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ABSTRACT

Domain generalization (DG) tends to alleviate the poor generalization capability of
deep neural networks by learning model with multiple source domains. A classical
solution to DG is domain augmentation, the common belief of which is that diver-
sifying source domains will be conducive to the out-of-distribution generalization.
However, these claims are understood intuitively, rather than mathematically, and
the relation between the diversity of source domains and model generalization still
remains unclear. We thus made some explorations and found that the model gener-
alization does not strictly improve with the increase of domain diversity, limiting
the effectiveness of domain augmentation. In view of this observation, we propose
a new perspective on DG that recast it as a convex game between domains. We for-
mulate a regularization term based on the supermodularity property of convex game
which rigorously demonstrates that the growth of domain diversity will enhance
model generalization monotonically. This enables model to best utilize the rich
information within input data so that each diversified domain contributes to model
generalization. Furthermore, we construct a sample filter to eliminate the bad
samples which contain unprofitable or even harmful information to generalization
performance, such as noisy or redundant samples. Our framework presents a new
avenue for the formal analysis of DG, the rationality and effectiveness of which
have been demonstrated on extensive benchmark datasets.

1 INTRODUCTION

Owning extraordinary representation learning ability, deep neural networks (DNNs) have achieved
remarkable advancement on a variety of tasks when the training and test data are drawn from the
same distribution (Goodfellow et al., 2016; He et al., 2016; LeCun et al., 2015). Whereas for out-of-
distribution data, DNNs have demonstrated poor generalization capability since the i.i.d. assumption
is violated, which is common in real-world conditions (Long et al., 2016; Ma et al., 2019; Taori et al.,
2020). To tackle this issue, domain generalization (DG) has become a propulsion technology, aiming
to learn a robust model from multiple source domains so that can generalize well to any unseen target
domains with different statistics (Balaji et al., 2018; Muandet et al., 2013; Li et al., 2018b; 2017a).

Among extensive solutions to improve generalization, domain augmentation (Volpi et al., 2018;
Shankar et al., 2018; Zhou et al., 2021a; Xu et al., 2021b) has been a classical and prevalent strategy,
which focuses on exposing the model with more diverse domains via some augmentation techniques.
A common belief is that generalizable models would become easier to learn when the training
distributions become more diverse, which has been also emphasized by a recent work (Xu et al.,
2021a). Notwithstanding the promising results shown by this strand of approaches, the claims
above are vague and lack of theoretical justification, formal analyses of the relation between domain
diversity and model generalization are sparse. Further, the transfer of knowledge may even hurt the
performance on target domains in some cases, which is referred to as negative transfer (Pan & Yang,
2010; Tan et al., 2017). Thus the relation of domain diversity and model generalization remains
unclear. In light of these points, we begin by considering the question: The stronger the domain
diversity, will it certainly help to improve the model generalization capability?

We conduct a brief experiment to explore the relation between model generalization and domain
diversity. The results presented in Fig 1 empirically reveal that with the increase of domain diversity,
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Figure 1: The relation between model generalization
and domain diversity. N is the maximum number of
augmented domains. Note that the solid lines denote the
actual results of a BASELINE method that combines
DeepAll with an augmentation strategy and a SOTA
domain augmentation method FACT, while the dash
lines represent the ideal relation in this work.

i.e., the number of augmented domains,
the model generalization (measured by the
accuracy on unseen target domain) does
not necessarily increase, but sometimes
decreases instead, as the solid lines show.
On the one hand, this may be because the
model does not best utilize the rich infor-
mation of diversified domains; on the other
hand, it may be due to the existence of
low-quality samples which contain redun-
dant or noisy information that is unprof-
itable to generalization (Lee et al., 2018).
This indicates that there is still room for im-
provement of the effectiveness of domain
augmentation if we enable each training do-
main to be certainly conducive to the model
generalization as the dash lines in Fig 1.

In this work, we therefore aim to ensure the monotonic increasing relation of model generalization
with domain diversity to guarantee and further enhance the effectiveness of domain augmentation.
To do this, we take inspiration from the literature of game theory and ask what can be achieved in a
game where each player is required to bring profit to the coalition, which is referred to as convex
game (Shapley, 1971; Ichiishi, 1981; Brânzei et al., 2003). In this view, we propose a novel framework
named Domain Convex Game (DCG) which recasts DG as a convex game between domains since our
key insight is to make each training domain bring benefit to model generalization that happens to fit
the supermodularity property of convex game. On the one hand, we construct a novel regularization
term based on the supermodularity property via meta-learning (Finn et al., 2017; Li et al., 2018a),
which is direct to our insight and allows for a heuristic analysis of the rationality. This regularization
encourages each diversified domain to contribute to improving model generalization, thus enables
the model to better exploit the diverse information. On the other hand, considering that there may
exist samples with unprofitable or even harmful information to generalization, we further design a
sample filter to eliminate the bad samples such as noisy or redundant ones, so that their deterioration
to the model generalization can be avoided. We also provide some heuristic insights in Appendix C
to analyse the mechanisms behind and demonstrate the rationality, which indicates the proposed
regularization will enforce domain consistency on discriminability to help the model improve when
the model is not trained so well. Whereas when the model falls into local optima, it will further
squeeze out the information within hard samples to help the model jump out. And the sample filter
can filter out different types of low-quality samples during different training stages.

Nevertheless, it is well known that the supermodularity property also indicates increasing marginal
contribution, which may not hold intuitively in DG, where the marginal contribution of domains is
generally decreasing. One may wonder why our algorithm should work. Actually, to mitigate the
gap between theory and practice, we impose a constraint on the naive supermodularity property to
construct our regularization term, which enforces the regularization to work only under the case that
the supermodularity is violated, i.e., when the marginal contribution of domains decreases. Thus,
the limit of our regularization optimization is actually to keep a constant marginal contribution,
rather than achieving an unsuitable increasing marginal contribution. Hence, our regularization
can additionally regularize the decreasing speed of the marginal contribution as slow as possible by
optimizing towards the limit situation, i.e., constant marginal contribution, just like changing the
line Ideal (a) in Fig 1 into line Ideal (b). Generally, the role of the proposed supermodularity is to
encourage the contribution of each augmented domain, and further relieve the decreasing marginal
contribution of domains to a certain extent, so as to better utilize the diversified information.

