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Abstract

Collaborative visual perception methods have gained widespread attention in the
autonomous driving community in recent years due to their ability to address sensor
limitation problems. However, the absence of explicit depth information often
makes it difficult for camera-based perception systems, e.g., 3D object detection,
to generate accurate predictions. To alleviate the ambiguity in depth estimation, we
propose RayFusion, a ray-based fusion method for collaborative visual perception.
Using ray occupancy information from collaborators, RayFusion reduces redun-
dancy and false positive predictions along camera rays, enhancing the detection
performance of purely camera-based collaborative perception systems. Compre-
hensive experiments show that our method consistently outperforms existing state-
of-the-art models, substantially advancing the performance of collaborative visual
perception. The code is available at https://github.com/wangsh(0111/RayFusion.

1 Introduction

V2X-based collaborative perception, enabled
by information sharing among agents, has been
proven to be beneficial for enhancing percep-
tion performance in autonomous driving sys-
tems. It effectively alleviates occlusions, miti-
gates depth estimation ambiguity in individual
agent systems, extends perception range, and
improves the performance of camera-based 3D
object detection [35} 15 23} 16} [33) 22, 29]. Ex-
isting mainstream camera-based collaborative
perception methods [6} 133} 122} 29] typically con-
struct a unified and dense bird’s-eye view (BEV)
representation through collaborative communi-
cation (e.g. sharing BEV features or image fea-
tures from individual agents) and then perform
object detection in BEV space. Some query-
based approaches [1, 3] achieve collaboration by
conducting attention-based interactions among
multi-agent query features. However, existing
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Figure 1: Due to the ambiguity in depth estimation,
individual agent typically predicts multiple targets
along the camera ray. However, when an instance
is observed by multiple agents, they can record the
target’s occupancy information along the ray and
cross-validate its true 3D position.

camera-based collaborative perception methods often do not explicitly model the camera imaging pro-
cess of the same object from different agent viewpoints. This limitation hinders accurate cross-view
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validation of an object’s true 3D location, reduces the network’s ability to distinguish hard negative
samples along the camera rays, and ultimately leads to suboptimal perception performance.

In this work, we propose RayFusion, a ray-based fusion method for collaborative visual perception.
As illustrated in Figure [T} individual agent typically tends to predict multiple targets along the camera
rays. However, when an instance is observed by multiple agents, the ray occupancy information from
different perspectives enables precise localization of the instance in 3D space. Here, ray occupancy
information refers to whether certain points along camera rays in 3D space are occupied by an object,
representing the occupancy state along the ray’s trajectory. Based on this insight, our key idea is
to leverage the ray occupancy information of instances to reduce redundancy and false positive
predictions along camera rays, thereby enhancing the network’s ability to distinguish hard negative
samples and accurately localize true positive samples. Specifically, RayFusion consists of three key
designs: i) Spatial-temporal alignment, which achieves spatial alignment of agent information using
a unified coordinate system and improves robustness to communication delays by modeling motion.
ii) Ray occupancy information encoding, obtaining an explicit representation of ray occupancy for
each instance by incorporating depth information into camera rays. This explicitly accounts for the
3D structure of the scene and the potential real 3D positions of instances, which helps improve the
network’s depth estimation capability and consequently enhances its ability to accurately localize
instances. iii) Multi-scale instance feature aggregation, which enables effective multi-agent interaction
by capturing both local and global spatial features in parallel, enhancing robustness to localization
noise and ultimately achieving superior collaborative perception performance.

To evaluate RayFusion, we conduct extensive experiments on a real-world dataset, DAIR-V2X [38]],
and two simulated datasets, V2XSet [35] and OPV2V [36]. The experimental results demonstrate that
RayFusion significantly outperforms previous works in terms of both performance and robustness
across multiple datasets. In summary, our contributions are as follows:

1. We introduce RayFusion, a superior camera-only collaborative perception framework based on
ray occupancy information fusion. This framework enhances the network’s ability to distinguish
hard negative samples and accurately localize true positive samples, thereby improving the
detection performance of collaborative visual perception systems.

2. We design a spatial-temporal alignment module that uses a unified coordinate system to achieve
spatial alignment of agent information while modeling motion to enhance the system’s robustness
to communication delays.

3. We propose a ray occupancy information encoding module that explicitly accounts for the
3D structure of the scene and the potential precise 3D positions of instances. This reduces
redundancy and false positive predictions while simultaneously enhancing the network’s ability
to localize instances along camera rays.

4. We develope a multi-scale instance feature aggregation module, enabling effective interaction
with multi-agent instance features to achieve superior collaborative perception performance. Our
method, RayFusion, achieves state-of-the-art performance on a real-world dataset, DAIR-V2X,
and two simulation datasets, V2XSet and OPV2V, with AP70 improvements of 3.64, 3.47, and
8.21 over the previous state-of-the-art methods, respectively.

