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Abstract
Diagnosis based on Electronic Health Records001
(EHRs) often struggles with data scarcity and002
privacy concerns. To address these issues, we003
introduce RareSyn, an innovative data synthesis004
approach designed to augment and de-identify005
EHRs, with a focus on rare diseases. The core006
insight of RareSyn involves using seed EHRs007
of rare diseases to recall similar records from008
both common and rare diseases, and then lever-009
aging Large Language Models to substitute the010
key medical information (e.g., symptoms or011
examination details) in these records with in-012
formation from the knowledge graph, thereby013
generating new EHRs. We first train a trans-014
former Encoder with contrastive learning to015
integrate various types of medical knowledge.016
Then, RareSyn engages in iterative processes017
of recalling similar EHRs, structuring EHRs,018
revising EHRs, and generating new EHRs until019
the produced EHRs achieve extensive cover-020
age of the rare disease knowledge. We assess021
RareSyn based on its utility for diagnosis mod-022
eling, the diversity of medical knowledge it023
incorporates, and the privacy of the synthesized024
EHRs. Extensive experiments demonstrate its025
effectiveness in improving disease diagnosis,026
enhancing diversity, and maintaining privacy.027

1 Introduction028

Recent advances in artificial intelligence, partic-029

ularly in Large Language Models (LLMs), have030

demonstrated significant promise in the clinical031

diagnosis of diseases based on Electronic Health032

Records (EHRs) (Poongodi et al., 2021; Nelson033

et al., 2022; Zhao et al., 2024b, 2025). However,034

concerns have been raised regarding their effec-035

tiveness when dealing with imbalanced training036

data. The abundance of data for common diseases037

contrasts sharply with the scarcity of data for rare038

diseases, potentially hindering the model’s ability039

to accurately diagnose rare conditions (Chen et al.,040

2024; Zhao et al., 2024a). Additionally, data se-041

curity and privacy issues significantly hinder data042

sharing and the development of AI-assisted diagno- 043

sis (Scheibner et al., 2021; Chen et al., 2021). Se- 044

cure and privacy-preserving data sharing is crucial, 045

especially for rare diseases where data is limited 046

(Hernandez et al., 2022). To address the data defi- 047

ciency problem for rare diseases, researchers have 048

proposed various methods, including knowledge- 049

guided few-shot learning (Zelin et al., 2024; Zhao 050

et al., 2024b), federated learning (Pati et al., 2022), 051

and LLM-based retrieval-augmented generation 052

(Shyr et al., 2023; Chen et al., 2024). However, 053

none of these approaches produces new rare dis- 054

ease data to overcome data scarcity, balance the 055

training dataset, or facilitate secure data sharing. 056

Data synthesis, describing a paradigm where 057

generating fully synthetic data serves as an alter- 058

native to real data (Gonzales et al., 2023), can po- 059

tentially address data scarcity and privacy issues. 060

However, the process of synthesizing EHRs that are 061

medical fact accurate, representative of rare disease 062

knowledge, de-identified, and capable of enhanc- 063

ing disease diagnosis performance, presents several 064

challenges: 1) The scarcity of real examples makes 065

accurately capturing the full statistical properties 066

of the data difficult; 2) Any deviation from factual 067

information about rare diseases during synthesis 068

can negatively impact the accuracy of diagnostic 069

models; 3) Ensuring the de-identification of real 070

EHRs during synthesis is a significant task. 071

To combat data scarcity and enrich rare disease 072

samples, we incorporate knowledge graphs (KG) 073

for disease insights and utilize common disease 074

EHRs for varied templates. To ensure the medical 075

accuracy of synthesized EHRs, we use imap (Wang 076

et al., 2024), a data structure that parses plain text 077

into term-value pairs, to highlight key informa- 078

tion during synthesis. To de-identify and ensure 079

the utility of the synthesized EHRs for diagnosis, 080

we propose a KG entity weighting method. This 081

method emphasizes the differences between the 082

rare disease KG and EHR templates of common dis- 083
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eases, ensuring that the newly generated EHRs are084

