
Online Submission ID: 3

Blocks: Creating Rich Tables with Drag-and-Drop Interaction
Category: Research

Figure 1: A rich table showing data about Airbnb listings in Seattle, created with Blocks. The table shows a variety of mark types
and measures at several levels of detail combined into a single visualization. Each column of the table is defined by a Block
with its own set of encoding and field mappings. The columns from left to right show rows for each neighborhood group, sorted
by average listing price, a labeled bar chart showing average price, colored by availability, rows for each neighbourhood within
each neighborhood group, the same labeled bar chart, but showing average price for each neighborhood, and a sparkline showing
average price over time.

ABSTRACT

We present Blocks, a formalism that enables the building of visual-
izations by specifying layout, data relationships, and level of detail
(LOD) for specific portions of the visualization. Users can create
and manipulate Blocks on a canvas interface through drag-and-drop
interaction, controlling the LOD of the data attributes for tabular
style visualizations. We conducted a user study to compare how 24
participants employ Blocks and Tableau in their analytical workflows
to complete a target visualization task. We also ran a subsequent
longitudinal diary study with eight participants to better understand
both the usability and utility of Blocks in their own analytical in-
quiries. Findings from the study suggest that Blocks is a useful
mechanism for creating visualizations with embedded microcharts,
conditional formatting, and custom layouts. We finally describe how
the Blocks formalism can be extended to support additional compos-
ite visualizations and Sankey charts, along with future implications
for designing visual analysis interfaces that can handle creating more
complex charts through drag-and-drop interaction.

Keywords: Formalism, level of detail, nesting, layout, conditional
formatting, rich tables, drag-and-drop interaction.

1 INTRODUCTION

Visual analysis tools [15, 23] help support the user in data explo-
ration and iterative view refinement. Some of these tools are more
expressive, giving expert users more control, while others are easier
to learn and faster to create visualizations. These tools are often
driven by underlying grammars of graphics [27, 43] that provide
various formalisms to concisely describe the components of a visual-
ization. High level formalisms such as VizQL [40] and ggplot2 [42]
are set up to support partial specifications of the visualization and

hence provide the convenience of concise representations. Reason-
able defaults are subsequently applied to infer missing information
to generate a valid graphic. The downside of these concise repre-
sentations is that the support for expressiveness for visualization
generation in these tools is either limited or difficult for a user to
learn how to do.

Drag-and-drop is one paradigm for addressing the limitations of
expressivity by supporting task expression through user interaction
where the visibility of the object of interest replaces complex lan-
guage syntax. VizQL is one such formalism that supports the expres-
sion of chart creation through direct manipulation in Tableau [23].
While the language enables users to create charts through its under-
lying compositional algebra, there is still tight coupling between
the query, the visualization structure, and layout. As a result, users
often spend significant time in generating complex visualizations
when they have a specific structure and layout in mind. The other
paradigm for promoting expressiveness for chart creation is through
the use of declarative specification grammars [29, 38, 39] that can
programmatically express the developer’s intentions.

Despite the prevalence of these tools, creating expressive data
visualizations still remains a challenging task. Beyond having a good
insight about how the data can be best visualized, users need to have
sufficient knowledge to generate these visualizations. So, how can
we support users in their analytical workflows by enabling a greater
degree of flexibility and control over nesting relationships, layout,
and encodings, yet providing the intuitiveness of a user interface?
In this paper, we address this dichotomy between expressibility
and ease of use for the user by extending VizQL to provide greater
flexibility in creating expressive charts through direct manipulation.

1

Online Submission ID: 3

1.1 Contributions

Specifically, our contributions are as follows:

• We introduce Blocks, a formalism that builds upon VizQL by
supporting the nested relationships between attributes in a visu-
alization using a drag-and-drop interaction. Every component
of the visualization is an analytical entity to which different
nesting and encoding properties can be applied.

• We implement a Blocks System that provides a user increased
flexibility with layout and formatting options through the direct
manipulation of Block objects in the interface.

• We evaluated Blocks with 24 participants when performing
tasks involving the creation of rich tables using both Tableau
and Blocks. Eight of these users recorded their explorations
using Blocks in their own workflows for an additional two-
week diary study. Findings from the studies indicate that
Blocks is a promising paradigm for the creation of complex
charts. We identify research directions to pursue to better
support users’ mental models when using the system.

Figure 1 shows how a user can create a rich table using Blocks
with a Seattle Airbnb dataset. The assembly of Blocks in the in-
terface results in columns with different mark types such as bar
charts and sparklines. The query for each Block inherits the dimen-
sions from the parent Blocks. The first price column inherits the
field neighbourhood group as its dimension, computing price for
each neighbourhood group. The second price column inherits both
neighbourhood group and the field neighbourhood showing a
more granular level of price per neighbourhood.

2 RELATED WORK

Visual analysis techniques can be broadly classified into two main
categories: (1) declarative specification grammars that provide high-
level language abstractions and (2) visual analysis interfaces that
facilitate chart generation through interaction modalities.

2.1 Declarative specification grammars

Declarative visualization languages address the problem of expres-
siveness by allowing developers to concisely express how they would
like to render a visualization. Vega [39] and Vega-Lite [38] support
the authoring of interactivity in the visualizations. While these spec-
ification languages provide a great degree of flexibility in how charts
can be programmatically generated, they provide limited support for
displaying different levels of granularity within a field in a visual-
ization. Further, they require programming experience, making it
challenging for non-developers to quickly develop advanced charts
in their flow of analysis. Viser [41] addresses this gap by automati-
cally synthesizing visualization scripts from simple visual sketches
provided by the user. Specifically, given an input data set and a
visual sketch that demonstrates how to visualize a very small sub-
set of this data, their technique automatically generates a program
that can be used to visualize the entire data set. Ivy [35] proposes
parameterized declarative templates, an abstraction mechanism over
JSON-based visualization grammars. A related effort by Harper and
Agrawala [32] converts D3 charts into reusable Vega-Lite templates
for a limited subset of D3 charts. While our work is similar to that
of declarative grammars and template specifications in the sense
of abstracting low-level implementation details from the user, we
focus on supporting non-developer analysts in creating expressive
charts through drag-and-drop interaction. We specifically extend
the formalism of VizQL for supporting nested queries, layout, and
encoding flexibility through drag-and-drop interaction in the Blocks
interface.

2.2 Visual analysis interfaces
Visual analysis tools over the years have developed ways to help
novice users in getting started in a UI context. The basic form
of these tools for chart generation include chart pickers that are
prevalent in various visual analysis systems [26]. Commercial visual
analysis tools such as Tableau and PowerBI, along with systems
like Charticulator [36] are built on a visualization framework that
enables users to map fields to visual attributes using drag-and-drop
interaction. As more analytical capabilities are enabled in these
tools, there is a disconnect from the underlying abstraction, leading
to calculation editors and dialog menus that add both complexity
and friction to the analytical workflow.

Prior work has explored combinations of interaction modalities
for creating visualizations. Liger [37] combines shelf-based chart
specification and visualization by demonstration. Hanpuku [28],
Data-Driven Guides [33], and Data Illustrator [34] combine visual
editor-style manipulation with chart specification. However, none
of these systems specifically focus on a visually expressive way of
handling nested relationships during chart generation; a common
and important aspect of analytical workflows. Our work specifically
addresses this gap and focuses on supporting analysts in a visual
analysis interface for creating more expressive charts with nestings
by using drag-and-drop as an interaction paradigm.