To summarize, we provide new insights into the relation of model generalization and source domain
diversity, and cast DG as a convex game between domains. The proposed framework enables model
to better utilize the information within diversified domains while avoiding the negative impact of
bad samples, enabling each domain to contribute to improving generalization, so as to guarantee and
further enhance the validity of domain augmentation. Furthermore, this new perspective provides
theoretical support and formalizes several claims that until now only have been stated intuitively. The
effectiveness and superiority are verified empirically across extensive real-world datasets.
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2 RELATED WORK

Domain Generalization researches out-of-distribution generalization with knowledge only extracted
from multiple source domains. A promising direction is to diversify training domains so as to improve
generalization, referring as to domain augmentation (Shankar et al., 2018; Volpi et al., 2018; Zhou
et al., 2021a; Xu et al., 2021b; Zhou et al., 2020b). L2A-OT (Zhou et al., 2020b) creates pseudo-
novel domains from source data by maximizing an optimal transport-based divergence measure.
CrossGrad (Shankar et al., 2018) generates samples from fictitious domains via gradient-based
domain perturbation while AdvAug (Volpi et al., 2018) achieves so via adversarially perturbing
images. MixStyle (Zhou et al., 2021a) and FACT (Xu et al., 2021b) mix style information extracted
from different instances to synthetic novel domains. Instead of enriching domain diversity, another
popular solution that learning domain-invariant representations by distribution alignment via kernel-
based optimization (Muandet et al., 2013; Ghifary et al., 2017), adversarial learning (Li et al., 2018b;
Motiian et al., 2017), or using uncertainty modeling (Li et al., 2022) demonstrate effectiveness for
model generalization. Other recent DG works also explore low-rank decomposition (Piratla et al.,
2020), self-supervised signals (Carlucci et al., 2019), gradient-guided dropout (Huang et al., 2020),
etc. Our proposed framework builds on the domain augmentation group, where we provide a convex
game perspective to guarantee and further enhance the efficacy of domain augmentation.

Convex Game is a highly interesting class of cooperative games introduced by Shapley (Shapley,
1971). A game is called convex when it satisfies the condition that the profit obtained by the
cooperation of two coalitions plus the profit obtained by their intersection will not be less than the
sum of profit obtained by the two respectively (a.k.a. supermodularity) (Shapley, 1971; Ichiishi,
1981; Brânzei et al., 2003). Co-Mixup(Kim et al., 2021) formulates the optimal construction of
mixup augmentation data while encouraging diversity among them collectively by introducing
supermodularity. Nevertheless, this method is applied to supervised learning which aims to construct
salience mixed samples. Recently, (Rosenfeld et al., 2021) rethinks the single-round minmax setting
of DG and recasts it as a repeated online game between a player minimizing risk and an adversary
presenting test distributions in light of online convex optimization (Hazan, 2016). We note that
the definition of convex game exploited in our work follows (Shapley, 1971), distinct from that
in (Rosenfeld et al., 2021; Hazan, 2016). To the best of our knowledge, this work is the first to
introduce convex game into DG to enhance generalization capability.

Meta Learning (Thrun & Pratt, 2012) is a long-term research exploring to learn how to train a
particular model through the training of a meta-model, which has been successfully applied to few-
shot learning (Li & Malik, 2017; Finn et al., 2017; Ravi & Larochelle, 2017). Recently, meta-learning
has drawn increasing attention from DG community (Balaji et al., 2018; Dou et al., 2019; Li et al.,
2019; 2018a). The main idea is to simulate domain shift during training by drawing virtual-train/test
domains from the original source domains. MLDG (Li et al., 2018a) originates the episode training
paradigm from (Finn et al., 2017), back-propagating the second-order gradients from an ordinary task
loss on a random meta-test domain split from the source domains at each iteration. Subsequent meta
learning-based DG methods utilize a similar strategy to meta-learn a regularizer (Balaji et al., 2018),
feature-critic network (Li et al., 2019), or semantic relationships (Dou et al., 2019). Different from
the former paradigm that purely leveraging gradient of task objective, which may cause sub-optimal,
our proposed DCG, instead, constructs a novel regularization term with the ordinary task losses on
meta-test domains, aiming to enforce each training domain to contribute to model generalization.

3 DOMAIN CONVEX GAME

Motivated by such an observation in Section 1, we propose Domain Convex Game (DCG) framework
to train models that can best utilize domain diversity, as illustrated in Fig. 2. First, we cast DG as a
convex game between domains and design a novel regularization term employing the supermodularity,
which can encourage each domain to benefit model generalization. Further, we construct a sample
filter based on the regularization term to eliminate bad samples which may cause negative effect on
generalization. In this section, we define the problem setup and present the general form of DCG.
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Figure 2: The pipeline of DCG. We first randomly split the diversified domains into meta-train
and meta-test domains, and generate four coalitions from the former according to the definition of
convex game. Then we conduct meta learning on the four coalitions respectively and construct our
regularization loss utilizing the meta-test losses of them based on the supermodularity. Meanwhile,
we eliminate the bad samples by a sample filter and calculate supervision loss on the retained samples.