2 Related work

2.1 Collaborative perception

Collaborative perception holds significant potential for enhancing the safety of autonomous driving,
with intermediate fusion strategies gaining widespread attention due to their potential to achieve
optimal performance under limited and controlled communication resources. V2VNet [31] leverages
a spatially aware graph neural network to aggregate shared feature representations among multiple
agents. V2X-ViT [35] introduces a heterogeneous multi-agent attention module to enable adaptive
information fusion between heterogeneous agents. Where2comm [5] transmits essential perceptual
information via a sparse spatial confidence map to reduce communication bandwidth consumption.
TransIFF [1] further reduces communication bandwidth consumption by transmitting object queries.
CoAlign [23]] enhances robustness in collaborative perception by correcting pose errors. CoCa3D
[6] leverages multi-view information from collaborators to alleviate the depth estimation ambiguity
of a single agent. However, its potential for further enhancement is limited as it does not explicitly



consider the 3D structure of the scene. IFTR [29] interacts with multi-view images from multiple
agents using a predefined BEV grid, facilitating the advancement of budget-constrained collaborative
systems. HM-ViT [33]] and HEAL [22] explore multi-agent heterogeneous modality collaborative
perception, further expanding the scale of collaboration.

However, existing collaborative visual perception methods often do not fully exploit the 3D structural
information of the scene and the multi-view imaging process of the same object from different agent
perspectives. As a result, they struggle to resolve depth estimation ambiguities, making it difficult for
the network to distinguish true positive and false positive samples along camera rays, which ultimately
leads to suboptimal perception performance. In this paper, we propose RayFusion, a novel framework
that explicitly models the 3D scene structure and the camera imaging process from multiple agent
viewpoints. By performing cross-view validation, RayFusion effectively distinguishes true positives
and false positives, thereby achieving more efficient and practical collaborative perception.

2.2 Camera-based 3D object detection

Generally speaking, there are two research directions on camera-based 3D object detection, i.e.,
dense feature based algorithms and sparse query based algorithms. Dense algorithms represent the
main research direction in camera-based 3D detection, leveraging dense feature vectors for view
transformation, feature fusion, and box prediction. Currently, BEV-based approaches form the core
of dense algorithms. LSS [25] and CaDDN [27] utilize view transformation modules to convert
dense 2D image features into BEV space through forward projection. BEVDet [8, [7] and BEVDepth
[LO] employs a lift-splat operation for view transformation and further encodes BEV features using
a BEV encoder. BEVFormer [11} 37] generates BEV features through deformable attention in a
backward projection manner, circumventing reliance on explicit depth information. FB-BEV [12]
and DualBEV [9] effectively combine the advantages of forward and backward projection methods
to generate higher-quality BEV features, leading to enhanced perception performance.

Compared to dense algorithms, the sparse query-based paradigm have recently gained significant
attention in the community due to their low computational complexity. DETR3D [32] is a represen-
tative sparse approach that utilizes a set of sparse 3D query vectors to sample and fuse multi-view
image features. The PETR series [18 19} 30] introduce 3D position encoding, leveraging global
attention for direct multi-view feature fusion and conducting temporal optimization. SparseBEV [17]
and Sparse4D [14, (15} [16]] enhances DETR3D through multi-point feature sampling and temporal
fusion, thereby improving perception performance.

3 RayFusion

As depicted in Figure [2] RayFusion comprises a single-agent detector, a collaborative message
generation module, a spatial-temporal alignment module, a ray occupancy information encoding
module, a multi-scale instance feature aggregation module, and a detection head. The single-agent
detector and the collaborative message generation module generate instance information from multi-
view input images for communication and collaboration. The spatial-temporal alignment module
performs spatial-temporal alignment of instance information across agents by employing a unified
coordinate system and modeling motion. The ray occupancy information encoding module leverages
multi-view information from multiple agents to mitigate depth estimation ambiguity. The multi-scale
instance feature aggregation module enables effective interaction among instance features through
multi-scale feature fusion. Finally, the updated instance features are fed into the detection head to
predict the target’s category and location information.

3.1 Collaborative message generation

Single-agent camera-only 3D object detector. RayFusion adopts Sparse4D [16] as the single-agent
detector, which consists of an image encoder, a depth prediction head, a decoder, and a detection
head. The image encoder is a standard 2D backbone (ResNet50 [4]) used to extract semantic features
from multi-view images of agent j. The depth prediction head estimates dense depth distribution D;?
for the k-th camera view and is supervised using LiDAR point clouds to accelerate convergence. The
decoder then initializes N learnable object queries Qo € RY*® in 3D space, which interact with
multi-view image features to iteratively update instance representations. Finally, the decoder’s output
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Figure 2: Overall architecture of RayFusion. i) The single-agent detector and the collaborative
message generation module generate instance information for communication and collaboration; ii)
The spatial-temporal alignment module enhances system robustness to latency by modeling motion;
iii) The ray occupancy information encoding module leverages multi-view information to mitigate
depth estimation ambiguity; iv) The multi-scale instance feature aggregation facilitates effective
interaction among instance features, promoting comprehensive and precise collaborative perception.

instance features Z; are processed by a detection head (a multi-layer perceptron, MLP) to predict the
target’s category and anchor predictions A; = [z,y, z, Inw, In h, Inl, sin yam, cos yam, vz, vy, v.].