Domino [31] is a system where users can arrange and manipulate
subsets, visualize data, and explicitly represent the relationships
between these subsets. Our work is similar in concept wherein direct
manipulation is employed in visually building relationships in charts,
but there are differences. Domino has limited nesting and inheritance
capabilities as it does not define parent-child relationships between
blocks to support dependent relationships (e.g., a column depending
on rows). The expressiveness of complex visualizations such as rich
tables with repeated cells containing sparklines, text, and shapes, is
limited.

3 TABLEAU USER EXPERIENCE

The core user experience of Tableau is placing Pills (data fields) onto
Shelves (specific drop targets in the interface). This controls both
the data used and the structure, along with the layout of the final
visualization. Fields without an aggregation are called Dimensions.
Measures are fields that are aggregated within groups defined by the
set of all dimensions, i.e., the Level of Detail (LOD).

The key shelves are the Rows Shelf, the Columns Shelf, and the
visual encoding shelves that are grouped into the Marks Card. Fields
on the Rows and Columns Shelves define “headers” if discrete or
“axes” if continuous. The Marks Card specifies a mark type and
visual encodings such as size, shape, and color. If there is more than
one Marks Card, the group of visualizations defined by the Marks
Cards, forms the innermost part of the chart structure, repeated
across the grid defined by the Rows and Columns Shelves.

The Blocks system attempts to address three limitations inherent
to the Tableau experience:

• The separation between “headers” and “marks” concepts.
The headers define the layout of the visualization and cannot
be visually encoded. Only fields on the Marks Card participate
in creating marks, but the marks must be arranged within the
grid formed by the headers. For example, it is not possible to
have a hierarchical table where the top level of the hierarchy is
denoted by a symbol rather than text.

• The Rows and Columns Shelves are global. As per their
names, a field on the Rows Shelf defines a horizontal band,
and a field on the Columns Shelf a vertical band, across the
entire visualization. For example, it is not possible to place a
y-axis next to a simple text value, as one does for sparklines.

• Queries are always defined using both the Rows and
Columns Shelves, along with the Marks Card. For example,

2

Online Submission ID: 3

it is not possible to get the value of a measure at an LOD of
only dimensions from the Rows Shelf, without those on the
Columns Shelf.

Users have found ways to work around these limitations to build
complex visualizations such as rich tables with sparklines or vi-
sualizations with encodings at different LOD for example. These
methods include composing multiple visualizations on a dashboard
so they appear as one [2]; writing complex calculations to control
layout or formatting of elements [3–5, 7, 11–13]; creating axes with
only a single value [1, 20], among others. Tableau introduced LOD
expressions to help answer questions involving multiple levels of
granularity in a single visualization [14]. The concept of LOD ex-
pressions is outside of the core UI paradigm of direct manipulation
in Tableau. Rather, users need to define LOD calculated fields via
a calculation editor and understand the syntax structure of Tableau
formulae.

4 DESIGN GOALS

To better understand the limitations of Tableau for creating
more expressive visualizations, we interviewed 19 customers,
analyzed 7 internal dashboards, and reviewed 10 discussions on the
Tableau Community Forums [18] that used various workarounds
to accomplish their analytical needs. Each customer interview had
one facilitator and one notetaker. The customers we interviewed
consisted of medium- or large-sized companies that employ Tableau
in their work. The interviews consisted of an hour-long discussion
where we probed these customers to better understand their use
cases. We conducted a thematic analysis through open-coding
of interview notes and the Tableau workbooks the customers
created and maintained. Finally, we reviewed the top ideas in the
Tableau Community Forums to locate needs for more expressive
visualizations. These ideas included extensive discussions among
customers, which helped us better understand the use cases as well
as ways customers work around limitations today. We reviewed
our findings, summarized what we learned, and identified common
patterns from our research. This analysis is codified into the
following design goals:

DG1. Support drag-and-drop interaction
Tableau employs a drag-and-drop interface to support visual
analysis exploration. We learned through discussions with an
internal analyst how important table visualizations were for her
initial exploration of her data. Her first analytic step was to view her
data in a table at multiple LOD and confirming that the numbers
matched her expectations based on domain knowledge. We also
noticed that many customers used tables to check the accuracy
of their calculations throughout their analysis. These discussions
indicated that tables are not just an end goal of analysis, but play a
key part of the exploratory drag-and-drop process. Our goal is to
maintain the ease of use provided by the drag-and-drop interface
and data-driven flow when creating visualizations.

DG2. Better control over visualization components and layout
Tableau employs defaults to help users manage the large space of
possibilities that a compositional language creates [40]. When users
have specific ideas of what they want to create, their workflows
often conflict with the system defaults. A customer at a large apparel
company described the challenges they ran into when replicating
an existing report in Tableau. In order to match all of the desired
formatting and layout, they had to delicately align multiple sheets
together on a single dashboard. Not only did the customer find this
frustrating to maintain, but they often ran into issues with alignment
and responsive layout. Our goal is to support users with increased
layout flexibility as they generate charts for their analytical needs.

DG3. Aggregate and encode at any LOD in a visualization
As users strive to build richer visualizations, the need arises for more
control over showing information at multiple LOD. While Tableau
supports calculations to control the LOD a measure aggregates to,
creating these calculations does not provide the ability to visually
encode at any LOD and takes users out of their analytic workflow.
For example, one customer at a large technology company had a
table visualization that listed projects and the teams who worked
on each of the projects. Some of the measures needed to show
information at the project level (such as total cost), while others
measures were at the team level (amount of effort required per
team). Building this visualization in Tableau required the customer
to write many LOD calculations. Our goal is to provide the ability
to use visual encodings and a drag-and-drop experience to evaluate
measures at any LOD from any component of the visualization.

5 THE BLOCKS FORMALISM

The Blocks formalism uses an arbitrary number of connected local
expressions (i.e., Blocks) instead of global Rows and Columns ex-
pressions. Each Block represents a single query of a data source
at a single LOD, resulting in a component of the final visualiza-
tion. Parent-child relationships between the Blocks form a directed
acyclic graph (DAG).

A block-name is a unique identifier for the Block. The valid
values of field-name and aggregation depend on the fields in
the data source and the aggregation functions supported by that data
source for each field. Any field-instance with an aggregation
is used as a measure; all others are used as dimensions.

The local LOD of the Block is the set of all dimensions used by
any encoding within the Block. The full LOD of the Block is the
union of its local LOD and the local LOD of all of its ancestors. All
of the measures used by the Block are evaluated at the full LOD
of the Block. In addition to defining the LOD, the encodings
map the query results to visual and spatial encodings. Except for

(sort ascending), (sort descending), and (data details), each
encoding-type must occur at most once within each Block. The
sort encodings control the order of the query result and ultimately
the rendering order; their priority is determined by the order that they
appear. By providing a means to encode (x-axis) and (y-axis)
at the visualization component level instead of as part of a global
table expression as in Tableau, Blocks addresses DG3 with respect
to sparklines and other micro charts within a table visualization.

block := (block-name, layout-type,
mark-type, encoding, children)

children := {(child-group)}
child-group := {block-name}
layout-type := "rows" | "columns" | "inline"
mark-type := "text" | "shape" | "circle"

| "line" | "bar"
encoding := ({encoding-type},

field-instance)
encoding-type := "color" | "size"

| "shape"
| "text" | "x-axis"
| "y-axis" | "sort-asc"
| "sort-desc" | "detail"

field-instance := ([aggregation], field-name)

