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Abstract
Nonparametric estimation using uniform-width
binning is a standard approach for evaluating the
calibration performance of machine learning mod-
els. However, existing theoretical analyses of the
bias induced by binning are limited to binary clas-
sification, creating a significant gap with practi-
cal applications such as multiclass classification.
Additionally, many parametric recalibration algo-
rithms lack theoretical guarantees for their gen-
eralization performance. To address these issues,
we conduct a generalization analysis of calibra-
tion error using the probably approximately cor-
rect Bayes framework. This approach enables us
to derive the first optimizable upper bound for gen-
eralization error in the calibration context. On the
basis of our theory, we propose a generalization-
aware recalibration algorithm. Numerical experi-
ments show that our algorithm enhances the per-
formance of Gaussian process-based recalibration
across various benchmark datasets and models.

1. Introduction
Increasing the reliability of machine learning models is cru-
cial in risk-sensitive applications such as autonomous driv-
ing (Chen et al., 2015). Recently, the concept of calibration
has become a significant measure of reliability, especially
in classification tasks. In this context, the calibration per-
formance is evaluated by how well predictive probabilities
provided by our model align with the actual frequency of
true labels. A close correspondence between them indicates
that the model is well-calibrated (Dawid, 1982; Widmann
et al., 2021). To evaluate the calibration performance, a
calibration error (Gupta and Ramdas, 2021; Roelofs et al.,
2022) such as the top-label calibration error (TCE) (Kumar
et al., 2019; Gruber and Buettner, 2022) is often used. This
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evaluates the disparity between the predicted probability of a
model and the conditional probability of the label frequency
given by the model prediction. Analytically computing
the TCE is, however, challenging because the conditional
probabilities of the labels are intractable. Among various
methods proposed to address this issue, constructing its es-
timator called the expected calibration error (ECE) using
uniform-width binning (UWB) (Zadrozny and Elkan, 2001;
Naeini et al., 2015) is one of the most widely adopted. This
study centers on this approach.

If the ECE is small, we consider the model well-calibrated
and its predictions highly reliable. Unfortunately, as has
already been made evident in recent studies, models such
as neural networks are not necessarily well-calibrated (Guo
et al., 2017). If a model shows poor calibration performance,
it is common to apply a post-processing technique known as
recalibration (Guo et al., 2017; Zadrozny and Elkan, 2001).
This technique adjusts predicted probabilities using a recali-
bration function—a parametric function trained separately
from the original model—on a dataset independent of both
training and test data. Recalibration aims to train a separate
function that, when composed with the original predictor,
yields a low ECE. Numerous methodologies have been pro-
posed recently, including temperature scaling (Guo et al.,
2017) and recalibration based on variational inference (VI)
with a Gaussian process (GP) (Wenger et al., 2020).

Given that the ECE is an estimator of the TCE, it is im-
portant for reliable uncertainty evaluation to understand the
extent of bias introduced between them before and after
recalibration. Nevertheless, the theoretical understanding
of this remains limited. In the context of bias analysis be-
fore recalibration, many studies have focused exclusively
on binary classification and have shown that the number of
bins used in binning significantly affects both the estimated
ECE and the bias (Gupta and Ramdas, 2021; Sun et al.,
2023; Futami and Fujisawa, 2024). Such insights remain
unclear in the multiclass classification context. Moreover,
regularization techniques have been proposed to reduce the
ECE on training data (Kumar et al., 2018; Popordanoska
et al., 2022; Wang et al., 2021a). However, a low ECE on
training data does not guarantee a similar low TCE. Verify-
ing this requires a theoretical analysis of the gap between
these, which, to our knowledge, has not yet been explored.
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This situation remains the same even after recalibration.
Moreover, in many recalibration methods, postprocessing
is performed to achieve a low ECE only on the recalibra-
tion data. However, in practice, it is desirable to perform
recalibration such that the ECE evaluated on test data is
reduced—that is, to enhance the model’s generalization per-
formance from the ECE perspective through recalibration.
Although existing studies have confirmed this point only
through numerical experiments (Platt, 1999; Zadrozny and
Elkan, 2002; Kull et al., 2017; Naeini et al., 2015; Guo et al.,
2017; Wenger et al., 2020), recalibration methods with theo-
retical guarantees for improving generalization performance
in terms of ECE have not been explored thus far.

Given this background, we conduct a comprehensive anal-
ysis of the bias of the ECE in multiclass classification. To
achieve this, we develop a statistical learning theory fo-
cusing on the ECE before and after recalibration by ap-
plying the probably approximately correct (PAC) Bayes
theory (McAllester, 2003; Alquier et al., 2016), a general
method for deriving generalization bounds across various
models. Since PAC-Bayes theory allows for the algorithm-
dependent analysis of generalization performance, the ob-
tained upper bounds are often optimizable and useful for
deriving new generalization-aware algorithms. In apply-
ing PAC-Bayes analysis to the ECE, we face the following
two challenges: (i) Owing to the nonparametric estima-
tion of conditional probabilities, the ECE computed on the
test dataset is not a sum of independently and identically
distributed (i.i.d.) random variables and thus cannot be
applied using the existing PAC-Bayes bounds derived under
the i.i.d. assumption, and (ii) some bins may not contain
samples because UWB divides the probability interval [0, 1]
into equal widths, making it difficult to apply the concentra-
tion inequality used in the PAC-Bayes bound derivation.

Our main contribution is a novel analysis of ECE in multi-
class classification, which addresses the abovementioned
limitations. We begin by presenting a decomposition of the
bias into binning bias and finite-sample estimation bias. We
then derive a novel concentration inequality that enables
theoretical analysis in the binning-based ECE setting with
UWB. This framework reveals that the bias in ECE estima-
tion converges at a notably slow rate. Furthermore, by deriv-
ing the PAC-Bayes bound, we have successfully formulated
a new generalization-aware recalibration algorithm, which is
expected to improve the generalization performance of cali-
bration and reduce the estimation bias in TCE. Numerical
experiments confirm a correlation between the Kullback–
Leibler (KL) regularization terms in our bounds and the
generalization performance, show that our method can im-
prove GP-based recalibration, and reveal the instability of
ECE-based calibration performance evaluation due to the
slow convergence rate. Finally, we discuss related work in
light of our theoretical findings in Section 5, providing a

view of how our contributions relate to existing literature.

2. Preliminaries
In this section, we summarize the basic notations, problem
setup (Section 2.1), calibration metric (Section 2.2), and
postprocessing by recalibration (Section 2.3).

2.1. Notations and Problem Setting

For a random variable denoted in capital letters, we ex-
press its realization with corresponding lowercase letters.
Let P (X) denote a probability distribution of X , and let
P (Y |X) represent the conditional probability distribution
of Y given X . We express the expectation of a random
variable X as EX . Let KL(P∥Q) be the KL divergence of
P from Q, where Q is a probability distribution and P is
absolutely continuous with respect to Q.

Let Z = X × Y be the domain of data, where X and Y are
the input and label spaces, respectively. Let the label space
be Y := {0, . . . ,K − 1}, where K ∈ N is the number of
classes. For the label Y ∈ Y , we define the one-hot encod-
ing of the label Y as eY ∈ RK . Suppose D represents an
unknown data distribution, and let Str := {(Xm, Ym)}ntr

m=1

denote the training dataset consisting of ntr samples drawn
i.i.d. from D. We also define the test dataset comprising
nte samples drawn i.i.d. from D. Let fw : X → ∆K be
a probabilistic classifier, where ∆K represents the K − 1-
dimensional simplex. This classifier is parameterized by
w ∈ W ⊂ Rd. For example, such a simplex is obtained
by the final softmax layer in neural networks. Under these
settings, fw predicts the label from C := argmaxkfw(X)k,
where fw(X)k is the k-th dimension of fw(x), which rep-
resents the model’s confidence of the label k ∈ K.

We evaluate the performance characteristics of the trained
predictor fw, such as its accuracy using the classification
loss function lacc : Y × ∆K → R, where lacc(y, fw(x))
denotes the loss incurred by the prediction fw(x) for the
target y. We define the training loss as L̂(w, Str) :=
1
ntr

∑
(X,Y )∈Str

lacc(Y, fw(X)) and the expected loss as
L(w,D) := E(X,Y )lacc(Y, fw(X)). Under this setting, one
of the major purposes of the learning algorithms is to achieve
the small generalization gap for loss function lacc, which is
defined as |L(w,D)− L̂(w, Str)|.

2.2. Calibration Metrics for Multiclass Classification

In the context of calibration, it is expected that not only fw
has high accuracy but also its predictive probability aligns
well in the actual label frequency P (Y = k|fw(x)) for
k = 0, . . . ,K − 1. Hereinafter, given (w, x), we treat
P (Y |fw(x)) as the K-dimensional vector by regarding its
k-th element as P (Y = k|fw(x)). Then, a model is well-
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calibrated (Widmann et al., 2021; Gupta et al., 2020) when
P (Y |fw(X)) = fw(X) holds. However, it is difficult to
confirm this in practice. Instead, a frequently used measure
is the top-label calibration error (TCE) (Kumar et al.,
2019; Gruber and Buettner, 2022), which uses the highest
prediction probability in fw:

TCE(fw) := E|P (Y = C|fw(X)C)− fw(X)C |.

Unfortunately, evaluating the TCE is still infeasible because
P (Y = C|fw(X)C) is intractable. To resolve this issue,
we evaluate the calibration performance by constructing
the estimator of the TCE. The widely used estimator is the
expected calibration error (ECE), where binning is used to
estimate P (Y = C|fw(X)C) (Guo et al., 2017; Zadrozny
and Elkan, 2001; 2002). The ECE is often computed us-
ing UWB, which partitions the predictive probability range
[0, 1] into B equal-width intervals I = {Ii}Bi=1 (called bins)
and averaging within each bin using an evaluation dataset
Se := {zm}ne

m=1 ∈ Zne . For simplicity, we refer to UWB
simply as binning. Accordingly, we define the ECE based
on binning as follows:

ECE(fw, Se) :=

B∑
i=1

pi|f̄i,Se − p̄i,Se |, (1)

where |Ii| :=
∑ne

m=1 1fw(xm)C∈Ii , pi := |Ii|
ne

,
f̄i,Se

:= 1
|Ii|
∑ne

m=1 1fw(xm)C∈Iifw(xm)C , and p̄i,Se
:=

1
|Ii|
∑ne

m=1 1fw(xm)C∈Ii1ym=C . Here, bins are set by divid-
ing the interval [0, 1] into B bins of the same width: I1 =
(0, 1/B], I2 = (1/B, 2/B], . . . , IB = ((B − 1)/B,B].

Since the ECE is an estimator of TCE, it is important to
understand the bias defined as

Bias(fw, Se,TCE) := |TCE(fw)− ECE(fw, Se)|,

and we refer to this as the total bias. As discussed in Sec-
tion 1, one of our goals is to evaluate this bias theoretically
in the multiclass classification setting.

2.3. Postprocessing by Recalibration

The trained predictor fw(x) can be poorly calibrated (Guo
et al., 2017; Kumar et al., 2019). One common approach to
address this problem involves recalibrating fw(x) by post-
processing using the parametric function ηV : ∆K → ∆K ,
where V ∈ V ⊂ Rd′

is the parameter learned by the recali-
bration dataset Sre ∼ Dnre at fixed w and Sre is independent
of Str. In this procedure, the overall dataset is split into the
training data Str for learning W , the recalibration data Sre

for learning V , and the test data Ste for the evaluation of
the ECE. We define the recalibrated model as ηv ◦ fw.

The output after recalibration, ηv ◦ fw, is expected to yield
a sufficiently small ECE(ηv ◦ fw, Sre). From a general-

ization perspective, it is important to theoretically inves-
tigate conditions under which ηv ◦ fw also achieves low
ECE(ηv ◦ fw, Ste). To this end, we define the following
error term, resembling the standard generalization error typ-
ically defined via a loss function.

gen(ηv ◦ fw, Sre,ECE)

:= |ESte
ECE(ηv ◦ fw, Ste)− ECE(ηv ◦ fw, Sre)|.

We refer to this quantity as the generalization error of
the ECE under Sre. In addition, the total bias for the
recalibration, defined below, is required to be small:

Bias(ηv ◦ fw, Sre,TCE)

:= |TCE(ηv ◦ fw)− ECE(ηv ◦ fw, Sre)|.

Another goal of our study is to provide a theoretical under-
standing of these errors and biases by deriving their upper
bounds using PAC-Bayes theory.

3. Analysis of ECE for Multiclass
Classification

Here, we present a comprehensive analysis of the ECE
before applying recalibration.

3.1. Total Bias Analysis for the ECE

In this section, we present our main analysis for the total
bias. Under the smoothness assumptions commonly used in
nonparametric estimation (Tsybakov, 2008), we show the
following theorem:

Assumption 1. Conditioned on W = w, the L-Lipschitz
continuity holds for P (Y = C|fw(x)C).
Theorem 1. Given W = w, for any positive constant ε ∈
(0, 1) and λ > 0, with probability 1− ε with respect to Ste,
we have

Bias(fw, Ste,TCE) ≤
1 + L

B
+

B log 2 + log 1
ε + 2λ2

nte

λ
.

The complete proof is shown in Appendix B.5. The first
term on the right-hand side is referred to as the binning bias,
whereas the second term is called the estimation bias (Fu-
tami and Fujisawa, 2024). According to this theorem, the
number of bins shows a trade-off relationship as follows. As
we increase B, the binning bias decreases because we esti-
mate the label frequency more precisely. On the other hand,
the statistical bias increases since the number of samples al-
located to each bin decreases. From this observation, we de-
rive the optimal number of bins that minimize the total bias.
By setting λ =

√
Bnte, we can minimize the upper bound

of Eq. (3) with respect to B. This yields B = O(n
1/3
te ), and
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under this bin size, the order of the estimation bias becomes

Bias(fw, Ste,TCE) = O(1/n
1/3
te ). (2)

This optimal order matches the result of the binary clas-
sification provided by Futami and Fujisawa (2024). This
is natural, given that the binning ECE divides the top-1
predicted probabilities equally into B bins in both cases.

The order of the total bias in Eq. (2) is tight from the non-
parametric regression viewpoint. As discussed by Futami
and Fujisawa (2024), the TCE measures the error between
two functions, namely, P (Y = C|fw(x)C) and fw(x), and
we estimate P (Y = C|fw(x)C) by binning, which is a
nonparametric method. Thus, this is a problem of non-
parametric regression on [0, 1] under Lipschitz continuity.
According to Tsybakov (2008), the error in nonparametric
regression cannot be smaller than O(1/n

1/3
te ). Achieving

an order smaller than this requires additional assumptions
about the data distribution. Thus, the order of our bound
is convincing under the current assumptions. We note that
assuming Hölder continuity instead of Assumption 1 does
not improve the order of the estimation bias owing to the
bias caused by binning (see Appendix B.7 for details).

