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ABSTRACT

This work attempts to tackle the problem of domain generalization (DG) via learn-
ing to reduce domain shift with an episodic training procedure. In particular, we
measure the domain shift with Y-discrepancy and learn to optimize Y-discrepancy
between the unseen target domain and source domains only using source-domain
samples. Theoretically, we give a PAC-style generalization bound for discrepancy-
optimal meta-learning and further make comparisons with other DG bounds includ-
ing ERM and domain-invariant learning. The theoretical analyses show that there
is a tradeoff between classification performance and computational complexity for
discrepancy-optimal meta-learning. The theoretical results also shed light on a
bilevel optimization algorithm for DG. Empirically, we evaluate the algorithm with
DomainBed and achieves state-of-the-art results on two DG benchmarks.

1 INTRODUCTION

Deep learning has achieved highly competitive performance on test data drawn from the same
distribution as large training data. However, in practice there are many circumstances where access to
target data is impossible. Research on domain adaptation (DA) uses unlabeled target data to transfer
labeled source information to a specific target domain (Pan & Yang, 2009; Mansour et al., 2009). In
recent years, domain generalization (DG) has gained increasing attention. Different from DA, DG
aims to solve a more practical and challenging problem, where the target domain is invisible and thus
explicit training on the target is impossible (Blanchard et al., 2011; Muandet et al., 2013).

To tackle the invisibility of target domain for DG, a naive method is empirical risk minimization
(ERM) (Vapnik, 1999), which relays on the diversity of source data to achieve better generalization
performance for unseen target domains (Shankar et al., 2018; Volpi et al., 2018; Gulrajani & Lopez-
Paz, 2020). However, it is almost impossible in practice to acquire training data from enough domains
to achieve promising DG performance. Another route is to better utilize the feature distributions of
source domains, some previous work learn domain-invariant representation across source domains
(Albuquerque et al., 2020; Xiao et al., 2021). As shown in Figure 1 (b), the domain-invariant
representation can regularize the feature space to improve classification performance across source
domains (α-arrows), but the discrepancy between the unseen target domain and source domains still
limits the generalization performance.

In order to effectively utilize the available source data to improve generalization performance, episodic
training process (Finn et al., 2017) is recently applied to DG (Li et al., 2018a; Balaji et al., 2018; Li
et al., 2019b), i.e., randomly extracting a meta-target sample and meta-source samples from available
source data to simulate domain shift in each iteration. This work attempts to train a discrepancy-
optimal meta-learner that gains experience during the episodic training process so as to minimize
the domain discrepancy between any unseen target domain and the available source domains. We
theoretically show the effectiveness of discrepancy-optimal meta-learning for DG with a PAC-style
learning bound and further make comparisons with ERM and domain-invariant learning for DG. The
theoretical analyses mainly show that there is a tradeoff between generalization performance and
computational complexity for the proposed discrepancy-optimal meta-learning framework.

In order to make the theoretical idea into practice, we design an bilevel optimization problem for
discrepancy-optimal meta-learning, where the inner-loop objective is to minimize Y-discrepancy
across meta-source samples while the outer-loop objective is to minimize Y-discrepancy between
meta-target and meta-source samples. The effectivenesses of inner-loop and outer-loop optimization
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Figure 1: Motivations for discrepancy-optimal meta-learning. In the feature space Rd, T denotes the
range of target domains and S1, S2 denote the ranges of two source domains. (+) and (−) denote
positive examples and negative examples, respectively. A real-world case is shown in Appendix F

.

is shown as the α-arrows and β-arrows in Figure 1 (c), respectively. A theoretical analysis from a
geometric perspective shows that the collaborative effectiveness of the inner-loop and outer-loop
optimization is to minimize Y-discrepancy between target domain and the convex hull of source
domains. Empirically, we conduct experiments on DomainBed (Gulrajani & Lopez-Paz, 2020) and
evaluate on two DG benchmarks. Results show that our method is highly effective and achieves
state-of-the-art performances. The code will be released at https://anonymous.com.

2 RELATED WORK

Domain Generalization. A promising solution for DG is to learn domain-invariant features across
source domains (Muandet et al., 2013; Deshmukh et al., 2019; Li et al., 2017; 2018b;c; Albuquerque
et al., 2020; Deng et al., 2020). Early work perform kernel-based optimization to learn an invariant
feature mapping to RKHS (Muandet et al., 2013; Deshmukh et al., 2019). Neural-network methods
have achieved promising results in recent years (Li et al., 2017). Li et al. (2018b) employ maximum
mean discrepancy (MMD) constraints via an Auto-Encoder. Recently, adversarial training strategies
have shown highly effectiveness for DG via reducing covariant shift (Li et al., 2018c; Albuquerque
et al., 2020; Deng et al., 2020) or reducing both covariant shift and conditional shift (Li et al., 2018c).
Another method utilizes Variational Bayes for domain-invariant learning (Xiao et al., 2021). Instead
of constructing invariant feature spaces, some methods use data augmentation (Shankar et al., 2018;
Volpi et al., 2018; Qiao et al., 2020; Zhou et al., 2020) to enrich source diversity, which also shows
usefulness for DG. We borrow the idea of extracting domain-invariant feature representations from
the previous work, but our algorithm also optimizes the discrepancy between the expected target
domain and source domains via meta-learning.

Meta-learning. Meta-learning provides a framework to gain learning experiences for future tasks
over multiple training episodes, which often cover a distribution of related tasks (Thrun & Pratt, 1998;
Baxter, 2000). For neural models, gradient-based meta-learning methods (Finn et al., 2017; Grant
et al., 2018; Gordon et al., 2018) are successfully applied to few-shot learning. The episodic training
procedure is also introduced to address DG (Li et al., 2018a; Balaji et al., 2018; Li et al., 2019a;b; Dou
et al., 2019; Du et al., 2020) via simulating domain shift between source domains and unseen target
domains. To alleviate domain shift during episodic training, MLDG (Li et al., 2018a) follows the
update rule of MAML (Finn et al., 2017), minimizing the risk on meta-target data upon the optimized
parameters by meta-source data. A limitation of using the source and target task objectives directly
for inner-loop and outer-loop optimization might be sub-optimal, since it is highly abstracted from
feature representation (Dou et al., 2019). MetaReg (Balaji et al., 2018) adds a classifier’s weights
regularization term to the objective of source task for inner-loop optmization to prouduce a more
general classifier. Li et al. (2019b) improve MetaReg by training a feature-critic network to obtain a
more general feature extractor. Dou et al. (2019) keeps source task risk as the inner-loop objective
but replace the outer-loop objective by global class alignment and local sample clustering objectives
to explictly regularize the feature space. Our method performs episodic training procedure based on
MAML (Finn et al., 2017), but different from the previous work in that we optimize the discrepancy
between target and source domains while the inner objective is to minimize the dicrepancy accorss
source domains. We also show that our method has strong theoretical foundations.
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3 PRELIMINARIES

3.1 SET-UP

Notations. Let X be the input space and Y = {0, 1} be the output space. Following Blanchard et al.
(2011) and Muandet et al. (2013), we define a domain as a joint distribution PXY (P for brevity) on
X × Y and let PX×Y (P for brevity) denote the set of all domains. We assume that all domains are
drawn i.i.d. according to P on PX×Y .

We denote a set of N source domains as S = {Si}1≤i≤N , whose elements are drawn i.i.d. according
to a distribution P . Empirically, there exist training samples Ŝ = {Ŝi}1≤i≤N of N source domains.
We assume that the number of source domainsN ∈ {1, . . . , Nm} obeys a distribution p(N) on the set
{1, . . . , Nm}, where Nm is the maximum number of source domains. For each Si (i ∈ {1, . . . , N}),
training sample Ŝi = {(xik, yik)}1≤k≤ni

are drawn i.i.d. according to Si. For brevity, we assume all
domains have the same number of training samples, i.e., nT = n1 = . . . = nN = n.

A decision function h ∈ H : X → Y maps the input space into the output space and a loss function
`◦h : X×Y → R+ is a real-valued function that maps from a data point (x, y) ∈ Z to a non-negative
real number, e.g., `(h(x), y) = |h(x)− y| (x, y) ∈ Z (Ben-David et al., 2010). The expected error
εD(h) and empirical error ε̂D̂(h) on a domain D w.r.t. a decision function h are represented as
follows:

εD(h) := E(x,y)∼D[`(h(x), y)]; ε̂D̂(h) :=
1

|D̂|

∑
(x,y)∈D̂

`(h(x), y) (1)

In deep learning, a neural decision function h = g ◦ f can be regarded as a composition function of
a feature extractor f ∈ F : X → Rd and a classifier g ∈ G : Rd → {0, 1} and the corresponding
expected error and empirical error can be represented as εDf

(g) := εD(g ◦ f) and ε̂f(D̂)(g) :=

ε̂D̂(g ◦ f), respectively. We denote Df as a distribution on Rd, where Df (f(x)) = D(x), x ∈ X .

Learning algorithm & Objective. A learning algorithm A : {ZN×n : N ∈ [Nm]} → H
for DG maps from source data Ŝ ∈ ZN×n (N ∈ [Nm]) to a decision function h ∈ H and the
set of all learning algorithms is represented as A(H,ZN×n) or A for brevity. We assume that
{A(Ŝ) : A ∈ A, Ŝ ∈ ZN×n, N ∈ [Nm]} ⊆ H. Following Maurer & Jaakkola (2005), a nautral
measure for the performance of a given algorithm A for DG is represented as:

EŜ∼Sn,S∼PN ,N∼p(N)

[
ET∼P [εT(A(Ŝ))]

]
(2)

For a neural decision function g ◦ f , we denote the partial effect of A on the feature extractor as an
algorithm, Af : {ZN×n : N ∈ [Nm]} → F and similarly, Ag : {ZN×n : N ∈ [Nm]} → G.