Each Block renders one mark of its mark-type per tuple in its
query result. The layout-type determines how each of the Block’s
rendered marks are laid out in space. A Block with the layout type
of rows creates a row for each value in its domain, with each row
containing a single mark. A common example is a Block with a rows
layout type and textmark type will generate a row displaying a text
string for each value in the Block’s domain. A Block with the layout
type of columns creates a column for each value, each column

3

Online Submission ID: 3

FR
O

N
T

EN
D

Blocks Interface

Query execution

{ ; }
JSON

Block specifications

Row and Column Assignment

Output Visualization

Block query
results

Blocks
visual
data

{ ; }
JSON

Rows

BA
CK

 E
N

D R

1

2 3

4

Columns

R

S C

R S

C P

P

S
C

P

InlineRows

ColumnsRows Block R Block S

Block C Block P

{ ; }
JSON

Figure 2: Blocks system overview. Users create Block GUI Cards that can define multiple field encodings at a single LOD. The Block GUI
card is translated into a Block specification. This specification consists of some number of dimensions, some number of measures aggregated
to the LOD of the cross product of the dimensions, a layout, the visual encodings, a mark type, some number of filters, and a sort order. From
this Block specification, a Block query is issued to the source data source. The output of a Block query is a Block result set which returns the
tuples and corresponding encoding results. This is finally rendered as an output visualization.

containing a single mark per column. To facilitate the creation of
scatter plots, line graphs, area charts, and maps, a Block with the
layout type of inline renders all of its marks in a single shared
space.

Child Blocks are laid out in relation to their parents’ positioning.
A child-group is a set of children that share the same row (for
a rows parent) or column (for a columns parent). E.g., in Figure
4d, the children of Block R are ((Block B, Block C), Block G); B
and C are on the same row and so form a child-group. To insure
the layout can be calculated, the DAG must simplify to a single
tree when considering only the children of rows Blocks or only the
children of columns Blocks. This layout system enables Blocks to
address DG2 by defining labels, axes, and marks all using the single
Block concept. Figure 4a shows how Blocks can be expressed with
the formalism.

6 THE BLOCKS SYSTEM

The Blocks system provides an interface for creating Blocks and to
view the resulting visualizations. Figure 2 illustrates the architecture.
The Blocks Interface (1) and Output Visualization (4) are React-
based [17] TypeScript [25] modules that run in a web browser. The
interface communicates over HTTPS with a Python back-end that
implements the Query Execution (2) and Rows and Column Assign-
ment (3) processes. The system has the flexibility of using either of
two query execution systems – a simple one built on Pandas [16] and
local text files, or a connection to a Tableau Server Data Source [22],
which provides access to Tableau’s rich data model [19]. The back-
end returns the visual data needed to the front end for rendering the
output visualization.

6.1 Blocks interface

The Blocks interface provides a visual, drag-and-drop technique to
encode fields, consistent with DG1. Like Tableau, pills represent
fields and a schema pane contains the list of fields from the connected
data source. Instead of an interface of a fixed number of shelves, the
Blocks interface provides a canvas that supports an arbitrary number
of Blocks. Dragging out a pill to a blank spot on the canvas will
create a new Block, defaulting the Block’s encoding, mark type and
layout type based on metadata of the field that the pill represents.

Figure 3: Possible drop targets are shown to the user just-in-time as
they drag pills to the Blocks canvas.

For example, dragging out a pill that represents the discrete, string
field P will create a Block with the layout type of rows, mark type of
text, and field P encoded on . The layout type and mark type are
displayed at the top of the Block. Encodings are displayed as a list
inside the block. Additional pills can be dragged to blank space on
the canvas to create a new, unrelated block, added as an additional
encoding to Block A, or dropped adjacent to Block A to create a
new related block.

As seen in Figure 3, when a pill is dragged over an existing block,
drop targets appear that represent any unused encodings in that
Block that the system provides. When a pill is dragged over an area
adjacent to an existing block, drop targets appear to assist in creating
a new related block. If the pill that is being dragged represents a
dimension field, the system provides options to create a new block
with either the rows layout type or the column layout type. The
dimension field of the pill will be encoded on by default. If the
pill being dragged represents a measure field, the system provides
the option to encode the measure on the , , or on a Block
that is defaulted to the inline layout type. Once the new, related
Block is created, the layout type, mark type, and encoding can all be
customized.

There are two implicitly-created root Blocks that are invisible
in the interface, a Rows root and a Columns root. Any Block that
has no parents is the child of the Rows root Block and Columns
root Block. These root Blocks are used as the starting point for
calculating Row and Column indexes, as described in Section 6.3.

Blocks placed to the right of or below related Blocks are automat-

4

Online Submission ID: 3

(a) The user interface representation and the formalism representation
of two Blocks. Block C, a Rows Block encoding Class, facets Block
N, an inline Block showing SUM(NumberSurvived) as a bar mark. (b) A series of nested Blocks

(c) Simple crosstab

(d) Defining nested columns

Figure 4: Example configurations of Blocks

ically determined to be child Blocks. A chevron icon () displayed
between the Blocks denotes the direction of the nested relationship
between the Blocks. The layout of Blocks also directly determines
the layout of components in the visualization. Block A placed above
Block B will draw visualization component A above visualization
component B.

Every Block must have both a Rows and a Columns parent to
determine its position in the visualization; more than two parents
are not permitted. If a Rows or Columns parent is not explicit in the
interface, that parent is added implicitly by the system. The missing
parent is implied by the relationships of the defined parent. A Block
that does not have a Columns parent defined in the interface uses the
Column parent of its Rows parent. Similarly, a Block that does not
have a Rows parent defined in the interface uses the Rows parent
of its Columns parent. Inline Blocks do not have children. If the
interface defines a Block as a child of an Inline Block, it uses the
Rows and Columns parents of the Inline Block. Figure 5 shows the
graph implied by the interface for Figure 4d.

In Figure 4a, the field Class is encoded on text in Block C with a
Row layout type. As there are three values in the domain of the field
of Class, three rows are created in the visualization with a text mark
for each value of the field. An Inline Block is nested as a child Block
with NumSurvived encoded on the . The system creates a bar
chart for each row as defined by the first Block. Since no additional
dimensions are added to Block N, the measure NumSurvived is
aggregated to the LOD of Class and a single bar is rendered per

Figure 5: Implicit and explicit links for Figure 4d. Links explicitly
shown in the interface are solid black arrows. The link from an
Inline Block, which is treated as a link from the parent block, is
shown in red. Links added implicitly are shown as dashed arrows.

5

Online Submission ID: 3

row.
Figure 4b expands the example, showing how multiple dimen-

sions can be added to a visualization. Due to the parent-child rela-
tionship of the four Blocks, NumSurvived inherits the dimensions
from the parent Blocks, and aggregates at the combined LOD of
Class, Family Aboard, and Sex. In contrast, Age is encoded in
Block C which has no parent Block. Therefore, Age aggregates to
the LOD of Class, the only dimension encoded on the same Block.

To specify a crosstab, the formalism requires a Block to have two
parents - a Rows Block parent and a Columns Block parent. The
user interface supports the specification of two parent Blocks, one
directly to the left and the other directly above a Block. Figure 4c
shows Block N with Block C and Block S as parent Blocks. The
measure of NumSurvived in Block N is aggregated to the combined
LOD of Class and Sex, the dimensions from its parents, Block C
and Block S.