3.1 PRELIMINARY

Assuming that there are P source domains of data Ds = ∪Pk=1Dk with nk labelled samples
{(xk

i , y
k
i )}

nk
i=1 in the k-th domain Dk, where xk

i and yki ∈ {1, 2, · · · , C} denote the samples and
corresponding labels. DG aims to train a domain-agnostic model f(·,θ) parametrized with θ on
source domains that can generalize well on unseen target domain(s) Dt. As an effective solution for
DG, domain augmentation aims to enrich the diversity of source domains generally by synthesizing
novel domains via mixing domain-related information, hence boosting model generalization (Zhou
et al., 2020b; 2021a; Xu et al., 2021b). In this work, we exploit a Fourier-based augmentation tech-
nique inspired by (Xu et al., 2021b; Yang & Soatto, 2020) to prepare our diversified source domains.
Owing to the property that the phase component of Fourier spectrum preserves high-level semantics
of the original signal, while the amplitude component contains low-level statistics (Oppenheim &
Lim, 1981; Piotrowski & Campbell, 1982), we augment the source data by distorting the amplitude
information while keeping the phase information unchanged. Specifically, we mix the amplitude
spectrum of an instance with that of another arbitrary instance by a linear interpolation strategy to
synthesize augmented instances from novel domains. We refer readers to (Yang & Soatto, 2020;
Xu et al., 2021b) for implementation details. Since each augmented sample is generated by mixing
domain information of sample pairs from random source domains in a random proportion, it has
statistics distinct from the others so that can be regarded as drawn from a novel augmented domain.
Thus, we possess another Q augmented source domains of data Daug

s = ∪Qk=1DP+k with only one
sample {(xP+k

i , yP+k
i )}1i=1 in the (P + k)-th domain DP+k, where xP+k

i and yP+k
i denote the

augmented samples and corresponding labels. Note that the number of augmented domains generated
this way is equivalent to the total number of all the original samples since each original sample pair
will generate a pair of augmented samples. The goal of DCG is to train a generalizable model f(·,θ)
for unseen target domain(s) Dt with the aid of all P +Q diversified source domains Ds ∪ Daug

s .

3.2 SUPERMODULARITY REGULARIZATION TERM

Let M = {1, 2, · · · ,m} be a finite set of players and 2M is the family of 2|M | crisp subsets of M .
A (crisp) cooperative game with player set M is a map v : 2M −→ R. For S ∈ 2M , v(S) is called
the worth of coalition S and it is interpreted as the amount of profit the coalition can obtain, when
the players in S work together. Here a game v is called convex if it satisfies the supermodularity
property (Brânzei et al., 2003; Shapley, 1971; Ichiishi, 1981), i.e., for each S, T ∈ 2M :

v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ). (1)

The practical purpose of convex game is that the profit obtained by the cooperation of two coalitions
plus the profit obtained by their intersection will not be less than the sum of profit obtained by the
two respectively. Moreover, consider coalition S ∈ 2M\{∅} and two players i, j which are not in S,
we can deduce increasing marginal contribution property for players according to Eq. 1:

v(S ∪ {j})− v(S) ≤ v(S ∪ {i} ∪ {j})− v(S ∪ {i}). (2)
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We can see that convex game requires that each player contributes to the coalition, which happens to
meet our expectation for DG, where each training domain is required to benefit model generalization.
Besides, convex game also possesses increasing marginal contribution property for players, which
may not hold in DG, however, this property does not hinder our goal, but can further regularize the
model and alleviate the decreasing marginal contribution for domains, as discussed in Section 1.

Thus, we first cast DG as a convex game between domains. To achieve this, at each training iteration,
we randomly split the original source data Ds into P − V meta-train domains of data D̃s and V
meta-test domains of data D̃t, where D̃s and D̃t share no domain. Then we pick out the augmented
domains generated by data in D̃s, denoted as D̃aug

s , and incorporate them into the meta-train domains.
This strategy to conduct meta-train/test domains is to mimic the real train-test domain shift in domain
augmentation strand, which is discussed in Section 4.4. Then, since one domain may contain multiple
samples, we specifically consider involving a specific convex game: convex fuzzy game (Brânzei et al.,
2003) where each player (i.e., each domain) can be partitioned into multiple parts. And each part
represents a sample in DG. Thus, we have a finite set of partitioned players M̃ = D̃s ∪ D̃aug

s . We can
obtain coalitions S, T ∈ 2M̃ by randomly sampling two sets of data from meta-train data D̃s ∪ D̃aug

s ,
respectively. And S ∪ T, S ∩ T can be naturally constructed by the union and intersection of S and
T . As for the profit v(O), O ∈ {S, T, S ∪ T, S ∩ T}, we take the generalization performance in
meta-test evaluated on virtual-test domains D̃t after the meta-training on each coalition O as the
value of profit v(O). We quantify the generalization performance by the negative empirical risk loss
on meta-test domains, then according to the supermodularity property in Eq. 1 we can have:

ℓD̃t
(S ∪ T ) + ℓD̃t

(S ∩ T ) ≤ ℓD̃t
(S) + ℓD̃t

(T ), (3)

ℓD̃t
(O) denotes the loss evaluated on D̃t by the model trained on coalition O and v(O) = −ℓD̃t

(O).

Specifically, assuming a loss function ℓ(f(x,θ), y) for a sample between its output and label,
e.g., cross-entropy loss for classification task, we conduct virtual training on the four coalitions
{S, T, S ∪ T, S ∩ T}, respectively, with the optimization objective:

F(O) :=
∑
x∈O

ℓ(f(x,θ), y)), O ∈ {S, T, S ∪ T, S ∩ T}. (4)

Then the updated virtual parameters θ′ can be computed using one step of gradient descent:

θ′ = θ − α∇θF(O), (5)

where α is the step size. Thus, we can have the corresponding meta-test loss evaluated on the
virtual-test domains D̃t as below:

G(θ′) := Ex∈D̃t
ℓ(f(x,θ′), y). (6)

This objective simulates test on new domains, which can measure the model generalization obtained
by training with one specific coalition. Hence, the supermodularity regularization term can be
constructed naturally utilizing the four meta-test losses of the four coalitions, based on Eq. equation 3:

Lsm = max{0,G(θ − α∇θF(S ∪ T )) + G(θ − α∇θF(S ∩ T ))

−G(θ − α∇θF(S))− G(θ − α∇θF(T ))}.
(7)

Note that we exploit a max(0, ·) function combined with the pure supermodularity property to
construct our regularization. In this way, Lsm > 0 only when the inequality in Eq. 3 is violated, i.e.,
the domain marginal contribution is decreasing. Thus, the limit of our regularization optimization
corresponds to constant marginal contribution, not the inappropriate increasing marginal contribution.
Therefore, this regularization term can not only encourage each training domain to contribute to model
generalization, but also alleviate the decrease of marginal contributions to some extent, enabling the
model to fully leverage the rich information in diversified domains.