3.2. Total Bias Under the Training Dataset

Some recent algorithms (Kumar et al., 2018; Popordanoska
et al., 2022; Wang et al., 2021a) focus on minimizing
ECE(fw, Str) without guaranteeing that the gap between
TCE(fw) and ECE(fw, Str) will remain small. Therefore,
in this section, we theoretically investigate the conditions
that an algorithm must satisfy to minimize this gap and to
achieve a well-calibrated model. To this end, we conduct a
theoretical analysis focusing on the following bias:

Bias(fw, Str,TCE) := |TCE(fw)− ECE(fw, Str)|.

The following theorem presents the first PAC-Bayes bound
for the generalization error of the ECE.

Theorem 2. Under Assumption 1, for any fixed prior π,
which is independent of Str, and posterior distribution ρ
over W , and for any positive constant ε ∈ [0, 1] and λ > 0,
with probability 1− ε with respect to Str, we have

EρBias(fW , Str,TCE) (3)

≤ 1 + L

B
+

KL(ρ∥π) +B log 2 + log 1
ε + 2λ2

ntr

λ
.

The complete proof is shown in Appendix B.3. Assum-
ing that KL(ρ∥π) is sufficiently smaller than ntr, e.g.,
O(log ntr) and independent of B, and setting λ =

√
Bntr,

we can minimize the upper bound of Eq. (3) with re-
spect to B. This yields B = O(n

1/3
tr ) and we have

Bias(fw, Str,TCE) = O(log ntr/n
1/3
tr ).

Comparison with existing work: The most closely related
analysis is that performed by Futami and Fujisawa (2024);
they evaluated a similar bias using information-theoretic
generalization error analysis (IT analysis) (Xu and Ragin-
sky, 2017). Their obtained bound and ours achieved the
same order with respect to n, which improves previous re-
sults, such as those obtained by Gupta and Ramdas (2021).
However, our result has two advantages over that obtained
by Futami and Fujisawa (2024). The first advantage is that
ours can treat the multiclass setting and the second advan-
tage is that our theory builds on the PAC-Bayesian theory
and the upper bound is optimizable, which leads to our
novel recalibration algorithm, as shown in Section 4. On the
other hand, Futami and Fujisawa (2024) used the supersam-
ple setting of the IT analysis, with which the optimizable
upper-bound is difficult to obtain.

We also note that it seems difficult to use the approach of
deriving tighter PAC-Bayes bounds on the basis of the KL
divergence of the Bernoulli random variable kl (Maurer,
2004; Foong et al., 2021). This is because the ECE is no
longer a sum of i.i.d. random variables as it is in a test loss.

3.3. Analysis for the Top-K Calibration Metric

In applications such as medical diagnosis (Jiang et al., 2012),
it is often important to calibrate the prediction probabilities
for any k ∈ [K], not simply focusing on the top-1. In this
case, the alternative metric

CEK(fw) := E∥P (Y |fw(X))− fw(X)∥1,

has been explored instead of TCE (Gruber and Buettner,
2022), where ∥ ·∥p is the Lp distance in RK . The CEK met-
ric measures the calibration performance of models across
all classes. Here, we show that the direct estimation of CEK

by binning results in a slow convergence due to the curse of
dimensionality.

Let us consider the following binning scheme to estimate
CEK . Since we want to estimate the K-dimensional con-
ditional probability in [0, 1]K by binning, we split each
dimension [0, 1] into B′ bins of the same width. After doing
so, there are B = (B′)K bins, and [0, 1]K is split into B
small regions. We refer to these regions as I := {Ii}Bi=1. In
this case, the ECE of CEK can be defined as

ECEK(fw, Se) :=

B∑
i=1

pi∥f̄i,Se
− p̄i,Se

∥1, (4)

where |Ii| :=
∑ne

m=1 1fw(xm)∈Ii , p̂i := |Ii|/ne,
f̄i,Se

:= 1
|Ii|
∑ne

m=1 1fw(xm)∈Iifw(xm), and p̄i,Se
:=

1
|Ii|
∑ne

m=1 1fw(xm)∈Iieym
. The definition of Eq. (4) is sim-

ilar to that of Eq. (1). The difference is that Eq. (1) only
focuses on the top label. Under these settings, the upper
bound of the total bias in ECEK is given as follows.
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Theorem 3. Assume that fw(x) has a probability density
over [0, 1]K and E[eY |fw(x)] satisfies the L-Lipschitz con-
tinuity. Then, for any fixed prior π, which is independent of
Str, and the posterior distribution ρ over W , and for any
positive constant ε ∈ [0, 1] and λ > 0, with probability
1− ε with respect to Str, we have

Eρ|CEK(fw)− ECEK(fW , Str)| (5)

≤ K(1 + L)

B
1
K

+
KL(ρ∥π) +BK log 2 + log 1

ε + K2λ2

2ntr

λ
.

By minimizing the upper bound of Eq. (5), we obtain the

optimal bin size as B = O(n
1

K+2

tr ), leading to an estimation

bias of O(K
3
2 log ntr/n

1
K+2

tr ). We can similarly show the
result of the total bias as

Bias(fw, Ste,CEK) := |CEK(fw)− ECEK(fw, Ste)|

= O(1/n
1/(K+2)
te ).

The proofs are provided in Appendix B.8. This order aligns
with the lower bound of K-dimensional nonparametric re-
gression with Lipschitz continuity (Tsybakov, 2008), and
it is much larger than that of the TCE (O(log ntr/n

1/3
tr ))

owing to the curse of dimensionality. Thus, this result clar-
ifies the pros and cons of the TCE; the TCE successfully
circumvents the curse of dimensionality as described in
Theorem 2 by focusing only on the top-1 predicted label,
although it does not necessarily guarantee good calibration
performance for all classes (Gruber and Buettner, 2022).

We note that our proof technique can be extended to cases
where we focus on the calibration of any K ′ ∈ [1,K]

classes, resulting in a total bias of O(1/n
1/(K′+2)
te ) (see

Appendix B.10 for the details). This finding suggests that
in scenarios with a large number of classes, it is crucial
to selectively choose which classes to evaluate for calibra-
tion, especially when additional classes beyond the top label
require calibration evaluation, rather than evaluating all
classes. This approach is essential for achieving sample-
efficient calibration evaluations.

4. PAC-Bayes bounds under Recalibration
In this section, we analyze the recalibration using PAC-
Bayesian theory, leading to our novel recalibration algorithm
in Section 4.2. All the proofs are provided in Appendix C.

4.1. Generalization and Total Bias under Recalibration

The following result shows the PAC-Bayes bound of the
ECE under the recalibration context.
Corollary 1. Assume that nte = nre = n. For both binary
and multiclass classifications, conditioned on W = w, for

any fixed prior π̃, which is independent of Sre, and posterior
ρ̃ over V , and for any ε ∈ (0, 1) and λ > 0, with probability
1− ε with respect to Sre, we have

Eρ̃gen(ηV ◦ fw, Sre,ECE) (6)

≤
KL(ρ̃∥π̃) +B log 2 + log 1

ε + 4λ2

n

λ
.

This result highlights the importance of KL regularization
in the parameter space—similar to the standard PAC-Bayes
bound over Str (McAllester, 2003; Alquier et al., 2016)—in
preventing overfitting and improving generalization. Since
the recalibration data is available and we have fixed w, we
only consider the posterior ρ̃ over V . Instead of fixing
W = w, we can also obtain the PAC-Bayes bound by taking
expectation over W (see Appendix C.2).

Discussion about the assumption of nte = nre = n: Al-
though a single data point can be used to evaluate loss in a
standard generalization error analysis, multiple data points
are required to evaluate the ECE, as it is a nonparametric es-
timator. Therefore, for a fair comparison, the same number
of data points should be used in the analysis of the ECEs
based on Sre and Ste. We also remark that this assumption
is not very restrictive since we split all the available data
into training, recalibration, and test datasets, and most data
are allocated to the training dataset in practice.

Next, we present our PAC-Bayes bound on the estimation
bias of the ECE and TCE in the recalibration context after in-
troducing the necessary assumption similar to Assumption 1.

Assumption 2. Conditioned on W = w and V = v, the
L-Lipschitz continuity holds for P (Y = C|ηv ◦ fw(X)C)
in the multiclass classification.

Corollary 2. Under Assumption 2, conditioned on W = w,
for any fixed prior π̃, which is independent of Sre, and pos-
terior distribution ρ̃ over V , and for any positive constant
ε ∈ [0, 1] and λ > 0, with probability 1− ε with respect to
Sre, we have

Eρ̃Bias(ηV ◦ fw, Sre,TCE)

≤ 1 + L

B
+

KL(ρ̃∥π̃) +B log 2 + log 1
ε + 2λ2

nre

λ
. (7)

Similarly to Eq. (3), there is a trade-off relationship with
respect to B in the above bound. By minimizing this upper
bound with respect to B, we obtain the optimal bin size as
B = O(n

1/3
re ). For practical purposes, it is possible to set

B = ⌊n1/3
re ⌋, where ⌊x⌋ := max{m ∈ Z : m ≤ x}.
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4.2. Proposed Recalibration Algorithm Based on
PAC-Bayes Bounds

From Corollary 2, we can see that as long as KL(ρ̃∥π̃) is
regularized and the ECE under the recalibration data is small,
the recalibrated function could exhibit a small TCE. This
leads us to propose a generalization-aware recalibration
method by minimizing our bound.

However, minimizing this function is difficult since the ECE
is neither smooth nor differentiable. To avoid this issue, we
focus on the following relation:

ECE(ηv ◦ fw, Sre) ≤ E(X,Y )∼Sre
∥eY − ηV ◦ fw(X)∥22,

in the multiclass classification, where E(X,Y )∼Sre
denotes

the expectation by the empirical distribution of Sre, see
Appendix C.3 for its derivation. This upper bound is the
Brier score (Gruber and Buettner, 2022), which is a con-
tinuous and differentiable calibration metric. Therefore,
under the posterior ρ̃(v) = ρ̃(v; θ) parametrized by θ, we
can minimize the following PAC-Bayes-based objective by
gradient-based optimization:

E
ρ̃(v;θ)

E
(X,Y )∼Sre

∥eY − ηV ◦ fw(X)∥22︸ ︷︷ ︸
Brier score

+α
KL(ρ̃∥π̃)

nre
.(8)

We expect the recalibrated models to achieve not only a
low TCE or CE but also a high accuracy in practice. We
thus consider minimizing the following objective with the
classification loss lacc:

Eρ̃(v;θ) E(X,Y )∼Sre
lacc(Y, ηV ◦ fw(X))︸ ︷︷ ︸

Expected classification loss

(9)

+ E(X,Y )∼Sre
∥eY − ηV ◦ fw(X)∥22︸ ︷︷ ︸

Brier score

+α
KL(ρ̃∥π̃)

nre
.

(10)

Since this objective function is derived from the PAC-Bayes
bound for lacc (Theorem 4 in Appendix B) and Corollary 2
via a union bound, it remains within the generalization error
bound (See Corollary 5 in Appendix C.3 for details).

We refer to the recalibration achieved by minimizing Eqs. (8)
and (10) as PAC-Bayes recalibration (PBR) and summarize
these procedures in Algorithm 1. As an example of a re-
calibration model in PBR, we use the Gaussian process
(GP) (Rasmussen and Williams, 2005). In this case, ρ̃(v; θ)
is set as the multivariate Gaussian distribution, N (v;µ,Σ),
where µ and Σ are the mean and covariance matrix, respec-
tively. Furthermore, we can construct a data-dependent GP
prior π̃ using the M outputs {fw(x, i)}Mi=1 (x ∈ Sre) ob-
tained during training as inducing points, which is expected

Algorithm 1 PAC-Bayes recalibration (PBR)
1: INPUT: All dataset Sall, model fw, recalibration model

ηv , variational posterior ρ̃(v; θ)
2: Splitting all dataset Sall to Str, Sre, Ste.
3: Training fw using Str.
4: Updating θ by minimizing Eq. (8) or (10) using Sre at

fixed w.
5: Obtaining V by taking the mean of J samples

{Vj}Jj=1
i.i.d.∼ ρ̃(v; θ)

6: (Option) Calculate the test ECE: ECE(ηv ◦ fw, Ste) by
setting B = ⌊n1/3

re ⌋.
7: RETURN: ηv ◦ fw, (ECE(ηv ◦ fw, Ste))

to yield a small KL value. This is because w is trained
using Str, and since Str and Sre are independent, this does
not violate the independence of Sre from π̃ as assumed in
Corollary 1.

A GP-based recalibration method was also proposed by
Wenger et al. (2020), and, as far as we know, it is one of the
methods that achieve state-of-the-art performance. Their
recalibration was conducted via variational inference (VI),
i.e., minimizing the following objective function derived
from the evidence lower bound (ELBO):

Eρ̃(v;θ)E(X,Y )∼Sre
lacc(Y, ηV ◦ fw(X)) +

KL(ρ̃∥π̃)
nre

,

where lacc is defined as the softmax loss. Eq. (10) corre-
sponds to this ELBO objective when α = 1 and the Brier
score is removed. This fact indicates that our PBR extends
the GP-based recalibration to have flexible KL regulariza-
tion and Brier score loss to control calibration performance
on the basis of the PAC-Bayes notion. In this paper, we
adopt in PBR the same computational strategy for GP-based
recalibration as proposed by Wenger et al. (2020), in order
to reduce the computational cost from O(N3) to O(N2M).
While this cost is not negligible, it remains justifiable in
practice, as the size of Sre is significantly smaller than that
of Str. In Section 6.2, we compare PBR and GP-based
recalibration using the same recalibration model settings.

5. Related work
Several studies have applied PAC-Bayes theory to classi-
fication metrics beyond accuracy. Ridgway et al. (2014)
addressed AUC, Morvant et al. (2012) studied the confu-
sion matrix in multiclass settings, and Sharma et al. (2024)
examined conformal prediction as a tool for uncertainty
quantification. In this work, we extend the PAC-Bayesian
framework to the calibration metric.

Gupta and Ramdas (2021) and Kumar et al. (2019) examined
the ECE in binary classification, focusing on uniform mass
binning (UMB), which partitions the probability space into
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Figure 1. KL vs ECE gap on MNIST (Multiclass; 1-layer NN) and CIFAR-100 (Multiclass; ResNeXt-29 (Xie et al., 2017) and DenseNet-
BC-190 (Huang et al., 2017)) dataset for each of various regularize parameters (α).

Table 1. Results of multiclass classification experiments on MNIST and CIFAR-100. The symbols (↓) and (↑) refer to lower and higher
values indicating a higher performance, respectively. We set nre = 1000.