A meta-algorithm (or meta-learner) A : {D̂} → A(F ,ZN×n) maps from a meta-sample D̂ to an
algorithm A ∈ A(F ,ZN×n). A meta-sample D̂ denotes M pairs of meta-source and meta-target
samples D̂ = {(Ŝi, T̂i)}1≤i≤M , where the size of meta-sampleM ≈ Nm ·2Nm−1 in that we consider
all possible numbers of meta-source domains in the episodic training process. In meta-learning for
DG, a meta-algorithm A learns an algorithm A← A(D̂) from the meta-sample D̂, which can learn
such decision function h← A(Ŝ) from source-domain data Ŝ .

3.2 DOMAIN DISCREPANCY

We will present Y-discrepancy in this section, which has been widely used in DA (Zhang et al.,
2012). In deep learning, we follow the previous DA work to optimize the feature space to minimize
the domain discrepancy (Ganin et al., 2016; Zhao et al., 2018), thus we also give the definition of
Y-discrepancy based on the learning algorithm for feature extractor Af .
Definition 1. (Y-discrepancy): LetH be a decision function class on X with finite VC-dimension.
The Y-discrepancy discY(S,T) between two domains S and T and its empirical version ˆdiscY(Ŝ, T̂)
are defined as:

discY(S,T) := sup
h∈H

∣∣εT(h)− εS(h)
∣∣; ˆdiscY(Ŝ, T̂) := sup

h∈H

∣∣ε̂T̂(h)− ε̂Ŝ(h)
∣∣ (3)
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In neural models, Y-discrepancy between domains is computed in the feature space, i.e., output space
of the feature extractor Af (Ŝ), with the classification function g ∈ G,

discY
(
Af (Ŝ)(S,T)

)
:= sup

g∈G

∣∣∣∣εT(g ◦Af (Ŝ)
)
− εS

(
g ◦Af (Ŝ)

)∣∣∣∣;
ˆdiscY

(
Af (Ŝ)(Ŝ, T̂)

)
:= sup

g∈G

∣∣∣∣ε̂T̂(g ◦Af (Ŝ)
)
− ε̂Ŝ

(
g ◦Af (Ŝ)

)∣∣∣∣ (4)

It is clear that Y-discrepancy defines a pseudo distance between a pair of domains in that it satisfies
symmetry and the triangle inequality but not satisfies identity of indiscernibles since discY(S,T) =
0 ; S = T.

Y-discrepancy can measure not only covariant shift between domains, but also conditional shift
between domains (Zhang et al., 2012). Therefore, we choose Y-discrepancy as a measurement for
domain discrepancy in following derivations of DG theory.

4 LEARNING GUARANTEES

In this section, we first give a PAC-style learning bound for DG under the discrepancy-optimal
meta-learning framework and then make comparisons with ERM and domain-invariant learning for
DG.

4.1 DISCREPANCY-BASED DG BOUNDS

We will bound the measure of DG performance w.r.t. an algorithm as defined in Eq. (2), under the
discrepancy-optimal meta-learning framework given a meta-sample D̂ = {(Ŝi, T̂i)}1≤i≤M .

Lemma 1. (Discrepancy-based DG Bound) Given any ξ, ξ′ > 0, for any n ≥ 8B2

ξ2 and any

M ≥ 8B2

(ξ′)2
, we have for any δ > 0, with probability at least 1− 2δ,∣∣∣∣EŜ∼Sn,S∼PN ,N∼p(N)[ET∼P [εT(A(Ŝ))]]− 1

M

∑
k:Ŝk∈D̂

1

|Ŝk|

∑
i:Ŝik∈Ŝk

ε̂Ŝik
(A(Ŝk))

∣∣∣∣
≤EŜ∼Sn,S∼PN ,N∼p(N)ET∼P

[
discY

(
Af (Ŝ)(S̃,T)

)]
+ Ξ(ξ, δ, Ŝ) + Π(ξ′, δ, D̂) + Bδ

(5)

where S̃ = 1
N

∑
i:Si∈Ŝ S

i and the complexity terms corresponding to the data size are Ξ(ξ, δ, Ŝ) ∝
O(1/

√
n) and Π(ξ′, δ, D̂) ∝ O(1/

√
M). Proof can be found in Appendix B.1.

Lemma 1 bounds the difference between algorithmic performance of DG and empirical classification
error of meta-source samples with the expectation of Y-discrepancy between target and source
domains over random meta-samples. Next, we will bound the expected Y-discrepancy over random
meta-samples in the following lemma.

Lemma 2. (Meta-optimizing Y-discrepancy (Eq. (5))) Given any ε, ε′ > 0, for any n ≥ 8B2

ε2 and
any M ≥ 8B2

(ε′)2 , we have for any δ > 0, with probability at least 1− 3δ,∣∣∣∣EŜ∼Sn,S∼PN ,N∼p(N)ET∼P

[
discY

(
A(D̂)(Ŝ)(S̃,T)

)]
− 1

M

M∑
i=1

ˆdiscY
(
A(D̂)(Ŝi)(Ŝi, T̂i)

)∣∣∣∣
≤Ξ(ε, δ, Ŝ) + Ψ(ε′, δ, D̂) + 2Bδ

(6)

where the complexity terms corresponding to data size are Ξ(ε, δ, Ŝ) ∝ O(1/
√
n) and Ψ(ε′, δ, D̂) ∝

O(1/
√
M). Proof can be found in Appendix B.2.

Finally, we combine the above two lemmas and obtain the generalization bound for DG via
discrepancy-optimal meta-learning in the following theorem.
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Table 1: Comparison with related DG and DA learning bounds.
Objective (LHS) Upper bound (RHS)

Empirical Term Complexity Term Other Term

Ours EŜ∼Sn,S∼PN ,N∼p(N)[ET∼P [εT(A(Ŝ))]] Classification error
emp. Y−discrepancy O(1/

√
n) +O(1/

√
M) O(δ)

ERM (DG) B.4 EŜ∼Sn,S∼PN ,N∼p(N)[ET∼P [εT(A(Ŝ))]] Classification error O(1/
√
n) +O(1/

√
Nm) O(δ)

Domain-invariant (DA) B.5 εT(A(Ŝ)) Classification error O(1/
√
n) -

Domain-invariant (DG) B.6 ET∼P [εT(A(Ŝ))] Classification error O(1/
√
n) γ

where M ≈ Nm · 2Nm−1 in episodic training and γ := ET∼P

[
discY

(
Af (Ŝ)(T∗A(Ŝ),T)

)]
,T∗A(Ŝ) = arg minT∈conv(S) discY(Af (Ŝ)(T,T))

Theorem 1. (DG Bound based on Discrepancy-optimal Meta-learning) Given any ε, ε′, ε′′ > 0,
for any n ≥ 8B2

ε2 and any M ≥ max
{

8B2

(ε′)2 ,
8B2

(ε′′)2

}
, we have for any δ > 0, with probability at least

1− 5δ, ∣∣∣∣EŜ∼Sn,S∼PN ,N∼p(N)[ET∼P [εT(A(Ŝ))]]− 1

M

∑
k:Ŝk∈D̂

1

|Ŝk|

∑
i:Ŝik∈Ŝk

ε̂Ŝik
(A(Ŝk))

∣∣∣∣
≤ 1

M

M∑
i=1

ˆdiscY
(
A(D̂)(Ŝi)(Ŝi, T̂i)

)
+ Ξ(ε, δ, Ŝ) + Π(ε′, δ, D̂) + Ψ(ε′′, δ, D̂) + 3Bδ

(7)

where the complexity terms corresponding to data size are Ξ(ε, δ, Ŝ) ∝ O(1/
√
n), Π(ε′, δ, D̂) ∝

O(1/
√
M), Ψ(ε′′, δ, D̂) ∝ O(1/

√
M). Proof can be found in Appendix B.3.

Theorem 1 shows that when applying the discrepancy-optimal meta-learning on a meta-sample
D̂ = {(Ŝi, T̂i)}1≤i≤M , the difference between algorithmic performance of DG and empirical
classification error of meta-source samples can be bounded mainly by the empirical Y-discrepancy
between meta-source and meta-target samples as well as the complexity termO(1/

√
n)+O(1/

√
M).

4.2 COMPARISON WITH RELATED BOUNDS

We first compare with the learning bound of ERM for DG and explain the tradeoff between classi-
fication performance and computational complexity under the discrepancy-optimal meta-learning
framework for DG. We also compare with domain-invariant learning for DA (Zhang et al., 2012) &
DG (Albuquerque et al., 2020) and analyze the motivation of meta-learning strategy for optimizing
the domain discrepancy for DG. The theoretical results are listed in Table 1.

Comparison with ERM. As shown in Table 1, the complexity term of ERM bound for DG relates to
the number of training examples in each domain O(1/

√
n) and the maximum number of source do-

mains O(1/
√
Nm). We can find that the complexity term of the proposed discrepancy-optimal meta-

learning is better than the complexity terms of ERM since O(1/
√
M) ≈ O(1/

√
Nm · 2Nm−1)�

O(1/
√
Nm). This means that the discrepancy-optimal meta-learning bound for DG has the potential

to be better than the ERM when the empirical discrepancy term can be sufficiently minimized. Intu-
itively, this shows that meta-learning with episodic training process can utilize the source domains to
optimize the domain discrepancy for DG, and there is a tradeoff between the performance and the
computational complexity. We show the empirical results of the tradeoff in Appendix G.

Comparison with domain-invariant learning. We can find that DA and DG based on domain-
invariant learning are tend to minimize Y-discrepancy between target and source domains and
Y-discrepancy across source domains, respectively. In particular, the DG bound via domain-invariant
learning consists of an approximating term γ, which is defines as the smallest expected Y-discrepancy
between any random target domain and the convex hull of source domains. However, γ can not
be optimized in domain-invariant learning, thus it is unable to be estimated the tightness of the
domain-invariant bound for DG and the induced algorithm may not has sufficient capacity to reduce
the domain shift for DG. While the proposed discrepancy-optimal meta-learning for DG optimizes the
Y-discrepancy between target and source domains directly with a meta-sample and the corresponding
bound can be optimized. Besides, Corollary 1 will show that a bilevel optimization algorithm under
the discrepancy-optimal meta-learning framework can effectively optimize the term γ.
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5 ALGORITHM

We will present a meta-learning algorithm via bilevel optimization to utilize the meta-sample for
optimizing Y-discrepancy between target and source domains in Section 5.1 and then show a practical
meta-learning procedure in Section 5.2.