6.2 Query execution
Each Block executes a single query that is at the LOD of all the
dimensions for the Block, including those inherited from parent
Blocks. In figure 4b, the query for Block S includes not only Sex but
also FamilyAboard, inherited direction from Block F and Class,
inherited indirectly from Block C. This enables layout of the Block’s
marks relative to its parents and avoids making the user repeat
themselves in the user interface, in support of DG1. The query
includes only the measures for the current Block, not those of any
other Block, because measures are aggregates at a specific LOD, in
support of DG3. Every query is deterministically sorted, either by
a user-requested sort or by a default sort based on the order of the
encoding fields within the block.

6.3 Row and Column Assignment
Query execution results in multiple tables with different schemas.
The system needs to assign Row and Column indexes from a single
grid to tuples from all of these tables. This section describes the
process for Rows; it is repeated for Columns.

1. Produce a Block tree from the Blocks DAG by only considering
links from Rows Blocks to their children, excluding any other
links. The Blocks Interface ensures that this tree exists, is
connected, and has a single root at the implicit Rows root
Block.

2. Produce a tuples tree by treating each tuple as a node. Its parent
is the tuple from its parent Block with matching dimension
values.

3. Sort the children of each tuple, first in the order their Blocks
appear as children in the Blocks tree, and then in the order of
the Rows dimensions and user-specified sorts, if any, for each
Block.

4. Assign row indexes to each tuple by walking the tuple tree in
depth-first order. Leaf tuples get a single row index; interior
nodes record the minimum and maximum row indexes of all
their leaves into the tuple.

6.4 Output visualization
Each tuple from a Rows or Columns Block forms a single cell
containing a single mark. All of the tuples from an Inline Block
with the same Row and Column parent tuples form a single cell.
The values of visual encoding fields that are dimensions, if any,
differentiate between marks within that cell. Those marks may
comprise a bar chart, scatter plot, or other visualization depending
on the mark type and visual encodings of the Block. The system uses
a CSS Grid [9] and the computed row and column minimum and
maximum indexes to define the position of each cell. Within each
cell, simple text marks are rendered using HTML. A SVG-based
renderer is used for all other marks.

7 COMPARATIVE STUDY OF BLOCKS WITH TABLEAU

We conducted a user study of Blocks with the goal of answering
two research questions: RQ1: How do users orient and familiarize
themselves with the Blocks paradigm? and RQ2: What are the
differences in how users create visualizations across Tableau and
Blocks? This information would provide insights as to how Blocks
could be useful to users and how the paradigm could potentially
integrate into a more comprehensive visual analysis system. The
study had two parts: Part 1 was an exploratory warm-up exercise to
observe how people would familiarize themselves with the Blocks
interface in an open-ended way. Part 2 was a comparative study
where participants completed an assigned visual analysis task of
creating a visualization using both Tableau and Blocks. The study
focused on various rich table creation tasks as they were found to be a
prevalent type of visualization as described in Section 4. Comparing
Blocks with Tableau would help highlight the differences in the
participants’ analytical workflows when performing the same task.

7.1 Method
7.1.1 Participants
A total of 24 volunteer participants (6 female, 18 male) took part in
the studies and none of them participated more than once. All par-
ticipants were fluent in English and recruited from a visual analytics
organization without any monetary incentives. The participants had
a variety of job backgrounds - user researcher, sales consultant, en-
gineering leader, data analyst, product manager, technical program
manager and marketing manager. Based on self-reporting, eight
were experienced users of the Tableau product, eight had moderate
experience, while eight had limited proficiency. During Part 2 of the
study, each participant was randomly assigned an order of whether
to use Blocks or Tableau first when completing their assigned task.

7.1.2 Procedure and Apparatus
Two of the authors supported each session, one being the facilita-
tor and the other as the notetaker. All the study trials were done
remotely over a shared screen video conference to conform with
social distancing protocol due to COVID-19. All sessions took ap-
proximately 50 minutes and were recorded. We began the study
with the facilitator reading from an instructions script, followed by
sharing a short (under two minutes) tutorial video of the Blocks in-
terface, explaining the possible interactions. Participants were then
provided a URL link to the Blocks prototype where they participated
in Part 1 of the study using the Superstore dataset [24]. During
this part, they were instructed to think aloud, and to tell us when-
ever the system did something unexpected. Halfway through the
study session, participants transitioned to Part 2 of the study. They
were provided instructions to the task to perform with a Tableau
Online [21] workbook pre-populated with the dataset and the Blocks
prototype. We discussed reactions to system behavior throughout
the session and then concluded with a semi-structured interview. Ex-
perimenter script, task instructions, and tutorial video are included
in supplementary material.

7.1.3 Tasks
There were two main parts to the study: Open-ended exploration
and closed-ended tasks.
Part 1: Open-ended exploration This task enabled us to observe
how people would explore and familiarize themselves with the
Blocks interface. Instructions were: “Based on what you saw in
the tutorial video, we would like you to explore this data in the
Blocks prototype. As you work, please let us know what questions
or hypotheses you’re trying to answer as well as any insights you
have while using the interface.”

Part 2: Closed-ended tasks
The closed-ended tasks were intended to provide some consistent ob-
jectives for task comparison across both Tableau and Blocks systems.

6

Online Submission ID: 3

Figure 6: Three study tasks. Task 1: Cross tab with bar charts, Task 2: Table with sorted dimensions, and Task 3: Table with sparklines

Participants completed one of three randomly assigned closed-ended
tasks that involved the creation of a rich table as shown in Figure 6.
Expected visualization result images were shown as visual guidance
along with the instructions to indicate what was generally expected
as part of task completion. Here are the tasks along with their
corresponding instructions that were provided to the participants:

• Task 1: Create a crosstab with barcharts “Using the Titanic
dataset [10], create a crosstab for SUM(NumberSurvived)
by Sex (on Rows) and FamilyAboard (on Columns).
Now, switch to show bar charts for NumberSurvived with
AVG(Age) on color.”

• Task 2: Create a sorted table “Using the Gapminder
dataset [30], create a table that shows SUM(GDP) for each
Region and Country. Now, using the table from the previous
step, sort both Region and Country by SUM(GDP).”

• Task 3: Create a table with sparklines “Using the COVID-19
dataset [8], create a table that shows New Count Confirmed,
Total Count Confirmed, and Total Count Deaths for
each County in California. Now, given the table from the
previous task, add a column with the time attribute Date to
generate sparklines to show the Total Count Deaths over
time.”

7.1.4 Analysis Approach
The primary focus of our work was a qualitative analysis of how
Blocks influenced people’s analytical workflows and comparing
those workflows with that of Tableau. We conducted a thematic anal-
ysis through open-coding of session videos, focusing on strategies
participants took. Given the remote nature of the study setup, we did
not measure the time taken for task completion. We use the notation
PID to refer to the study participants.

8 STUDY FINDINGS

8.1 RQ1: How do users orient and familiarize themselves
with the Blocks paradigm?

To understand how intuitive the Blocks paradigm is for users, we first
examine the strategies participants adopted for sense-making as they
oriented themselves with the workings of the interface during Part 1
of the study. We observed various assumptions, expectations, and
disconnections users faced as they drew from their past experiences
while developing their own mental models when exploring Blocks.