Collaborative message generation. Given the outputs of the single-agent detector (i.e., D;,Z;, Aj),

the collaborative message shared via communication is M = {Z;, A;,R;}, where R; denotes
the ray occupancy information. Spec1ﬁcally, {o u aj, pJ | Kk =0,1,...,K}, where o;’?

denotes the coordinate of the camera origin, uj represents the direction vector of the camera ray (i.e.,

the ray from the camera origin to the center of the instance anchor), af is the angle between the

camera ray and the optical axis, p;? indicates the occupancy state along the camera ray, and « is the

number of surround-view cameras. To obtain p?, we project the center of the instance anchor onto
. k oy . . . .

the corresponding depth map D, and apply bilinear sampling. This process is formulated as:

pf = Bilinear(D;?, Pf(x, y,2)) € RP (1
where Pk (z,y, z) represents the pixel coordinates of the instance anchor center projected onto the
k-thi 1mage view, D denotes the number of discrete depth bins. During the collaborative perception
process, agent j selects the top M instances with the highest confidence scores and broadcasts their
corresponding instance information for communication and collaboration.

3.2 Ray-driven position encoding

Position encoding is crucial for instance-level fusion, as it introduces location information during
feature fusion to compensate for the limitations of the attention mechanisms [28]]. However, previous
works typically adopt learnable or sinusoidal position encoding, which are inadequate for effectively
modeling the camera imaging process of instances in 3D space. In our proposed RayFusion, the
position encoding consists of two components: vanilla position encoding and ray occupancy informa-
tion encoding. The vanilla position encoding maps the anchor into a high-dimensional space using a
lightweight anchor encoder & (MLP). Meanwhile, the ray occupancy information encoding explicitly
represents the ray occupancy state of the corresponding instance, as detailed in Section[3.2.2]

3.2.1 Spatial-temporal alignment and merging of instances

Spatial-temporal alignment. After receiving the shared message M; from agent j, the first step is
to align instance information with respect to ego. Since different agents represent the 3D space using
distinct coordinate systems, discrepancies naturally arise in the structured information descriptions
(i.e., A;, R;) of the same instance across agents. Therefore, we choose the ego coordinate system as
the unified coordinate system. Moreover, given that instance image features Z; are decoupled from



their structured information, we only need to align the structured information, leaving the instance
image features 7; intact to achieve spatial-temporal alignment across agents. Thus, our key idea is to
handle the structured information of instances by unifying the coordinate systems of all agents and
modeling motion, thereby achieving spatial-temporal alignment among agents, facilitating effective
multi-agent collaboration and enhancing the system’s robustness to communication delays.

In autonomous driving, there are two types of motion: instance motion and ego motion. Instance
motion refers to the movement of other instance in the environment around the ego, while ego motion
refers to the motion of the ego itself within the environment. For simplicity, we model the instance
motion as uniform over short periods. Given the received anchor A;, we first use the instance’s
velocity attribute to warp its position to the current frame, thereby compensating for instance motion:

[J?,Z/,Z}t = [x,y,z]7+[vx,vy,vz]7~ (t_T) 2)
where ¢ and 7 represent the timestamp of the ego and the collaborator, respectively.

Next, we warp the position, velocity, and rotation attributes of collaborator instances to the unified
coordinate system in the current frame, based on the ego pose changes. This compensates for ego
motion and achieves spatial alignment:

[fﬂ, Y, Z] = R(‘r—)t) [xa Y, Z}t + T(‘r—)t) (3)
[vxv Uy, /Uz} = R(T—>t) [vm» Vy, vz]'r + T(T—n‘,) “)
[cos yaw, sin yaw, 0] = R(_,4)[cos yaw, sin yaw, 0] - 5)

where R(_,;) and T, _,;) are the rotation and translation matrices from the collaborator’s frame
to the unified coordinate system in the current frame. When there is no communication delay (i.e.,
t = 1), the above operations reduce to a coordinate transformation from the collaborator’s frame
into the unified coordinate system, achieving spatial alignment of instance anchors. Notably, the
alignment of ray occupancy information differs from that of anchors. Specifically, only the camera
center o and the camera ray direction vector u are transformed into the unified coordinate system,
without performing motion compensation, as this would disrupt the original scene imaging process.