5.1 LEARNING TO MINIMIZE DOMAIN DISCREPANCY
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Figure 2: Geometric understanding. PX denotes
the space of domains (distributions) on input space
and

(
M(PA(D̂)(Ŝ)(X )),discY(·, ·)

)
denotes a pseudo-

metric space of domains (distributions) on feature
space.

Given a meta-sample D̂ =

{(D̂itr, D̂ite)}1≤i≤M , the empirical term in
Theorem 1 guides us to design an algorithm
that takes the meta-source samples D̂itr ⊂ Ŝ
as input and outputs a feature extractor
(hypothesis) that minimizes Y-discrepancy
between the meta-target sample D̂ite ∈ Ŝ
and meta-source samples D̂itr. To this end,
the meta-training and meta-test problems
are non-symmetric in the episodic training
process (Finn et al., 2017). It is a natural
idea to use bilevel optimization to tackle
such a non-symmetric optimization problem.
In particular, we specify the meta-learner
A in Theorem 1 to optimize the initialized
parameters ψ0 so that an algorithm ini-
tialized with ψ0 minimizes Y-discrepancy
across source domains (Eq. (10)) can also
minimize Y-discrepancy between target and
source domains (Eq. (9)). Corollary 1 shows
the affect of collaborative effectiveness
of inner-loop and outer-loop optimization
in bilevel optimization from a geometry
perspective.
Definition 2. (Bilevel Optimization) We denote the the outer-loop and inner-loop objectives w.r.t.
the feature extractor fψ as Lout and Lin, respectively. ψ and ψ0 denote the parameters of feature ex-
tractor in inner-loop optimization and outer-loop optimization, respectively. The bilevel optimization
problem is defined as:

min
ψ0∈Ψ

∑
i∈[M ]

Lout(ψ∗i , ψ0; (D̂ite, D̂itr)), subject toψ∗i ∈ arg min
ψ∈Φ(ψ0)

Lin(ψ,ψ0; D̂itr) (8)

where Φ(·) denotes a parameter constraint brought by parameter initialization. The outer-loop and
inner-loop objectives are defined as follows:

Lout(ψ∗i , ψ0; (D̂ite, D̂itr)) :=
∑

Ŝk∈D̂i
tr

αi ˆdiscY
(
fψ∗i (D̂ite), fψ∗i (Ŝk)

)
(9)

Lin(ψ,ψ0; D̂itr) :=
∑

Ŝk∈D̂i
tr

αi
∑

Ŝt∈D̂i
tr,k 6=t

ˆdiscY(f
ψ

Init←ψ0

(
Ŝk), f

ψ
Init←ψ0

(Ŝt)
)

(10)

where Init← denotes parameter initialization. Definition 2 specifies the meta-algorithm A(·) as an
outer-loop optimization problem, A : D̂ 7→ arg minψ0

∑
i Lout(D̂ite, D̂itr), which optimizes the

initialized parameters of feature extractor. The output algorithm of the meta-algorithm Aψ∗0 (·),
with the optimized ψ∗0 := arg minψ0

∑
i Lout(D̂ite, D̂itr), is specified accordingly as the inner-

loop optimization problem, Aψ∗0 : D̂tr 7→ arg minψ∈Φ(ψ∗0 ) Lin(D̂tr), which optimizes the feature
extractor using the initialized parameters ψ∗0 .

Corollary 1. (Geometric Understanding of the Bilevel Optimization) Given the meta-sample D̂
and the source samples Ŝ, we consider a pseudo-metric space

(
M(PA(D̂)(Ŝ)(X )),discY(·, ·)

)
,
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Algorithm 1 Meta-training Procedure.
Input data: Nm source-domain training samples, hyperparameters: η, β
Parameters: Feature extractor Fψ , task classifier Tθ
Output: Meta-trained model parameters {ψtr, θtr}
1: while Stopping condition is not met do
2: Sample minibatch of meta-target sample D̂te and minibatch of meta-source samples D̂tr
3: Evaluate inner-loop objective, Lin ←

∑
Ŝk,Ŝt∈D̂tr

ˆdiscY(Fψ(Ŝk, Ŝt))
4: Update the feature extractor with gradient descent, ψ′ ← ψ − η∇ψLin
5: Evaluate outer-loop objective w.r.t. the updated ψ′, Lout ←

∑
Ŝk∈D̂tr

ˆdiscY(Fψ′(Ŝk, D̂te))
6: Update the feature extractor w.r.t. the initial parameters ψ, ψ ← ψ − ηβ∇ψLout
7: Evaluate task objective, Ltask ← ε̂D̂tr

(Tθ ◦ Fψ)
8: Update the task classifier and feature extractor [θ, ψ]← [θ, ψ]− η∇θ,ψLtask
9: end while

Algorithm 2 Meta-test Procedure.
Input data: Nm source-domain training samples, hyperparameters: η, β
Output: Feature extractor Fψ , task classifier Tθ
1: Initialize with the meta-trained parameters, ψ ← ψtr, θ ← θtr

2: while Stopping condition is not met do
3: Sample minibatch of all source-domain samples D̂
4: Evaluate inner-loop objective, Lin ←

∑
Ŝk,Ŝt∈D̂

ˆdiscY(Fψ(Ŝk, Ŝt))
5: Update the feature extractor ψ ← ψ − ηβ∇ψLin
6: Evaluate task objective, Ltask ← ε̂D̂tr

(Tθ ◦ Fψ)
7: Update the task classifier and feature extractor [θ, ψ]← [θ, ψ]− η∇θ,ψLtask
8: end while

defined as the set of domains PA(D̂)(Ŝ)(X ) in the feature space A(D̂)(Ŝ)(X ) equipped
with a pseudo-metric discY(·, ·) : Rd × Rd → R+. Where the distance be-
tween a target domain T and the convex hull of source domains conv(S) is defined
as discY

(
A(D̂)(Ŝ)(T, conv(S))

)
= discY

(
A(D̂)(Ŝ)(T∗A(D̂)(Ŝ),T)

)
, where T∗A(D̂)(Ŝ) =

T∗A(D̂)(Ŝ) = arg minT∈conv(S) discY(A(D̂)(Ŝ))(T,T)) denotes the nearest point to the target do-
main in conv(S). Then we have:

discY
(
A(D̂)(Ŝ)(T, conv(S))

)
= discY

(
A(D̂)(Ŝ)(T∗A(D̂)(Ŝ),T)

)
≤ 1

|Ŝ|

∑
i:Ŝi∈Ŝ

ˆdiscY
(
A(D̂)(Ŝ)(T̂, Ŝi)

)
︸ ︷︷ ︸

Outer-loop Objective (Lout)

+
2

|Ŝ|

|Ŝ|∑
i<j

ˆdiscY
(
A(D̂)(Ŝ)(Ŝi, Ŝj)

)
︸ ︷︷ ︸

Inner-loop Objective (Lin)

+Ξ(ε, δ, Ŝ) (11)

where the complexity term according to data size is Ξ(ξ, δ, Ŝ) ∝ O(1/
√
n). Proof can be found in

Appendix B.7.

As shown in Figure 2, The triangle relationship in the pseudo-metric feature distribution space (in the
red dotted line) among the target domain TA(D̂)(Ŝ), the combination of source domains S̃A(D̂)(Ŝ) and

the nearest point to the target domain in the convex hull of source domains T∗A(D̂)(Ŝ) demonstrates
that the collaborative effectiveness of inner-loop and outer-loop optimization is to minimize the
Y-discrepancy between the target domain and the convex hull of source domains.

5.2 META-LEARNING PROCEDURE

Based on the meta-target/meta-source splits in episodic training process, we use first-order approx-
imation for gradient descent to update the meta-parameters in each iteration. The procedures of
meta-training and meta-test are briefly shown in Algorithm 1 and Algorithm 2, respectively. More
complete procedures with the adversarial training strategy to estimate Y-discrepancy are shown in
Appendix C.
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Table 2: Accuracy (%) on PACS and DomainNet using pretrained ResNet-50 backbone. † indicates
statistical significance compared to other methods with low FPR (α < 0.1) by the Mann-Whitney
test (McKnight & Najab, 2010).

Method PACS DomainNet
paintings cartoon photo sketch Avg. clipart infograph painting qickdraw real sketch Avg.

ERM 84.7±0.4 80.8±0.6 97.2±0.3 79.3±1.0 85.5 58.1±0.3 18.8±0.3 46.7±0.3 12.2±0.4 59.6±0.1 49.8±0.4 40.9
CORAL 88.3±0.2 80.0±0.5 97.5±0.3 78.8±1.3 86.2 59.2±0.1 19.7±0.2 46.6±0.3 13.4±0.4 59.8±0.2 50.1±0.6 41.5
MLDG 85.5±1.4 80.1±1.7 97.4±0.3 76.6±1.1 84.9 59.1±0.2 19.1±0.3 45.8±0.7 13.4±0.3 59.6±0.2 50.2±0.4 41.2

SAGNET 87.4±1.0 80.7±0.6 97.1±0.1 80.0±0.4 86.3 57.7±0.3 19.0±0.2 45.3±0.3 12.7 ±0.5 58.1±0.5 48.8±0.2 40.3
Ours 88.2±0.8 81.7±1.2 97.8±0.3 79.6±0.7 86.8† 60.7±0.8 23.3±0.5 51.2±0.2 14.7±0.4 63.6±0.4 51.8±0.8 44.2†

Meta-training. As shown in Algorithm 1, in each iteration, one task is to update the feature extractor
w.r.t. the outer-loop objective computed by the updated parameters w.r.t. the inner-loop optimization
(line 3-6). The other task is to update the task classifier and feature extractor w.r.t. the classification
objective (line 7-8).