Data Model Uncalibrate GP (Wenger et al., 2020) PBR (Ours; Eq. (8)) PBR (Ours; Eq. (10))) Temp. Scaling

ECE (↓) Accuracy (↑) ECE (↓) Accuracy (↑) ECE (↓) Accuracy (↑) ECE (↓) Accuracy (↑) ECE (↓) Accuracy (↑)

MNIST
XGBoost .0036± .0003 .9785± .0005 .0038± .0006 .9786± .0007 .0035± .0004 .9785± .0007 .0037± .0004 .9785± .0006 .0055± .0017 .9785± .0005

random forest .1428± .0007 .9659± .0005 .0313± .0056 .9663± .0011 .0065± .0017 .9639± .0018 .0057± .0028 .9656± .0017 .0062± .0009 .9659± .0005
1layer NN .0164± .0004 .9760± .0005 .0101± .0023 .9740± .0008 .0137± .0014 .9751± .0009 .0112± .0019 .9740± .0016 .0062± .0026 .9760± .0005

CIFAR100

alexnet .2548± .0007 .4374± .0008 .2548± .0008 .4373± .0009 .2548± .0007 .4372± .0009 .2548± .0007 .4373± .0009 .0216± .0037 .4374± .0008
WRN-28-10-drop .0568± .0009 .8131± .0011 .0567± .0010 .8129± .0011 .0504± .0054 .8129± .0011 .0349± .0093 .8129± .0011 .0374± .0028 .8131± .0011

resnext-8x64d .0401± .0010 .8229± .0013 .0400± .0010 .8229± .0014 .0320± .0050 .8228± .0014 .0310± .0082 .8230± .0014 .0401± .0019 .8229± .0013
resnext-16x64d .0405± .0012 .8231± .0013 .0403± .0013 .8230± .0014 .0305± .0056 .8231± .0013 .0321± .0071 .8230± .0014 .0420± .0025 .8231± .0013

densenet-bc-L190-k40 .0639± .0008 .8230± .0007 .0639± .0008 .8229± .0007 .0630± .0045 .8228± .0006 .0618± .0054 .8229± .0007 .0222± .0013 .8230± .0007

intervals of equal mass. They also analyzed a recalibration
method based on UMB. Sun et al. (2023) further analyzed
binning-based recalibration for binary classification under a
similar Lipschitz assumption. Futami and Fujisawa (2024)
investigated the generalization of the ECE using IT analysis
under a comparable setting, and derived a total bias of order
O(1/n1/3). In contrast, our work provides an analysis of
the binning ECE in the multiclass setting—a direction that
has not yet been explored. Furthermore, our bound is op-
timizable, which allows us to derive a novel recalibration
algorithm for the ECE criterion that explicitly considers gen-
eralization. A natural direction for future work is to extend
our analysis to settings that employ UMB.

The analysis of multiclass calibration remains limited com-
pared to that of binary classification. For instance, Zhang
et al. (2020) investigated the kernel-based CEK ; however,
their analysis does not address generalization or recali-
bration, which fundamentally distinguishes our approach.
Moreover, while they noted that the binning-based CEK suf-
fers from the curse of dimensionality, no formal justification
was provided. In contrast, our Theorem 3 formally validates
this phenomenon. Gruber and Buettner (2022) discussed
various calibration metrics and clarified that the TCE is a
weaker calibration metric than CEK . Theorem 3 further
demonstrates that the naive estimator of CEK suffers more
severely from the curse of dimensionality than the TCE.

6. Experiments
In Section 6.1, we verify the correlation between our bounds
in Corollary 1 and the generalization performance of recal-
ibration. We then evaluate the effectiveness of our PBR
described in Section 4.2. Due to page limitations, we pri-
marily report results from multiclass classification exper-
iments on the MNIST (LeCun et al., 1989) and CIFAR-
100 (Krizhevsky, 2009) datasets. Additional experimen-
tal results are provided in Appendix E, and details of our
experimental settings, including model specifications, are
summarized in Appendix D. For ECE evaluation, we set
B = ⌊n1/3

re ⌋ based on our findings.

6.1. Verification of Our Bounds

In this section, we empirically investigate the correlation
between the KL divergence term in Eq. (6) and the ECE
gap, which we define as the absolute difference between the
ECEs of the test and training datasets. Our goal here is to as-
sess whether the KL divergence in our bound can adequately
explain the observed generalization performance. To investi-
gate this, we first conducted recalibration experiments using
PBR (Eq. (8)) with various KL constraints (α). We then
measured the KL values and the ECE gap after recalibra-
tion using 10-fold cross-validation, setting nre = 1000. As
evaluation metrics, we adopted Pearson’s and Kendall’s
rank-correlation coefficients, which are widely used to as-
sess the consistency between generalization metrics and
actual generalization performance (Jiang et al., 2020; Wang
et al., 2021b; Kawaguchi et al., 2023).
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Figure 2. nre vs ECE on the test dataset on the experiments with CIFAR-100 dataset. PBR (ours) and PBR total (ours) correspond to the
results obtained by optimizing Eqs. (8) and (10), respectively.

A portion of the results is presented in Figure 1. These
results confirm the positive correlation between the KL di-
vergence and the ECE generalization gap. This confirms
that our bounds are valid in explaining the generalization
performance. It is also evident that the ECE gap is noisy.
This is due to the slow convergence rate of the binning
ECE estimator, which scales as O(1/n

1/3
re ) even under the

optimal B. With nre = 1000, the estimation bias can con-
tribute noise on the order of O(1/10), meaning that when
models achieve an ECE below 0.1, the correlation could be
obscured by noise. A straightforward approach to reduc-
ing noise is increasing the size of the recalibration dataset.
However, due to the O(1/n

1/3
re ) convergence rate, this is

impractical, highlighting the inherent difficulty of precise
ECE evaluation.

6.2. Empirical Comparison of Recalibration Methods

In this section, we compare our proposed PBR and
existing standard or state-of-the-art recalibration meth-
ods, temperature scaling (Guo et al., 2017) and GP cal-
ibration (Wenger et al., 2020). The optimizable pa-
rameter α in PBR is selected via grid search from
{0., 0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0}. Wenger et al.
(2020) also reported results for recalibration methods origi-
nally developed for binary classification, such as Platt scal-
ing (Platt, 1999), isotonic regression (Zadrozny and Elkan,
2002), Beta calibration (Kull et al., 2017), and Bayesian
binning into quantiles (BBQ) (Naeini et al., 2015), by adapt-
ing these methods to the multiclass setting via one-vs-all
conversion. To ensure a fair comparison, however, we in-
cluded only methods that are directly compatible with mul-
ticlass classification as baselines. A comparison of these
methods in the binary classification setting can be found in
Appendix E.

We summarize the results in Table 1. The results show that
our method consistently improves calibration performance
over existing approaches, particularly outperforming the
GP-based recalibration method. Additionally, we found
that, contrary to the findings of Wenger et al. (2020), tem-
perature scaling sometimes performs better than GP-based
recalibration in terms of ECE when using the optimal B.

One possible reason for this discrepancy is that Wenger et al.
(2020) reported the ECE values with B = 100. Accord-
ing to our analysis, this setting minimizes estimation bias
when nte = O(1003). However, since the actual nte used
in their experiments is significantly smaller (see Section 4.1
of Wenger et al. (2020)), their reported results may have
been affected by severe bias. This finding underscores the
fundamental importance of selecting an appropriate number
of bins based on a well-grounded theoretical framework for
conducting reliable empirical evaluations.

These findings also indicate that the GP recalibration some-
times yield results that are not significantly different from
the uncalibrated setting. In contrast, our PBR shows sub-
stantial improvements over both uncalibrated and GP-based
methods. It is worth mentioning that our additional ex-
periments in Appendix E confirm that GP-based methods,
including PBR, do not consistently outperform standard re-
calibration techniques such as temperature scaling. These
observations suggest that the use of GP for recalibration
methods does not guarantee superior performance and em-
phasize the importance of carefully selecting a recalibration
strategy that aligns with the characteristics of the dataset
and model.

We also conducted additional experiments using nre =
{10, 50, 100, 250, 500, 1000, 3000, 5000} to further exam-
ine how the performance of each recalibration method varies
with different values of nre. The parameter α in PBR was
selected following the same procedure as described earlier.

We show the results in Figure 2. From these results, we
can see that our PBR achieves relatively good performance
under various settings of nre, consistently improving the
performance of GP-based recalibration methods. However,
in experiments with AlexNet, GP-based recalibration includ-
ing PBR fails except when nre is small. Given AlexNet’s
lower accuracy (see the Uncalibrated column in Table 1),
the following explanation may be plausible. All of our re-
calibration methods construct the GP prior using the outputs
of the pretrained model fw as inducing points. If fw fails
to classify the training data accurately, the resulting GP
prior will be misaligned with the true data distribution. Con-
sequently, the recalibrated posterior is regularized toward
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this inappropriate prior, which can degrade overall perfor-
mance. The temperature scaling appears to perform stable
and effective recalibration as nre increases, regardless of ac-
curacy, and it even achieves a higher performance than PBR
in some experimental settings; however, it is considered to
cause overfitting when nre is small because the temperature
scaling lacks regularization terms such as the KL divergence
used in PBR. This underscores the importance of carefully
selecting recalibration methods based on the characteris-
tics of the model and dataset as denoted previously. Sum-
marizing these results, in practical applications—at least
for multiclass classification—it would be advisable to try
both temperature scaling and our PBR, verify their perfor-
mance using validation data, and choose the method that
contributes more to improving calibration performance.

7. Conclusion and Limitations
In this paper, we analyzed the generalization error and esti-
mation bias of the ECE in multiclass classification for the
first time, resulting in several non-asymptotic bounds and
the practical optimal bin size. Moreover, we developed a
new generalization-aware recalibration algorithm based on
our PAC-Bayes bound. Our analysis also revealed the slow
convergence of the ECE through binning, which is a funda-
mental limitation. As discussed in Section 3.2, the binning
method cannot leverage the underlying smoothness of the
data distribution. Our numerical results suggest that the
limited number of test data points makes the numerical eval-
uation of the ECE unstable in practice. We believe that other
nonparametric methods for estimating the CE or TCE may
address the limitations identified in this study. Investigating
the effectiveness of such methods constitutes an important
direction for future work. Another key avenue for future
research is to extend the theoretical analysis to cases where
alternative methods for estimating the TCE, such as UMB,
are employed.
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A. Remark about the binary setting
Here we introduce the calibration for binary classification. Although, the primary goal of our study is the multiclass setting,
our theory can handle for both the binary and multicalss settings.

Let Y = {0, 1} and let fw : X → [0, 1] be a model, where the output corresponds to the model’s confidence that the label is
1. In the context of calibration, it is expected that not only fw has high accuracy, but also its predictive probability aligns
well in the actual label frequency P (Y |fw(X)). A model is well-calibrated (Widmann et al., 2021; Gupta et al., 2020)
when P (Y |fw(X)) = fw(X) holds; however, it is difficult to confirm this. Therefore, an alternative metric called as the
calibration error (CE) (Widmann et al., 2021; Gupta et al., 2020) is typically used. Given W = w, the CE is defined as

CE(fw) := E|P (Y = 1|fw(X))− fw(X)| = E|E[Y |fw(X)]− fw(X)|.

Unfortunately, evaluating the CE is still infeasible because E[Y |fw(X)] is intractable. To resolve this issue, we evaluate
the calibration performance by constructing the estimator of the CE. The widely used estimator is the expected calibration
error (ECE), where binning is used to estimate E[Y |fw(X)] (Guo et al., 2017; Zadrozny and Elkan, 2001; 2002). The ECE
is calculated by partitioning the range of the predictive probability [0, 1] into B intervals I = {Ii}Bi=1 (called bins) and
averaging within each bin using an evaluation dataset Se := {zm}ne

m=1 ∈ Zne , where we assume ne ≥ 2B. That is, the
ECE is defined as

ECE(fw, Se) :=

B∑
i=1

pi|f̄i,Se
− ȳi,Se

|,

where |Ii| :=
∑ne

m=1 1fw(xm)∈Ii , pi := |Ii|
ne

, f̄i,Se
:= 1

|Ii|
∑ne

m=1 1fw(xm)∈Iifw(xm), and ȳi,Se
:=

1
|Ii|
∑ne

m=1 1fw(xm)∈Iiym. In the above, bins are set by dividing the interval [0, 1] into B bins of the same width:
I1 = (0, 1/B], I2 = (1/B, 2/B], . . . , IB = ((B − 1)/B,B]. Setting Se = Ste, for instance, corresponds to evaluat-
ing the ECE on the test dataset.

Similarly to the multiclass setting, we define the total bias of CE as Bias(ηv(fw), Se,CE) := |CE(ηv(fw)) −
ECE(ηv(fw), Se)| for binary classification.

B. Proofs and discussion of Section 3
For the latter purpose, we define [n] = {1, . . . , n} for n ∈ N and ⌊x⌋ = max{m ∈ Z : m ≤ x}.

B.1. Additional preliminary

We use the following lemma repeatedly in our proofs.

Lemma 1 (Used in the proof of McDiarmid’s inequality). (Boucheron et al., 2013) We say that a function f : X → R has
the bounded difference property if for some nonnegative constants c1, . . . , cn,

sup
x1,...,xn,x′

i∈X
|f(x1, . . . , xn)− f(x1, . . . , xi−1, x

′
i, xi+1, . . . , xn)| ≤ ci, 1 ≤ i ≤ n.

If X1, . . . , Xn are independent random variables taking values in X and f has the bounded difference property with
constants c1, . . . , cn, then for any t ∈ R, we have

E
[
et(f(X1,...,Xn)−E[f(X1,...,Xn)])

]
≤ e

t2

8

∑n
i=1 c2i .

The following theorem is the most basic form of the PAC-Bayes generalization bounds (Alquier et al., 2016).

Theorem 4. For any fixed prior π, which is independent of Str, and posterior distribution ρ over W and for any ε ∈ (0, 1)
and λ > 0, with probability 1− ε, we have

Eρgen(fW , Str, l) ≤
KL(ρ∥π) + logEπ,Str

eλ(L(w,D)−L̂(w,Str)) + log 1
ϵ

λ
. (11)

13
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B.2. Reformulations of the ECE to loss functions

Here, we introduce the reformulations of the ECE, which is the essential technique in our proof. Note that when focusing on
the TCE of the multiclass setting, its properties are almost the same as those of the binary classification. This is because
TCE only considers the top label and by regarding the top label corresponding to label 1 in the binary classification and other
labels as 0 in the binary classification, then it is clear that the ECE of the multiclass and binary setting are almost identical.

BINARY CLASSIFICATION

We first focus on the binary setting. The training ECE can be reformulated as the empirical mean of Y − fw(X) in each bin
as follows

ECE(fw, Se) :=

B∑
i=1

|E(X,Y )∼Se
(Y − fw(X)) · 1fw(X)∈Ii |, (12)

which follows immediately from the definitions. Here ESe is the empirical expectation by the evaluation dataset.

Recall that the conditional expectation of fw given bins is defined as

fI(x) :=

B∑
i=1

E[fw(X)|fw(X) ∈ Ii] · 1fw(X)∈Ii .