Merging of instances. We concatenate the aligned instance information from collaborators with
all instances extracted by the ego along the sequence dimension, resulting in the merged instance
information M = {Z, A, R}, where Z, A, and R denote the aligned instance features, anchors, and
ray occupancy information, respectively.

3.2.2 Ray occupancy information encoding

Given the aligned ray occupancy information R = {og, ug, ag,pr | kK =0,1,..., k}, we propose
the ray occupancy information encoding module to explicitly incorporate the camera imaging process
of each instance from multiple agent perspectives. Camera imaging is based on light ray projection,
where each ray traveling through 3D space may be blocked by objects or pass through different media.
As shown in Figure [I] a single agent perceives the object from a single viewpoint, typically allowing
it estimate the object’s presence along the direction of the light ray but not its precise depth position
along the ray. When multiple agents observe the same object, each camera records the occupancy
information of the object along the direction of its respective light rays. Since the ray directions from
different cameras vary, cross-verification among multiple agents enables accurate 3D localization
of the object by identifying the intersection of multiple rays. This improves the network’s ability to
distinguish hard negative samples and improves its localization accuracy for true positive samples
(see Figure [). Based on this observation, we propose a ray occupancy information encoding module,
as illustrated in Figure [2] This mechanism consists of three components: ray encoding, occupancy
information encoding, and multi-camera ray occupancy information fusion. For simplicity, we omit
the camera index in the ray encoding and occupancy information encoding.

Ray encoding. A camera ray can be uniquely represented by the camera’s optical center coordinate
o € R3 and the direction vector of the ray u € R3, formulated as r(\) = o + A - u(\ > 0). However,
as noted in [24} 26|, neural networks tend to favor low-frequency function learning. Directly learning
the optical center coordinates and direction vectors to represent the ray would lead to suboptimal
performance in capturing high-frequency variations. Therefore, applying a high-frequency function
to map the input into a high-dimensional space before feeding it into the network can improve data



fitting. Here, we first define a mapping function f, to transform the real number a from R to a
higher-dimensional embedding space R?/+1, defined as follows:

fr(a) = (a,sin(2%7a), cos(2°wa), . . ., sin(2L " ra), cos(2 "1 ma)) € R*F! (6)

The function f,(+) is applied separately to each of the three element in both the camera’s optical
center o and the ray’s direction vector u. The resulting embeddings are concatenated along the
channel dimension and then processed through an MLP to obtain the ray encoding for the given
instance. This process can be formalized as follows:

¥ =MLP(f1(0) : fr(u)) € RY ™
where : denotes concatenation along the channel dimension. In our experiments, we set L = 10 for
fr(o)and L = 4 for fr,(u).

Occupancy information encoding. Encoding only the camera rays corresponding to instances
cannot fully represent the potential distribution of instances along the rays. Therefore, we incorporate
the classification depth distribution predicted by the depth prediction head to reveal the occupancy
state p along the camera ray. First, we project the predefined uniformly distributed discrete depth
bins onto the ray direction as follows:

x =MLP ((do,dy,...,dp_1)/cosa) € RP ®)

where d; represents the real depth corresponding to the i-th depth bin in the depth prediction. Next,
we use an MLP to obtain the single camera ray occupancy encoding, formalized as follows:

4 =MLP(x : p) : v € R )

Multi-camera ray occupancy information fusion. When an agent has x camera inputs, the
same instance receives different ray occupancy encodings from each camera, denoted as T =
(30,91, - - - s Y—1) € R®*2C However, since an instance may only appear in the field of view of a
subset of cameras, we adopt an attention-based network V¥ to fuse the multi-camera ray occupancy
encodings into a unified representation. This process can be formalized as follows:

W = Softma (Mean (Q KT dim 1> + M) e R" (10)
= X —_—, = —
Ve
R = MLP(wodo + w191 + -+ + We—19x—1) € RY (11)

where Q, K € R**¢ are high-dimensional vectors obtained by applying projection matrices to Y,
w; represents the i-th component of . The mask matrix M € R" indicates whether an instance
is in the field of view of a camera, where O indicates the instance is within the camera’s field of
view, and —oo indicates it is outside. Notably, in order to account for communication delays without
disrupting the original scene imaging process, we follow the approach of [35] to incorporate the delay
information by encoding it with sinusoidal embeddings p;_, € R®. In summary, the ray-driven
positional encoding in RayFusion can be formalized as:

PE = ®(A) + R +p;_, € R (12)