Meta-test. As shown in Algorithm 2, in each iteration, one task is to update the feature extractor w.r.t.
the inner-loop objective (line 4-5), the other task is to update the task classifier and feature extractor
w.r.t. the classification objective (line 6-7).

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

Datasets. The dataset PACS (Li et al., 2017) includes images of seven categories and four domains,
including photo, art paintings, cartoon and sketches. We use the recommended training and validation
split ratio of 90%/10% (Li et al., 2017), and use the overall validation set aggregated by the validation
sets of each training domain for model selection (Gulrajani & Lopez-Paz, 2020). The dataset
DomainNet (Peng et al., 2019) consists of 345 categories and six distinct domains, including sketch,
real, quickdraw, painting, infograph and clipart. We use the same training/validation split ratio of
70%/30% as previous work Peng et al. (2019), and use the same way as the PACS benchmark for
model selection.

Training details. We build our model and conduct experiments based on DomainBed (Gulrajani
& Lopez-Paz, 2020), a testbed for DG. In particular, we use an ImageNet pretrained ResNet-50
(Gulrajani & Lopez-Paz, 2020) as the feature extractor for all experiments on the two benchmarks. We
use Adam (Kingma & Ba, 2014) for both inner-loop and outer-loop optimization with five gradient
steps in the inner-loop optimization during the meta-training period, and 15 gradient steps during the
test period. The choices of number of gradient steps are based on performance on the evaluation sets.
For hyperparameter search, each hyperparameter is assigned a default value and tuned via random
search (Bergstra & Bengio, 2012) over a range near the default value. All hyperparameters were
tuned jointly according to their respective random search distributions with a maximum number of
20 trials. Appendix D lists the details of hyperparameter search.

6.2 RESULTS

Table 2 and 3 show the results on two benchmarks. Each reported result is the average of three
independent repetitions of the entire study with different hyperparameters, different network parameter
initialization and different dataset splits.

State-of-the-art comparison. We list the results of ERM and other methods that are better than
ERM on either PACS and DomainNet in Table 2. Our method outperforms ERM on both two datasets,
which is in consistent with the theoretical analysis that discrepancy-optimal meta-learning has the
potential to be better than ERM when Y-discrepancy can be promisingly optimized. CORAL (Sun
& Saenko, 2016) learn domain-invariant features across source domains via optimizing mean and
covariance of distributions. Compared with this method, the strength of our meta-learning method
is the to ability to optimize Y-discrepancy between unseen target and source domains, which is

8
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Table 3: Ablation study on PACS. † indicates statistical significance compared to other baselines with
low FPR (α < 0.1) by the Mann-Whitney test (McKnight & Najab, 2010).

Training Objectives PACS
Inner Objective Outer Objective paintings cartoon photo sketch Avg.

DISC None 87.1±0.7 77.3±0.8 96.3±0.5 74.2±1.3 83.7
TASK TASK 84.8±0.8 80.3±1.4 96.7±0.4 77.1±1.2 84.7
TASK DISC 86.1±0.7 80.7±1.5 97.7±0.1 77.4±0.7 85.5

DISC+TASK TASK 87.6±1.2 81.2±1.0 97.1±0.2 77.7±0.8 85.9
DISC DISC 88.2±0.8 81.7±1.2 97.8±0.3 79.6±0.7 86.8†

also in consistent with the theoretical analysis. A state-of-the-art meta-learning method for DG
MLDG (Li et al., 2018a) directly uses classification objectives of target and source domains as the
inner-loop and outer-loop objectives in bilevel optimization. Our method focus on optimizing the
domain discrepancy to reduce domain shift, which has reasoning theoretical guarantees and achieves
better results. Besides, our method also outperforms a recent state-of-the-art method SAGNET (Nam
et al., 2019), which uses style-agnostic networks to reduce intrinsic style bias of CNN.

Ablation study. As shown in Table 3, we compare with a range of variations of choosing the
inner-loop or outer-loop objectives between classification objective and Y-discrepancy. Compared
with the first line of results, which is equivalent to domain-invariant learning that only optimizes
Y-discrepancy between source-domain samples, all of the other meta-learning methods achieve
improvements, which shows the effectiveness of meta-learning with episodic training process for DG.
In addition, compared with other meta-learning methods, our method achieves the best results. This
shows the potential of optimizing domain discrepancy to reduce domains shift for DG.

(a) Y-discepancy between sources. (a) Y-discepancy between target and sources.

Figure 3: Y-discrepancy on PACS.

Domain discrepancy. As
shown in Figure 3, we compare
Y-discrepancy (Zhang et al.,
2012) between our method
and other baselines on PACS.
Figure 3 (a) shows that both our
method and domain-invariant
learning can better reduce
Y-discrepancy between source
domains compared with ERM.
This is because these two meth-
ods have a training objective
to reduce Y-discrepancy across
source-domain samples. In
addition, Figure 3 (b) shows that Y-discrepancy between the unseen target and source domains of our
method is much lower than both ERM and domain-invariant learning, which shows the effectiveness
of our discrepancy-optimal meta-learning to reduce domain shift when faced with unseen target
domains.

7 CONCLUSION

This work investigates discrepancy-optimal meta-learning for DG from both theoretical and empirical
perspectives. The theoretical analysis shows that training a meta-learner to optimize Y-discrepancy
between unseen target and source domains is effective for DG. This guides a meta-learning algo-
rithm with episodic training process via bilevel optimization, where the inner-loop objective is to
minimize Y-discrepancy across source-domain samples and the outer-loop objective is to minimize
Y-discrepancy between ,eta-target and meta-source samples. Empirically, our method achieves
state-of-the-art results on two DG benchmarks.
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A TECHNICAL TOOLS

We first present the definition of uniform entropy numbers (Mendelson, 2003; Maurer & Jaakkola,
2005) and PAC-style generalization bound based on uniform entropy numbers (Mendelson, 2003),
which are the preliminaries for the following proofs.
Definition 3. (Uniform Entropy Numbers) (Mendelson, 2003; Maurer & Jaakkola, 2005): Let
F be a function class and Zn = {zi}1≤i≤n, (zi ∈ Z) be a set of examples with the size of n. For
any ε > 0, the covering number of F at radius ε w.r.t. the metric d is denoted as N (ε,F , d). We set
the metric d as the `1-norm `1(Zn) corresponding to Zn. The uniform entropy number of F w.r.t.
`1(Zn) is defined as:

lnN1(ε,F , `1) = sup
n∈N+

sup
Zn∈Zn

lnN (ε,F , `1(Zn))

where the `1-norm `1(Zn) w.r.t. two functions f and g is defined as 1
n

∑n
i=1 |f(zi)− g(zi)|, (zi ∈

Zn).
Proposition 1. (Generalization Bound based on Uniform Entropy Numbers) (Mendelson, 2003):
Let F be a class of functions bounded by B, and Zn ∈ ZN×n, (N ≥ 1) be a set of examples with the
size of n drawn i.i.d. from a combination of N distributions P = {Pi}1≤i≤N . For every ε > 0 and
any n ≥ 8B

ε2 ,

Pr

{
sup
f∈F

∣∣∣∣ 1

N

N∑
i=1

1

n

n∑
j=1

f(zi,j)−
1

N

N∑
i=1

EPi [f ]

∣∣∣∣ > ε

}
≤ 8E

[
N
(ε

8
,F , `1(Zn)

)]
exp

(
− nNε2

128B2

)
Set the RHS to delta and by the definition of uniform entropy numbers, then for any δ > 0, with
probability at least 1− δ,

sup
f∈F

∣∣∣∣ 1

N

N∑
i=1

1

n

n∑
j=1

f(zi,j)−
1

N

N∑
i=1

EPi [f ]

∣∣∣∣ ≤
(

128B2 lnN1( ε8 ,F , `1)− ln δ
8

nN

)1
2

=O

( lnN1( ε8 ,F , `1)− ln δ
8

nN

)1
2

 ≤ O
( lnN1( ε8 ,F , `1)− ln δ

8

n

)1
2


Proof.

Step 1: (Symmetrization) Let us denote EP [f ] := 1
N

∑N
i=1 EPi [f ] and ÊZn [f ] :=

1
N

∑N
i=1

1
n

∑n
j=1 f(zi,j). For any ε > 0, such that n ≥ 8B2

ε2 , Let fn be the function achieving
the supremum w.r.t. the samples Zn,

1|EP [f ]−ÊZn [f ]|>ε1|EP [f ]−ÊZ′n
[f ]|<ε/2 = 1|EP [f ]−ÊZn [f ]|>ε∧|EP [f ]−ÊZ′n

[f ]|<ε/2 ≤ 1|ÊZ′n
[f ]−ÊZn [f ]|>ε/2

Taking expectation w.r.t. the second sample gives:

1|EP [f ]−ÊZn [f ]|>ε Pr′
{
|EP [f ]− ÊZ′n [f ]| < ε/2

}
≤ Pr′

{
|ÊZ′n [f ]− ÊZn [f ]| > ε/2

}
By Chebyshev’s inequality, since Z′n are n i.i.d. samples drawn from the multiple distributions
P = {Pi}1≤i≤N , we have:

Pr′
{
|EP [f ]− ÊZ′n [f ]| ≥ ε/2

}
= Pr

{∣∣∣∣Ez∼P

[
1

N

N∑
i=1

[f(zi)]

]
− 1

n

n∑
j=1

1

N

N∑
i=1

f(zi,j)

∣∣∣∣ ≥ ε/2}

≤ 4

nε2
Var

(
1

N

N∑
i=1

[f(zi)]

)
≤ 4B2

nε2

Then, we have:

1|EP [f ]−ÊZn [f ]|>ε

(
1− 4B2

nε2

)
≤ Pr′

{
|ÊZ′n [f ]− ÊZn

[f ]| > ε/2
}
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Taking expectation w.r.t. the first sample, if n ≥ 8B2

ε2 , we have:

Pr

{
sup
f∈F

∣∣EP [f ]− ÊZn [f ]
∣∣ > ε

}
≤ 2 Pr

{
sup
f∈F

∣∣ÊZ′n [f ]− ÊZn [f ]
∣∣ > ε

2

}
(12)