8.1.1 Expectations with drag-and-drop interaction
When asked to explore the Blocks interface, all participants immedi-
ately dragged attribute pills from the data pane onto the canvas; a
paradigm that many of them were familiar with having used Tableau
and PowerBI. P4 remarked while using the Superstore dataset - “I’m
going to drag Category on the canvas and let it go and I see that it
created a Block showing the various category values.” When subse-
quent attributes were dragged on to the canvas, several participants

were initially uncertain what the various drop targets were and how
dropping a pill onto a new Block would affect the other Blocks
currently on the canvas (P15). P4 - “I’m dragging out a new pill
and I see these various drop targets, but do not know the difference
between these.” They eventually discovered that there are multiple
drop targets within each Block for the various encodings as well
as drop targets above, below, to the left and right of each Block.
Participants often dragged Blocks around the canvas to change the
structure of the generated visualization. Some participants (P4, P5,
P6, P9, P11) wanted to modify the current Blocks on the canvas
by dragging pills from one Block to another. When they realized
that the interface currently does not support that functionality, they
deleted the pill in one Block and dragged out the same pill onto
another Block to replicate their intention.

8.1.2 Understanding the concept of a Block
While the Blocks interface has some commonalities with that of
Tableau’s interface around marks and encodings, there are differ-
ences that participants took some time to understand. In particular,
the Blocks interface moves away from the shelves paradigm in
Tableau. It relies on users to set encoding properties within each
Block for each mark type, and the layout is defined by the relative
positions of other Blocks on the canvas. P4 tried to externalize her
mental model of the interface, reconciling against that of Tableau,
“I’m just trying to wrap my head around this. Looks like we are not
constrained here [Blocks] by the rows, columns, marks paradigm
from Tableau. I created rows with Category and I kept trying to
drop Sales on Rows too, and now I notice these little arrows to
drop on x or y.”

Participants were initially unclear what the effects of the x- and y-
axes encodings were on data values within a Block. P2 for example,
set the mark of the Block to ‘bar‘ and expected SUM(Sales), which
was set on text encoding, to be displayed as a bar chart. After being
guided by the experimenter to change the encoding from encoding
to encoding, the semantics of the encoding properties became
clearer. Other participants thought that the way to set encoding
properties in the Block had a direct relationship to what they saw in
the corresponding chart that was generated. P9 said, “This [Blocks]
is much more literal. If I want to affect the Profit bar, I need to
literally put the color on the Profit bar. In Tableau, I think of
coloring the Category by Profit.”

8.1.3 Direct manipulation behavior
The visual drop targets around a Block in the interface piqued partic-
ipants’ curiosity in exploring what would happen when they dragged
out pills to these targets. P8 remarked, “I’d like to get an intuitive
sense as to what happens when I drop it here [pointing below the
Block] or there [pointing to the right].” Participants were able to
understand the relationship between adding Blocks horizontally and
the effects on the generated chart. Placing Blocks below one another
took further exploration to better understand the system behavior.
P11 said, “Going across seems straightforward. I’m trying to figure
out what going down meant” and followed up his inquiry by adding

7

Online Submission ID: 3

Blocks below an existing Block using the various layout options.
P19 adopted a strategy of updating a Block with all the desired
encodings – “I’m building out one definition for the first column
of rows and then do the next.” Participants also found it useful
to be able to modify the existing chart by dragging pills into new
Blocks in the middle of or adjacent to other Blocks, breaking down
attributes into targeted levels of detail immediately. They found the
visual layout of the Blocks to directly inform the structure of the
generated chart – “The LOD of what is to the right is defined by
what is to the left [P2]” and “You build out the viz literally the way
you think about it [P6].” For some participants, the system did not
match their expectations of how a dimension would be broken down
by a measure. P8 said, “I put SUM(Sales) below Category and I
expected Category to be broken down by Sales, but it showed me
a single aggregated bar instead.”

8.2 RQ2: What are the differences in how users create
visualizations across Tableau and Blocks?

8.2.1 Task 1: Create a crosstab with barcharts
All eight participants were able to complete the task in both Blocks
and Tableau. Here, we describe the workflows for both Blocks and
Tableau.
Blocks: Adding text values for NumberSurvived in the table was
relatively easy for all the participants. Participants took some time
to figure out how to get the headers to appear in the expected spots
(P2, P6). Putting Sex to the left of the current Block helped orient
the participants with Block placement to generate the headers. All
participants found it straightforward to then add bar charts by chang-
ing the encoding of NumberSurvived to and adding AVG(Age)
on in the Block. P9 realized that the placement of Blocks is a
literal translation to the placement of headers in the visualization
and was able to add the headers looking at the visual provided as a
reference.
Tableau: For participants fluent with using Tableau, creating the
crosstab was a quick task. Participants first built the rows and
columns in the crosstab and then added a measure. This work-
flow conflicted with the way participants (P12) created a crosstab
in Block, where they started with adding the measure first. P2
said, “In Tableau, the fact that the headers are inside Columns and
Rows than being in some separate place like in Blocks, makes
it easier to generate.” P9 struggled a bit to add barcharts to the
crosstab and mentioned that it is was not very intuitive to place
SUM(NumberSurvived) on columns.
8.2.2 Task 2: Create a sorted table
All eight participants were able to complete the task in Blocks. Two
participants (P8 and P14) needed guidance to complete the task
in Tableau. Here, we describe the workflows for both Blocks and
Tableau.
Blocks: All the participants dragged out the pills in the order of
the columns in the table – Region, Country, and GDP with the
encoding set to . They were able to complete the task quickly
and appreciated the fact that they did not have to write a calculated
field and the LOD was computed automatically based on the relative
positions of the Blocks. P11 said, “That’s cool. The LOD did what I
would’ve expected if I wasn’t used to using Tableau.” P3 commented,
“It seems like we need new Blocks for each partition aggregation.”
It was not immediately intuitive for a few participants as to how
Region and Country needed to be sorted by GDP. Eventually when
they dragged the GDP pill to the Region and Country Blocks, they
noticed a sort icon appear and realized that sorting of a dimension is
performed per Block.
Tableau: A prevalent technique that participants employed was using
a calculated field (P3, P5, P11, P17, P20). Participants first added the
Region and Country dimensions to Rows with the GDP measure
added as text. They then created a calculated field for GDP per
Region at the level of Region and converted it into a discrete pill

in order to add it between two dimensions, Region and Country in
the table. All participants took advantage of Tableau’s contextual
menu by right-clicking on the table’s headers to sort the values in
descending order.
8.2.3 Task 3: Create a table with sparklines
All eight participants were able to complete the task in Blocks. One
participant (P7) was unable to add sparklines to the table in Tableau.
Here, we describe the workflows for both Blocks and Tableau.
Blocks: All participants dragged out County, New Count
Confirmed, Total Count Confirmed, and Total Count
Deaths into separate Blocks that were laid out horizontally.
Generating a column of sparklines in the table was easy for all
participants; they intuitively dragged Date onto the encoding and
Total Count Deaths onto the encoding into a new Block.
Tableau: All participants created the initial table with Tableau’s
Measure Names1 and Measure Values2 fields using County as
the dimension to group the data by. Adding a column containing
sparklines was more challenging for all participants. P4, P10, P16,
and P22 created LOD calculations for each of the three measures
New Count Confirmed, Total Count Confirmed, and Total
Count Deaths, making each calculated field discrete so that the
values could be broken down by County. Line charts were added
to the table using Total Count Deaths over Date. P13 and P19
were unsure how to add sparklines to the existing table; they used
a different approach by creating a separate worksheet containing a
column of line charts and placed it adjacent to the initial table in a
Tableau dashboard.