3.3 Multi-scale instance feature aggregation

Given the instance features Z and the corresponding ray-driven positional encodings PFE, we first
concatenate them along the channel dimension to form the input I € R(V+LM)X2C for the multi-scale
instance feature aggregation module, where L denotes the number of collaborators. After fusing the
ray occupancy information, the instance features explicitly incorporate the 3D structure of the scene
and the potential actual 3D position of the instance. Through effective interaction of instance features,
the ambiguity in instance depth estimation can be significantly alleviated, reducing redundancy and
erroneous detections along the camera rays. As shown in Figure [2] to achieve efficient interaction
between multi-agent instance features, we propose pyramid window self-attention, which enhances
the robustness of the system against localization noise by enabling multi-scale interactions between
multi-agent instance features, thereby capturing both local and global spatial features in parallel. The
process of b-th branch is formulated as follows:

T

Vd

fb = Softmax (Q + g(D(m-) < T'b)) .V e RWV+LM)xC (13)



Table 1: 3D detection performance comparison on the DAIR-V2X [38]], V2XSet [35], and OPV2V
[36] datasets under perfect settings. CoSparse4D aligns multi-agent instances (see Section [3.2.1))
and applies a detection head (MLP) to produce the perception results. T indicates using Sparse4D
[L6] as the single-agent detector.

Method DAIR-V2X V2XSet OopPV2V
AP50 AP70 | AP50 AP70 | AP50 AP70
No Collaboration 10.74  1.64 | 3037 13.79 | 45.94 25.56
Late Fusion 18.57 5.16 | 51.41 2559 | 77.62 51.92

V2VNet (Eccv’20) 1526 297 | 59.54 39.00 | 79.06 57.59
V2X-ViT (Eccv22) 1584 3.07 | 59.14 41.23 | 7841 58.38
Where2comm (NeurlPs'22) | 16.03  3.67 | 61.69 4396 | 77.14 58.60
CoBEVT (corL22) 1592 3.18 | 58.84 40.81 | 80.26 59.34
CoAlign (icra23) 16.55 3.23 | 6479 39.64 | 80.21 60.46
IFTR (Eccv:24) 20.51 790 | 71.73 49.67 | 85.56 66.04
CoSparse4D T (Baseline) 23.38 9.17 | 65.69 4933 | 79.38 67.43
RayFusion (0urs) 26.29 11.54 | 70.32 53.14 | 86.59 74.25

where Q, K,V € RWHEM)XC are obtained by applying an MLP to 1, Dy, ;) represents the distance
between the positional attributes of the i-th query instance and the j-th key instance, and r;, defines the
receptive field threshold for the b-th branch. The indicator function g(-) ensures that only instances
within the defined receptive field contribute to the attention computation. Next, the results from
multiple branches are combined through a weighted summation:

W = Softmax(MLP(Io : I : ---: Ig_1)) € RP (14)

I =1oly+tndy + - +top_1lp_ € RNHEM)XC (15)

where W, represents the b-th component of W, and B denotes the number of parallel branches.
The pyramid window self-attention significantly improves the robustness of instance interactions
(see Figure [3): in branches with a smaller 7, attention is confined to a smaller receptive field,
preserving local contextual information; while in branches with a larger r, attention operates over a
larger receptive field, enabling the model to capture distant visual cues and compensate for larger
localization errors. Finally, the output features of pyramid window self-attention module I is followed
by a feed forward network (FFN) and an Add&Norm module to get the output I of multi-scale
instance feature aggregation module.

3.4 Detection head

RayFusion employs an MLP-based detection head, taking instance features I € R(NTEM)XC gq

input, and producing detection results © € RIV+HEM)X1L e utilize the ¢ loss for regression and the
focal loss [13]] for classification. Additionally, we incorporate a cross-entropy loss to leverage LIDAR
point clouds for supervising the depth estimation task, which accelerates network convergence.

4 Experiments

4.1 Experimental setup

Datasets. We evaluate our proposed method on three multi-agent datasets: DAIR-V2X [38], V2XSet
[35], and OPV2V [36]. DAIR-V2X [38] is an open-source real-world collaborative perception dataset
with images, containing 18,000 data samples with an image resolution of 1080 x 1920. V2XSet [335]
and OPV2V [36] are simulated datasets supporting collaborative perception with 2 to 5 connected
agents, co-simulated by Carla [2]] and OpenCDA [34], with an image resolution of 600 x 800.

Implementation details. We implement RayFusion following Section [3|and train it for 72 epochs
using the AdamW [20] optimizer. The initial learning rate is set to 1 x 10~* and follows a cosine
annealing decay schedule. The instance feature dimension C'is set to 256, and the number of discrete
depth bins D is set to 80, while the number of ego instances /N and shared instances ) are set to
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600 and 200, respectively. We utilize three pyramid windows with receptive field thresholds of 4m,
8m, and 16m. The perception range is x, y € [—51.2m, 51.2m]|, and the communication range is set
to 70m. For BEV-based collaborative methods, we follow the implementation in IFTR [29] which
adopts BEVFormer [11] as the single-agent detector. We evaluate detection performance using the
Average Precision (AP) metric with Intersection over Union (IoU) thresholds of 0.50 and 0.70.