Step 2:

Let ε ∈ {−1, 1}N×n} are independent Rademacher random variables, Then,

Pr

{
sup
f∈F

∣∣ÊZ′n [f ]− ÊZn [f ]
∣∣ > ε

2

}
= Pr Prε

{
sup
f∈F

∣∣∣∣∑
i,j

εi,j
(
f(z′i,j)− f(zi,j)

)∣∣∣∣ > nNε

2

}

≤ 2 Pr Prε

{
sup
f∈F

∣∣∣∣∑
i,j

εi,jf(zi,j)

∣∣∣∣ > nNε

4

}
(13)

For a realization of Zn, set N ( ε8 ,F , `1(Zn)) to be an ε
8 cover of F w.r.t. the `1(Zn) norm. Hence,

there is some g ∈ N ( ε8 ,F , `1(Zn)) which satisfies that 1
nN

∑
i,j |f(zi,j) − g(zi,j)| < ε

8 , by the
triangle inequality, union bound and Hoeffding’s inequality,

Prε

{
sup
f∈F

∣∣∣∣∑
i,j

εi,jf(zi,j)

∣∣∣∣ > nNε

4

}
≤ Prε

{
sup

g∈N ( ε
8 ,F,`1(Zn))

∣∣∣∣∑
i,j

εi,jg(zi,j)

∣∣∣∣ > nNε

8

}

≤2N (
ε

8
,F , `1(Zn)) Prε

{∣∣∣∣∑
i,j

εi,jg(zi,j)

∣∣∣∣ > nNε

8

}
≤ 2N (

ε

8
,F , `1(Zn)) exp

(
− nNε2

128B2

)
(14)

Combining Eq.(12), Eq. (13) and Eq. (14), we obtain the first conclusion of Proposition 1.

�

Proposition 2. (Technical Lemma based on Union bound) Let {El}1≤l≤m be a set of conclusions,
which satisfy p(El) ≥ 1− δl, with δl ≥ 0, (i ∈ [m]). E is a conclusion derived using {El}1≤l≤m,
E← E1 ∧ E2 ∧ . . . ∧ Em. Then, p(E) ≥ 1−

∑m
l=1 δl.

Proof. Using Morgan’s laws, we have:

p(

m∧
l=1

El) = 1− p(
m∨
l=1

¬El)

Using the union bound, we have:

p(

m∨
l=1

¬El) ≤
m∑
l=1

p(¬El) =

m∑
l=1

(1− p(El))

Then, we have:

p(E) ≥ p(
m∧
l=1

El) ≥ 1−
m∑
l=1

(1− p(El)) ≥ 1−
m∑
l=1

(1− (1− δl)) = 1−
m∑
l=1

δl

�

14
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B PROOF OF MAIN RESULTS

B.1 PROOF OF LEMMA 1

proof.

By triangle inequality,∣∣∣∣EŜ∼Sn,S∼PN ,N∼p(N)[ET∼P [εT(A(Ŝ))]]− 1

M

∑
k:Ŝk∈D̂

1

|Ŝk|

∑
i:Ŝik∈Ŝk

ε̂Ŝik
(A(Ŝk))

∣∣∣∣
≤
∣∣∣∣EŜ∼Sn,S∼PN ,N∼p(N)[ET∼P [εT(A(Ŝ))]]− EŜ∼Sn,S∼PN ,N∼p(N)

[
1

N

∑
i:Si∈S

εSi(A(Ŝ))

]∣∣∣∣
+ sup
A∈A

∣∣∣∣EŜ∼Sn,S∼PN ,N∼p(N)

[
1

N

∑
i:Si∈S

εSi(A(Ŝ))

]
− EŜ∼Sn,S∼PN ,N∼p(N)

[
1

N

∑
i:Ŝi∈Ŝ

ε̂Ŝi(A(Ŝ))

]∣∣∣∣
+ sup
A∈A

∣∣∣∣EŜ∼Sn,S∼PN ,N∼p(N)

[
1

N

∑
i:Ŝi∈Ŝ

ε̂Ŝi(A(Ŝ))

]
− 1

M

∑
k:Sk∈D̂

1

|Ŝk|

∑
i:Ŝik∈Ŝk

ε̂Ŝik
(A(Ŝk))

∣∣∣∣
= (I) + (II) + (III)

Splitting A as a combination of Af and Ag and by the definition of Y-discrepancy,

(I) ≤EŜ∼Sn,S∼PN ,N∼p(N)ET∼P

[
sup
g∈G

∣∣εT(g ◦Af (Ŝ))− εS̃(g ◦Af (Ŝ))
∣∣] s.t . S̃ :=

1

N

N∑
i=1

Si

=EŜ∼Sn,S∼PN ,N∼p(N)ET∼P

[
discY

(
Af (Ŝ)(S̃,T)

)]
By Jensen’s inequality,

(II) ≤EŜ∼Sn,S∼PN ,N∼p(N)

[
sup
A∈A

∣∣∣∣ 1

N

∑
i:Si∈S

εSi(A(Ŝ))− 1

N

∑
i:Ŝi∈Ŝ

ε̂Ŝi(A(Ŝ))

∣∣∣∣]

≤EŜ∼Sn,S∼PN ,N∼p(N)

[
sup
h∈H

∣∣∣∣ 1

N

∑
i:Si∈S

εSi(h)− 1

N

∑
i:Ŝi∈Ŝ

ε̂Ŝi(h)

∣∣∣∣]+ Bδ

(with prob.
at least 1−δ)
≤ O

( lnN1( ξ8 ,F , `1)− ln δ
8

n

) 1
2

+ Bδ

where F = {z = (x, y) 7→ `(h(x), y) : h ∈ H} represents the loss function class w.r.t. the decision
function classH. The inequality (according to the complexity term) is derived by Proposition 1 for
any ξ > 0, any n ≥ 8B2

ξ2 and any δ > 0.

By applying the Proposition 1 via regarding the meta-sources data {Ŝi}1≤i≤M as a sample, we have
for any ξ′ > 0, any M ≥ 8B2

(ξ′)2 and any δ > 0,

(III)

(with prob.
at least 1−δ)
≤ O

( lnN1( ξ
′

8 , F̃ , `1)− ln δ
8

M

) 1
2


where F̃ = {Ŝ 7→ 1

|Ŝ|

∑
i ε̂Ŝi(A(Ŝ)) : A ∈ A} represents a class of empirical error functions w.r.t.

the algorithm class A.

The final conclusion can be obtained by applying Proposition 2 to the controls of (I), (II) and (III). �

B.2 PROOF OF LEMMA 2

proof.
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By triangle inequality,∣∣∣∣RdiscY −
1

M

M∑
i=1

ˆdiscY
(
A(D̂)(Ŝi)(Ŝi, T̂i)

)∣∣∣∣
=

∣∣∣∣EŜ∼Sn,S∼PN ,N∼p(N)ET∼P

[
discY

(
A(D̂)(Ŝ)(S̃,T)

)]
− 1

M

M∑
i=1

ˆdiscY
(
A(D̂)(Ŝi)(Ŝi, T̂i)

)∣∣∣∣
≤
∣∣∣∣EŜ∼Sn,S∼PN ,N∼p(N)ET∼P

[
discY

(
A(D̂)(Ŝ)(S̃,T)

)]
− EŜ∼Sn,S∼PN ,N∼p(N)ET̂∼Tn,T∼P

[
ˆdiscY

(
A(D̂)(Ŝ)(Ŝ, T̂)

)]∣∣∣∣
+

∣∣∣∣EŜ∼Sn,S∼PN ,N∼p(N)ET̂∼Tn,T∼P

[
ˆdiscY

(
A(D̂)(Ŝ)(Ŝ, T̂)

)]
− 1

M

M∑
i=1

ˆdiscY
(
A(D̂)(Ŝi)(Ŝi, T̂i)

)∣∣∣∣
=(I) + (II)

By triangle inequality and additivity of the supremum function,

(I) ≤EŜ∼Sn,S∼PN ,N∼p(N)ET̂∼Tn,T∼P

[∣∣discY
(
A(D̂)(Ŝ)(S̃,T)

)
− ˆdiscY

(
A(D̂)(Ŝ)(Ŝ, T̂)

)∣∣]
≤EŜ∼Sn,S∼PN ,N∼p(N)ET̂∼Tn,T∼P

[
sup
g∈G

∣∣∣∣εS̃(g ◦A(D̂)(Ŝ)
)
− εT

(
g ◦A(D̂)(Ŝ)

)
− ε̂Ŝ

(
g ◦A(D̂)(Ŝ)

)
+ ε̂T̂

(
g ◦A(D̂)(Ŝ)

)∣∣∣∣]
≤EŜ∼Sn,S∼PN ,N∼p(N)

[
sup
g∈G

∣∣∣∣εS̃(g ◦A(D̂)(Ŝ)
)
− ε̂Ŝ

(
g ◦A(D̂)(Ŝ)

)∣∣∣∣]
+ EŜ∼Sn,S∼PN ,N∼p(N)ET̂∼Tn,T∼P

[
sup
g∈G

∣∣∣∣εT(g ◦A(D̂)(Ŝ)
)
− ε̂T̂

(
g ◦A(D̂)(Ŝ)

)∣∣∣∣]
≤EŜ∼Sn,S∼PN ,N∼p(N)

[
sup
h∈H

∣∣εS̃(h)− ε̂Ŝ(h)
∣∣]+ ET̂∼Tn,T∼P

[
sup
h∈H

∣∣εT(h)− ε̂T̂(h)
∣∣]

(with prob.
at least 1−2δ)

≤ O

( lnN1( ε8 ,F , `1)− ln δ
8

n

) 1
2

+ 2Bδ

where F = {z = (x, y) 7→ `(h(x), y) : h ∈ H} represents the loss function class. The last inequality
according to the complexity terms is derived by applying Proposition 1 twice, and the conclusion can
be obtained for any ε > 0, any n ≥ 8B2

ε2 and any δ > 0.