3.3 SAMPLE FILTER

Through the optimization of the regularization term, the model will be trained to better utilize the rich
information of diversified source domains. However, what we cannot avoid is that there may exist
some bad samples with low quality, which indicates damage to model generalization. For instance,
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noisy samples will disturb model to learn generalizable knowledge; while redundant samples may
lead to overfitting that hinder the model from learning more diverse patterns.

In this view, we further conduct a sample filter based on the regularization term to eliminate bad
samples. Considering that the proposed regularization aims to penalize the decreasing marginal
contribution of domains and then better utilize the diverse information, the samples that contribute
more to the regularization loss (i.e., cause larger increase) are more unfavorable to our goal, hindering
the improvement of model generalization. Thus, we try to measure the contribution of each input to
our regularization loss and define the contribution as its score. Specifically, we apply a simple but
powerful interpretation technique inspired by (Bach et al., 2015), in which they define the contribution
of each input to the prediction by introducing layer-wise relevance propagation. Essentially it is
equivalent to an elementwise product between the saliency maps of (Simonyan et al., 2014) and the
input, i.e., Gradient × Input. Accordingly, the score of each input can be formulated as follows:

score = xT∇xLsm, x ∈ D̃s ∪ D̃aug
s . (8)

The higher the score of the sample, the greater the regularization loss will be increased caused by
it, and the more it will hinder model from benefiting from diversified domains. Therefore, we pick
out the samples with the top-k score, denoted as Ddel, and cast them away when calculating the
supervision loss for diversified source domains to eliminate the negative effect of low quality samples:

Lsup = Ex∈Ds∪Daug
s \Ddel

ℓ(f(x,θ), y). (9)

Thus, we optimize the regularization loss to enable model to better utilize the rich information within
diversified domains. In the meanwhile, we eliminate the bad samples (e.g, noisy samples, redundant
samples, etc) by the sample filter to avoid their negative effects. Moreover, it is found that different
types of low-quality samples are more likely to be discarded in different training stages, as discussed
in Appendix C. And we have explored out that low quality sample filtering is necessary for both
original and augmented samples in Section 4.4.

The overall optimization objective is:

argmin
θ
Lsup + ωLsm, (10)

where ω weights the supervision loss and the regularization term. The overall methodological flow
is illustrated schematically in Fig. 2 and summarized in Algorithm 1. Besides, to further validate
the rationality of DCG, we make some mathematical derivations and then provide some high-level
insights and heuristic analysis about the mechanisms behind the effectiveness in Appendix C.

4 EXPERIMENTS

4.1 DATASET AND IMPLEMENTATION DETAILS

To evaluate our method, we conduct extensive experiments on three popular benchmarks for domain
generalization: PACS(Li et al., 2017b) is an object recognition benchmark that covers 9991 images
of 7 categories from four different domains, i.e., Art, Cartoon, Photo and Sketch, which with large
discrepancy in image styles. Office-Home(Venkateswara et al., 2017) is a commonly-used benchmark
including four domains (Art, Clipart, Product, RealWorld). It contains 15,500 images of 65 classes in
total. mini-DomainNet(Zhou et al., 2021b) is a very large-scale domain generalization benchmark
consists of about 140k images with 126 classes from four different domains (Clipart, Painting, Real,
Sketch). For all benchmarks, we conduct the commonly used leave-one-domain-out experiments (Li
et al., 2017a). We adopt ResNet-18 pre-trained on ImageNet (He et al., 2016) as backbone for all
datasets. We train the network using mini-batch SGD with batch size 16, momentum 0.9 and weight
decay 5e-4. The initial learning rate is 0.001 and decayed by 0.1 at 80% of the total epochs. The meta
step size α is set to be the same as the learning rate. For hyper-parameters, we set ω = 0.1 and k = 5
for all experiments, which are selected on validation set following standard protocol. All results are
reported based on the average accuracy over three independent runs. More details and results with
error bars are provided in Appendix D, E.

4.2 EXPERIMENTAL RESULTS
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Table 1: Leave-one-domain-out results on PACS.

Methods Art Cartoon Photo Sketch Avg.

DeepAll(Xu et al., 2021b) 77.63 76.77 95.85 69.50 79.94
MLDG (Li et al., 2018a) 78.70 73.30 94.00 65.10 80.70
MASF (Dou et al., 2019) 80.29 77.17 94.99 71.69 81.04
L2A-OT (Zhou et al., 2020b) 83.30 78.20 96.20 73.60 82.80
DDAIG (Zhou et al., 2020a) 84.20 78.10 95.30 74.70 83.10
RSC (Huang et al., 2020) 83.43 80.31 95.99 80.85 85.15
MixStyle (Zhou et al., 2021a) 84.10 78.80 96.10 75.90 83.70
FACT (Xu et al., 2021b) 85.37 78.38 95.15 79.15 84.51
DSU (Li et al., 2022) 83.60 79.60 95.80 77.60 84.10
ITL-Net(Gao et al., 2022) 83.90 78.90 94.80 80.10 84.40

DCG (ours) 85.94 80.76 96.41 82.08 86.30

Results on PACS are summarized in
Table 1. It is clear that our DCG
achieves the best performance among
all the competitors. Our method is the
first to reach 86% average accuracy
on PACS dataset, which exceeds the
DeepAll baseline by 6.4%. We no-
tice that DCG surpasses the domain
augmentation based methods L2A-OT,
MixStyle and FACT by a large margin
of 3.5%, 2.6% and 1.8% respectively,
which indicates the importance of en-
couraging each domain to contribute
to model generalization. Specifically,
on the harder target domains Cartoon
and Sketch, our method still outperf- Table 2: Leave-one-domain-out results on mini-DomainNet.

Methods Clipart Painting Real Sketch Avg.