The following relation holds

CE(fI) =

B∑
i=1

|E(X,Y )∼D(Y − fw(X)) · 1fw(X)∈Ii |, (13)

where CE(fI) means the CE of the function fI . We can derive this as follows; By definition, we have

B∑
i=1

|E(X,Y )∼D(Y − fw(X)) · 1fw(X)∈Ii |

=

B∑
i=1

|E(X,Y )∼D[(Y − fw(X)) · 1fw(X)∈Ii ]|

=

B∑
i=1

P (fw(X) ∈ Ii)|E|E[Y |fw(X) ∈ Ii]− E[fw(X)|fw(X) ∈ Ii]|,

where we used the definition of the conditional expectation. On the other hand, We have

CE(fI) = E|E[Y |fI(x)]− fI(x)|

=

B∑
i=1

E
[
|E[Y |fI(x)]− fI(x)| · 1fI(X)∈Ii

]
=

B∑
i=1

P (fI(x) ∈ Ii)E [|E[Y |fI(x)]− fI(x)|fI(X) ∈ Ii]

=

B∑
i=1

P (fw(X) ∈ Ii)E|E[Y |fw(X) ∈ Ii]− E[fw(X) ∈ Ii]|,

where we used the tower property. This concludes the proof.

Thus, we can transform the loss and ECEs by Eqs. (12) and (13).

14
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MULTICLASS CLASSIFICATION

Next, we consider the ECE for the multiclass setting. Let C := argmaxkfw(X)k. Then by definition of ECE, we have

ECE(fw, Se) =

B∑
i=1

|Ii|
ne

|f̄i,Se − p̄i,Se | =
B∑
i=1

|E(X,Y )∼Se
(1Y=C − fw(X)C) · 1fw(X)C∈Ii |, (14)

where |Ii| :=
∑ne

m=1 1fw(xm)C∈Ii , f̄i,Se
:= 1

|Ii|
∑ne

m=1 1fw(xm)C∈Iifw(xm)C , and p̄i,Se
:=

1
|Ii|
∑ne

m=1 1fw(xm)C∈Ii1ym=C . As for the conditional function, we define

fC
I (x) :=

B∑
i=1

E[fw(X)C |fw(X)C ∈ Ii] · 1fw(x)C∈Ii .

Then by repeating the exactly same proof for Eq. (13), we obtain

TCE(fC
I (x)) =

B∑
i=1

|E(X,Y )∼D(1Y=C − fw(X)C) · 1fw(X)C∈Ii |, (15)

We can see that the ECE of the binary and multiclass classification essentially represents the same quantity; in the multiclass
setting, by re-labeling C as 1 and others 0, they represent the same quantity.

B.3. Proof of Theorem 2 (Bias under the training dataset)

Here we present a generalized version of Theorem 2 that includes the binary classification. After that, we show the proof of
Theorem 1, which can be directly obtained from Theorem 2.

To simplify the notation, we express ntr = n.

Theorem 5. Under Assumption 1, for any fixed prior π, which is independent of Str, and posterior distribution ρ over W
and any positive constant ε ∈ [0, 1] and λ > 0, with probability 1− ε with respect to Str, we have

EρBias(fw, Str,CE) ≤
1 + L

B
+

KL(ρ∥π) +B log 2 + log 1
ε + 2λ2

n

λ
(Binary classification),

EρBias(fw, Str,TCE) ≤
1 + L

B
+

KL(ρ∥π) +B log 2 + log 1
ε + 2λ2

n

λ
(Multiclass classification).

Proof. BINARY SETTING

We start from the binary classification setting. To analyze the bias caused by binning, following Futami and Fujisawa (2024),
we define the conditional expectation of fw given bins as fI(x) :=

∑B
i=1 E[fw(X)|fw(X) ∈ Ii] · 1fw(x)∈Ii . With this

definition, we decompose the estimation bias as follows:

Bias(fw, Str,CE) = |CE(fw)− ECE(fw, Ste)| ≤ |CE(fw)− CE(fI)|+ |CE(fI)− ECE(fw, Ste)|.

where the first term is called as the binning bias, which arises from nonparametric estimation via binning, and the latter as
the statistical bias caused by estimation on finite data points. We then evaluate these terms separately.

As for the first term, we show that

|CE(fw)− CE(fI)| ≤ E||E[Y |fw(X)]− E[Y |fI(X)]|+ E|fw(X)− fI(X)|. (16)

holds. Note that P (Y = 1|fw(x)) = E[Y |fw(x)] holds for the binary classification. First, we can show that

CE(fI) ≤ CE(fw),

15
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by Jensen inequality with respect to the conditional expectation. This has been proved in Proposition 3.3 in Kumar et al.
(2019). Next, we upper bound CE(fw) as follows

CE(fw) = E [|E[Y |fw(X)]− fw(X)|]

=

B∑
i=1

E[1fw(X)∈Ii · |E[Y |fw(X)]− fw(X)|]

=

B∑
i=1

P (fw(X) ∈ Ii)E[|E[Y |fw(X)]− fw(X)||fw(X) ∈ Ii]

=

B∑
i=1

P (fw(X) ∈ Ii)E[|E[Y |fw(X)]− E[fw(X)|fw(X) ∈ Ii]

+ E[fw(X)|fw(X) ∈ Ii]− fw(X)||fw(X) ∈ Ii]

≤
B∑
i=1

P (fw(X) ∈ Ii)E||E[Y |fw(X)]− E[Y |fw(X) ∈ Ii]|

+

B∑
i=1

P (fw(X) ∈ Ii)E|E[Y |fw(X) ∈ Ii]− E[fw(X)|fw(X) ∈ Ii]|

+

B∑
i=1

P (fw(X) ∈ Ii)E[|E[fw(X)|fw(X) ∈ Ii]− fw(X)||fw(X) ∈ Ii],

where the second term is CE(fI), we finished the proof of Eq. (16).

Then we can show that

|CE(fw)− CE(fI)| ≤ E||E[Y |fw(X)]− E[Y |fI(X)]|+ E|fw(X)− fI(X)| ≤ L

B
+

1

B
, (17)

where we used the Lipschitz continuity of the function and the fact that we split the function with equal width 1/B. Now,
we have

Eρ|CE(fw)− ECE(fw, Str)| ≤ Eρ|CE(fw)− CE(fI)|+ Eρ|CE(fI)− ECE(fw, Str)|

≤ L

B
+

1

B
+ Eρ|CE(fI)− ECE(fw, Str)|,

We will bound the second term. For this purpose, we use Theorem 6 in Appendix B.4, this concludes the proof for the binary
setting.

Proof. MULTICLASS SETTING

Next, for the multiclass setting, similarly to the binary case, Similarly to the binary setting, we define the conditional
expectation of fw given bins as fC

I (x) :=
∑B

i=1 E[fw(X)C |fw(X)C ∈ Ii] ·1fw(x)C∈Ii . With this definition, we decompose
the estimation bias as follows:

Bias(fw, Str,TCE) = |TCE(fw)− ECE(fw, Ste)| ≤ |TCE(fw)− TCE(fC
I )|+ |TCE(fC

I )− ECE(fw, Ste)|.

As for the multiclass setting, similarly to the binary case, we have

|TCE(fw)− ECE(fw, Str)|≤ |TCE(fw)− TCE(fI)|+ |TCE(fI)− ECE(fw, Str)|. (18)

Then similarly to Eq. (16) in the binary classification, we can show that

|TCE(fw)− TCE(fC
I )| ≤ E|P (Y = C|fw(X)C)− P (Y = C|fC

I (X)|+ E|fw(X)C − fC
I (X)|

16
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by the almost identical proof. We then upper-bound them

|TCE(fw)− TCE(fC
I )| ≤ E|P (Y = C|fw(X)C)− P (Y = C|fC

I (X)|+ E|fw(X)C − fC
I (X)| ≤ L

B
+

1

B

using the Lipschitz continuity and the property of the binning. We substitute this into Eq. (18), we have

Eρ|TCE(fw)− ECE(fw, Str)|
≤ Eρ|TCE(fw)− TCE(fI)|+ Eρ|TCE(fI)− ECE(fw, Str)|

≤ L

B
+

1

B
+ Eρ|TCE(fI)− ECE(fw, Str)|

Then using Theorem 6 in Appendix B.4 for the second term, this concludes the proof.

B.4. Auxiliary result about the statistical bias

Here we present the auxiliary result, which is used in Appendix B.3.

First, we introduce the assumption, which is used in existing analysis Gupta and Ramdas (2021) and not necessarily in our
proof;

Assumption 3. Given W = w, fw(x)C is absolutely continuous with respect to the Lebesgue measure.

As for the binary setting, we assume that fw(x) is absolutely continuous with respect to the Lebesgue measure. This
assumption means that fw(x) has a probability density, it is satisfied without loss of generality as elaborated in Appendix C
in Gupta and Ramdas (2021). Although this assumption is not required for our main results, if we assume this, we
can improve the coefficient of the upper bound. Thus in the below, we provide the proof with and without this assumption
simultaneously.

Thanks to this assumption, fw(X) takes distinct values almost surely, so for example, the situation when all training samples
take the same predicted probability will be circumvented. When considering the multiclass setting with CEK , this property
plays an important role in eliminating the curse of dimensionality, see Appendix B.9.

Theorem 6. Assume that ntr = n. For both binary and multiclass settings, for any fixed prior π, which is independent of
Str, and posterior distribution ρ over W and any positive constant ε ∈ (0, 1) and λ > 0, with probability 1− ε with respect
to Str, we have

Eρ|CE(fI)− ECE(fW , Str)| ≤
KL(ρ∥π) +B log 2 + log 1

ε + 2λ2

n

λ
(Binary classification),

Eρ|TCE(fI)− ECE(fW , Str)| ≤
KL(ρ∥π) +B log 2 + log 1

ε + 2λ2

n

λ
(Multiclass classification).

Furthermore, in addition to the above assumption, when Assumption 3 holds, we have

Eρ|CE(fI)− ECE(fW , Str)| ≤
KL(ρ∥π) +B log 2 + log 1

ε + λ2

2n

λ
(Binary classification),

Eρ|TCE(fI)− ECE(fW , Str)| ≤
KL(ρ∥π) +B log 2 + log 1

ε + λ2

2n

λ
(Multiclass classification).

Proof. To simplify the notation, we express Str as S in this proof.
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BINARY SETTING

To derive the PAC Bayes bound, we transform the loss using Eq. (12) and (13), we have

|CE(fI)− ECE(fW , S)|

=

∣∣∣∣∣
B∑
i=1

∣∣EZ′=(X′,Y ′)

[
(Y ′ − fW (X ′)) · 1fW (X′)∈Ii

]∣∣− B∑
i=1

∣∣∣∣∣ 1n
n∑

m=1

(Ym − fW (Xm)) · 1fW (Xm)∈Ii

∣∣∣∣∣
∣∣∣∣∣

≤
B∑
i=1

∣∣∣∣∣EZ′=(X′,Y ′)

[
(Y ′ − fW (X ′)) · 1fW (X′)∈Ii

]
− 1

n

n∑
m=1

(Ym − fW (Xm)) · 1fW (Xm)∈Ii

∣∣∣∣∣
≤

B∑
i=1

∣∣∣∣∣EZ′ li(Z
′)− 1

n

n∑
m=1

li(Zm)

∣∣∣∣∣ , (19)

where we used the triangle inequality ||a| − |b|| ≤ |a− b| for the first inequality and set li(z) = (y − fW (x)) · 1fw(X)C∈Ii .

We then evaluate the exponential moment as

ES,πe
t|CE(fI)−ECE(fW ,S)| ≤ EπESe

t
∑B

i=1|EZ′ li(Z
′)− 1

n

∑n
m=1 li(Zm)|. (20)

By setting g(i, S) := EZ′ li(Z
′)− 1

n

∑n
m=1 li(Zm), we have

ESe
t
∑B

i=1 |g(i,S)| = ES

B∏
i=1

et|g(i,S)|

≤ ES

B∏
i=1

(
etg(i,S) + e−tg(i,S)

)
≤ ES

∑
v1,...,vB=0,1

et
∑B

i=1(−1)vig(i,S) (21)

=
∑

v1,...,vB=0,1

ESe
t
∑B

i=1(−1)vig(i,S)

=
∑

v1,...,vB=0,1

ESe
t
∑B

i=1(−1)vi [EZ′ li(Z
′)− 1

n

∑n
m=1 li(Zm)],

where
∑

v1,...,vB=0,1 is all the combinations that will be generated by expanding
∏B

i=1 in Eq. (21) and it has 2B combina-
tions.

We would like to upper bound ESe
t
∑B

i=1(−1)vi [EZ′ li(Z
′)− 1

n

∑n
m=1 li(Zm)] using Lemma 1. For that purpose, here we evaluate

18
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cis of Lemma 1. By focusing on the exponent, we can estimate cis by

sup
{zm}m=1,z̃m∈Z

B∑
i=1

t(−1)vi ·

[
EZ′ li(Z

′)− 1

n

n∑
m=1

li(z
′
m)

]

− t(−1)vi ·

EZ′ li(Z
′)− 1

n

n∑
m̸=m′

li(z
′
m)− 1

n
li(z̃m′)


= sup

z′
m,z̃m′∈Z

B∑
i=1

t(−1)vi

n
· [−li(z

′
m′) +−li(z̃m′)]

= sup
z′
m,z̃m′∈Z

t(−1)v1

n

(
−
(
(y′m′ − fW (x′

m′))·1fW (x′
m′ )∈I1

)
+
(
(ỹ′m′ − fW (x̃′

m′))·1fW (x̃′
m′ )∈I1

))
+

...

+
t(−1)vB

n
·
(
−
(
(y′m′ − fW (x′

m′)) · 1fW (x′
m′ )∈IB

)
+
(
(ỹm′ − fW (x̃m′)) · 1fW (x̃m′ )∈IB

))
(22)

≤ 2t

n
, (23)

The last inequality is derived as follows: By definition of the binning, each data point is assigned to exactly one bin.
Consequently, for the input x′

m′ , one indicator from the set {1fW (x′
m′ )∈Ii}Bi=1 is non-zero, we denoted the corresponding

index b. Thus, 1fw(x′
m′ )∈Ib ̸= 0, and 1fw(x′

m′ )∈Ib′ ̸=b
= 0. A similar discussion applies to the input x̃m′ with the non-zero

index denoted as b̃, indicating 1fW (x̃′
m′ )∈Ib̃

̸= 0 and 1fw(x′
m′ )∈Ib′ ̸=b̃

= 0. Note that b and b̃ can be either identical or
different. Therefore, although Eq. (22) contains 2B indicator functions, at most only two are non-zero.

Combined with the fact that |y′m′ − fw(x
′
m′)| ≤ 1, we obtain Eq. (23). Note that by Assumption 3, {fw(xm)}nm=1 in

xm ∈ S takes the distinct values almost surely and in the above discussion, we do not consider the case when b/B = fw(xm)
for some b holds, which means that the predicted probability is just the value of the boundary of bins.