By Proposition 1 via treating a combination of meta-source and meta-target samples, we have for any
ε′ > 0, any M ≥ 8B2

(ε′)2 and any δ > 0,

(II)

(with prob.
at least 1−δ)
≤ O

( lnN1( ε
′

8 ,R, `1)− ln δ
8

M

) 1
2


where R := {{Ŝ, T̂} 7→ ˆdiscY(A(Ŝ)(

ˆ̃S, T̂)) : A ∈ A} represents a class of functions w.r.t. the
empirical Y-discrepancy ˆdiscY(Af (·)(·, ·)) between a combination of source domains and target
domain.

The final conclusion can be reached by applying Proposition 2 to the control of (I) and (II). �

B.3 PROOF OF THEOREM 2

proof.
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By applying Proposition 2 to Lemma 1 and Lemma 2, for any ε, ε′, ε′′ > 0, any n ≥ 8B2

ε2 and any
M ≥ max{ 8B2

(ε′)2 ,
8B2

(ε′′)2 }, we have for any δ > 0, with probability at least 1− 5δ,

∣∣∣∣EŜ∼Sn,S∼PN ,N∼p(N)[ET∼P [εT(A(Ŝ))]]− 1

M

∑
k:Ŝk∈D̂

1

|Ŝk|

∑
i:Ŝik∈Ŝk

ε̂Ŝik
(A(Ŝk))

∣∣∣∣
≤ 1

M

M∑
i=1

ˆdiscY
(
A(D̂)(Ŝi)(Ŝi, T̂i)

)
+ 3Bδ +O

( lnN1( ε8 ,F , `1)− ln δ
8

n

)1
2


+O

( lnN1( ε
′

8 , F̃ , `1)− ln δ
8

M

) 1
2

+O

( lnN1( ε
′′

8 ,R, `1)− ln δ
8

M

) 1
2


�

B.4 ERM-BASED DG BOUND

Theorem 2. (ERM-based DG Bound): Given any ε, ε′ > 0,for any n ≥ 8B2

ε2 and any Mm ≥ 8B2

(ε′)2 ,
we have for any δ > 0, with probability at least 1− 2δ,

∣∣∣∣EŜ∼Sn,S∼PN ,N∼p(N)[ET∼P [εT(A(Ŝ))]]− 1

N

N∑
i=1

ε̂Ŝi(A({Ŝi}1≤i≤Nm
))

∣∣∣∣
≤Ξ(ε, δ, Ŝ) + Ω(ε′, δ, Ŝ) + Bδ

where the complexity terms according to the data size are Ξ(ε, δ, Ŝ) ∝ O(1/
√
n) and Ω(ε′, δ, Ŝ) ∝

O(1/
√
Nm).

Notes. As shown in Theorem 2, the complexity terms of ERM-based DG bound relates to the
number of training examples in each domain O(1/

√
n) and the maximum number of source domains

O(1/
√
Nm). The bound sheds light on some DG methods based on data augmentation (Shankar

et al., 2018; Volpi et al., 2018; Qiao et al., 2020; Zhou et al., 2020), which produce more training
examples in each domain to reduce Ξ(ε, δ, Ŝ) or produce more source domains to reduce Ω(ε′, δ, Ŝ).
proof.

By triangle inequality, Jensen’s inequality and Fubini’s theorem,

∣∣∣∣EŜ∼Sn,S∼PN ,N∼p(N)[ET∼P [εT(A(Ŝ))]]− 1

N

N∑
i=1

ε̂Ŝi(A({Ŝi}1≤i≤Nm))

∣∣∣∣
≤ sup
A∈A

∣∣∣∣EŜ∼Sn,S∼PN ,N∼p(N)

[
EP∼P [εP(A(Ŝ))]− EP∼PEP̂∼Pn [ε̂P̂(A(Ŝ))]

]∣∣∣∣
+ sup
A∈A

∣∣∣∣EŜ∼Sn,S∼PN ,N∼p(N)EP∼PEP̂∼Pn [ε̂P̂(A(Ŝ))]−
N∑
i=1

αiε̂Ŝi(A(Ŝi))
∣∣∣∣

≤EŜ∼Sn,S∼PN ,N∼p(N)EP∼PEP̂∼Pn

[
sup
A∈A

∣∣εP(A(Ŝ))− ε̂P̂(A(Ŝ))
∣∣]

+ sup
A∈A

∣∣∣∣EŜ∼Sn,S∼PN ,N∼p(N)EP̂∼Pn [ε̂P̂(A(Ŝ))]−
N∑
i=1

αiε̂Ŝi(A({Ŝi}1≤i≤Nm))

∣∣∣∣ s.t .P := EP [P]

= (I) + (II)

17
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By applying Proposition 1, for any ε > 0 and any n ≥ 8B2

ε2 , we have for any δ > 0,

(I) ≤ EP∼PEP̂∼Pn

[
sup

N∈[Nm]

sup
Ŝ∈ZN×n

sup
A∈A

∣∣εP(A(Ŝ))− ε̂P̂(A(Ŝ))
∣∣]

≤ EP∼PEP̂∼Pn

[
sup
h∈H

∣∣εP(h)− ε̂P̂(h)
∣∣] (with prob.

at least 1−δ)
≤ O

( lnN1( ε8 ,F , `1)− ln δ
8

n

)1
2

+ Bδ

where F = {z = (x, y) 7→ `(h(x), y) : h ∈ H} represents the loss function class w.r.t. the decision
function classH.

By applying Proposition 1 via treating {(Ŝi, D̂i)}1≤i≤Nm
= {({Ŝi}1≤i≤Nm

, Ŝi)}1≤i≤Nm
as the

sample, whose element is drawn i.i.d. according to a joint distribution (Sn (S ∼ PN , N ∼
p(N)),P), for any ε′ > 0 and any Nm ≥ 8B2

(ε′)2 , we have for any δ > 0,

(II)

(with prob.
at least 1−δ)
≤ O

( lnN1( ε
′

8 , F̃ , `1)− ln δ
8

Nm

) 1
2


where F̃ = {(Ŝ, D̂) 7→ ε̂D̂(A(Ŝ)) : A ∈ A} denotes a function class of empirical error w.r.t. the
algorithm class A.

�

B.5 DOMAIN-INVARIANT LEARNING FOR DA

Theorem 3. (Domain-invariant Learning for DA) (Zhang et al., 2012) Given any ε > 0, we have
that for any n ≥ 8B2

ε2 and any δ > 0, with probability at least 1− δ,

∣∣∣∣εT(A(Ŝ))− 1

Nm

Nm∑
i=1

ε̂Ŝi(A(Ŝ))

∣∣∣∣ ≤ 1

Nm

Nm∑
i=1

ˆdiscY(A(Ŝ)
(
Ŝi, T̂)

)
+ Ξ(ε, δ, Ŝ)

where the complexity term according to data size is Ξ(ε, δ, Ŝ) ∝ O(1/
√
n).

proof.

By triangle inequality,

∣∣∣∣εT(A(Ŝ))− 1

Nm

Nm∑
i=1

ε̂Ŝi(A(Ŝ))

∣∣∣∣
≤
∣∣∣∣εT(Ag(Ŝ) ◦Af (Ŝ)

)
− 1

Nm

Nm∑
i=1

εSi
(
Ag(Ŝ) ◦Af (Ŝ)

)∣∣∣∣+

∣∣∣∣ 1

Nm

Nm∑
i=1

εSi(A(Ŝ))− 1

Nm

Nm∑
i=1

ε̂Ŝi(A(Ŝ))

∣∣∣∣
=(I) + (II)

By Proposition 1, given any ξ > 0, for any n ≥ 8B2

ξ2 , we have for any δ > 0,

(II) ≤ sup
h∈H

∣∣∣∣ 1

Nm

Nm∑
i=1

εSi(h)− 1

Nm

Nm∑
i=1

ε̂Ŝi(h)

∣∣∣∣
(with prob.

at least 1−δ)
≤ O

( lnN1( ξ8 ,F , `1)− ln δ
8

n

) 1
2


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where F = {z = (x, y) 7→ `(h(x), y) : h ∈ H} represents the loss function class.

(I) ≤ sup
g∈G

∣∣∣∣εT(g ◦Af (Ŝ)
)
− 1

Nm

Nm∑
i=1

εSi
(
g ◦Af (Ŝ)

)∣∣∣∣ = discY
(
Af (Ŝ)(T, S̃)

)
s.t . S̃ =

1

Nm

∑
i∈[Nm]

Si

≤ 1

Nm

∑
i∈[Nm]

sup
g∈G

∣∣∣∣εT(g ◦Af (Ŝ)
)
− εSi

(
g ◦Af (Ŝ)

)∣∣∣∣ =
1

Nm

Nm∑
i=1

discY(Af (Ŝ)
(
T,Si)

)
(Step 1∗)

≤ 1

Nm

Nm∑
i=1

ˆdiscY(A(Ŝ)
(
Ŝi, T̂)

)
+O

( lnN1( ε8 ,F , `1)− ln δ
8

n

)1
2


∗Control of Step 1

First we use triangle inequality and additivity of the supermum function, next we use Proposition 1,
given any ε, for any n ≥ 8B2

ε2 , we have for any δ > 0,

discY
(
Af (Ŝ)(T,Si)

)
− ˆdiscY

(
Af (Ŝ)(T̂, Ŝi)

)
= sup
g∈G

∣∣∣∣εT(g ◦Af (Ŝ))− εSi(g ◦Af (Ŝ))

∣∣∣∣− sup
g∈G

∣∣∣∣ε̂T̂(g ◦Af (Ŝ))− ε̂Ŝi(g ◦A
f (Ŝ))

∣∣∣∣
≤ sup
g∈G

∣∣∣∣εT(g ◦Af (Ŝ))− εSi(g ◦Af (Ŝ))− ε̂T̂(g ◦Af (Ŝ)) + ε̂Ŝi(g ◦A
f (Ŝ))

∣∣∣∣
≤ sup
g∈G

∣∣∣∣εT(g ◦Af (Ŝ))− ε̂T̂(g ◦Af (Ŝ))

∣∣∣∣+ sup
g∈G

∣∣∣∣εSi(g ◦Af (Ŝ))− ε̂Ŝi(g ◦A
f (Ŝ))

∣∣∣∣
≤ sup
h∈H

∣∣∣∣εT(h)− ε̂T̂(h)

∣∣∣∣+ sup
h∈H

∣∣∣∣εSi(h)− ε̂Ŝi(h)

∣∣∣∣
(with prob.

at least 1−2δ)

≤ O

( lnN1( ε8 ,F , `1)− ln δ
8

n

)1
2


where F = {z = (x, y) 7→ `(h(x), y) : h ∈ H} denotes the loss function class w.r.t. the decision
function classH.