DeepAll 65.30 58.40 64.70 59.00 61.86
ERM (Vapnik, 1999) 65.50 57.10 62.30 57.10 60.50
MLDG (Li et al., 2018a) 65.70 57.00 63.70 58.10 61.12
Mixup (Zhang et al., 2018) 67.10 59.10 64.30 59.20 62.42
MMD (Lee et al., 2019) 65.00 58.00 63.80 58.40 61.30
SagNet (Nam et al., 2019) 65.00 58.10 64.20 58.10 61.35
CORAL (Peng et al., 2019) 66.50 59.50 66.00 59.50 62.87
MTL (Blanchard et al., 2021) 65.30 59.00 65.60 58.50 62.10

DCG (ours) 69.38 61.79 66.34 63.21 65.18

orms the SOTA with a large margin of
0.5% and 1.2% respectively. All the
comparisons reveal the effectiveness
of DCG and further demonstrate that
the convex game between domains im-
proves model generalization.

Results on Mini-DomainNet are
shown in Table 2. The much larger
number of categories and images
makes DomainNet a much more chal-
lenging benchmark than PACS. DCG
still achieves the state-of-the-art perf-

Table 3: Leave-one-domain-out results on Office-Home.

Methods Art Clipart Product Real Avg.

DeepAll 57.88 52.72 73.50 74.80 64.72
MLDG (Li et al., 2018a) 52.88 45.72 69.90 72.68 60.30
SagNet Nam et al. (2019) 60.20 45.38 70.42 73.38 62.34
RSC (Huang et al., 2020) 58.42 47.90 71.63 74.54 63.12
DDAIG (Zhou et al., 2020a) 59.20 52.30 74.60 76.00 65.50
L2A-OT (Zhou et al., 2020b) 60.60 50.10 74.80 77.00 65.60
MixStyle (Zhou et al., 2021a) 58.70 53.40 74.20 75.90 65.50
FACT (Xu et al., 2021b) 60.34 54.85 74.48 76.55 66.56
STNP (Kang et al., 2022) 59.55 55.01 73.57 75.52 65.89
DSU (Li et al., 2022) 60.20 54.80 74.10 75.10 66.10

DCG (ours) 60.67 55.46 75.26 76.82 67.05

ormance of 65.18%, surpassing the
SOTA by a large margin of 2.31%, fur-
ther validating the efficacy of DCG.

Results on Office-Home are pre-
sented in Table 3, where we beat all
the compared baselines in terms of
the average accuracy. Due to the sim-
ilarity to the pre-trained dataset Ima-
geNet, DeepAll acts as a strong base-
line on Office-Home. Many previous
DG methods, such as MLDG, SagNet,
and RSC, can not improve over the
simple DeepAll baseline. Neverthe-
less, our DCG achieves a consistent
improvement over DeepAll on all the held-out domains. Moreover, DCG surpasses the latest domain
augmentation methods L2A-OT and FACT. The incremental advantages may be due to the relatively
smaller domain shift, where the decreasing marginal contribution of domains is more severe.

4.3 ANALYSIS

Ablation Study. In Table 4, we investigate the role of each component in DCG, which consists of
Fourier augmentation (Aug.), supermodularity regularization (Reg. (Lsm)) and sample filter (Filter.
(Fsm)). The Baseline is trained only with the supervision loss of all the original source data. Based
on it, we diversify source domains by Fourier augmentation to obtain Model 1, which improves
much over Baseline, showing the success of domain augmentation. Further incorporating our
supermodularity regularization Lsm results in Model 3, which is superior to Model 1, demonstrating
the effectiveness of encouraging each diversified domain to contribute to generalization. Besides,
we replace our Lsm by a regularization Lmaml which sums the meta-test losses of all the tasks
as MAML (Finn et al., 2017), the improvement of Model 3 over Model 2 indicates conducting
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Figure 3: The visualization of samples with top-k and bottom-k score respectively.
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Figure 4: (a)(b): relation between model generalization and domain diversity; (c)(d): sensitivity to
hyper-parameters ω and k; with Cartoon and Sketch on PACS dataset as the unseen target domain.

Table 4: Ablation study of DCG on PACS dataset.

Method Aug. Reg. Filter. Art CartoonPhotoSketchAvg.

Baseline - - - 77.6 76.8 95.9 69.5 79.9

Model 1 ✓ - - 83.9 77.0 95.6 77.4 83.4
Model 2 ✓ Lmaml - 84.7 79.0 95.7 80.1 84.9
Model 3 ✓ Lsm - 85.1 80.1 95.9 81.4 85.6
Model 4 ✓ - Fmaml 84.1 77.7 95.5 78.2 83.9
Model 5 ✓ - Fsm 84.4 78.2 95.8 79.3 84.4
Model 6 ✓ LmamlFmaml 85.3 79.9 96.0 81.5 85.7

DCG ✓ Lsm Fsm 85.9 80.8 96.4 82.1 86.3

convex game between domains is more
helpful to generalization than simply apply-
ing the meta loss. Comparing Model 5 with
Model 1, we can observe that the proposed
sample filter is also conducive to general-
ization, suggesting the importance of elim-
inating nonprofitable information. And the
improvement of Model 5 over Model 4 can
further prove our superiority. Finally, DCG
performs best in all variants, indicating that
the two proposed components complement
and benefit each other.

Generalization with Domain Diversity. Figure 4a, 4b show the model generalization with the
increase of domain diversity. We use the classification accuracy on the held-out target domain as the
metric of model generalization across domains, and the number of augmented domains to measure the
domain diversity. It is clear that on both Cartoon and Sketch tasks, the model generalization capability
of the baseline method BASELINE and the SOTA method FACT do not necessarily improve with
the increase of domain diversity, but sometimes decrease instead. While in our DCG, the model
generalization increases monotonically with the domain diversity on the whole and the decrease of
marginal contribution of domains is alleviated. Meanwhile, in a few cases, the generalization of
our model drops a little when domain diversity increases. This is reasonable since the additional
augmented domains may be low-quality or nonprofitable to generalization. These results demonstrate
that our method indeed encourages each diversified domain to contribute to model generalization,
hence further improving the performance of domain augmentation based methods.