4.2 Main results

Benchmark comparison. Table [T|compares the proposed RayFusion with previous collaborative
methods. We observe that the proposed RayFusion outperforms previous methods on both real-world
and simulated datasets, validating the superiority of our model and its robustness to various real-
world noises. Specifically, RayFusion improves upon the previous state-of-the-art method, IFTR,
by 3.64, 3.47, and 8.21 in AP70 on the DAIR-V2X, V2XSet, and OPV2V datasets, respectively.
Compared to previous collaborative methods, our method alleviates the ambiguity in instance depth
estimation by leveraging multi-view information, enhancing the network’s discriminative ability
for hard negative samples along the camera rays and improving localization accuracy for true
positive samples. Additionally, multi-scale instance feature aggregation facilitates effective instance
interaction, promoting comprehensive and precise collaborative perception.

Robustness to localization noise. We follow the localization noise settings in [35} |5} 23] [29]
(Gaussian noise with a mean of Om and a variance ranging from Om to 0.6m) and validate RayFusion’s
robustness to realistic localization noise in Figure [3](a). We observe that as localization errors increase,
the performance of all intermediate collaborative methods deteriorates due to the mismatch in spatial
feature information. However, RayFusion significantly outperforms previous SOTAs in terms of the
performance degradation slope. This is because the pyramid window self-attention in the multi-scale
instance feature aggregation module captures local and global spatial features in parallel, enhancing
the system’s robustness to localization noise.

Robustness to communication delays. In autonomous driving, both instance motion and ego
motion can lead to feature fusion errors under communication delays, impairing collaborative
perception performance. Figure [3|(b) analyzes the detection performance of RayFusion under
varying communication delays (ranging from O to 500ms). Notably, as communication delays
increase, all other intermediate fusion methods inevitably suffer significant performance degradation
due to incorrect feature matching. However, RayFusion significantly outperforms previous SOTAs
under communication latency and even surpasses some fusion methods without latency (such as
V2VNet and CoBEVT) under severe latency conditions (500ms). This robustness is achieved by
modeling motion to handle the structured information of instances, achieving temporal alignment of
instance features across agents and enhancing the system’s resilience to communication delays.

Precision-Recall Analysis. We assess the ability of RayFusion to reduce false positive predictions
along the camera rays and improve localization accuracy for true positive samples by plotting
precision-recall curves. Figure []shows that the ray occupancy information encoding module
consistently improves precision across all recall levels, and enhances recall across all precision levels



under an IoU threshold of 0.70. These results validate the effectiveness of RayFusion in reducing
false positive predictions and improving the localization accuracy for true positive samples.

4.3 Ablation studies

Effectiveness of different modules in RayFu- Table 2: Ablation study results on the OPV2V and
sion. Here we investigate the effectiveness DAIR-V2X datasets. STA, MIFA, ROE represent:
of various components in RayFusion, with the  j) spatial-temporal alignment, ii) multi-scale in-
base model being simply merging multi-agent  stance feature aggregation, and iii) ray occupancy
instance features and applying an MLP to pro- information encoding, respectively. IFA replaces
duce 3D detection results. As shown in Table 2} the pyramid window self-attention in MIFA with
i) STA achieves an AP70 improvement of 28.99  yanilla multi-head self-attention.

on OPV2V and 4.19 on DAIR-V2X by aligning SPVT—TDARVIX
the structured instance information from multi- -

ple agents, thereby enabling effective instance STA MIFA ROE TFA| Apso AP70| P50 AP7O
feature fusion; ii) MIFA achieves improvements %gg ggjg géé g??

of 4.61 and 1.03 in AP70 on OPV2V and DAIR- 85.40 72.04|24.86 1020
V2X, respectively, by fusing multi-scale infor- v 86.59 74.25126.29 11.54
mation and enhancing the semantic understand- v v |86.40 73.04(26.31 10.41
ing of instance features; iii) ROE further con-

tributes performance gains of 2.21 and 1.34 in

AP70 on OPV2V and DAIR-V2X, respectively. This is achieved by leveraging multi-view informa-
tion from multiple agents to cross-verify the true 3D positions of instances, which mitigates ambiguity
in depth estimation and strengthens the model’s ability to localize objects along camera rays. Ad-
ditionally, replacing the pyramid window self-attention (PWA) in MIFA with a vanilla multi-head
self-attention mechanism leads to suboptimal results, as the pyramid window design in PWA enables
parallel capture of both local and global spatial features, enriching feature representations with more
comprehensive contextual information.