Using Proposition 2 to combine the controls of (I) and (II), we can obtain the conclusion. �

B.6 DOMAIN-INVARIANT LEARNING FOR DG

Theorem 4. (Domain-invariant Learning for DG) (Albuquerque et al., 2020) Given any ε > 0,
we have that for any n ≥ 8B2

ε2 and any δ > 0, with probability at least 1− δ,∣∣∣∣ET∼P [εT(A(Ŝ))]− 1

Nm

Nm∑
i=1

ε̂Ŝi(A(Ŝ))

∣∣∣∣ ≤ γ +
2

Nm

Nm∑
i<j

ˆdiscY
(
Af (Ŝ)(Ŝi, Ŝj)

)
+ Ξ(ε, δ, Ŝ)

(15)

where γ := ET∼P

[
discY

(
Af (Ŝ)(T∗A(Ŝ),T)

)]
,T∗A(Ŝ) = arg minT∈conv(S) discY(Af (Ŝ)(T,T))

defines as the shortest Y-discrepancy between target domain and the convex hull of source domains.
The complexity term according to data size is Ξ(ε, δ, Ŝ) ∝ O(1/

√
n).

proof.

By triangle inequality,∣∣∣∣ET∼P [εT(A(Ŝ))]− 1

Nm

Nm∑
i=1

ε̂Ŝi(A(Ŝ))

∣∣∣∣
≤ET∼P

[
discY

(
Af (Ŝ)(S̃,T)

)]
+

∣∣∣∣εS̃(A(Ŝ))− 1

Nm

Nm∑
i=1

ε̂Ŝi(A(Ŝ))

∣∣∣∣
=(I) + (II)
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By Proposition 1, given any ε > 0, for any n ≥ 8B2

ε2 , we have for any δ > 0,

(II) ≤ sup
h∈H

∣∣∣∣εS̃(h)− 1

Nm

Nm∑
i=1

ε̂Ŝi(h)

∣∣∣∣
(with prob.

at least 1−δ)
≤ O

( lnN1( ξ8 ,F , `1)− ln δ
8

n

)1
2


where F = {z = (x, y) 7→ `(h(x), y) : h ∈ H} denotes the loss function class w.r.t. the decision
function classH.

By triangle inequality,

(I) ≤ET∼P

[
discY

(
Af (Ŝ)(T∗A(Ŝ),T)

)
+ discY

(
Af (Ŝ)(T∗A(Ŝ), S̃)

)]
(Step 1∗)

≤ ET∼P

[
discY

(
Af (Ŝ)(T∗A(Ŝ),T)

)]
+

2

Nm

Nm∑
i<j

discY
(
Af (Ŝ)(Si,Sj)

)
(Step 2∗)

≤ ET∼P

[
discY

(
Af (Ŝ)(T∗A(Ŝ),T)

)]
+

2

Nm

Nm∑
i<j

ˆdiscY
(
Af (Ŝ)(Ŝi, Ŝj)

)

+O

( lnN1( ε8 ,F , `1)− ln δ
8

n

)1
2


∗Control of Step 1

We define T∗A(Ŝ) = arg minT∈conv(S) discY(Af (Ŝ)(T,T)) as the nearest point to T in the convex

hull of sources conv(S) w.r.t. the Y-discrepancy discY(Af (Ŝ)(·, ·)). By Jensen’s inequality,

ET∼P

[
discY

(
A(Ŝ)(T∗A(Ŝ), S̃)

)]
=ET∼P

[
sup
g∈G

∣∣∣∣ Nm∑
j=1

β
A(Ŝ)
j εSj (g ◦Af (Ŝ))− 1

Nm

Nm∑
i=1

εSi(g ◦A(Ŝ))

∣∣∣∣]

≤EP

[
1

Nm

Nm∑
j=1

Nm∑
i=1

β
A(Ŝ)
j sup

g∈G

∣∣εSj (g ◦Af (Ŝ))− εSi(g ◦A(Ŝ))
∣∣]

=EP

[
1

Nm

Nm∑
j=1

Nm∑
i=1

β
A(Ŝ)
j discY

(
Af (Ŝ)(Si,Sj)

)]
≤ 1

Nm

Nm∑
i=1

max
j∈[Nm]

discY
(
Af (Ŝ)(Si,Sj)

)
≤ 1

Nm

Nm∑
i=1

∑
j∈[Nm]

discY
(
Af (Ŝ)(Si,Sj)

)
=

2

Nm

Nm∑
i<j

discY
(
Af (Ŝ)(Si,Sj)

)
where βA(Ŝ) := arg min

β′∈ΛN

discY
(
Af (Ŝ)(

∑N
i=1 β

′
jSj ,T)

)
is the combination weights of T∗A(Ŝ) w.r.t.

the source domains {Si}1≤i≤N , represented as T∗A(Ŝ) =
∑N
i=1 β

A(Ŝ)
i Si.

∗Control of Step 2

Using a similar derivation as the control of step 1 in B.5, given any ε > 0, for any n > 8B
ε2 , we have

for any δ > 0,

discY
(
Af (Ŝ)(Si,Sj)

)
− ˆdiscY

(
Af (Ŝ)(Ŝi, Ŝj)

) (with prob.
at least 1−2δ)

≤ O

( lnN1( ε8 ,F , `1)− ln δ
8

n

)1
2


where F = {z = (x, y) 7→ `(h(x), y) : h ∈ H} denotes the loss function class w.r.t. the decision
function classH.

Using Proposition 2 to combine the controls of (I) and (II), we can obtain the conclusion. �
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B.7 PROOF OF COROLLARY 1

proof.

By the triangle inequality of Y-discrepancy,

discY
(
A(D̂)(Ŝ)(T, conv(S))

)
= discY

(
A(D̂)(Ŝ)(T∗A(D̂)(Ŝ),T)

)
≤discY

(
A(D̂)(Ŝ)(T, S̃)

)
+ discY

(
A(D̂)(Ŝ)(T∗A(D̂)(Ŝ), S̃)

)
=(I) + (II)

Using a similar derivation as the control of (I) in B.5, given any ε > 0, for any n > 8B
ε2 , we have for

any δ > 0,

(I)

(with prob.at
least 1−δ)
≤ 1

|Ŝ|

∑
i:Ŝi∈Ŝ

ˆdiscY
(
A(D̂)(Ŝ)(T̂, Ŝi)

)
︸ ︷︷ ︸

Outer-loop Objective (Lout)

+O

( lnN1( ε8 ,F , `1)− ln δ
8

n

)1
2



First using a similar derivation as the control of Step 1 in B.6, then using a similar derivation as the
control of Step 1 in B.5, given any ε > 0, for any n > 8B

ε2 , we have for any δ > 0,

(II) ≤ 1

|Ŝ|

∑
i:Si∈S

∑
j:Sj∈S

discY
(
A(D̂)(Ŝ)(Si,Sj)

)
(with prob.at

least 1−δ)
≤ 2

|Ŝ|

|Ŝ|∑
i<j

ˆdiscY
(
A(D̂)(Ŝ)(Ŝi, Ŝj)

)
︸ ︷︷ ︸

Inner-loop Objective (Lin)

+O

( lnN1( ε8 ,F , `1)− ln δ
8

n

)1
2



Using Proposition 2 to combine the controls of (I) and (II), we can obtain the final conclusion. �
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Algorithm 3 Meta-training Procedure.
Input data: Nm source-domain training samples, hyperparameters: η, β
Parameters: Feature extractor Fψ , adversarial classifiers T = {Tθi,j}1≤i<j≤Nm

, task classifier Tθ
Output: Meta-trained model parameters {ψtr, {θtri,j}1≤i<j≤Nm , θ

tr}
1: while Stopping condition is not met do
2: Sample minibatch of meta-target sample D̂te (the l-th domain in Nm) and minibatch of

meta-source samples D̂tr
3: for Ŝk, Ŝt ∈ D̂tr, k < t do
4: Lk,tin ←

∣∣ε̂Ŝk(Tθk,t
◦ Fψ)− ε̂Ŝt(Tθk,t

◦ Fψ)
∣∣ Tθk,t

∈ T # inner-loop objectives
5: θk,t ← θk,t + η∇θk,t

Lk,tin # update adv. classifiers
6: end for
7: ψ′ ← ψ − η∇ψ

∑
k,t L

k,t
in # inner-loop update adv. classifiers

8: for Sk ∈ D̂tr do
9: Lkout ←

∣∣ε̂Ŝk(Tθk,l
◦ Fψ′)− ε̂D̂te

(Tθk,l
◦ Fψ′)

∣∣ Tθk,l
∈ T # outer-loop objectives

10: θk,l ← θk,l + η∇θk,l
Lkout # update adv. classifiers

11: end for
12: ψ ← ψ − ηβ∇ψ

∑
k Lkout # update feature extractor

13: Ltask ← ε̂D̂tr
(Tθ ◦ Fψ) # task objectives

14: [θ, ψ]← [θ, ψ]− η∇θ,ψLtask # update task classifier and feature extractor
15: end while

Algorithm 4 Meta-test Procedure.
Input data: Nm source-domain training samples, hyperparameters: η, β
Output: Feature extractor Fψ , task classifier Tθ

1: ψ ← ψtr, {θi,j}1≤i<j≤Nm ← {θtri,j}1≤i<j≤Nm , θ ← θtr # Initialize with meta-trained
parameters

