of the previous block Hk
i−1,l after interactions437

between modalities described below except for the438

first block that receives the segments’ features as439

inputs, i.e. {zk}.440

Interactions between Modalities outside the Blocks.441

To give the graph neural networks access to the all442

types of external knowledge, we fused features443

from different modalities outside the blocks. The444

fused features serve as the inputs to the next blocks445

of graph neural nets. In particular, the input Hk
i+1,0446

to the i + 1 block is the concatenation of the447

segments representation {zk} and the summation448

of the output of the previous block from all449

modalities.450

3.3.4 Answer Prediction451

We build answer prediction heads for each knowl-452

edge source that compute a probability distribution453

over all answer candidates. The knowledge features454

from the last block, i.e. Hk
kout,kin

are averaged and455

fed to the answer prediction head that consists of456

two consecutive fully-connected layers with ReLU457

activation. Then, we take the maximum value of458

these predictions for each answer candidate as the459

final answer predictions.460

4 Implementation and Training Details 461

Implementation. Our break-down VQA approach 462

is implemented on top of ViLBERT-multi-task (Lu 463

et al., 2019), which utilizes a Mask-RCNN head 464

(He et al., 2017) in conjunction with a ResNet- 465

152 base network (He et al., 2016) as the object 466

detection module. Convolutional features for at 467

most 100 objects are extracted for each image as 468

the visual features, i.e. a 2,048 dimensional vector 469

for each object. 470

Since the OK-VQA test dataset contains COCO 471

images from the validation set that are used to train 472

the officially released ViLBERT model, we retrain 473

the system from scratch using clean datasets where 474

we remove all of the OK-VQA test images from 475

the Visual Genome, MSCOCO, and GQA datasets. 476

We used the default configuration when training 477

the object detection module, pretraining on Con- 478

ceptual Captions, and finally finetuning on the 12 479

visual-and-language tasks used in (Lu et al., 2020). 480

We utilize a BERT tokenizer (Devlin et al., 2019) 481

to tokenize the question and use the first 23 tokens 482

of the question. We encode the top 5 Wikipedia 483

sentences and top 10 ConceptNet concepts for each 484

knowledge segment, i.e. kw = 5 and kc = 10. The 485

number of hidden units in the SGA modules in the 486

knowledge embedding modules is set to 768. We 487

use 4 attention heads in the SGA modules. The 488

graph neural networks contain 2 blocks and 4 lay- 489

ers within each block. A SAGE (Hamilton et al., 490

2017) layer with transformed root node features is 491

used as the graph layer. The Pytorch Geometric 492

toolbox (Fey and Lenssen, 2019) is used for the 493

GCN implementation. 494

Training. For training, we optimize the answer 495

predictions for each knowledge source using the 496

standard VQA loss, together with the VQA loss 497

on the final predictions. We train the system for 498

75 epochs using a learning rate of 2e-5 for the 499

ViLBERT parameters and 5e-5 for the additional 500

parameters introduced in the BreakDown VQA sys- 501

tem. We freeze the first 10 layers of the ViLBERT 502

base network. 503

5 Experiments 504

This section evaluates our BreakDown VQA ap- 505

proach on the OK-VQA dataset (Marino et al., 506

2019). We first briefly describe the dataset, and 507

then present results comparing to current state-of- 508

the-art systems. 509

OK-VQA dataset. This is currently the largest 510
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Method Knowledge Resources Performance
ViLBERT (Lu et al., 2019) — 36.1
MMBERT (Marino et al., 2019) — 37.1
ConceptBERT (Gardères et al., 2020) — 33.7
KRISP (Marino et al., 2021) Wikipedia + ConceptNet 37.8
MAVEx (Wu et al., 2021) Wikipedia + ConceptNet + Google Images 38.7
Ours Wikipedia + ConceptNet 39.1
Ours + MAVEx Wikipedia + ConceptNet + Google Images 40.8
Ours + MAVEx (oracle) Wikipedia + ConceptNet + Google Images 42.5