SENENEN
NN

Analysis of different components in ROE. In  Table 3: Analysis of different components in ROE
Table E], we analyze the effectiveness of each  op the OPV2V and DAIR-V2X. RE, OE represent:
component in ROE. The results indicate that: i) ) ray encoding and ii) occupancy information en-
the ray encoding based on optical center coordi- coding, respectively. WH represents the removal

nates and direction vectors is crucial for the ef-  of high-dimensional mapping in ray encoding.
fectiveness of ROE, as it explicitly represents the

imaging path of instances and provides potential RE OE wH| OPV2V | DAIR-V2X
true position information in 3D space; ii) oc- Qspig ;“;(7)2 ?jgg ?(%8
cupancy information encoding further enhances : : : ‘

v 86.43 72.87|25.52 10.63
the performance of ROE, as the occupancy states v v 86.59 74.25|26.29 11.54
along the ray reflect the possible distribution of v v 18618 73.72125.87 11.02

instances, offering a stronger prior for multi-
view cross-validation of instance positions; iii)
removing the high-dimensional mapping in ray encoding, i.e., encoding optical center coordinates and
direction vectors solely through an MLP leads to performance degradation, as the high-dimensional
mapping projects the high-frequency information of camera rays into a higher-dimensional space,
thereby reducing the learning complexity of the network.

4.4 Qualitative evaluation

We conduct a qualitative analysis of the RayFusion’s performance using representative samples from
the V2XSet dataset, as shown in Figure [5] Overall, RayFusion produces more precise results that
closely align with the ground truth, while reducing redundant predictions along the camera rays.
This improvement can be attributed to: i) ROE, which effectively mitigates ambiguity in instance
depth estimation, thereby enhancing localization accuracy along the camera rays; and ii) the pyramid
window design in multi-scale instance feature aggregation module, which captures both local and
global spatial features in parallel, leading to a more robust semantic representation of instance features.
Please refer to the supplementary materials for video visualization results on the DAIR-V2X, V2XSet,
and OPV2V datasets.



(a) No Collaboration (b) IFTR (c) RayFusion

Figure 5: Visualization of predictions from (a) No Collaboration, (b) IFTR and (c) RayFusion on
the V2XSet test set. Green and red 3D bounding boxes represent the ground truth and prediction,
respectively.

5 Conclusion

RayFusion is a ray-based fusion method designed to enhance the detection performance of camera-
only collaborative perception systems by leveraging ray occupancy information from collaborators.
It consists of three key components: spatial-temporal alignment module, ray occupancy information
encoding module, and multi-scale instance feature aggregation module. The spatial-temporal align-
ment module achieve spatial-temporal alignment across agents, improving the system’s robustness to
communication delays. The ray occupancy information encoding module mitigates depth estimation
ambiguities through multi-view information, enhancing the network’s ability to distinguish hard
negative samples along camera rays and improving the localization of true positive samples. The
multi-scale instance feature aggregation module captures both local and global spatial features in par-
allel using pyramid windows, enabling effective instance feature interaction. Extensive experiments
demonstrate the superiority of RayFusion and the effectiveness of its key components.

Limitation and future work

In this work, we utilize the pose information of each agent to compute transformation matrices for
effective multi-agent information interaction. In future work, we will explore collaborative perception
under unknown poses to better protect the privacy of participating agents. Additionally, We plan to
improve the system’s robustness to communication delays by developing more effective occupancy
representations — for instance, predicting future occupancy representations by propagating historical
information through feature flow.
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A The efficiency of RayFusion

In RayFusion, we employ Sparse4D as the Table 4: 3D detection performance and speed com-
single-agent detector, which projects sparse 3D parison on the OPV2V dataset, reporting AP met-
reference points onto the image plane for feature  rics by default under perfect settings. The image
sampling. This design eliminates the need for input size for both methods is set to 640 x 480,
complex view transformations and dense feature  and FPS is measured on a single GeForce RTX

extraction, significantly reducing computational 3090 using the PyTorch fp32 backend.
overhead. Table [4]compares RayFusion with

the previous state-of-the-art method IFTR on NIII?ThROd g‘spgg 26133)2 51;2
the OPV2V dataset in terms of detection per- ‘ ‘ :
'on p RayFusion | 86.59 74.25 | 8.79

formance and inference speed. IFTR builds a
dense and unified BEV representation through
communication and then performs object detec-
tion in the BEV space using BEVFormer as the single-agent detector. As shown in the Table [}
RayFusion achieves superior performance with faster inference speed. These gains are attributed to
the adoption of a sparse-paradigm single-agent detector and a streamlined multi-agent information
fusion strategy. We advocate for the broader use of sparse-paradigms detector to achieve a better
balance between performance and efficiency, facilitating the deployment of collaborative perception
systems on resource-constrained edge devices.

B Trade-off between detection performance and communication cost

We evaluate communication cost using the num-  Table 5: The trade-off between detection perfor-
ber of bytes in the shared messages. Under the mance and communication cost of RayFusion on
OPV2V experimental settings in Table[T} a sin-  the OPV2V datasets. M is the number of shared
gle agent communication cost per frame for Ray-  instances among collaborators.