rare disease-aware and untraceable to real samples.085

With that in mind, we propose RareSyn, a medical086

knowledge-enhanced EHR synthesis framework087

for rare disease diagnosis. It seeds with a few rare088

disease EHRs, recalls similar EHRs from both rare089

and common diseases as templates, and samples090

entities from rare disease KG to reshape these tem-091

plates, thereby generating new rare disease EHRs.092

Initially, we train a transformer Encoder with093

diverse medical knowledge in a unified contrastive094

learning task. Using some seed rare disease EHRs,095

we then perform a layered recall process that first096

identifies the most related diseases and subse-097

quently recalls the top similar EHRs from these098

diseases. Following this, we structure the recalled099

EHRs using imap to emphasize key information100

such as symptoms, examinations, and treatments.101

We then replace the content of the recalled imap102

with entities sampled from the rare disease KG,103

giving high weight to the differences between the104

recalled imap and the related entities of the KG.105

Finally, we employ LLMs to rephrase the sampled106

imaps, thereby generating new EHRs for rare dis-107

eases. We repeatedly execute the above process108

until the generated rare disease imaps achieve ex-109

tensive coverage of the KG.110

To assess whether the synthesized EHRs are fac-111

tually correct, representative of the target rare dis-112

ease, and de-identified, we evaluate RareSyn from113

three dimensions: 1) Validity and Utility, examin-114

ing if the synthetic EHRs maintain medical accu-115

racy and improve rare disease diagnosis; 2) Diver-116

sity, determining if the synthetic EHRs capture the117

broad statistical properties of the rare disease; 3)118

Privacy, ensuring that the synthetic data effectively119

protect the real EHRs from potential identification.120

Our contributions can be outlined as follows:121

• To address data scarcity and privacy issues for122

rare diseases, we propose a new framework,123

RareSyn, where LLMs and Medical Knowl-124

edge Graph work together in an iterative pro-125

cess to synthesize new EHRs for rare diseases.126

• To assess synthesized EHRs, we compared127

them with original data and observed superb128

results in diagnosis modeling utility, knowl-129

edge diversity, and content authenticity.130

• To facilitate further research, we released a131

synthesized rare disease EHR dataset com-132

prising 1,455 records covering 23 rare dis-133

eases, based on 397 real clinical EHRs and 134

100 EHRs from medical exams 1. 135

2 Related Work 136

Data synthesis typically involves the generation of 137

data through models or algorithms rather than di- 138

rect human input (Bauer et al., 2024; Long et al., 139

2024). As reviewed by (Goyal and Mahmoud, 140

2024), a variety of machine learning methods have 141

been employed for data synthesis, including GAN- 142

based methods (Xu et al., 2019), VAE-based meth- 143

ods (Kingma, 2013), and large language model 144

based methods (Radford et al., 2019; Brown et al., 145

2020; Meng et al., 2022; Ge et al., 2024). 146

In the healthcare domain, Buczak et al. (2010) 147

utilized a data-driven approach to produce synthetic 148

EHRs for exploring questions related to disease out- 149

breaks. (Park et al., 2013) proposed a perturbed 150

Gibbs sampler to generate privacy-preserving pa- 151

tient data. Choi et al. (2017) developed medGAN 152

for EHR synthesis, while Han et al. (2024) in- 153

troduced a discrete diffusion model for generat- 154

ing tabular EHR data in both unconditional and 155

conditional scenarios. Additionally, Theodorou 156

et al. (2023) presented a hierarchical autoregressive 157

language model for longitudinal EHR generation. 158

Kumichev et al. (2024) developed an LLM-based 159

framework for EHR generation. 160

Despite these advancements, existing methods 161

do not focus on rare disease data synthesis and 162

struggle to generate realistic, diverse, valid, and 163

de-identified EHR data for rare diseases. 164

3 Methods 165

RareSyn’s core strength lies in its use of LLMs 166

to generate new EHRs for rare diseases, guided 167

by common disease EHR templates and insights 168

from a rare disease medical KG. As illustrated 169

in Figure 1, RareSyn begins with a transformer- 170

based Encoder trained with contrastive learning 171

to integrate various medical knowledge into a uni- 172

fied task. Following Zhao et al. (2024b), we uti- 173

lize disease-related triples from the medical KG, 174

multiple-choice medical license exam data, and 175

EHR data during training. 176

We then continue the following process for EHR 177

synthesizing: 1) Layered Recalling of Similar 178

EHRs. Starting with a seed EHR h for a rare dis- 179

ease d, we identify the top K1 related diseases and 180

retrieve the top K2 similar EHRs (Hr) for these 181

1The dataset will be released at publication.
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Figure 1: Overview of RareSyn. Initially, we train a transformer Encoder with contrastive learning to integrate
various types of medical knowledge. The process then involves rounds of similar EHRs recalling, EHR structuring
by imap, imap replacement, and new EHRs generation to complete the EHR synthesis for rare diseases. A detailed
case study and synthetic EHR example are presented in Appendix E and F.