Visualization of Filtered Samples. To visually verify the claim that our sample filter can effectively
eliminate the low-quality samples by discarding the samples with top-k score, we provide the samples
that have been discarded the most times in the whole training process, as well as the samples that
always possess the bottom-k score (a.k.a., high-quality samples). The results on the task with Cartoon
as unseen target domain are shown in Figure 3. We can see that the discarded original samples in the
first row either be noisy images that have messy background and fuzzy objects, or images containing
naive or classical information which may be redundant. While the high-quality original images in
the bottom row are all vivid and rich in information. As for the augmented samples, the discarded
ones are almost distinguishable while the retained high-quality ones are limpid. These comparisons
demonstrate the effectiveness of our sample filter, further validate the superiority of DCG.
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Sensitivity of Hyper-parameters. Figure 4c, 4d show the sensitivity of DCG to hyper-parameters
ω and k. Specifically, the value of ω varies from {0.01, 0.05, 0.1, 0.5, 1, 0}, while k changes from
{1, 3, 5, 7, 9}. It can be observed that DCG achieves competitive performances robustly under a wide
range of hyper-parameter values, i.e., 0.05 ≤ ω ≤ 0.3 and 3 ≤ k ≤ 7, in either task Cartoon or
Sketch, which further verifies the stability of our method.

4.4 DISCUSSION

Table 5: Leave-one-domain-out results on PACS.

Methods Art Cartoon Photo Sketch Avg.

Random_meta_split 85.6 80.2 96.0 81.8 85.9

Filter_only_on_aug 85.4 80.6 96.7 81.8 86.1
Filter_only_on_ori 85.2 80.0 96.5 82.3 86.0

DCG 85.9 80.8 96.4 82.1 86.3

Can the augmented samples be regarded
as independent novel domains? Since DCG
considers all the diversified source domains
Ds ∪ Daug

s into training, how to conduct the
meta training and meta testing domains is turned
out to be a problem. In Section 3.2, we randomly
split the original source domains Ds into meta-
train and meta-test domains first, next pick out
the domains in Daug

s that are augmented by the
current meta-train domains and then merge them into together. In this way, there is no domain
augmented by the meta-test domains in the meta-train domains, and vice versa. However, why don’t
we just randomly split all the diversified source domains, i.e., Ds ∪ Daug

s , into two parts, since each
diversified domain can be regarded as a novel domain? We conduct experiments of this variant and the
results is shown in the first line in Table 5. We can see that the variant achieves inferior performance
to DCG. This may be because the synthetic novel domains still contain part of the domain-related
information of the original ones, thus they can not be considered completely independent with each
other. In this view, the strategy to conduct meta train/ test domains in Section 3.2 can guarantee
the meta-test domains are completely unseen, which better simulates the domain shift between the
diversified source domains and the held-out unseen target domain.

Is low-quality sample filtering necessary for both original and augmented samples? To explore
whether the sample filter is necessary for both original and augmented samples, we conduct exper-
iments that apply the proposed sample filter only on the original samples or augmented samples
and the results are shown in Table 5. It can be seen that only filtering the original samples or the
augmented ones both suffer from a performance drop, which indicates that there exist bad samples
among both original and augmented samples. Limiting the filtering range will make some low-quality
samples be retained to participate in the training process, which will damage the model generalization.
Besides, the performance of only filtering the original samples is slightly lower than that of only
filtering the augmented ones, which should be due to the augmented samples being less natural.

5 CONCLUSION & OUTLOOK

This work introduces a novel perspective based on game theory into domain generalization and
casts DG as a convex game between domains. We explore the relation of model generalization and
domain diversity, the main idea is to make each diversified domain contribute to the improvement on
generalization, validating and further enhancing the effectiveness of domain augmentation strand.
We then propose a framework consists of a regularization term based on the supermodularity of
convex game, which encourages model to best utilize the rich information within diversified domains,
and a sample filter to eliminate the bad samples that will hamper generalization. Heuristic analysis
demonstrate the mechanisms and rationales behind our method, and extensive experiments on real-
world applications empirically show the effectiveness of DCG.

Considering this work is a pioneering exploration of domain diversity and model generalization, there
are two limitations could be explored in future research. First, the use of meta-learning inevitably
leads to a decrease in training efficiency. Second, our approach can be valuable to other domain
augmentation methods since the domain convex game we perform can be easily generalized to the
methods which construct augmented domains explicitly. However, there exist some methods that
diversify source domains implicitly and our method cannot be directly applied. It remains an open
problem to generalize our mechanism to all the domain augmentation methods in a more efficient and
general way for future exploration. Nevertheless, we believe our work can inspire the future work of
enriching domain diversity with improved generalization capability.
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A SOCIAL IMPACT & LIMITATION

Our work focuses on domain generalization and attempts to make each training domain contribute to
model generalization, which validates and further enhances the effectiveness of domain augmentation
strand. This method produces a positive impact on the society and community, saves the cost and
time of data annotation, boosts the reusability of knowledge across domains, and greatly improves
the efficiency. Nevertheless, this work suffers from some negative influences, which is worthy of
further research and exploration. Specifically, more jobs of classification or target detection for rare
or variable conditions may be cancelled. Moerover, we should be cautious about the result of the
failure of the system, which could render people believe that classification was unbiased. Still, it
might be not, which might be misleading, e.g., when using the system in a highly variable unseen
target domain.

B ALGORITHM

The algorithm of our proposed Domain Comvex Game is summarized as follows:

Algorithm 1 The Algorithm of Domain Convex Game.

Input: P +Q diversified source domains Ds ∪ Daug
s ; Hyper-parameters: α, ω, k.

1: randomly initialize model parameters θ.
2: for iter in iterations do
3: Randomly sample a mini-batch of Ds as B and a mini-batch of Daug

s as Baug .
4: Split: D̃s and D̃t←− B, Pick out: D̃aug

s from Baug .
5: Construct coalitions S, T by randomly sampling from D̃s ∪ D̃aug

s ; construct coalitions S ∪
T, S ∩ T .

6: Calculate supermodularity regularization loss Lsm as Eq. equation 7.
7: Pick out bad samples Ddel with the top-k score calculated by Eq. equation 8.
8: Calculate supervision loss Lsup as Eq. equation 9
9: Update θ = argminθ Lsup + ωLsm.