8.3 Discussion
General feedback from the participants was positive and suggested
that Blocks is a promising paradigm to have more control over the
layout and manipulating the LOD in the structure of the created
visualization. Participants identified certain tasks that could take
longer to do in a tool like Tableau, that would be easier in Blocks.
P12 remarked, “This is ridiculously awesome. I’m not going to lie,
but I have this horrific cross tab bookmarked to do in Tableau. I can
see doing it in Blocks in a minute and a half.” Participants appreci-
ated the flexibility of being able to apply conditional formatting to
various parts of a visualization and not just for the measures. P19
commented, “That’s cool. I’ve never been able to do conditional
color dimensions before.” Having more control over LOD was a
consistent feature that participants found useful. P6 said, “You can
do all these subdivisions that are hard to do in Tableau.” and “Aha!
I can get sparklines so easily.” P2 said, “The fact that I can put all
these encodings in Blocks makes it a heck of a lot more expressive.”
Participants also used the canvas to create different visualizations by
laying out arrangements of Blocks in space, akin to a computational
notebook. The layout helped them compare arrangements with one
another as they reasoned about the effects of visual arrangement on
chart structure. P15 commented, “In Tableau, I am forced to create
a single visualization in each worksheet and then need to assemble
them together into a dashboard. In Blocks, it feels like a canvas
where I can create how many ever things I want.”

There were some limitations that the participants brought up with
the Blocks prototype.
8.3.1 Need for better defaults and previews
The flexibility that the Blocks interface affords also comes with an
inherent downside of a vast set of drop-target options. P10 was
overwhelmed with the choices when he initially started exploring
and remarked, “There are so many arrows to choose from. It would
be helpful if I can get a hint as to where I should drop by pill

1The Measure Names field contains the names of all measures in the
data, collected into a single field with discrete values.

2The Measure Values field contains all the measures in the data, col-
lected into a single field with continuous values.

8

Online Submission ID: 3

based on what attribute I selected.” Others wanted to see chart
recommendations based on the pills they were interested in, similar
to Show Me 3 in Tableau – “Would be nice to get a simple chart like
Show Me by clicking on the attributes [P4].” P6 commented, “It
would be nice if Blocks could just do the right things when I drop
pills onto the [Blocks] canvas.”

Showing previews and feedback in the interface when users drag
pills to various encoding options within a Block or when new Blocks
are created, could better orient the user to the workings of the in-
terface. P12 suggested, “It would be really cool if there are actions
associated with the visual indicators of the drop targets so the in-
terface does not feel too free form.” For example, dragging Age to
a Block could highlight the particular column or cell in the visual-
ization that would be affected by that change. P5 added, “I tend to
experiment around and having previews show up as I drag pills to
drop targets, would be helpful.” Providing reasonable defaults such
as suggesting a encoding for a pill when the Block already has
a encoding, could help guide the user towards useful encoding
choices.

8.3.2 More control over chart customization
Participants wanted additional customization in the interface. P3
said, “It would be nice if I could center the sparklines to the text in
the table. I would also like to add a dot on the maximum values in the
sparklines.” Showing hierarchical data in a table requires Blocks to
be added for each level that can potentially take up significant screen
real-estate for large hierarchies. One workaround suggested was
incorporating a Tableau UI feature to drill down into a hierarchical
field within a Block (P13). The Blocks prototype also currently
lacks templating actions such as adding borders and formatting text
in headers that participants were accustomed to in Tableau (P12).

8.3.3 Support for additional analytical capabilities
Participants wanted more advanced analytical capabilities such as
calculated fields to add additional computations to the visual panes
in the charts. P3 remarked, “I’d like to use a table calculation4 to add
a max sales values or running totals for that block.” Others wanted
the prototype to support additional chart types such as maps (P19,
P20).

9 LONGITUDINAL DIARY STUDIES

One of the limitations of the comparative studies was that partic-
ipants had more experience with using Tableau than with Blocks.
Our previous study focused on how Blocks were used in the short
term during a single lab session. We offered an option to our study
participants to take part in a two-week diary study. The goal of the
diary study was to better understand users’ behavioral patterns over
a longer period of time and how they would use Blocks in their own
exploratory analyses. In total, eight participants (seven male and one
female) took part in the study where they documented their experi-
ences using the Blocks prototype in Google Docs, spending at least
20 minutes a day for two weeks. Similar to the analysis approach in
the previous user study, we conducted a thematic analysis through
open-coding of the diary notes. The actual diaries are included as
part of supplementary material.

9.1 Diary Study Observations
Participants appreciated the ease of use of creating more complex
rich tables. P3 found that this task was easier to do in Blocks than in
Tableau – “Now I want to add more measures in this small multiples,
which is super hard when you want to do this with >2 measures in

3Show Me creates a view based on the fields in the view and any fields
you’ve selected in the data pane.

4A type of calculated field in Tableau that computes based on what
is currently in the visualization and does not consider any measures or
dimensions that are filtered out of the visualization.

Tableau. With Blocks I can easily add as many as I want within the
partition I’m interested in.” P20 commented, “There is something to
be said for how easy this type of thing is. Multi sparklines alongside
totals shown in multiple perspectives.” The extended period of time
to explore the prototype also helped participants to reflect upon their
understanding of how Blocks worked. P9 summarized by saying,
“It seems like the mental model in Blocks is ‘Which number are
you interested in?’ You start with that, then you start breaking it
down dimensionally to the left/right/top/bottom. In Tableau, I go
to the dimensions first and then drop in my measure later. Both of
these make sense, but I would like to get to a point where I can use
my old mental model (dimensions first, then measures) and still be
successful in Blocks. Sometimes I know my dimensionality first –
voting by age/gender/precinct – I want to drop that in and then look
at the measures.”

There were also aspects of the prototype that were limiting to
participants’ exploratory analyses. Suggesting smart defaults in the
Blocks interface continued to be a theme in the participants’ feed-
back. P1 documented, “It would be helpful if Blocks can guide me
towards building useful views. For example, I’m using the Super-
store data source, and when I drag out Category and Profit, it
would be useful to suggest the x-axis, showing horizontal bar charts
that combine the headers and the bars nicely.” P3 had a suggestion
about better encoding defaults – “I first dropped a measure to create
a block, I got a text mark type by default. But it would have been
nice to pick up Circle or something similar to make the size encoding
meaningful”.

Some participants wanted interaction behaviors from Tableau in
the prototype such as double-clicking to get a default chart similar
to Show Me. P2 said, “I wanted to double-click to start adding fields
instead of drag and drop. Especially for the first field when I’m
just exploring the data. I’d also like to able to scroll the chart area
independently of the Blocks”. Participants (P2, P18, P20) tried to
create other chart types such as stacked bar charts, tree maps, and
Sankey charts that Blocks did not support at the time of the study.

10 BEYOND TABLES: OTHER USE CASES & FUTURE WORK

In this paper, we demonstrate how the Blocks formalism can be
used to create complex rich tables. Blocks can be extended to
support other visualizations such as treemaps, bubble charts and
non-rectangular charts with additional layout algorithms. Blocks
does not currently support layering or juxtaposed views that are
prevalent in composite visualizations. Future work could explore
how to support the creation of these visualizations in the Blocks
interface. The ability to define rich tables at multiple LODs could be
applied to support other visualization types such as Sankey diagrams
and composite maps.

