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Abstract

Medical data typically requires expert annotation to produce a reliable quantitative organ
analysis, which can be costly and time-consuming. Recently, several deep learning-based
synthetic augmentations have been proposed to address the limitations. However, previous
success of generative synthetic augmentation methods cannot be guaranteed without addi-
tional fine-tuning. To mitigate the dependency on this issue, we propose an anatomy-guided
latent diffusion model, which can perform anatomical synthesis in a selectively latent blend-
ing manner. We evaluate the proposed approach using a mandibular canal segmentation
dataset on panoramic dental radiographs. The segmentation performance was improved
by a Dice similarity coefficient of 16.6% with our proposed synthetic augmentation.
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1. Introduction

One of the primary challenges for deep learning in the medical domain is the scarcity of
accessible datasets with expert annotation. Constructing reliable labeled datasets is time-
consuming, labor-intensive, and demands significant domain knowledge. Recently, diffusion
model (DM)-based synthetic augmentation studies (Ye et al., 2023; Oh and Jeong, 2023)
have been proposed to overcome these challenges. However, the previous studies depend
on further fine-tuning for image generation. Furthermore, unlike latent diffusion models
(LDMs), basic DMs require significant computational resources because they operate in the
full data space.
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Figure 1: Framework of anatomy-guided latent bleding-based LDM for synthetic data aug-
mentation.

In this study, therefore, we propose an unconditional LDM-based anatomy-guided latent
blending strategy to generate fine-grained anatomical synthetic data. Instead of optimizing
a mask-conditional LDM, we leverage an unconditional diffusion probabilistic model (DPM)
for the reverse diffusion iterations applied to the given blended latent representations. This
study aims to generate a synthetic dataset for mandibular canal segmentation that enables
few-shot anatomical segmentation on panoramic radiographs (PANs).

2. Methods

Data configuration. This study was approved by the Institutional Review Board of Seoul
National University Dental Hospital (No. ERI23015). A total of 7,263 PANs were acquired,
comprising labeled 2,100 PANs (called the anatomical guide set) and an unlabeled 5,163
PANs. We used an unlabeled data set consisting of 3,613 images for the training of the
LDM and 1,550 images for the synthetic augmentation. In addition, 210 images from the
labeled dataset were used for synthetic augmentation, while the 1,890 images constituted a
hold-out test set for evaluation. All data were resized to 512 × 256 and normalized to [-1,
1]. We also used a pre-trained buccal segmentation model to remove unnecessary regions.

Anatomy-guided latent blending. We used anatomy-guided LDM to generate syn-
thetic PANs that could be utilized to image-mask paired datasets without further manual
segmentation (Figure 1). To prevent data leakage, the data used for synthesis was excluded
from the LDM training set. First, the pre-trained variational autoencoder (VAE) encoded
unlabeled PANs Xu and labeled PANs Xa as lower-dimensional latent representations to
obtain each latent space. In the latent spaces, the structural similarity index measure
(SSIM) was utilized for the selection of similar latents of zu and za, leading to anatomical
latent blending. We hypothesized that this approach for latent selection would prevent the
blending of unrelated latents and improve the stability of the sampling process. As denoted
in Appendix A, the Ga derived from the anatomical guide set was used to synthesize the
anatomical structure within the unlabeled PANs selectively.
Following the previous latent blending study (Avrahami et al., 2023), we down-sampled the
binary label map Ga of size 64 × 32 for use as anatomical guidance for each latent zu and
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Table 1: Quantitative comparison results of synthetic augmented segmentation. “Real”
refers to a real dataset while “synthetic” indicates an anatomy-guided synthetic dataset.

Training data composition Evaluation metrics

Latent selection Real Synthetic Precision Recall DSC

- ✓ 0.593±0.172 0.411±0.174 0.477±0.172
SSIM Top 5
(n = 1, 050)

✓ 0.591±0.173 0.324±0.143 0.411±0.156
✓ ✓ 0.661±0.153 0.522±0.157 0.579±0.152

SSIM Top 10
(n = 2, 100)

✓ 0.625±0.154 0.501±0.150 0.552±0.148
✓ ✓ 0.684±0.149 0.594±0.148 0.633±0.144

SSIM Top 20
(n = 4, 200)

✓ 0.663±0.164 0.573.±0.157 0.611±0.154
✓ ✓ 0.689±0.156 0.608±0.152 0.643±0.149

SSIM Top 50
(n = 10, 500)

✓ 0.639±0.169 0.577±0.164 0.603±0.162
✓ ✓ 0.659±0.162 0.612±0.152 0.632±0.152

za. Furthermore, we obtained dilated label map G
′
a by performing dilation filtering on Ga

to mitigate information imbalance of the narrow mandibular canal regions in background
source z′u and foreground source z′a, where the z′u and z′a were obtained using element-wise
multiplication with G′

a and inverted G′
a. We used the blended latent of z′u and z′a as the

initial latent zinit. The denoised latent z0 was obtained with 25 times of reverse diffusion
steps. The z0 is then passed into the VAE decoder to reconstruct the synthetic image Sa. To
assess the reliability of our synthetic augmentation approach, we exploited the SegFormer
(Xie et al., 2021) for the downstream mandibular canal segmentation task.
Implementation details. We designed our model based on Medfusion (Müller-Franzes
et al., 2023). We used the AdamW optimizer for network training and linear noise schedul-
ing for the forward diffusion process. The total number of forward diffusion steps was
1,000, and VAE was trained for 2,000 epochs and an unconditional denoising U-Net for
1,000 epochs using an NVIDIA RTX A6000 GPU.

3. Results and Discussion

In this study, the top 5, 10, 20, and 50 unlabeled PANs most similar to the image from
anatomical guide set were selected for synthetic image sampling. Applying anatomy-
guided synthesis with selected unlabeled PANs, we obtained four different synthetic datasets
comprising paired images and masks of 1,050, 2,100, 4,200, and 10,500. The examples of
anatomical synthetic data were presented in Appendix B.

Table 1 shows the performance comparison of mandibular canal segmentation using real
datasets and synthetic augmented datasets. We observed that anatomy-guided synthetic
augmentation improves the performance of canal segmentation in all situations. Addition-
ally, we conducted a further evaluation with the model trained with a synthetic dataset
alone. Building on this evaluation, we demonstrated that our approach can perform fine-
grained anatomical synthesis from unlabeled data and make it usable as a reliable augmented
training dataset. In conclusion, we successfully generated a synthetic dataset for mandibu-
lar canal segmentation on PANs based on anatomy-guided latent blending LDM. We believe
that our model may provide a fine-grained synthesis of the desired region of interest with
low distortion of the original unlabeled image.
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Appendix A. Sampling process with anatomy-guided latent blending.

Require: Trained VAE encoder E(x) and VAE decoder D(z).
Input: unlabeled image Xu, labeled image Xa, binary label map Ga, denoising step T .
Output: synthetic image Sa.
zu, za = E(Xu), E(Xa)
G′

a = Downsample(Ga) ∗DilationF ilter
z′u, z

′
a = zu ×G′

a, za × (1−G′
a)

zinit ∼ z′u + z′a
zk ∼ noise(zinit, T )
for t = T, ..., 1 do

zt−1 ← denoise(zt)
end
Sa = D(z0)
return Sa

4

https://doi.org/10.1145/3592450


Short Title

Appendix B. Representative examples of anatomy-guided synthetic data.
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