10: end for

C HEURISTIC INSIGHT

In this section we provide some heuristic explanations about the mechanisms behind our proposed
method to further demonstrate the rationality. For brevity, we take two coalitions S = {(xi, yi)} and
T = {(xj , yj)} as example, where xi and xj are from different domains. The optimization goal of
the proposed regularization loss is to make the model generalization loss obtained by S ∪ T plus the
model generalization loss obtained by S ∩ T be not greater than the sum of generalization losses
obtained by S and T separately, i.e., ℓD̃t

({xi}∪{xj})+ℓD̃t
({xi}∩{xj}) ≤ ℓD̃t

({xi})+ℓD̃t
({xj}).

According to Eq. equation 7, we have:

G(θ −∇θℓ(f(xi,θ), yi)−∇θℓ(f(xj ,θ), yj)) + G(θ)
− G(θ −∇θℓ(f(xi,θ), yi))− G(θ −∇θℓ(f(xj ,θ), yj)) ≤ 0.

(11)

We then carry out the second-order Taylor expansion on the terms in Eq. equation 11 and get:

(∇i +∇j)
TH(∇i +∇j)−∇T

i H∇i −∇T
j H∇j

= ∇T
i H∇j +∇T

j H∇i ≤ 0,
(12)

∇i,∇j denote∇θℓ(f(xi,θ), yi),∇θℓ(f(xj ,θ), yj) respectively, H = ∂2G(θ)
∂θ∂θT is the Hessian matrix

of G(θ). We can see that all the zero- and first-order terms of the Taylor-expansion have been
dissolved and only the second-order terms are left. Then two main cases can be analysed respectively.

Since Hessian matrix H is a real symmetric matrix, for the case where H is positive definite, we can
perform Cholesky decomposition on it: H = LTL, where L is an upper triangular matrix with real
and positive diagonal elements. Thus, we can then deduce Eq. 12 as follows:

∇T
i H∇j +∇T

j H∇i = (L∇i)
T (L∇j) + (L∇j)

T (L∇i) ≤ 0. (13)
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Similarly, for the case where H is negative definite, we can still perform Cholesky decomposition on
positive definite matrix −H , thus we can have H = −LTL and

∇T
i H∇j +∇T

j H∇i = −((L∇i)
T (L∇j) + (L∇j)

T (L∇i)) ≤ 0. (14)

Denote L∇i, L∇j as ∇̃i, ∇̃j respectively, which can be regarded as a mapping transformation of the
original gradient vector. Intuitively,∇i,∇j are the sample gradients generated in the original "training
space" during the meta training procedure, while ∇̃i, ∇̃j are the sample gradients transformed by
matrix L, which is derivated from the regularization loss calculated on meta test data that can indicate
the model generalization. Hence, we can regard the transformed ∇̃i, ∇̃j as sample gradients mapped
to a "generalization space", and constrain sample gradients in this mapped space will generalize
better on the real test set compared to constrain the sample gradients in the naive "training space".

Then two main cases can be analysed respectively.

Case 1. For Hessian matrix H ≺ 0 (a.k.a. negative definite), Eq. 12 holds when ∇̃i
T ∇̃j ≥ 0.

mechanism. When H ≺ 0, i.e., achieving local maxima, which suggests inferior model generalization,
the proposed regularization would help the model improve by enforcing domain consistency on
discriminability, that is, pulling the samples from different classes apart and bringing the ones from
the same class closer in the "generalization space". As for sample filtering, samples that possess
inconsistent gradients, e.g., noisy samples, are more prone to be discarded.

analysis. As Eq. 14 shows, when H is negative definite, the goal of our proposed regularization is
to make the inner product of transformed sample gradients positive, i.e., make the sample gradients
consistent in the "generalization space". Assuming samples xi, xj belong to the same class, then
their transformed gradients will be inconsistent when they are apart, and be consistent when they
are close. Thus, the optimization of our regularization will draw the samples from the same class
closer. Similarly, if xi, xj are from different classes, their transformed gradients would certainly
be inconsistent if the samples are close in the "generalization space", since they share the same
model while possessing different labels. Thus, the model will pull the samples from different classes
apart to make their gradients consistent. In conclusion, when the model is not well optimized, our
regularization will help the model improve by enforcing domain consistency on discriminability
considering the samples are from different domains. As for sample filtering, the samples that have
very inconsistent gradients are contrary to our goal most, and are more likely to obtain larger scores
and be discarded. Generally speaking, samples with inconsistent gradients are often noise samples,
since they are often far from the center of the class, i.e., being located at outliers. Therefore, the noise
samples are more prone to be filtered in this case.

Case 2. For Hessian matrix H ≻ 0 (a.k.a. positive definite), Eq. 12 holds when ∇̃i
T ∇̃j ≤ 0.

mechanism. When H ≻ 0, i.e., achieving local optima, the proposed regularization would help the
model jump out by further squeezing out the information within hard samples, that is, detecting the
hard samples and then assigning them larger weights implicitly. As for sample filtering, samples that
possess very consistent gradients, e.g., redundant samples, are more prone to be discarded.

analysis. As Eq. 13 shows, when H ≻ 0, our proposed regularization aims to make the inner product
of the transformed sample gradients negative, i.e., make the transformed gradients inconsistent in
the "generalization space". This objective is contrary to the goal of our main supervision loss which
aims to make all the samples clustered, so that it can be regarded as an adversarial optimization
that generates adversarial samples first and then trains with these adversarial samples. Therefore,
this objective enables the model to generate and detect hard samples that are difficult to classify
since the hard samples are far away from the class center and are more likely to possess inconsistent
gradients. Besides, due to these hard samples contributing more to the main supervision loss, they
can be considered as being assigned larger weights implicitly during the optimization, just like the
mechanism of focal loss (Lin et al., 2017). Thus, our regularization can help model jump out of the
local optima by squeezing out more information within hard samples, avoiding the model depending
on easy patterns or even overfitting on redundant ones. For sample filtering, the samples that produce
very consistent gradients, which also means they are redundant ones to a certain, are more likely to
be detrimental to our regularization loss and be discarded.