Sankey diagrams are a common type of chart created in Tableau,
but the creation is a multi-step process involving partitioning the
view, densifying the data, indexing the values across different visual
dimensions, and several table calculations [6]. With the Blocks
system, an n-level Sankey diagram could be built with 2n-1 Blocks
as shown in Figure 7: the Row Blocks represent the nodes of the
Sankey for Region, Category, and Segment attributes, while the
Link Blocks represent connecting between levels. The Link Blocks
inherit their LOD from the neighboring Blocks and render the curves
between pairs of marks. The links are encoded by color and size
based on SUM(Sales).

The composite map visualization in Figure 8 shows State poly-
gons as parent Blocks and nested sparkline charts containing Sales
by Order Date. The visualization is constructed using an Inline
Block for the map with the sparkline Block as its child.

While Blocks employs direct manipulation for supporting the
creation of expressive charts, there is an opportunity to add scaffolds
through thoughtful defaults and previews to better support users
and their mental models when learning the workings of the new

9

Online Submission ID: 3

Figure 7: A two-level Sankey Diagram

Figure 8: Map with nested sparkline charts

interface. We would like to explore how visual interaction during
chart generation can be better supported by bridging the user’s
intentions with the facilities afforded by the interface. The Blocks
interface shows promise in supporting analytical workflows that are
currently challenging to perform in Tableau, but additional analytical
capabilities such as new chart types, support for reference lines, and
better formatting options need to be incorporated to be truly useful.
Exploring the balance between comprehensive analytical capabilities
yet reducing friction in accomplishing users’ goals, is an important
research direction to pursue.

We evaluated Blocks with users who had varied degrees of famil-
iarity using Tableau. The study findings indicate that their mental
models when exploring the Blocks interface were influenced in part
by their prior experience with the Tableau interface. While Blocks
and Tableau share some common paradigms, they do have differ-
ences. As we continue to evolve Blocks, we would like to further
evaluate how the effects of reality and expectations cross with users
who have no experience using Tableau compared to their counter-
parts who frequently use Tableau. Understanding how users create
new mental models or upgrade existing ones would help inform
ways to support effective onboarding to the Blocks paradigm.

11 CONCLUSION

We present Blocks, a new formalism that builds upon VizQL by
supporting the handling of nesting relationships between attributes
through direct manipulation. By treating each component of the
visualization as an analytical entity, users can set different LOD

and encoding properties through drag-and-drop interactions in the
Blocks interface. An evaluation of the Blocks interface and compar-
ing users’ analytical workflows with Tableau indicates that Blocks
is a useful paradigm for supporting the creation of rich tables with
embedded charts. We further demonstrate how Blocks is generaliz-
able to express more complex nested visualizations. Future research
directions will explore additional analytical and interaction capabili-
ties in the system along with useful scaffolds for supporting users
during visual analysis. We hope that insights learned from our work
can identify interesting research directions to help strike a balance
between expressivity, ease of use, and analytical richness in visual
analysis tools.

REFERENCES

[1] Conditional Formatting v4. https://public.

tableau.com/profile/jonathan.drummey#!/vizhome/

conditionalformattingv4/Introduction, 2012.
[2] KPIs and Floating Dashboards. http://drawingwithnumbers.

artisart.org/kpis-and-floating-dashboards/#more-1041,
2013.

[3] Parallel Coordinates via Pivot and LOD Expressions. https:

//public.tableau.com/profile/jonathan.drummey#!/

vizhome/parallelcoordinatesviapivotandLODexpressions/

dashboard, 2016.
[4] Simple Slope for Slope Graph. https://public.

tableau.com/profile/jonathan.drummey#!/vizhome/

simpleslopeforslopegraph/slope, 2016.
[5] Coloring Column Headers. https://public.

tableau.com/profile/jonathan.drummey#!/vizhome/

coloringcolumnheaders/CustomGT, 2017.
[6] How to build a Sankey diagram in Tableau without any data prep before-

hand. https://www.theinformationlab.co.uk/2018/03/09/
build-sankey-diagram-tableau-without-data-prep-beforehand,
2018.

[7] Trellis Charts and Color Highlighting. https://vizzendata.com/
2019/04/25/trellis-charts-and-color-highlighting/,
2019.

[8] Covid-19 Dataset, 2020. CC-BY Dataset: https://covid19.ca.
gov.

[9] CSS Grid Layout Module Level 1. https://www.w3.org/TR/2020/
CRD-css-grid-1-20201218/, 2020.

[10] Encyclopedia Titanica, 2020. CC-BY Dataset: https://www.
encyclopedia-titanica.org.

[11] How to Create a Population Pyramid Chart in
Tableau. https://www.rigordatasolutions.com/post/

how-to-create-a-population-pyramid-chart-in-tableau,
2020.

[12] How to make Trellis, Tile, Small Multiple
Maps in Tableau. https://playfairdata.com/

how-to-make-trellis-tile-small-multiple-maps-in-tableau/,
2020.

[13] Trellis Charts in Tableau. https://tessellationtech.io/

trellis-chart/, 2020.
[14] Create Level of Detail Expressions in Tableau. https:

//help.tableau.com/current/pro/desktop/en-us/

calculations_calculatedfields_lod_overview.htm, 2021.
[15] Microsoft Q&A. https://powerbi.microsoft.com/en-us/

documentation/powerbi-service-q-and-a/, 2021.
[16] Pandas. https://pandas.pydata.org, 2021.
[17] React: A JavaScript library for building user interfaces. https://

reactjs.org/, 2021.
[18] Tableau Community Forum. https://community.tableau.com,

2021.
[19] The Tableau Data Model. https://help.tableau.com/current/

pro/desktop/en-us/datasource_datamodel.htm, 2021.
[20] Tableau Hack: How to conditionally format individ-

ual rows or columns. https://evolytics.com/blog/

tableau-hack-conditionally-format-individual-rows-columns/,
2021.