2: while Stopping condition is not met do
3: Sample minibatch of all source-domain samples D̂
4: for Ŝk, Ŝt ∈ D̂, 1 ≤ k < t ≤ Nm do
5: Lk,tin ←

∣∣ε̂Ŝk(Tθk,t
◦ Fψ)− ε̂Ŝt(Tθk,t

◦ Fψ)
∣∣ Tθk,t

∈ T # inner-loop objectives
6: θk,t ← θk,t + η∇θk,t

Lin # update adv. classifiers
7: end for
8: ψ ← ψ − ηβ∇ψ

∑
k,t L

k,t
in # update feature extractor

9: Ltask ← ε̂D̂(Tθ ◦ Fψ) # task objectives
10: [θ, ψ]← [θ, ψ]− η∇θ,ψLtask # update task classifier and feature extractor
11: end while

C TRAINING PROCEDURE

We use the first-order approximation for gradient descent to update the meta-parameters, ignoring
the second derivative terms (Finn et al., 2017). In particular, the update of meta-parameters (with
the outer-loop optimization) is only based on the descents computed w.r.t. the parameters updated
after the last step of the inner-loop optimization. Besides, we use an adversarial training strategy
(Goodfellow et al., 2014; Ganin et al., 2016) to optimize the inner-loop and outer-loop objectives
(Lin, Lout in Definition 2) in meta-training procedure. In particular, the adversarial training process
is implemented via a gradient reverse component (Ganin et al., 2016). The whole meta-learning
procedure is shown in Algorithm 3 & 4 and described as follows.

Meta-training. As shown in Algorithm 3, line 3− 7 show an adversarial training process to optimize
the inner-loop objective Lin, which can be seen as a two-player minimax game between adversarial
classifiers and the feature extractor. Line 8 − 12 show an similar way to optimize the outer-loop
objective Lout via adversarial training. In addition, Line 13− 14 show the training process of the
classification task w.r.t. the task classifier and feature extractor with the source domain labeled data.
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Table 4: Hyperparameters, their default values and distributions for random search.
Hyperparameters Default value Random distribution

batch size (PACS) 32 2U(3,5.5)

batch size (DomainNet) 32 2U(3,5)

dropout 0 Random Choise from {0, 0.1, 0.5}
learning rate 5e−5 10U(−5,−3.5)

generator learning rate 5e−5 10U(−5,−3.5)

classifier learning rate 5e−5 10U(−5,−3.5)

weight decay 0 10U(−6,−2)

generator weight decay 0 10U(−6,−2)

discriminator weight decay 0 10U(−6,−2)

adam β1 0.5 Random Choise from {0, 0.5}
β 1 10U(−1,1)

U(a, b) denotes a random variable sampled according to the uniform distribution on [a, b].

Meta-test. As shown in Algorithm 4, the learned feature extractor is further trained on all of the N
source domains with the inner-loop objective in line 4− 8 and simultaneously, the classification task
w.r.t. the task classifier and feature extractor is also trained with the source-domain labeled data in
line 9− 10.

D HYPERPARAMETERS

We list the default value and random search distribution for each hyperparameter in Table 4.

E FULL RESULTS OF STATE-OF-THE-ART COMPARISON

The full results of state-of-the-art comparisons on PACS and DomainNet are listed in Table 5 and
Table 6, respectively.

We first make comparisons with ERM methods: ERM-AUG (Vapnik, 1999) which improves ERM
via data augmentation, DRO (Sagawa et al., 2019), which increases the importance of domains with
larger risks when performing ERM and MIXUP (Wang et al., 2020), which is in consistent with the
theoretical analysis that discrepancy-optimal meta-learning has the potential to be better than ERM
when Y-discrepancy can be promisingly optimized. CORAL (Sun & Saenko, 2016), MMD (Li et al.,
2018b), DANN (Ganin et al., 2016) and C-DANN (Li et al., 2018c) learn domain-invariant features
across sources through optimizing mean and covariance of distributions, maximum mean discrepancy
(MMD) (Gretton et al., 2012) or H-divergence. Compared with this method, the strength of our
meta-learning method is the to ability to optimize Y-discrepancy between unseen target and source
domains, which is also in consistent with the theoretical analysis. A state-of-the-art meta-learning DG
method MLDG (Li et al., 2018a) directly uses classification objectives of target and source domains
as the inner-loop and outer-loop objectives in bilevel optimization. Our method focus on optimizing
the domain discrepancy to reduce domain shift, which has reasoning theoretical guarantees and
achieves better results. Besides, our method also outperforms recent state-of-the-art methods such as
MTL (Blanchard et al., 2021), which uses marginal transfer learning based on kernel-based methods;
SAGNET (Nam et al., 2019), which uses style-agnostic networks to reduce intrinsic style bias of
CNN; and RSC (Huang et al., 2020), which uses a simple training heuristic algorithm to improve DG.
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Table 5: Accuracy (%) on PACS using pretrained ResNet-50 backbone.
Method paintings cartoon photo sketch Avg.

ERM (Vapnik, 1999) 84.7±0.4 80.8±0.6 97.2±0.3 79.3±1.0 85.5
DRO (Sagawa et al., 2019) 83.5±0.9 79.1±0.6 96.7±0.3 78.3±2.0 84.4
MIXUP (Wang et al., 2020) 86.1±0.5 78.9±0.8 97.6±0.1 75.8±1.8 84.6

CORAL (Sun & Saenko, 2016) 88.3±0.2 80.0±0.5 97.5±0.3 78.8±1.3 86.2
MMD (Li et al., 2018b) 86.1±1.4 79.4 ±0.9 96.6±0.2 76.5±0.5 84.6

DANN (Ganin et al., 2016) 86.4±0.8 77.4±0.8 97.3±0.4 73.5±2.3 83.6
C-DANN (Li et al., 2018c) 84.6±1.8 75.5±0.9 96.8±0.3 73.5±0.6 82.6
MLDG (Li et al., 2018a) 85.5±1.4 80.1±1.7 97.4±0.3 76.6±1.1 84.9

MTL (Blanchard et al., 2021) 87.5±0.8 77.1±0.5 96.4±0.8 77.3±1.8 84.6
SAGNET (Nam et al., 2019) 87.4±1.0 80.7±0.6 97.1±0.1 80.0±0.4 86.3

RSC (Huang et al., 2020) 85.4±0.8 79.7±1.8 97.6±0.3 78.2±1.2 85.2
Ours 88.2±0.8 81.7±1.2 97.8±0.3 79.6±0.7 86.8

Table 6: Accuracy (%) on the DomainNet using pretrained ResNet-50 backbone.
Method clipart infograph painting qickdraw real sketch Avg.

ERM (Vapnik, 1999) 58.1±0.3 18.8±0.3 46.7±0.3 12.2±0.4 59.6±0.1 49.8±0.4 40.9
DRO (Sagawa et al., 2019) 47.2±0.5 17.5±0.4 33.8±0.5 9.3±0.3 51.6±0.4 40.1±0.6 33.3
MIXUP (Wang et al., 2020) 55.7±0.3 18.5±0.5 44.3±0.5 12.5±0.4 55.8±0.3 48.2±0.5 39.2

CORAL (Sun & Saenko, 2016) 59.2±0.1 19.7±0.2 46.6±0.3 13.4±0.4 59.8±0.2 50.1±0.6 41.5
MMD (Li et al., 2018b) 32.1±13.3 11.0±4.6 26.8±11.3 8.7±2.1 32.7±13.8 28.9±11.9 23.4

DANN (Ganin et al., 2016) 53.1±0.2 18.3±0.1 44.2±0.7 11.8±0.1 55.5±0.4 46.8±0.6 38.3
C-DANN (Li et al., 2018c) 54.6±0.4 17.3±0.1 43.7±0.9 12.1±0.7 56.2±0.4 45.9±0.5 38.3
MLDG (Li et al., 2018a) 59.1±0.2 19.1±0.3 45.8±0.7 13.4±0.3 59.6±0.2 50.2±0.4 41.2

MTL (Blanchard et al., 2021) 57.9±0.5 18.5±0.4 46.0±0.1 12.5±0.1 59.5±0.3 49.2±0.1 40.6
SAGNET (Nam et al., 2019) 57.7±0.3 19.0±0.2 45.3±0.3 12.7±0.5 58.1±0.5 48.8±0.2 40.3

RSC (Huang et al., 2020) 55.0±1.2 18.3±0.5 44.4±0.6 12.2±0.2 55.7±0.7 47.8±0.9 38.9
Ours 60.7±0.8 23.3±0.5 51.2±0.2 14.7±0.4 63.6±0.4 51.8±0.8 44.2

(a) ERM (b) Domain-Invariant Learning (c) Ours
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house

Figure 4: t-SNE visualization of feature representions on PACS when the target domain is photo.
Different image categories are represented by different markers and different domains are represented
in different colors where the instances of target domain are represented in gray.

F VISUALIZATION

We visualize the learned feature representations by t-SNE (Maaten & Hinton, 2008), which can be
seen as a real-world case for Figure 1. We randomly select 250 test examples from each domain.
As shown in Figure 4, compared with ERM, both domain-invariant learning and our method can
match the feature distributions of source domains; Compared with the domain-invariant learning, our
method can also well match the feature distributions of the target and source domains, which benefits
from the outer-loop objective in bilevel optimization to improve the robustness to domain shift.
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Figure 5: Number of meta-training domains on DomainNet.

G TRADEOFF BETWEEN PERFORMANCE AND COMPLEXITY

We study the possible number of meta-source domains, which has positive correlation with the
size of meta-sample in episodic training process. As shown in Figure 5, we compare three sets of
possible numbers of meta-source domains: {4, 3, 2}, {4, 3}, {4}, where 4 is the maximum number of
meta-source domains on DomainNet. We find that although more possible numbers of meta-source
domains can increase the compute complexity, it also improves the performances, because it improves
the robustness of algorithm to different numbers of source domains. This is important for DG based
on episodic training, because in test phase, the source domains are more than those in meta-training
phase.
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