Combined with Lemma 1, we have that

ESe
t
∑B

i=1 |g(i,Z′
m)| ≤

∑
v1,...,vB=0,1

n∏
m=1

EZ′
m
et

∑B
i=1(−1)vi [EZ′′ li(Z

′′)− 1
n

∑n
m=1 li(Z

′
m)]

≤
∑

v1,...,vB=0,1

e(t
2/8)n( 2

n )
2

= 2Be
t2

2n .

When we do not assume that Assumption 3, there may be a possibility that b/B = fw(xm) for some b holds, which means
that the predicted probability is just the value of the boundary of bins. Then in Eq. (22), at most only four indicator functions
are not zero. This results in a worse bound

sup
{zm}m=1,z̃m∈Z

B∑
i=1

t(−1)vi ·

[
EZ′ li(Z

′)− 1

n

n∑
m=1

li(z
′
m)

]

− t(−1)vi ·

EZ′ li(Z
′)− 1

n

n∑
m ̸=m′

li(z
′
m)− 1

n
li(z̃m′)


≤ 4t

n
,

and results in

ESe
t
∑B

i=1 |g(i,Z′
m)| ≤

∑
v1,...,vB=0,1

n∏
m=1

EZ′
m
et

∑B
i=1(−1)vi [EZ′′ li(Z

′′)− 1
n

∑n
m=1 li(Z

′
m)] ≤ 2Be

2t2

n .
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We define the upper bound of the exponential moment as

f(t, n) :=

{
log 2Be

2t2

n without Assumption 3,

log 2Be
t2

2n with Assumption 3.
(24)

From Eq. (20), for any w we have

ESe
t|CE(fI)−ECE(fW ,S)|−f(t,n) ≤ 1. (25)

Then we take the expectation with respect to the prior

EπESe
t|CE(fI)−ECE(fW ,S)|−f(t,n) ≤ 1.

Using the Fubini theorem, we change the order of expectations,

ESEπ

[
et|CE(fI)−ECE(fW ,S)|−f(t,n)

]
≤ 1.

and use the Donsker–Varadhan lemma, we have

ES

[
esupρ∈P(W) Eρt|CE(fI)−ECE(fW ,S)|−KL(ρ∥π)−f(t,n)

]
≤ 1.

where P(W) be the set of all probability distributions on W .

By using the Markov inequality with Chernoff-bounding technique, we have

P

(
sup

ρ∈P(W)

Eρt|CE(fI)− ECE(fW , S)| −KL(ρ∥π)− f(t, n) > log
1

ε

)
≤ ε.

By rearranging the inequality

P

(
∃ρ ∈ P(W), Ew∼ρ|CE(fI)− ECE(fW , S)| >

KL(ρ∥π) + f(t, n) + log 1
ε

t

)
≤ ε. (26)

By substituting Eq. (24) when without Assumption 3, we have

P

(
∃ρ ∈ P(W), Ew∼ρ|CE(fI)− ECE(fW , S)| >

KL(ρ∥π) +B log 2 + 2t2

n + log 1
ε

t

)
≤ ε.

MULTICLASS SETTING

As for the ECE of the multiclass setting, from Eq. (14) and Eq. (15), we can proceed the proof exactly the same way as the
binary setting. By using the triangular inequality similarly to Eq. (19) and setting li(Z) = (1Y=C − fw(X)C) ·1fw(X)C∈Ii ,
we have

|TCE(fw)− ECE(fw, Str)| ≤
B∑
i=1

|EZ∼Dli(Z)− EZ∼Str
li(Z)| .

By using McDiarmid’s inequality to evaluate the exponential moment, we obtain

ES,πe
t|TCE(fI)−ECE(fW ,S)| ≤ ES,πe

λ
∑B

i=1|EZ∼Dli(Z)−EZ∼Ŝtr
li(Z)| ≤ 2Be

2λ2

n

Then by using the Fubini theorem and Donsker-Valadhan inequality as in the case of the binary classification, we get the
bound.
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B.5. Proof of Theorem 1 (Total bias analysis)

Now we present the proof of Theorem 1. The proof is almost identical to that of Theorem 2 shown in Appendix B.3.

To analyze the bias caused by binning, following Futami and Fujisawa (2024), we define the conditional expectation of fw
given bins as fC

I (x) :=
∑B

i=1 E[fw(X)C |fw(X)C ∈ Ii] · 1fw(x)C∈Ii . With this definition, we decompose the estimation
bias as follows:

|TCE(fw)− ECE(fw, Ste)| ≤ |TCE(fw)− TCE(fC
I )|+ |TCE(fC

I )− ECE(fw, Ste)|.

where the first term is called as the binning bias, which arises from nonparametric estimation via binning, and the latter as
the statistical bias caused by estimation on finite data points. We then evaluate these terms separately.

As for the binning bias, using Assumption 1, it can be bounded by (1 + L)/B because prepared bins divide the interval
[0, 1] into equal widths.

Next, we evaluate the statistical bias. We first derive the following reformulation:

ECE(fw, Ste) =

B∑
i=1

|E(X,Y )∼Ste
(1Y=C − fw(X)C) · 1fw(X)C∈Ii |,

where ESte
is the empirical expectation for Ste. This reformulation is derived in Eq. (14). As for the TCE, we get a similar

relation from Eq. (15).

By using the triangular inequality similarly to Eq. (19) and setting li(Z) = (1Y=C − fw(X)C) · 1fw(X)C∈Ii , we have

|TCE(fw)− ECE(fw, Str)| ≤
B∑
i=1

|EZ∼Dli(Z)− EZ∼Ste
li(Z)| . (27)

By using McDiarmid’s inequality to evaluate the exponential moment of Eq. (27), we obtain

ESte
eλ

∑B
i=1|EZ∼Dli(Z)−EZ∼Ste li(Z)| ≤ 2Be

2λ2

nte

for any λ ∈ R (see Eq. (24)). Combining this result with the Markov inequality, we can upper bound the statistical bias.

B.6. Generalization of the ECE under the training dataset

Here we show the generalization error bound for the ECE, which is useful when analyzing the recalibration algorithm.

Theorem 7. Assume that nte = ntr = n. For both binary and multiclass settings, for any fixed prior π, which is independent
of Str, and posterior distribution ρ over W and any positive constant ε ∈ (0, 1) and λ > 0, with probability 1 − ε with
respect to Str, we have

Eρ|ESteECE(fW , Ste)− ECE(fW , Str)| ≤
KL(ρ∥π) +B log 2 + log 1

ε + 4λ2

n

λ
.

When Assumption 3 holds, we have

Eρ|ESteECE(fW , Ste)− ECE(fW , Str)| ≤
KL(ρ∥π) +B log 2 + log 1

ε + λ2

n

λ
.

Proof. To derive the PAC Bayes bound, we transform the loss

|ESte
ECE(fW , Ste)− ECE(fW , Str)|

=

∣∣∣∣∣∣ESte

B∑
i=1

∣∣∣∣∣∣ 1n
∑

(X,Y )∈Ste

[
(Y − fW (X)) · 1fw(X)C∈Ii

]∣∣∣∣∣∣−
B∑
i=1

∣∣∣∣∣∣ 1n
∑

(X,Y )∈Str

(Y − fW (X)) · 1fw(X)C∈Ii

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ ESte

B∑
i=1

∣∣∣∣∣ 1n ∑
Z∈Ste

li(Z)− 1

n

∑
Z∈Str

li(Z)

∣∣∣∣∣ ,
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where we used the triangle inequality ||a| − |b|| ≤ |a− b| for the first inequality and set li(z) = (y − fW (x)) · 1fw(X)C∈Ii .

We then evaluate the exponential moment as

EStr,πe
t|ESteECE(fW ,Ste)−ECE(fW ,Str)| ≤ EπEStr

etESte

∑B
i=1| 1

n

∑
Z∈Ste

li(Z)− 1
n

∑
Z∈Str

li(Z)|

≤ EπEStr
ESte

et
∑B

i=1| 1
n

∑
Z∈Ste

li(Z)− 1
n

∑
Z∈Str

li(Z)|.

By setting g(i, Str, Ste) :=
1
n

∑
Z∈Ste

li(Z)− 1
n

∑
Z∈Str

li(Z), we have

EStr,Stee
t
∑B

i=1 |g(i,Str,Ste)| = EStr,Ste

B∏
i=1

et|g(i,Str,Ste)|

≤ EStr,Ste

B∏
i=1

(
etg(i,Str,Ste) + e−tg(i,Str,Ste)

)
≤ EStr,Ste

∑
v1,...,vB=0,1

et
∑B

i=1(−1)vig(i,Str,Ste) (28)

=
∑

v1,...,vB=0,1

EStr,Stee
t
∑B

i=1(−1)vig(i,Str,Ste)

=
∑

v1,...,vB=0,1

EStr,Ste
et

∑B
i=1(−1)vi [ 1

n

∑
Z∈Ste

li(Z)− 1
n

∑
Z∈Str

li(Z)],

where
∑

v1,...,vB=0,1 is all the combinations that will be generated by expanding
∏B

i=1 in Eq. (28) and it has 2B combina-
tions.

We would like to upper bound EStr,Stee
t
∑B

i=1(−1)vi [ 1
n

∑
Z∈Ste

li(Z)− 1
n

∑
Z∈Str

li(Z)] using Lemma 1. For that purpose, here
we evaluate cis of Lemma 1. We can upper bound it completely in the same way as Eq. (23). For that purpose, we
define S = Ste ∪ Str, g̃(S) := t

∑B
i=1(−1)vi

[
1
n

∑
Z∈Ste

li(Z)− 1
n

∑
Z∈Str

li(Z)
]
. Note that S consists of 2n random

variables. We remark that ES [g̃(S)] = 0 conditioned on w, thus, it satisfies the condition of Lemma 1. Then We define S′

in which we replace single zm ∈ S with z̃m ∈ Z . Then with Assumption 3, we have

sup
S,z̃m∈Z

g̃(S)− g̃(S′) ≤ 2t

n
, (29)

which is followed by a discussion in Eq. (23). Differently from Eq. (23), there exist 4B bins, but since we only replace
single data point zm, as discussed in Eq. (23), only two indicator function is not zero. This results in the above upper bound.

Combined with Lemma 1, we have that

EStre
t
∑B

i=1 |g(i,Z′
m)| ≤

∑
v1,...,vB=0,1

EStr,Stee
g̃(S) ≤

∑
v1,...,vB=0,1

e(t
2/8)(2n)( 2

n )
2

= 2Be
t2

n .

We can derive the upper bound without Assumption 3 in the same way as Eqs. (24) and (29),

sup
S,z̃m∈Z

g̃(S)− g̃(S′) ≤ 4t

n
,

Combined with Lemma 1, we have that

EStr
et

∑B
i=1 |g(i,Z′

m)| ≤
∑

v1,...,vB=0,1

EStr,Ste
eg̃(S) ≤

∑
v1,...,vB=0,1

e(t
2/8)(2n)( 4

n )
2

= 2Be
4t2

n .

In conclusion, we have

f(t, n) :=

{
log 2Be

4t2

n without Assumption 3,

log 2Be
t2

n with Assumption 3.
(30)
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Then we can proceed the proof of PAC Bayesian bound in the same way as Eq. (25) and repeat the same derivation. This
concludes the proof.

As for the ECE of the multiclass setting, from Eq. (14) and Eq. (15), we can proceed the proof exactly the same way as the
binary setting, which results in the same upper bound.

B.7. Limitation under the Hölder continuity

Here we discuss the assumption of Lipschitz continuity. It is known that by assuming the higher order smoothness, such as
the β-Hölder continuity, the bias of the nonparametric estimation decreases (Tsybakov, 2008), particularly, the lower bound
is O(n− β

2β+1 ).

However, in the binning scheme, we cannot improve the optimal order from O(n−1/3) due to the binning bias. This is
because that in Eq. (17), which is appearing the proof of the estimation bias, there is the error term E|fw(X) − fI(X)|.
This term is upper bounded by 1/B since we consider that the bins are allocated with equal width. Thus, we cannot improve
the estimation bias order owing to this error term, which remains 1/B even under the Hölder continuity assumption. Thus,
the binning method cannot utilize the smoothness of the underlying data distribution.

B.8. Proof of Theorem 3 (Bias for the multiclass setting)

The upper bound can be derived similarly to the binary classification setting in Appendix B.3; 1) we first transform the
ECEK and CEK , 2) decompose the estimation bias to the generalization and binning bias, 3) bound those two terms using
the generalization error analysis and the binning definitions.

In this section, we express the L1 distance ∥ · ∥1 of RK as ∥ · ∥ to simplify the notation.

ECE TRANSFORMATION

Recall the definition

ECEK(fw, Se) :=

B∑
i=1

pi∥f̄i,Se − p̄i,Se∥

where |Ii| :=
∑ne

m=1 1fw(xm)∈Ii , p̂i := |Ii|/ne, f̄i,Se
:= 1

|Ii|
∑ne

m=1 1fw(xm)∈Iifw(xm), and p̄i,Se
:=

1
|Ii|
∑ne

m=1 1fw(xm)∈Iieym
.

Using this definition, we first derive the ECE transformation; for the ECEK under the training dataset, we have

ECEK(fw, Str) =

B∑
i=1

|Ii|
n

∥f̄i,Str − p̄i,Se∥ =

B∑
i=1

∥E(X,Y )∼Str
(eY − fw(X)) · 1fw(xm)∈Ii∥. (31)

Next, we define the conditional expectation as

fI(x) :=

B∑
i=1

fIi(x) · 1fw(X)∈Ii =

B∑
i=1

E[fw(X)|fw(X) ∈ Ii] · 1fw(X)∈Ii .

Then by repeating the exactly same proof for Eq. (13), the following relation holds

CEK(fI) =

B∑
i=1

∥E(X,Y )∼D(eY − fw(X)) · 1fw(X)∈Ii∥. (32)

Again, we consider the following decomposition for the estimation bias

|CEK(fw)− ECEK(fw, Str)|≤ |CEK(fw)− CEK(fI)|+ |CEK(fI)− ECEK(fw, Str)|, (33)

We then separately upper bound the above two terms.
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GENERALIZATION OF ECE

First we focus on the second term, |CEK(fI)− ECEK(fw, Str)|, and we upper bound it by the PAC Bayes bound;

Theorem 8. Assume that fw(X) has the probability density over [0, 1]K . Then for any fixed prior π, which is independent
of Str, and posterior distribution ρ over W and any positive constant ε ∈ [0, 1] and λ > 0, with probability 1 − ε with
respect to Str, we have

Eρ|CEK(fI)− ECEK(fW , Str)| ≤
KL(ρ∥π) +BK log 2 + log 1

ε + K2λ2

2n

λ
.

Proof. The proof strategy is almost identical to the TCE.