10

https://public.tableau.com/profile/jonathan.drummey#!/vizhome/conditionalformattingv4/Introduction
https://public.tableau.com/profile/jonathan.drummey#!/vizhome/conditionalformattingv4/Introduction
https://public.tableau.com/profile/jonathan.drummey#!/vizhome/conditionalformattingv4/Introduction
http://drawingwithnumbers.artisart.org/kpis-and-floating-dashboards/#more-1041
http://drawingwithnumbers.artisart.org/kpis-and-floating-dashboards/#more-1041
https://public.tableau.com/profile/jonathan.drummey#!/vizhome/parallelcoordinatesviapivotandLODexpressions/dashboard
https://public.tableau.com/profile/jonathan.drummey#!/vizhome/parallelcoordinatesviapivotandLODexpressions/dashboard
https://public.tableau.com/profile/jonathan.drummey#!/vizhome/parallelcoordinatesviapivotandLODexpressions/dashboard
https://public.tableau.com/profile/jonathan.drummey#!/vizhome/parallelcoordinatesviapivotandLODexpressions/dashboard
https://public.tableau.com/profile/jonathan.drummey#!/vizhome/simpleslopeforslopegraph/slope
https://public.tableau.com/profile/jonathan.drummey#!/vizhome/simpleslopeforslopegraph/slope
https://public.tableau.com/profile/jonathan.drummey#!/vizhome/simpleslopeforslopegraph/slope
https://public.tableau.com/profile/jonathan.drummey#!/vizhome/coloringcolumnheaders/CustomGT
https://public.tableau.com/profile/jonathan.drummey#!/vizhome/coloringcolumnheaders/CustomGT
https://public.tableau.com/profile/jonathan.drummey#!/vizhome/coloringcolumnheaders/CustomGT
https://www.theinformationlab.co.uk/2018/03/09/build-sankey-diagram-tableau-without-data-prep-beforehand
https://www.theinformationlab.co.uk/2018/03/09/build-sankey-diagram-tableau-without-data-prep-beforehand
https://vizzendata.com/2019/04/25/trellis-charts-and-color-highlighting/
https://vizzendata.com/2019/04/25/trellis-charts-and-color-highlighting/
https://covid19.ca.gov
https://covid19.ca.gov
https://www.w3.org/TR/2020/CRD-css-grid-1-20201218/
https://www.w3.org/TR/2020/CRD-css-grid-1-20201218/
https://www.encyclopedia-titanica.org
https://www.encyclopedia-titanica.org
https://www.rigordatasolutions.com/post/how-to-create-a-population-pyramid-chart-in-tableau
https://www.rigordatasolutions.com/post/how-to-create-a-population-pyramid-chart-in-tableau
https://playfairdata.com/how-to-make-trellis-tile-small-multiple-maps-in-tableau/
https://playfairdata.com/how-to-make-trellis-tile-small-multiple-maps-in-tableau/
https://tessellationtech.io/trellis-chart/
https://tessellationtech.io/trellis-chart/
https://help.tableau.com/current/pro/desktop/en-us/calculations_calculatedfields_lod_overview.htm
https://help.tableau.com/current/pro/desktop/en-us/calculations_calculatedfields_lod_overview.htm
https://help.tableau.com/current/pro/desktop/en-us/calculations_calculatedfields_lod_overview.htm
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-q-and-a/
https://powerbi.microsoft.com/en-us/documentation/powerbi-service-q-and-a/
https://pandas.pydata.org
https://reactjs.org/
https://reactjs.org/
https://community.tableau.com
https://help.tableau.com/current/pro/desktop/en-us/datasource_datamodel.htm
https://help.tableau.com/current/pro/desktop/en-us/datasource_datamodel.htm
https://evolytics.com/blog/tableau-hack-conditionally-format-individual-rows-columns/
https://evolytics.com/blog/tableau-hack-conditionally-format-individual-rows-columns/

Online Submission ID: 3

[21] Tableau Online, 2021. https://online.tableau.com.
[22] Tableau Server Data Sources. https://help.tableau.com/

current/server/en-us/datasource.htm, 2021.
[23] Tableau Software. https://tableau.com, 2021.
[24] Tableau Superstore, 2021. CC-BY Dataset: https://help.

tableau.com/current/guides/get-started-tutorial/

en-us/get-started-tutorial-connect.htm.
[25] Typescript. https://www.typescriptlang.org/, 2021.
[26] C. Ahlberg. Spotfire: An information exploration environment. SIG-

MOD Rec., 25(4):25–29, Dec. 1996. doi: 10.1145/245882.245893
[27] J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps. Esri

Press, Redlands, 2011.
[28] A. Bigelow, S. Drucker, D. Fisher, and M. Meyer. Iterating between

tools to create and edit visualizations. IEEE Transactions on Visual-
ization and Computer Graphics, 23(1):481–490, 2017. doi: 10.1109/
TVCG.2016.2598609

[29] M. Bostock. D3.js - data-driven documents. 2012. http://d3js.
org/.

[30] Gapminder. World development indicators, 2020. CC-BY Dataset:
https://gapminder.org/data.

[31] S. Gratzl, N. Gehlenborg, A. Lex, H. Pfister, and M. Streit. Domino: Ex-
tracting, comparing, and manipulating subsets across multiple tabular
datasets. IEEE Transactions on Visualization and Computer Graph-
ics (InfoVis), 20(12):2023–2032, 2014. doi: 10.1109/TVCG.2014.
2346260

[32] J. Harper and M. Agrawala. Converting basic d3 charts into reusable
style templates. IEEE Transactions on Visualization and Computer
Graphics, PP, 09 2016. doi: 10.1109/TVCG.2017.2659744

[33] N. W. Kim, E. Schweickart, Z. Liu, M. Dontcheva, W. Li, J. Popovic,
and H. Pfister. Data-driven guides: Supporting expressive design
for information graphics. IEEE Transactions on Visualization and
Computer Graphics, 23(1):491–500, 2017. doi: 10.1109/TVCG.2016.
2598620

[34] Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,
B. Kerr, and J. Stasko. Data illustrator: Augmenting vector design
tools with lazy data binding for expressive visualization authoring. p.
1–13, 2018.

[35] A. M. McNutt and R. Chugh. Integrated visualization editing via
parameterized declarative templates. ArXiv, abs/2101.07902, 2021.

[36] D. Ren, B. Lee, and M. Brehmer. Charticulator: Interactive construc-
tion of bespoke chart layouts. IEEE Transactions on Visualization and
Computer Graphics, 25(1):789–799, Jan. 2019. doi: 10.1109/TVCG.
2018.2865158

[37] B. Saket, L. Jiang, C. Perin, and A. Endert. Liger: Combining interac-
tion paradigms for visual analysis, 2019.

[38] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-
Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics, 23(1):341–350, Jan. 2017. doi:
10.1109/TVCG.2016.2599030

[39] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive vega: A
streaming dataflow architecture for declarative interactive visualization.
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2016.

[40] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, anal-
ysis, and visualization of multidimensional relational databases. IEEE
Transactions on Visualization and Computer Graphics, 8(1):52–65,
Jan. 2002. doi: 10.1109/2945.981851

[41] C. Wang, Y. Feng, R. Bodik, A. Cheung, and I. Dillig. Visualization
by example. Proc. ACM Program. Lang., 4(POPL), Dec. 2019. doi: 10
.1145/3371117

[42] H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York, 2016.

[43] L. Wilkinson. The Grammar of Graphics (Statistics and Computing).
Springer-Verlag, Berlin, Heidelberg, 2005.

11

https://online.tableau.com
https://help.tableau.com/current/server/en-us/datasource.htm
https://help.tableau.com/current/server/en-us/datasource.htm
https://tableau.com
https://help.tableau.com/current/guides/get-started-tutorial/en-us/get-started-tutorial-connect.htm
https://help.tableau.com/current/guides/get-started-tutorial/en-us/get-started-tutorial-connect.htm
https://help.tableau.com/current/guides/get-started-tutorial/en-us/get-started-tutorial-connect.htm
https://www.typescriptlang.org/
http://d3js.org/
http://d3js.org/
https://gapminder.org/data

	Introduction
	Contributions

	Related Work
	Declarative specification grammars
	Visual analysis interfaces

	Tableau User Experience
	Design Goals
	The Blocks Formalism
	The Blocks System
	Blocks interface
	Query execution
	Row and Column Assignment
	Output visualization

	Comparative Study of Blocks with Tableau
	Method
	Participants
	Procedure and Apparatus
	Tasks
	Analysis Approach

	Study Findings
	RQ1: How do users orient and familiarize themselves with the Blocks paradigm?
	Expectations with drag-and-drop interaction
	Understanding the concept of a Block
	Direct manipulation behavior

	RQ2: What are the differences in how users create visualizations across Tableau and Blocks?
	Task 1: Create a crosstab with barcharts
	Task 2: Create a sorted table
	Task 3: Create a table with sparklines

	Discussion
	Need for better defaults and previews
	More control over chart customization
	Support for additional analytical capabilities

	Longitudinal Diary Studies
	Diary Study Observations

	Beyond Tables: Other Use Cases & Future Work
	Conclusion