For the general case that H is not fully positive or negative definite, we can take SVD decomposition
and regard the model as combined by positive or negative definite sub-matrices. Then our conclusion
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holds for each subspace represented by each submatrix. As a conclusion, the optimization of
our proposed regularization term is directly aimed at our goal. In practice, it constrains domain
consistency on discriminability when the model is trained not that well, while when the model falls
into local optimal, it will further squeeze out the information within hard samples that helps the
model jump out, which demonstrates the rationality and effectiveness of our method.

D IMPLEMENTATION DETAILS

For all benchmarks, we conduct the commonly used leave-one-domain-out experiments (Li et al.,
2017a), where we choose one domain as the unseen target domain for evaluation, and train the model
on all remaining domains. We adopt the standard augmentation protocol as in (Carlucci et al., 2019),
all images are resized to 224 × 224, following with random resized cropping, horizontal flipping and
color jittering. And the Fourier domain augmentation strategy utilized to diversify source domains
closely follows the implementations in (Xu et al., 2021b). The network backbone is set to ResNet-18
pre-trained on ImageNet (He et al., 2016) for all datasets following other related works. We train
the network using mini-batch SGD with batch size 16, momentum 0.9 and weight decay 5e-4 for
50 epochs. The initial learning rate is 0.001 and decayed by 0.1 at 80% of the total epochs. The
meta step size α is set to be the same as the learning rate. For the hyper-parameters, i.e., the weight
of regularization loss ω and the number of discarded bad samples in each iteration k, their values
are selected on validation data following standard practice, where we use 90% of available data as
training data and 10% as validation data. Specifically, we set ω = 0.1 and k = 5 for all experiments.
Our framework is implemented with PyTorch on NVIDIA GeForce RTX 3090 GPUs. All results are
reported based on the average accuracy over three independent runs for a fair comparison.

E EXPERIMENTAL RESULTS WITH ERROR BARS

For the sake of objective, we run all the experiments multiple times with random seed. We report the
average results in the main body of paper for elegant, and show the complete results with error bars
in the form of mean±std below (Table. 6, 7, 8).

Table 6: Leave-one-domain-out results on PACS. The best and second-best results are bolded and
underlined respectively.

Methods Art Cartoon Photo Sketch Avg.

MLDG (Li et al., 2018a) 78.70 73.30 94.00 65.10 80.70
L2A-OT (Zhou et al., 2020b) 83.30 78.20 96.20 73.60 82.80
RSC (Huang et al., 2020) 83.43 80.31 95.99 80.85 85.15
DSU (Li et al., 2022) 83.60 79.60 95.80 77.60 84.10

DeepAll(Zhou et al., 2020a) 77.63±0.84 76.77±0.33 95.85±0.20 69.50±1.26 79.94
MASF (Dou et al., 2019) 80.29±0.18 77.17±0.08 94.99±0.09 71.69±0.22 81.04
DDAIG (Zhou et al., 2020a) 84.20±0.30 78.10±0.60 95.30±0.40 74.70±0.80 83.10
MixStyle (Zhou et al., 2021a) 84.10±0.4 78.80±0.4 96.10±0.3 75.90±0.9 83.70
FACT (Xu et al., 2021b) 85.37±0.29 78.38±0.29 95.15±0.26 79.15±0.69 84.51
ITL-Net (Gao et al., 2022) 83.90±0.4 78.90±0.6 94.80±0.2 80.10±0.6 84.40

DCG (ours) 85.94±0.21 80.76±0.36 96.41±0.17 82.08±0.44 86.30

15



Under review as a conference paper at ICLR 2023

Table 7: Leave-one-domain-out results on Mini-DomainNet.

Methods Clipart Painting Real Sketch Avg.

DeepAll (Zhou et al., 2020a) 65.30 58.40 64.70 59.00 61.86

ERM (Vapnik, 1999) 65.50 ± 0.3 57.10 ± 0.5 62.30 ± 0.2 57.10 ± 0.1 60.50
MLDG (Li et al., 2018a) 65.70 ± 0.2 57.00 ± 0.2 63.70 ± 0.3 58.10 ± 0.1 61.12
Mixup (Zhang et al., 2018) 67.10 ± 0.2 59.10 ± 0.5 64.30 ± 0.3 59.20 ± 0.3 62.42
MMD (Lee et al., 2019) 65.00 ± 0.5 58.00 ± 0.2 63.80 ± 0.2 58.40 ± 0.7 61.30
SagNet (Nam et al., 2019) 65.00 ± 0.4 58.10 ± 0.2 64.20 ± 0.3 58.10 ± 0.4 61.35
CORAL (Peng et al., 2019) 66.50 ± 0.2 59.50 ± 0.4 66.00 ± 0.6 59.50 ± 0.1 62.87
MTL (Blanchard et al., 2021) 65.30 ± 0.5 59.00 ± 0.4 65.60 ± 0.4 58.50 ± 0.2 62.10

DCG (ours) 69.38±0.19 61.79±0.22 66.34±0.27 63.21±0.09 65.18

Table 8: Leave-one-domain-out results on Office-Home.

Methods Art Clipart Product Real Avg.

MLDG (Li et al., 2018a) 52.88 45.72 69.90 72.68 60.30
SagNet (Nam et al., 2019) 60.20 45.38 70.42 73.38 62.34
RSC (Huang et al., 2020) 58.42 47.90 71.63 74.54 63.12
L2A-OT (Zhou et al., 2020b) 60.60 50.10 74.80 77.00 65.60
DSU (Li et al., 2022) 60.20 54.80 74.10 75.10 66.10

DeepAll (Zhou et al., 2020a) 57.88±0.20 52.72±0.50 73.50±0.30 74.80±0.10 64.72
DDAIG (Zhou et al., 2020a) 59.20±0.10 52.30±0.30 74.60±0.30 76.00±0.10 65.50
MixStyle (Zhou et al., 2021a) 58.70±0.3 53.40±0.2 74.20±0.1 75.90±0.1 65.50
FACT (Xu et al., 2021b) 60.34±0.11 54.85±0.37 74.48±0.13 76.55±0.10 66.56
STNP (Kang et al., 2022) 59.55±0.21 55.01±0.29 73.57±0.28 75.52±0.21 65.89

DCG (ours) 60.67±0.14 55.46±0.32 75.26±0.18 76.82±0.09 67.05
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