First, we transform the generalization gap by using Eqs. (31) and (32). First note that

CEK(fI) =

B∑
i=1

∥E(X,Y )∼D(eY − fw(X)) · 1fw(X)∈Ii∥

and

ECEK(fw, Str) =

B∑
i=1

∥E(X,Y )∼Ŝtr
(eY − fw(X)) · 1fw(xm)∈Ii∥

Thus, we have

|CEK(fI)− ECEK(fw, Str)|

=

∣∣∣∣∣
B∑
i=1

∥E(X,Y )∼D(eY − fw(X)) · 1fw(X)∈Ii∥ −
B∑
i=1

∥E(X,Y )∼Ŝtr
(eY − fw(X)) · 1fw(xm)∈Ii∥

∣∣∣∣∣
≤

B∑
i=1

∥∥∥∥∥E(X,Y )∼Dli(Z)− 1

n

∑
Z∈Str

li(Z)

∥∥∥∥∥ ,
where we used the triangle inequality |∥a∥−∥b∥| ≤ ∥a−b∥ for the first inequality and set li(z) = (eY −fW (x)) ·1fw(X)∈Ii .
We then evaluate the exponential moment as follows;

EStr,πe
t|CEK(fI)−ECEK(fw,Str)| ≤ EπEStr

ESte
et

∑B
i=1∥E(X,Y )∼Dli(Z)− 1

n

∑
Z∈Str

li(Z)∥

≤ EπEStrEStee
t
∑B

i=1

∑K
k=1 |E(X,Y )∼Dli(Z)k− 1

n

∑
Z∈Str

li(Z)k|

where li(Z)k is the k-th dimension of li(z).

By setting g(i, k, Str) := EZ̃ li(Z̃)k − 1
n

∑
Z∈Str

li(Z)k, we have

EStr
et

∑B
i=1

∑K
k=1 |g(i,k,Str)| = EStr

B∏
i=1

K∏
k=1

et|g(i,k,Str)|

≤ EStr

B∏
i=1

K∏
k=1

(
etg(i,k,Str) + e−tg(i,k,Str)

)
≤ EStr

∑
v1,...,vBK=0,1

et
∑B

i=1

∑K
k=1(−1)vig(i,k,Str)

=
∑

v1,...,vBK=0,1

EStr
et

∑B
i=1

∑K
k=1(−1)vig(i,k,Str)

=
∑

v1,...,vBK=0,1

EStr
et

∑B
i=1

∑K
k=1(−1)vi (EZ̃ li(Z̃)k− 1

n

∑
Z∈Str

li(Z)k)
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where
∑

v1,...,vBK=0,1 is all the combinations that will be generated by expanding
∏BK

i=1 in Eq. (28) and it has 2BK

combinations.

We would like to upper bound the exponential moment using Lemma 1. For that purpose, here we evaluate cis of Lemma 1.
We can upper-bound it completely in the same way as the binary case. Then with Assumption that fw(x) is absolutely
continuous, fw(x) takes the distinct values almost surely. Thus, we have

sup
{zm}m=1,z̃m∈Z

B∑
i=1

K∑
k=1

t(−1)vi ·

[
EZ′ li(Z

′)k − 1

n

n∑
m=1

li(z
′
m)k

]

− t(−1)vi ·

EZ′ li(Z
′)k − 1

n

n∑
m̸=m′

li(z
′
m)k − 1

n
li(z̃m′)k


= sup

z′
m,z̃m′∈Z

B∑
i=1

K∑
k=1

t(−1)vi

n
· [−li(z

′
m′)k + li(z̃m′)k]

= sup
z′
m,z̃m′∈Z

K∑
k=1

t(−1)v1

n
·
(
−
(
((eY )

′
m′,k − fW (x′

m′)k) · 1fW (x′
m′ )∈I1

)
+
(
(ˆ̃y′m′,k − fW (x̃′

m′)k) · 1fW (x̃′
m′ )∈I1

))
+

...

+
t(−1)vB

n
·
(
−
(
((eY )

′
m′,k − fW (x′

m′)k) · 1fW (x′
m′ )∈IB

)
+
(
(ˆ̃ym′,k − fW (x̃m′)k) · 1fW (x̃m′ )∈IB

))
(34)

≤
K∑

k=1

2t

n
≤ 2Kt

n
,

which is followed by a discussion in Eq. (23). Combined with Lemma 1, we have that

EStr
et

∑B
i=1

∑K
k=1 |g(i,Str)| ≤

∑
v1,...,vBK=0,1

e(t
2/8)(n)( 2K

n )
2

= 2BKe
K2t2

2n . (35)

Thus, the exponential moment is upper-bounded and we define

f(t, n) := 2BKe
K2t2

2n

We then repeat the Chernoff-bounding technique of the proof of the PAC-Bayes bound derivation, and substitute f(t, n) into
Eq. (26), we have the following PAC-Bayes bound; for any prior π and posterior distribution ρ over W and any positive
constant ε ∈ [0, 1] and λ > 0, with probability 1− ε with respect to Str, we have

Eρ|CEK(fI)− ECEK(fw, Str)| ≤
KL(ρ∥π) +BK log 2 + log 1

ε + K2λ2

2n

λ
. (36)

BIAS ANALYSIS OF THE BINNING METHOD

Next, we upper bound |CEK(fw)−CEK(fI)|, which is the first term of Eq. (33). By repeating exactly the same procedure
in Eq. (16), we can show that

|CEK(fw)− CEK(fI)| ≤ E∥E[eY |fw(X)]− E[eY |fI(X)]∥+ E∥fw(X)− fI(X)∥.

We can bound them using the definition of the binning construction; recall that in the current binning construction, we split
each dimension of [0, 1]K with B′ bins with equal width. Thus |fw(X)k − fI(X)k| ≤ 1/B′ for all k ∈ [K]. This implies
that

E∥fw(X)− fI(X)∥ ≤ E(
K∑

k=1

|fw(X)k − fI(X)k|) ≤
K∑

k=1

1

B′ =
K

B′
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Then we use the fact that B = (B′)K , we have that

E∥fw(X)− fI(X)∥ ≤ K

B
1
K

Using the Lipschitz continuity for the first, we have

|CEK(fw)− CEK(fI)| ≤ E||E[eY |fw(X)]− E[eY |fI(X)]|+ E|fw(X)− fI(X)|

≤ KL

B′ +
K

B′ =
K(1 + L)

B
1
K

. (37)

CONCLUSION

Finally, taking the expectation by ρ in Eq. (33), we upper bound the first and second term using Eq. (37) and Eq. (36), we
obtain the theorem.

As for the total bias

Bias(fw, Ste,CEK) := |CEK(fw)− ECEK(fw, Ste)|

We can derive this using the above generalization bound for Eρ|CEK(fI)− ECEK(fw, Str)| similarly to the derivation
in Appendix B.5. The result is simply dropping the KL term in Eq. (36) and obtain the order Bias(fw, Ste,CEK) =

O(1/n
1/(K+2)
te ) under B = O(n

1
K+2

te ).

B.9. Discussion about the assumption of Theorem 3

In Theorem 3, we assumed that fw(x) has the probability density in [0, 1]K . In the binary classification and TCE analysis,
this assumption is not required, and if we assume this, our bound results in the improvement of the coefficient, not affect the
order of the bound.

On the other hand, when considering the generalization of ECEK , this assumption is inevitable to circumvent the curse of
dimensionality especially in the generalization error analysis. Here we discuss how Theorem 3 changes when eliminating
this assumption. If we do not assume this assumption, in the proof of Theorem 3, the exponential moment is replaced to

EStre
t
∑B

i=1

∑K
k=1 |g(i,Str)| ≤

∑
v1,...,vBK=0,1

e
(t2/8)(n)

(
2K(2K )

n

)2

= 2BKe
4KK2t2

2n ,

which is the surprisingly worse upper bound compared with the upper bound of the exponential moment shown in Eq. (35)
with the assumption. Then the obtained PAC Bayesian bound becomes

Eρ|CEK(fI)− ECEK(fW , Str)| ≤
KL(ρ∥π) +BK log 2 + log 1

ε + 4KK2λ2

2n

λ
.

which has the new coefficient 4K and it is significantly larger than that of Theorem 3.

This is caused by the evaluation of the coefficient of the Lemma 1. In the derivation of Eq. (34), if we do not assume that fw
has the probability density, then there is a possibility that the training data is allocated to the point at the exact grid points of
the hypercube constructed by the bins. The grid point is the intersection of 2K small regions, and thus, the cis of Lemma 1
becomes exponentially large. Owing to this, the coefficient of Eq. (34) is significantly larger compared with the setting
when we assume that fw has the probability density, where we do not need to consider such a worst case. In this way, the
order of the bias significantly improves by assuming that fw has the probability density.

B.10. Discussion about the selected labels for the ECE

Here we consider the setting that we only focuses on K ′ ∈ [1,K] classes. Without loss of generality, we focus on the
set of labels defined as {0, . . . ,K ′ − 1}. We then define f ′

w(x) = (fw(x)1, . . . , fw(x)K′). We also regard P (Y =
0|f ′

w(X)), . . . , P (Y = K ′ − 1|f ′
w(X)) as the K ′ dimensional vector given w and x. We also define the one-hot vector

e′Y := ((eY )1, . . . , (eY )K′) where (eY )k is the k-the element of eY .
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Under these notations, we can define

CEK′(fw) := E∥P (Y |f ′
w(X))− f ′

w(X)∥1,

where ∥ · ∥p is the Lp distance in RK′
. The CEK′ metric measures the calibration performance of models for only K ′

classes.

Let us consider the following binning scheme to estimate CEK′ . Since we want to estimate the K ′-dimensional conditional
probability in [0, 1]K

′
by binning, we split each dimension [0, 1] into B′ bins of the same width. After doing so, there are

B = (B′)K
′

bins, and [0, 1]K
′

is split into B small regions. We refer to these regions as I := {Ii}Bi=1. In this case, the
ECE of CEK can be defined as

ECEK′(fw, Se) :=

B∑
i=1

pi∥f̄ ′
i,Se

− p̄′i,Se
∥1

where |Ii| :=
∑ne

m=1 1f ′
w(xm)∈Ii , p̂i := |Ii|/ne, f̄ ′

i,Se
:= 1

|Ii|
∑ne

m=1 1f ′
w(xm)∈Iif

′
w(xm), and p̄i,Se

:=
1

|Ii|
∑ne

m=1 1f ′
w(xm)∈Iie

′
ym

.

For these definitions, we can derive the following bias

Bias(fw, Ste, CEK′) := |CEK′(fw)− ECEK′(fw, Ste)|

and this can be analyzed exactly in the same way as Appendix B.8. Then we have Bias(fw, Ste, CEK′) = O(1/n
1/(K′+2)
te )

under B = O(n
1

K′+2

te ). We can obtain the similar generalization bound.

C. Proofs and discussion of Section 4
We remark that recalibration takes ηV : ∆K → ∆K , and this is clear for the multiclass setting since fw : X → ∆K . In the
case of the binary setting, fw : X → [0, 1]. So, we consider that the input to ηv is (fw(x), 1− fw(x)) ∈ ∆2. Then we can
treat the recalibration in a unified way.

C.1. Proofs for Corollary 1 and 2

When we recalibrate the model, we fix w. Thus under the fw, the given recalibration data Sre = {(Xm, Ym)}nre
m=1, it is

transformed into S̃re = {(fw(Xm), Ym)}nre
m=1 and samples in S̃re are i.i.d by definition. Then we apply our developed

PAC-Bayes bounds in Appendix B for this new dataset.

As for Corollary 1, we can prove it exactly in the same way as shown in Appendix B.6. Simply replacing Str with S̃re in
Appendix B.6 and apply it to the standard derivation of PAC-Byaeisan bound shown in Eq. (25). This concludes the proof.

As for Corollary 2, we first provide the complete statement;

Corollary 3. Assume that nte = nre = n. Under Assumption 2, conditioned on W = w, for any fixed prior π̃, which is
independent of Sre, and posterior distribution ρ̃ over V and any positive constant ε ∈ [0, 1] and λ > 0, with probability
1− ε with respect to Sre, we have

Eρ̃Bias(ηv ◦ fw, Sre,CE) ≤
1 + L

B
+

KL(ρ̃∥π̃) +B log 2 + log 1
ε + 2λ2

n

λ
,

Eρ̃Bias(ηv ◦ fw, Sre,TCE) ≤
1 + L

B
+

KL(ρ̃∥π̃) +B log 2 + log 1
ε + 2λ2

n

λ
.

We can prove this exactly in the same way as shown in Appendix B.3. Simply replacing Str with Sre in Appendix B.3. This
concludes the proof.

C.2. Discussion about the conditional KL divergence

In Corollary 1 and 2, we fixed w. If we take the expectation with respect to W , then the bound of Corollary 1 become as
follows;
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Corollary 4. Assume that nte = nre = n. Under Assumption 2, conditioned on Str = str, for any fixed prior π̃, which is
independent of Sre, and posterior distribution ρ̃ over V and any positive constant ε ∈ [0, 1] and λ > 0, with probability
1− ε with respect to Sre, we have

Eρ(W |str)Eρ̃gen(ηv ◦ fw, Sre,ECE) ≤
Eρ(w|str)[KL(ρ̃∥π̃)] +B log 2 + log 1

ε + 4λ2

n

λ
.

where Eρ(w|str)[KL(ρ̃∥π̃)] represents the conditional KL divergence.

Proof. The proof is almost the same as Appendix B.6. The difference is how we utilize the Chernoff-bounding technique.
Here we only show the different parts. After obtaining the upper bound of the exponential moment f(t, nre) as in Eq. (30),
we substitute this into Eq. (25), which can be written as follows; for any w and v we have

ESre
et|ECE(ηv◦fw,Ste)−ECE(ηv◦fw,Sre)|−f(t,nre) ≤ 1.

Then we take the expectation with respect to the prior π̃ and ρ(w|str),

Eρ(w|str)Eπ̃ESre
et|ECE(ηv◦fw,Ste)−ECE(ηv◦fw,Sre)|−f(t,nre) ≤ 1.

Using the Fubini theorem, we change the order of expectations,

Eρ(w|str)ESreEπ̃

[
et|ECE(ηv◦fw,Ste)−ECE(ηv◦fw,Sre)|−f(t,nre)

]
≤ 1,

and ρ(w|str) and Sre are independent thus

ESre
Eρ(w|str)Eπ̃

[
et|ECE(ηv◦fw,Ste)−ECE(ηv◦fw,Sre)|−f(t,nre)

]
≤ 1.

Then, use the Donsker–Varadhan lemma, we have

ESre
Eρ(w|str)

[
esupρ̃∈P(W) Eρ̃t|ECE(ηv◦fw,Ste)−ECE(ηv◦fw,Sre)|−KL(ρ̃∥π̃)−f(t,nre)

]
≤ 1.