Table 1: Our approach outperforms current state-of-the-art approaches on the OK-VQA dataset. The middle column
lists the external knowledge sources, if any, used by each VQA system.

knowledge-based VQA dataset. The questions are511

crowdsourced from human workers on Amazon512

Mechanical Turk instead of artificially synthesized513

from knowledge bases. Human judges are asked to514

ensure that outside knowledge beyond the image515

is required. Also, since it is not synthesized, there516

are no ground truth knowledge bases that can pro-517

vide a VQA system all of the necessary external518

knowledge. Therefore, systems have to retrieve519

knowledge from a variety of knowledge sources.520

The dataset contains 14,031 images and 14,055521

questions covering a variety of topics, including522

transportation, brands, material, sports, cooking,523

geography, plants, animals, science, weather, etc.524

5.1 Main Results525

We report results on version 1.1 of the OK-VQA526

dataset in Table 1, unlike the original version (i.e.527

version 1.0), answers are lemmatized to improve528

scoring. Our BreakDown VQA approach outper-529

forms all previous systems, achieving a new state-530

of-the-art accuracy score of 39.1%.531

5.2 Ablation Study on Source Knowledge532

This sections gives results when we ablate the ex-533

ternal knowledge sources. In particular, we manu-534

ally zero out the knowledge features zk to exclude535

the external information obtained from knowledge536

source k during training and test. We use 2 blocks537

and 4 layers within each block in the graph neural538

networks. As shown in Table 2, each knowledge539

source helps improve the overall performance, indi-540

cating the need to access to a variety of knowledge541

sources for solving the KB visual questions.542

5.3 Ablation Studies on the Graph Model543

Table 3 shows results on how different values for544

the hyper-parameters in the GCN influence VQA545

Sources Performance
Wikipedia 38.2

ConceptNet 38.5
Wikipedia + ConceptNet 39.1

Table 2: Ablation study of knowledge sources.

performance. It includes an extreme case using 546

only one graph block (i.e. kout = 1), where the 547

knowledge sources do not interact and predict the 548

answer independently. We also tested two ablated 549

models to test the contribution of the graph struc- 550

ture that exploits the parse tree of the question. We 551

simply build the answer prediction heads on top 552

of the knowledge embedding of each source, zk, 553

where k is the knowledge source indicator. This 554

baseline system achieves a score of 38.5, and a 555

fully-connected graph achieves 38.7. That indi- 556

cates that building the segments’ graph using the 557

question’s syntactic structure helps the VQA sys- 558

tem improve its use of the retrieved knowledge, 559

improving the results. 560

kout kin Performance
1 4 38.6
2 4 39.1
2 6 38.7
3 4 38.8

Table 3: Ablation study using different GCN hyper-
parameter values. kout and kin denote the number of
blocks and the number of layers within each block.

5.4 Using BERT for Knowledge Embedding 561

We also tested a BERT-based knowledge embed- 562

ding for encoding the retrieved sentences from the 563

external knowledge sources. We used a pretrained 564

BERT-base-uncased model (Devlin et al., 2019) to 565
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Q1: What kind of lamp is this?       
Baseline: lava         Ours: chandelier
Search words: lamp, chandelier, light fixture
A circular chandelier reminiscent of a crown, 
usually of gilded metal or brass, and often with 
upstanding decorative elements [wikipedia]
chandelier is ceiling light [concept]

Q2: Where would you find the animal in the 
background in the wild?
Baseline: zoo         Ours: africa
Search words: the animal, gray,grey elephant, 
the background, the wild, elephant
an elephant is at africa [concept]

Q3: What fish do north american bears like to 
catch as they swim upstream?
Baseline: fish        Ours: salmon
Search words: fish, brown bear, north american 
bears, catch, swim
Grizzly bears are well-documented catching 
leaping salmon in their mouths [wikipedia]
a bear is capable of fish for salmon[concept]