Fusion, IFTR, and late fusion are 276.6 KB, 18.8
MB, and 2.7 KB, respectively. Other intermedi- M |APS0 AP70| Bytes
ate fusion methods incur a communication cost 200 | 86.59 74.25 | 276.6KB

of approximately 64.0 MB per frame. Benefiting 15000 222(7) ;gzlg; 16398'1315;3

from interpretable instance-level collaboration, 25 (86.34 73.74| 34.6KB
RayFusion can adapt to different bandwidth con- 10 184.66 72.00| 13.8KB
ditions by adjusting the number of shared in- 5 |77.73 63.87| 6.9KB

stances M/ among collaborators. As shown in [3
we explore the trade-off between detection per-
formance and communication bandwidth of RayFusion on the OPV2V datasets. The results indicate
that RayFusion achieves excellent trade-off between detection performance and communication cost.
When the number of shared instances among collaborators M is set to 5, it requires only 6.9 KB of
communication data to enable collaborative perception.

C The reasonableness of modeling instance motion as uniform

Following the default settings in Section |4|(M = 200), each agent transmits 276.6 KB of information
per frame. A commonly used V2X communication technology, IEEE 802.11P-based DSRC, provides
a transmission bandwidth of 27 Mbps [21]. Assuming five agents are collaborating, each agent
is allocated an average bandwidth of 5.4 Mbps, resulting in a transmission delay of 400.2 ms for
the data. As shown in Figure [3] the performance degradation of RayFusion under this latency is
not significant, which demonstrates the feasibility of modeling instance motion as uniform motion.
Moreover, the transmission delay can be reduced by decreasing the number of shared instances (e.g.,
20.0 ms when transmitting 10 instances per frame, i.e., M = 10), making it more feasible to model
instance motion as uniform motion under such settings.

D Occupancy representation without additional supervision

The purpose of the ray occupancy information encoding module is to alleviate the ambiguity in
instance-level depth estimation, thereby enhancing the network’s ability to distinguish hard nega-
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tive samples along the camera ray direction. A natural form of supervision is instance-level depth
supervision, which can be applied to guide the ray occupancy information encoding module. Specifi-
cally, after incorporating the ray occupancy information into the instance features, the output I of
multi-scale instance feature aggregation module can be passed through a depth estimation head to
predict the depth distribution of the instance, which can then be supervised for instances that are
successfully matched with ground truth targets. However, when using a regression-based loss (e.g., £1
loss) for depth supervision, this supervision becomes essentially a sub-task of the 3D object detection
supervision task. Therefore, we do not apply explicit additional supervision for the occupancy
representation.

E Challenges in real-world datasets

As shown in Table [I] the performance on the real-world DAIR-V2X dataset is significantly lower
than on the simulated V2XSet and OPV2V datasets. This performance gap is primarily attributed
to three factors: i) DAIR-V2X includes at most two collaborative agents, whereas V2XSet and
OPV2V support up to five; ii) DAIR-V2X provides only front-view camera images, while V2XSet
and OPV2YV offer four surround-view camera inputs; and iii) real-world scenes are generally more
complex than simulated ones, making depth estimation substantially more challenging.

F Broader impacts

e The positive impact of this work is that RayFusion leverages V2X communication technology
to share instance information, alleviating the ambiguity in depth estimation, reducing
redundancy and false positive predictions along camera rays. This improves the perceptual
capabilities of budget-constrained vehicles regarding their surrounding environment, thereby
reducing the occurrence of traffic accidents.

e In addition, RayFusion achieves spatial alignment of multi-agent instance information
through a unified coordinate system and improves robustness to communication delays by
modeling motion. Its multi-scale feature interaction design further enhances resilience to
localization noise.

e RayFusion also reduces computational cost by adopting a sparse-paradigms single-agent
detector and reduces communication overhead through instance-level information sharing,
making it well-suited for real-world deployment.

e Moreover, RayFusion is inherently scalable, supporting the integration of additional agents
for collaboration without requiring retraining.

e In summary, this work promotes the practical application of camera-only collaborative
perception systems in autonomous driving.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Abstract and Section[I]accurately reflect the paper’s contributions and scope.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section[3ldiscuss the limitations of this work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section []fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Our code will be open-sourced to the public after the paper is officially
published.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section []specify all the training and test details.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

18


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the execution time and computing device of the proposed method
in Section [Al

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work conforms to the NeurIPS Code of Ethics in all respects.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts in Section [F]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all external assets used in the paper (such as code, data, and models) are
properly credited, with their licenses and terms of use clearly stated and strictly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release the code and related documentation upon the official publica-
tion of the paper.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is used only for writing, editing, or formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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