By taking the Jensen inequality, we have

ESre

[
eEρ(w|Str)

supρ̃∈P(W) Eρ̃t|ECE(ηv◦fw,Ste)−ECE(ηv◦fw,Sre)|−KL(ρ̃∥π̃)−f(t,nre)
]

≤ ESreEρ(w|Str)

[
esupρ̃∈P(W) Eρ̃t|ECE(ηv◦fw,Ste)−ECE(ηv◦fw,Sre)|−KL(ρ̃∥π̃)−f(t,nre)

]
≤ 1.

By taking the swap about Eρ(w|Str) and sup, we have

ESre

[
esupρ̃∈P(W) Eρ(w|Str)

Eρ̃t|ECE(ηv◦fw,Ste)−ECE(ηv◦fw,Sre)|−KL(ρ̃∥π̃)−f(t,nre)
]

≤ ESre

[
eEρ(w|Str)

supρ̃∈P(W) Eρ̃t|ECE(ηv◦fw,Ste)−ECE(ηv◦fw,Sre)|−KL(ρ̃∥π̃)−f(t,nre)
]
≤ 1.

After this, we simply follow the derivation of the standard PAC-Bayes derivation in Appendix B.3.

C.3. Discussion for Section 4.2

First, the upper bound of the ECE is obtained by

ECE(ηv ◦ fw, Sre) ≤
1

nre

nre∑
(X,Y )∈Sre

|(eY )C − ηV ◦ fw(X)C |2 ≤ 1

nre

nre∑
(X,Y )∈Sre

∥eY − ηV ◦ fw(X)∥22

where (eY )C is the C-th dimension of the one-hot encoding of the label Y and the first inequality is followed by Hölder
inequality and the Jensen inequality. As for the binary classification, by Hölder inequality and the Jensen inequality, we have

ECE(ηv ◦ fw, Sre) ≤
1

nre

nre∑
(X,Y )∈Sre

|Y − ηV ◦ fw(X)1|2,
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since the recalibrated function is ηV ◦ fw(X) ∈ ∆2 and its 1st dimension represents the predicted probability of the label is
1.

Then from the estimation bias bound in Eq. (7), we have

Eρ̃TCE(ηv ◦ fw)

≤ Eρ̃ECE(ηv ◦ fw, Sre) +
1 + L

B
+

KL(ρ̃∥π̃) +B log 2 + log 1
ε + 4λ2

nre

λ

≤ Eρ̃
1

nre

nre∑
(X,Y )∈Sre

∥eY − ηV ◦ fw(X)∥22 +
1 + L

B
+

KL(ρ̃∥π̃) +B log 2 + log 1
ε + 4λ2

nre

λ
, (38)

holds for any λ > 0. Thus, the objective function of Eq. (8) is the upper bound of the TCE in the PAC-Bayes bound. Clearly,
a similar statement holds for CE in the binary setting.

Next, we discuss the objective function of Eq. (10). This objective function can guarantee the performance of test accuracy
and TCE simultaneously as follows; Assume that lacc : Y × Y → [0, 1] and define the training loss as L̂acc(V, Str) :=
1
ntr

∑ntr

(X,Y )∈Str
lacc(Y, ηV ◦ fw(X)) and the (expected) test loss as Lacc(v,D) := EZ lacc(Y, ηV ◦ fw(X)). Under this

setting, we have

Corollary 5. Assume that nte = nre = n and . Under Assumption 2, conditioned on W = w, for any fixed prior π̃, which
is independent of Sre, and posterior distribution ρ̃ over V and any positive constant ε ∈ [0, 1] and λ > 0, with probability
1− ε with respect to Sre, we have

Eρ̃(Lacc(V,D) + TCE(ηv ◦ fw) ≤ Eρ̃
1

nre

nre∑
(X,Y )∈Sre

(lacc(Y, ηV ◦ fw(X)) + ∥eY − ηV ◦ fw(X)∥22)

+
1 + L

B
+

2KL(ρ̃∥π̃) +B log 2 + 33λ2

8nre
+ 2 log 2

ε

λ
,

Proof. From Eq. (11), which is the standard PAC-Bayes bound for [0, 1] bounded loss function, we have

Eρ̃Lacc(V,D) ≤ Eρ̃L̂acc(V, Str) +
KL(ρ̃∥π̃) + log 1

ε + λ2

8nre

λ
. (39)

By considering the union bound with Eq. (39) and Eq. (38), setting ε as ε/2 in each high probability bound, we obtain the
result.

Clearly, a similar statement holds for CE in the binary setting.

Thus, the objective function Eq. (10) optimizes the upper bound of Corollary 5, and thus, it naturally guarantees the test
accuracy and TCE simultaneously.
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Table 2. Datasets used in our experiments

Dataset Classes Train data (ntr) Recalibration data (nre) Test data (nte)

KITTI (Geiger, 2012) 2 16000 1000 8000
PCam (Veeling et al., 2018) 2 22768 1000 9000
MNIST (LeCun et al., 1989) 10 60000 1000 9000
CIFAR-100 (Krizhevsky, 2009) 100 50000 1000 9000

D. Details of experimental settings
In this section, we summarize the detail information of our numerical experiments in Section 6. Our CIFAR-100 experiments
were conducted on NVIDIA GPUs with 32GB memory (NVIDIA DGX-1 with Tesla V100 and DGX-2). For the other
experiments, we used CPU (Apple M1) with 16GB memory.

Datasets and models: We show the details of the datasets and the numbers of training, recalibration, and test data
in Table 2. For the models, we used XGBoost (Chen and Guestrin, 2016), Random Forests (Breiman, 2001), and a
1-layer neural network (NN) for the KITTI, PCam, and MNIST experiments. For the CIFAR-100 experiments, we used
AlexNet (Krizhevsky et al., 2012), WideResNet (Zagoruyko and Komodakis, 2016), DenseNet-BC-190 (Huang et al., 2017),
and ResNeXt-29 (Xie et al., 2017). XGBoost, Random Forests, and the 1-layer NN were trained by adapting the code
from Wenger et al. (2020) 1. Models used in the CIFAR-100 experiments were obtained from the GitHub project page:
pytorch-classification (https://github.com/bearpaw/pytorch-classification).

Recalibration algorithms: In the multiclass classification experiments, the standard method of temperature scaling (Guo
et al., 2017) and the recently developed GP calibration (Wenger et al., 2020) that has shown good performance were
used as baselines. As a baseline method for binary classification, we additionally adopted Platt scaling (Platt, 1999),
isotonic regression (Zadrozny and Elkan, 2002), Beta calibration (Kull et al., 2017), and Bayesian binning into quantiles
(BBQ) (Naeini et al., 2015). We also adopted the GP calibration with mean approximation (Wenger et al., 2020) in the
additional experiments in Appendix E.

Wenger et al. (2020) reported results for Platt scaling (Platt, 1999), isotonic regression (Zadrozny and Elkan, 2002), Beta
calibration (Kull et al., 2017), and Bayesian binning into quantiles (BBQ) (Naeini et al., 2015), which were originally
developed for binary classification tasks and adapted to the multiclass setting via a one-vs-all approach. However, for a fair
comparison, our multiclass classification experiments employed temperature scaling and GP-based recalibration as baseline
methods, as these approaches can be directly applied to the multiclass setting.

For our PBR method, we set the Gaussian distribution as both the posterior and prior, as in Wenger et al. (2020). We
also followed the settings for training strategy, hyperparameters, and optimizers in Wenger et al. (2020) to ensure a fair
comparison. PBR has an optimizable parameter 1/λ in addition to the posterior parameter; thus, we selected it using grid
search from the following candidates: {0., 0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 1.0}. The mean approximation strategy in Wenger
et al. (2020) can be applied for PBR. Thus, we reported the results of PBR with mean approximation (denoted as PBR app.)
in Appendix E.

Performance evaluation: We measured the predictive accuracy and the ECE estimated by binning, with B = ⌊n1/3
re ⌋,

following our theoretical findings in Corollary 2. We conducted 10-fold cross-validation for recalibration function training
and reported the mean and standard deviation of these two performance metrics. We also used J = 100 Monte Carlo
samples from posterior ρ̃ to obtain V .

E. Additional experimental results
Here are additional experimental results that could not be included in the main part of this paper.

We first show all the experimental results regarding the correlation between the KL-divergence and our bound in Figures 3
and 4. We observed that the KL-divergence and generalization gap are well correlated in terms of Pearson’s and Kendall’s

1https://github.com/JonathanWenger/pycalib
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rank-correlation coefficients, especially in the multiclass classification tasks (MNIST and CIFAR-100). However, for the
binary classification experiments, no strong correlation was observed. We conjecture that this is caused by the estimation
bias of ECE through binning, which has a very slow convergence rate of O(n

1/3
re ) under our optimal B. Since we use

nre = 1000, the noise due to the estimation bias can be O(1/10), which is larger than the ECE gap values in the binary
classification experiments. Therefore, it seems that the correlation is buried in the noise.

We also show the results of comparisons with all baseline methods in Tables 3-6. These results confirm that our method
almost consistently improves GP-based recalibration methods.

Finally, we evaluate the effect of using Brier and cross-entropy losses in our recalibration approach defined in Eq. (9).
Specifically, we reran the experiments under the same setup described in Appendix D, and re-evaluated our two methods
from Eqs. (8) and (9) in terms of ECE, classification accuracy, and cross-entropy loss.

The results are summarized in Tables 7–10. Our first key observation is that both of our methods—PBR and PBR total—
consistently improve ECE when minimizing the Brier score. This is expected, as the Brier score upper-bounds ECE. We
also observe improvements in accuracy and cross-entropy in some settings, particularly for binary classification tasks on
relatively simple datasets such as KITTI and PCam.

However, when recalibration is performed using only the Brier score (with KL regularization), PBR can lead to degradation
in both cross-entropy and accuracy, especially for more complex datasets and multi-class tasks. This trend is evident
in Table 9 (excluding the XGBoost and Random Forest settings) and Table 10 (excluding AlexNet), and is particularly
pronounced in experiments involving deep neural networks.

One possible explanation is as follows: in all experiments, the base models fw were trained using the cross-entropy loss.
When recalibration is subsequently performed using only the Brier score, the optimization objective diverges from the
training objective. This mismatch can propagate through the GP-based recalibration process, introducing inconsistencies
that ultimately degrade performance in terms of accuracy and cross-entropy. Notably, this degradation is alleviated by
incorporating the cross-entropy loss into the recalibration objective, as done in PBR total. This suggests that including
cross-entropy helps reduce the misalignment between training and recalibration losses.

In summary, minimizing the Brier score alone does not necessarily improve cross-entropy or accuracy and may in fact worsen
them. However, incorporating cross-entropy into the recalibration objective offers a more balanced trade-off, improving
calibration while preserving predictive performance.
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Figure 3. KL vs ECE gap on KITTI (binary), PCam (binary), and MNIST (Multiclass) dataset per various regularize parameters (α).
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Figure 4. KL vs ECE gap on CIFAR-100 (Multiclass) dataset per various regularize parameters (α). For the AlexNet experiments, the
x-axis range has been limited in the figure to better illustrate the data due to the observation of very large KL values for the case where
α = 0.
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Figure 5. nre vs. ECE on the test dataset for experiments with the KITTI dataset. For details on our methods, we refer to Appendix D.
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Table 3. KITTI (binary)
Model Method ECE (mean ± std) Accuracy (mean ± std)

XGBoost

Uncalibration 0.0113± 0.0004 0.9627± 0.0011
GP calibration (Wenger et al., 2020) 0.0063± 0.0020 0.9633± 0.0007
GP calibration (app.) (Wenger et al., 2020) 0.0079± 0.0033 0.9640± 0.0013
PBR (ours) 0.0076± 0.0030 0.9641± 0.0014
PBR total (ours) 0.0063± 0.0014 0.9636± 0.0013
PBR app. (ours) 0.0079± 0.0033 0.9640± 0.0013
PBR app. total (ours) 0.0063± 0.0012 0.9637± 0.0013
Temperature scaling (Guo et al., 2017) 0.0060± 0.0009 0.9627± 0.0011
Platt scaling (Platt, 1999) 0.0076± 0.0014 0.9621± 0.0011
Isotonic regression (Zadrozny and Elkan, 2002) 0.0093± 0.0030 0.9624± 0.0022
Beta calibration (Kull et al., 2017) 0.0052± 0.0015 0.9627± 0.0008
BBQ (Naeini et al., 2015) 0.0341± 0.0745 0.9611± 0.0021

Random Forest

Uncalibration 0.0736± 0.0014 0.9638± 0.0015
GP calibration (Wenger et al., 2020) 0.0070± 0.0032 0.9628± 0.0018
GP calibration (app.) (Wenger et al., 2020) 0.0074± 0.0029 0.9626± 0.0018
PBR (ours) 0.0076± 0.0031 0.9626± 0.0019
PBR total (ours) 0.0068± 0.0033 0.9628± 0.0018
PBR app. (ours) 0.0074± 0.0029 0.9626± 0.0018
PBR app. total (ours) 0.0068± 0.0037 0.9628± 0.0017
Temperature scaling (Guo et al., 2017) 0.0063± 0.0029 0.9638± 0.0015
Platt scaling (Platt, 1999) 0.0060± 0.0031 0.9631± 0.0017
Isotonic regression (Zadrozny and Elkan, 2002) 0.0097± 0.0033 0.9612± 0.0024
Beta calibration (Kull et al., 2017) 0.0063± 0.0023 0.9627± 0.0015
BBQ (Naeini et al., 2015) 0.1148± 0.0538 0.8948± 0.0026

1-Layer NN

Uncalibration 0.0049± 0.0008 0.9619± 0.0014
GP calibration (Wenger et al., 2020) 0.0047± 0.0008 0.9619± 0.0014
GP calibration (app.) (Wenger et al., 2020) 0.0047± 0.0008 0.9620± 0.0014
PBR (ours) 0.0047± 0.0008 0.9619± 0.0013
PBR total (ours) 0.0046± 0.0007 0.9621± 0.0014
PBR app. (ours) 0.0047± 0.0008 0.9619± 0.0014
PBR app. total (ours) 0.0045± 0.0008 0.9620± 0.0014
Temperature scaling (Guo et al., 2017) 0.0104± 0.0050 0.9618± 0.0014
Platt scaling (Platt, 1999) 0.0103± 0.0049 0.9642± 0.0016
Isotonic regression (Zadrozny and Elkan, 2002) 0.0085± 0.0049 0.9672± 0.0024
Beta calibration (Kull et al., 2017) 0.0073± 0.0047 0.9672± 0.0013
BBQ (Naeini et al., 2015) 0.0324± 0.0760 0.9648± 0.0051
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Figure 6. nre vs. ECE on the test dataset for experiments with the PCam dataset. For details on our methods, we refer to Appendix D.
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Table 4. PCam (binary)
Model Method ECE (mean ± std) Accuracy (mean ± std)