Q4: At the end of which movie featuring dick van 
dyke does this activity occur?
Baseline: benjamin franklin    Ours: mary poppins
Search words:  the end, man, movie, person, dick 
van dyke, this activity, feature, occur, jeans, grass
Empire – The Worst British Accents Ever – 
Number 11 – Dick Van Dyke singing in Mary 
Poppins (1964)[wikipedia]

Q6: What us island is this activity most 
associated with 
Baseline: beach      Ours: surf    GT:hawaii 
Search words：this activity, surfing man, surfing,
 surfing equipment, wakesurfing, man, kamaz
Surfing culture is most dominant in Hawaii and 
California, because these two states offer the best 
surfing conditions.[wikipedia]

Q5: What body part are these sticks 
traditionally used to clean?
Baseline: eye       Ours: teeth  GT: ear
Search words: body part, hand, these sticks, 
spoon, food

Figure 3: Qualitative results from our Break Down VQA and a ViLBERT baseline. Q1-Q4 show success cases and
Q5 and Q6 illustrate a couple failure cases. Red and green denote wrong and right answers, respectively.

compute the features for each sentence. We extract566

the final layer representation for the “[CLS]” token567

as the sentence embedding to replace the GloVe568

embedding used in Sec. 3.3.1. Note that this BERT569

model is not finetuned for VQA. The BERT Embed-570

ding approach achieves a score of 38.9 compared571

to 39.1 using the GloVe embedding. Our hypothe-572

sis is that though BERT features may encode richer573

information, fine-tuning on the down-stream task574

is important for the final performance.575

5.5 Combining with Answer Validation576

(Wu et al., 2021) introduced an answer validation577

module (MAVEx) that reweights the answer con-578

fidence with a verification score obtained by ex-579

amining the knowledge retrieved for each of the580

top answer candidates. MAVEx also uses retrieved581

images from Google as a third knowledge source582

to provide visual external knowledge. We com-583

bined our BreakDown VQA approach with a static584

MAVEx system that provides the weights of the585

top 5 answer candidates. As shown in Table 1,586

we achieve a score of 40.8 when combining the587

MAVEx weights using predicted answer candidates588

and 42.5 when using an oracle answer candidate set589

where a ground truth answer is manually inserted590

into the answer candidate set during validation.591

This shows that our approach can be effectively592

combined with other recent advances in KB-VQA593

to further improve the state-of-the-art.594

5.6 Qualitative Results595

We show some representative examples of our ap-596

proach versus a ViLBERT baseline system in Fig.597

3. Q1 shows an example where the answer is al- 598

ready in the search word list (i.e. chandelier), il- 599

lustrating the effectiveness of enriching the seg- 600

ments parsed from the question with various types 601

of annotations. Q2-Q4 show examples where our 602

approach successfully retrieves relevant knowledge 603

about specific segments which allows it to predict 604

the correct answer. Q4 shows an example where 605

Wikipedia knowledge is especially helpful and Q3 606

shows an example where both knowledge sources 607

provide useful information. 608

We also show some common failure cases from 609

our approach in Q5 and Q6. Q5 shows an exam- 610

ple where object recognition fails since the cotton 611

swabs are just annotated as sticks, making it hard 612

to retrieve the relevant knowledge. Q6 shows a 613

case where the retrieved knowledge seems help- 614

ful but the final prediction is wrong. It seems the 615

VQA system failed to understand that the question 616

is asking about a location rather than an activity. 617

6 Conclusion 618

We have introduced a novel approach to knowledge- 619

based VQA that breaks down visual questions into 620

multiple semantic segments which are used to drive 621

the retrieval and utilization of relevant knowledge 622

from multiple external sources. This approach 623

achieves a new state of the art on the challeng- 624

ing OK-VQA benchmark. We find that segmenting 625

questions is especially helpful for open-domain 626

KB-VQA because different parts of the question re- 627

quire utilizing different types of information, such 628

as linking to objects in the image and exploiting 629

factual information or commonsense knowledge. 630
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