XGBoost

Uncalibration 0.0519± 0.0015 0.8445± 0.0015
GP calibration (Wenger et al., 2020) 0.0122± 0.0053 0.8466± 0.0018
GP calibration (app.) (Wenger et al., 2020) 0.0133± 0.0057 0.8468± 0.0021
PBR (ours) 0.0139± 0.0043 0.8445± 0.0030
PBR total (ours) 0.0113± 0.0043 0.8464± 0.0024
PBR app. (ours) 0.0140± 0.0042 0.8441± 0.0028
PBR app. total (ours) 0.0116± 0.0055 0.8449± 0.0028
Temperature scaling (Guo et al., 2017) 0.0605± 0.0048 0.8445± 0.0015
Platt scaling (Platt, 1999) 0.0492± 0.0057 0.8474± 0.0011
Isotonic regression (Zadrozny and Elkan, 2002) 0.0170± 0.0053 0.8442± 0.0031
Beta calibration (Kull et al., 2017) 0.0183± 0.0019 0.8475± 0.0012
BBQ (Naeini et al., 2015) 0.0143± 0.0098 0.8412± 0.0065

Random Forest

Uncalibration 0.0816± 0.0014 0.8495± 0.0018
GP calibration (Wenger et al., 2020) 0.0124± 0.0027 0.8492± 0.0019
GP calibration (app.) (Wenger et al., 2020) 0.0115± 0.0041 0.8491± 0.0019
PBR (ours) 0.0109± 0.0040 0.8490± 0.0020
PBR total (ours) 0.0116± 0.0068 0.8490± 0.0019
PBR app. (ours) 0.0104± 0.0038 0.8491± 0.0020
PBR app. total (ours) 0.0116± 0.0063 0.8489± 0.0019
Temperature scaling (Guo et al., 2017) 0.0092± 0.0056 0.8495± 0.0018
Platt scaling (Platt, 1999) 0.0096± 0.0054 0.8496± 0.0014
Isotonic regression (Zadrozny and Elkan, 2002) 0.0202± 0.0085 0.8464± 0.0038
Beta calibration (Kull et al., 2017) 0.0122± 0.0036 0.8488± 0.0024
BBQ (Naeini et al., 2015) 0.0529± 0.0079 0.8063± 0.0082

1-Layer NN

Uncalibration 0.2060± 0.0014 0.5928± 0.0016
GP calibration (Wenger et al., 2020) 0.0385± 0.0073 0.6510± 0.0021
GP calibration (app.) (Wenger et al., 2020) 0.0389± 0.0057 0.6507± 0.0023
PBR (ours) 0.0385± 0.0073 0.6507± 0.0020
PBR total (ours) 0.0384± 0.0060 0.6497± 0.0034
PBR app. (ours) 0.0385± 0.0073 0.6507± 0.0021
PBR app. total (ours) 0.0389± 0.0057 0.6507± 0.0023
Temperature scaling (Guo et al., 2017) 0.0312± 0.0169 0.5928± 0.0016
Platt scaling (Platt, 1999) 0.0484± 0.0105 0.6224± 0.0068
Isotonic regression (Zadrozny and Elkan, 2002) 0.0214± 0.0055 0.6483± 0.0026
Beta calibration (Kull et al., 2017) 0.0256± 0.0044 0.6478± 0.0026
BBQ (Naeini et al., 2015) 0.0179± 0.0029 0.6467± 0.0039
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Figure 7. nre vs. ECE on the test dataset for experiments with the MNIST dataset. For details on our methods, we refer to Appendix D.
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Table 5. MNIST (Multiclass)
Model Method ECE (mean ± std) Accuracy (mean ± std)

XGBoost

Uncalibration 0.0036± 0.0003 0.9785± 0.0005
GP calibration (Wenger et al., 2020) 0.0038± 0.0006 0.9786± 0.0007
GP calibration (app.) (Wenger et al., 2020) 0.0040± 0.0004 0.9785± 0.0007
PBR (ours) 0.0035± 0.0004 0.9785± 0.0007
PBR total (ours) 0.0037± 0.0004 0.9785± 0.0006
PBR app. (ours) 0.0036± 0.0003 0.9785± 0.0005
PBR app. total (ours) 0.0036± 0.0004 0.9785± 0.0005
Temperature scaling (Guo et al., 2017) 0.0055± 0.0017 0.9785± 0.0005

Random Forest

Uncalibration 0.1428± 0.0007 0.9659± 0.0005
GP calibration (Wenger et al., 2020) 0.0313± 0.0056 0.9663± 0.0011
GP calibration (app.) (Wenger et al., 2020) 0.0091± 0.0046 0.9641± 0.0016
PBR (ours) 0.0065± 0.0017 0.9639± 0.0018
PBR total (ours) 0.0057± 0.0028 0.9656± 0.0017
PBR app. (ours) 0.0091± 0.0046 0.9641± 0.0016
PBR app. total (ours) 0.0045± 0.0020 0.9662± 0.0016
Temperature scaling (Guo et al., 2017) 0.0062± 0.0009 0.9659± 0.0005

1-Layer NN

Uncalibration 0.0164± 0.0004 0.9760± 0.0005
GP calibration (Wenger et al., 2020) 0.0101± 0.0023 0.9740± 0.0008
GP calibration (app.) (Wenger et al., 2020) 0.0159± 0.0007 0.9760± 0.0006
PBR (ours) 0.0137± 0.0014 0.9751± 0.0009
PBR total (ours) 0.0112± 0.0019 0.9740± 0.0016
PBR app. (ours) 0.0159± 0.0007 0.9760± 0.0006
PBR app. total (ours) 0.0148± 0.0017 0.9742± 0.0015
Temperature scaling (Guo et al., 2017) 0.0062± 0.0026 0.9760± 0.0005
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Figure 8. nre vs. ECE on the test dataset for experiments with the CIFAR-100 dataset. For details on our methods, we refer to Appendix D.
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Table 6. CIFAR100 (Multiclass)
Model Method ECE (mean ± std) Accuracy (mean ± std)

alexnet

Uncalibration 0.2548± 0.0007 0.4374± 0.0008
GP calibration (Wenger et al., 2020) 0.2548± 0.0008 0.4373± 0.0009
GP calibration (app.) (Wenger et al., 2020) 0.2548± 0.0007 0.4374± 0.0008
PBR (ours) 0.2545± 0.0007 0.4374± 0.0008
PBR total (ours) 0.2548± 0.0008 0.4373± 0.0009
PBR app. (ours) 0.2548± 0.0007 0.4374± 0.0008
PBR app. total (ours) 0.2548± 0.0008 0.4374± 0.0008
Temperature scaling (Guo et al., 2017) 0.0216± 0.0037 0.4374± 0.0008

WRN-28-10-drop

Uncalibration 0.0568± 0.0009 0.8131± 0.0011
GP calibration (Wenger et al., 2020) 0.0567± 0.0010 0.8129± 0.0011
GP calibration (app.) (Wenger et al., 2020) 0.0568± 0.0009 0.8130± 0.0011
PBR (ours) 0.0504± 0.0054 0.7878± 0.0049
PBR total (ours) 0.0349± 0.0093 0.7965± 0.0064
PBR app. (ours) 0.0568± 0.0009 0.8130± 0.0012
PBR app. total (ours) 0.0568± 0.0009 0.8130± 0.0011
Temperature scaling (Guo et al., 2017) 0.0374± 0.0028 0.8131± 0.0011

resnext-8x64d

Uncalibration 0.0401± 0.0010 0.8229± 0.0013
GP calibration (Wenger et al., 2020) 0.0400± 0.0010 0.8229± 0.0014
GP calibration (app.) (Wenger et al., 2020) 0.0400± 0.0009 0.8229± 0.0013
PBR (ours) 0.0320± 0.0050 0.8023± 0.0084
PBR total (ours) 0.0310± 0.0082 0.8123± 0.0080
PBR app. (ours) 0.0399± 0.0024 0.8167± 0.0047
PBR app. total (ours) 0.0401± 0.0010 0.8229± 0.0014
Temperature scaling (Guo et al., 2017) 0.0401± 0.0019 0.8229± 0.0013

resnext-16x64d

Uncalibration 0.0405± 0.0012 0.8231± 0.0013
GP calibration (Wenger et al., 2020) 0.0403± 0.0013 0.8230± 0.0014
GP calibration (app.) (Wenger et al., 2020) 0.0405± 0.0014 0.8230± 0.0014
PBR (ours) 0.0305± 0.0056 0.8014± 0.0065
PBR total (ours) 0.0321± 0.0071 0.8123± 0.0065
PBR app. (ours) 0.0384± 0.0032 0.8118± 0.0068
PBR app. total (ours) 0.0321± 0.0071 0.8123± 0.0065
Temperature scaling (Guo et al., 2017) 0.0420± 0.0025 0.8231± 0.0013

densenet-bc-L190-k40

Uncalibration 0.0639± 0.0008 0.8230± 0.0007
GP calibration (Wenger et al., 2020) 0.0639± 0.0008 0.8229± 0.0007
GP calibration (app.) (Wenger et al., 2020) 0.0639± 0.0008 0.8230± 0.0007
PBR (ours) 0.0630± 0.0045 0.8041± 0.0143
PBR total (ours) 0.0618± 0.0054 0.8195± 0.0078
PBR app. (ours) 0.0639± 0.0008 0.8230± 0.0007
PBR app. total (ours) 0.0639± 0.0008 0.8230± 0.0007
Temperature scaling (Guo et al., 2017) 0.0222± 0.0013 0.8230± 0.0007
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Table 7. ECE, accuracy, and cross entropy under our PBR (Eq. (8)) and PBR total (Eq. (10)) on KITTI. Bold font indicates the best result
among PBR and PBR total for each metric. If the best values are numerically identical, no bolding is applied. In case of a tie in the mean,
the result with a smaller standard deviation is considered better.

Model Method ECE (↓) Accuracy (↑) Cross entropy (↓)

XGBoost
Uncalibration 0.011± 0.000 0.963± 0.001 0.110± 0.002
PBR (ours) 0.008± 0.003 0.964± 0.001 0.104± 0.002
PBR total (ours) 0.006± 0.001 0.964± 0.001 0.104± 0.001

Random Forest
Uncalibration 0.074± 0.001 0.964± 0.001 0.160± 0.003
PBR (ours) 0.008± 0.003 0.963± 0.002 0.114± 0.004
PBR total (ours) 0.007± 0.003 0.963± 0.002 0.113± 0.005

1-Layer NN
Uncalibration 0.005± 0.001 0.962± 0.001 0.122± 0.004
PBR (ours) 0.005± 0.001 0.962± 0.001 0.122± 0.004
PBR total (ours) 0.005± 0.001 0.962± 0.001 0.122± 0.004

Table 8. ECE, accuracy, and cross entropy under our PBR (Eq. (8)) and PBR total (Eq. (10)) on PCam. Bold font indicates the best result
among PBR and PBR total for each metric. If the best values are numerically identical, no bolding is applied. In case of a tie in the mean,
the result with a smaller standard deviation is considered better.

Model Method ECE (↓) Accuracy (↑) Cross entropy (↓)

XGBoost
Uncalibration 0.052± 0.002 0.845± 0.002 0.356± 0.004
PBR (ours) 0.014± 0.004 0.844± 0.003 0.338± 0.004
PBR total (ours) 0.011± 0.004 0.846± 0.002 0.336± 0.003

Random Forest
Uncalibration 0.082± 0.001 0.850± 0.002 0.382± 0.004
PBR (ours) 0.011± 0.004 0.849± 0.002 0.339± 0.003
PBR total (ours) 0.012± 0.007 0.849± 0.002 0.339± 0.003

1-Layer NN
Uncalibration 0.206± 0.001 0.593± 0.002 0.866± 0.004
PBR (ours) 0.038± 0.007 0.651± 0.002 0.663± 0.008
PBR total (ours) 0.038± 0.006 0.650± 0.003 0.661± 0.004
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Table 9. ECE, accuracy, and cross entropy under our PBR (Eq. (8)) and PBR total (Eq. (10)) on MNIST. Bold font indicates the best result
among PBR and PBR total for each metric. If the best values are numerically identical, no bolding is applied. In case of a tie in the mean,
the result with a smaller standard deviation is considered better.

Model Method ECE (↓) Accuracy (↑) Cross entropy (↓)

XGBoost
Uncalibration 0.004± 0.000 0.979± 0.000 0.073± 0.002
PBR (ours) 0.004± 0.000 0.978± 0.001 0.073± 0.002
PBR total (ours) 0.004± 0.000 0.979± 0.001 0.073± 0.002

Random Forest
Uncalibration 0.143± 0.001 0.966± 0.001 0.254± 0.001
PBR (ours) 0.007± 0.002 0.964± 0.002 0.134± 0.009
PBR total (ours) 0.006± 0.003 0.966± 0.002 0.120± 0.004

1-Layer NN
Uncalibration 0.016± 0.000 0.976± 0.001 0.124± 0.005
PBR (ours) 0.014± 0.001 0.975± 0.001 0.107± 0.005
PBR total (ours) 0.011± 0.002 0.974± 0.002 0.100± 0.006

Table 10. ECE, accuracy, and cross entropy under our PBR (Eq. (8)) and PBR total (Eq. (10)) on CIFAR100. Bold font indicates the best
result among PBR and PBR total for each metric. If the best values are numerically identical, no bolding is applied. In case of a tie in the
mean, the result with a smaller standard deviation is considered better.

Model Method ECE (↓) Accuracy (↑) Cross entropy (↓)

alexnet
Uncalibration 0.255± 0.001 0.437± 0.001 2.952± 0.009
PBR (ours) 0.255± 0.001 0.437± 0.001 2.952± 0.008
PBR total (ours) 0.255± 0.001 0.437± 0.001 2.952± 0.009

WRN-28-10-drop
Uncalibration 0.057± 0.001 0.813± 0.001 0.772± 0.005
PBR (ours) 0.050± 0.005 0.788± 0.005 0.897± 0.030
PBR total (ours) 0.035± 0.009 0.796± 0.006 0.818± 0.023

resnext-8x64d
Uncalibration 0.040± 0.001 0.823± 0.001 0.704± 0.006
PBR (ours) 0.032± 0.005 0.802± 0.008 0.800± 0.037
PBR total (ours) 0.031± 0.008 0.812± 0.008 0.739± 0.023

resnext-16x64d
Uncalibration 0.040± 0.001 0.823± 0.001 0.709± 0.005
PBR (ours) 0.030± 0.006 0.801± 0.006 0.804± 0.024
PBR total (ours) 0.032± 0.007 0.812± 0.007 0.741± 0.018

densenet-bc-L190-k40
Uncalibration 0.064± 0.001 0.823± 0.001 0.708± 0.007
PBR (ours) 0.063± 0.005 0.804± 0.014 0.799± 0.074
PBR total (ours) 0.062± 0.005 0.820± 0.008 0.721± 0.028
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