diseases using the Encoder model; 2) EHR Struc-182

turing. For each EHR hr in Hr, we extract key183

information from the hr using the imap, resulting184

in imaphr . Then we mask the values of hr to create185

an EHR template tr; 3) imap Replacement. An186

algorithm is designed to weight the entities in the187

KG of d. We replace the values in imaphr by sam-188

pling from these weighted entities using a LLM,189

creating a new imap for d, denoted as imapd; and190

4) EHR Generation. The imapd is rephrased using191

LLMs, guided by the EHR template tr, to produce192

readable EHRs. These steps are repeated until the193

generated rare disease imaps achieve comprehen-194

sive coverage of the KG for d.195

3.1 Layered Recalling of Similar EHRs196

RareSyn leverages disease EHR templates and a197

rare disease knowledge graph to ensure both struc-198

tural and contextual validation in the synthesized199

records. Relying solely on rare disease EHRs as200

templates can result in identical records to the orig-201

inal ones, potentially leading to real EHR leakage202

and posing privacy issues. To enhance the diver-203

sity of synthesized data in a de-identified form, we204

incorporate common disease EHRs into the pro-205

cess. Starting with a real rare disease EHR h as206

a seed, we recall similar EHRs from both com-207

mon and rare diseases. However, directly recalling208

EHRs can sometimes introduce records that are en-209

tirely different from the target diseases, potentially210

misleading the training process for disease diag-211

nosis. For instance, in our preliminary validation212

experiments, directly recalling EHRs for “Renal 213

Tuberculosis” resulted in EHRs belonging to AIDS, 214

which has very different clinical notes from “Renal 215

Tuberculosis.” Using such templates could nega- 216

tively impact the diagnosis modeling for “Renal 217

Tuberculosis.” Moreover, template EHRs play a 218

crucial role in the imap replacement by helping to 219

weight the KG entities, thereby ensuring the utility 220

of the diagnosis task (see section 3.2). However, us- 221

ing template EHRs from too different diseases may 222

reduce their utility for the target disease diagnosis. 223

To address this, we apply a layered recalling 224

mechanism to retrieve EHRs from similar diseases. 225

Specifically, we use a pre-trained Encoder to en- 226

code both the seed EHR h and each disease candi- 227

date. As shown in lines 4-8 in Algorithm 1, each 228

disease candidate’s representation is compared with 229

the seed EHR’s representation, and the diseases 230

with the top K1 largest cosine similarities are se- 231

lected as the recalled diseases, denoted as Dr. We 232

next filter the EHRs belonging to Dr to narrow 233

down the candidate set. We then use the Encoder 234

to obtain representations for these EHRs. Each 235

EHR’s representation is compared with that of the 236

seed EHR, and the top K2 EHRs with the high- 237

est cosine similarities are selected as the recalled 238

EHRs, denoted as Hr. 239

3.2 EHR Structuring 240

In this phrase, to ensure RareSyn produces factu- 241

ally correct EHRs, we extract key information on 242

symptoms, examination, and treatment, and parse 243
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the EHRs using imap, a data structure that converts244

plain text into term-value pairs. For example, con-245

sider an EHR for “Renal Tuberculosis” that states:246

“Male, 56, with a 2-week history of low-grade fever247

and a cough with sputum for 1 month. Chest X-ray248

reveals irregular patchy shadows and thin-walled249

cavities in the right lower lobe.” The imaphr for this250

case is extracted as the following term-value pairs:251

(Symptoms: 2-week low-grade fever), (Symptoms:252

Cough with sputum for 1 month), and (Examina-253

tion: Irregular patchy shadows and thin-walled cav-254

ities in the right lower lobe).255

Specifically, for a recalled EHR hr, we parse256

it using imap, denoted as imaphr , focusing on the257

three dimensions mentioned. We then mask the cor-258

responding term’s values within imaphr , creating259

an EHR template tr (as illustrated in lines 10-11 of260

Algorithm 1).261

3.3 imap Replacement262

We then reshape the imaps with a medical KG to263

inject insights about rare diseases, thereby enhanc-264

ing diagnostic modeling. Specifically, we scan265

each term-value pair of the extracted imap and266

aim to replace its value by sampling from the cor-267

responding entities in the KG. These entities are268

obtained from relationships defined by the term’s269

name with the rare disease. For example, for the270

EHR described in section 3.2, for the term-value271

pair, (Symptom: Cough with sputum for 1 month),272

we replace the value by sampling from the entities273

identified through the relationship between symp-274

toms and the target disease "Renal Tuberculosis"275

in the KG. However, performing random replace-276

ments poses the issue that many diseases share277

similar symptoms. As a result, there is a risk that278

all replacements are symptoms common to mul-279

tiple diseases, rendering the synthesized imap in-280

effective for diagnostic training for the target rare281

disease. To address this problem, we introduce a282

weighted sampling mechanism that emphasizes the283

differences between the KG and the recalled imaps284

for effective and de-identified new EHRs.285

Suppose the target disease to be synthesized is d,286

and the recalled disease EHR is hr, and its imap is287

formulated as a set of term-value pairs {(tit , vit)},288

where t denotes the terms of Symptom, Examina-289

tion, and Treatment, respectively. it ∈ {1, . . . , Nt}290

is the index of the term-value pairs of term t with a291

maximum number Nt. For a term ti and its related292

values Vi, we identify the triplets in the KG that293

satisfied head entity is d and the relationship is ti,294

their tail entities are our candidates for replacing 295

the values of the term ti. Then, as illustrated in 296

lines 12-16 in Algorithm 1, we calculate the weight 297

for the tail entities. For a tail entity, e, we use the 298

Encoder to calculate the cosine similarities between 299

the values v ∈ Vi and entity e. The similarity is de- 300

noted as S(v, e). To emphasize the differences, the 301

weight of e should be the inverse of S(v, e), with 302

a very small ϵ added for exploration. Additionally, 303

to further improve diversity and reduce repeated 304

sampling, we add an inverse term to the current 305

entity sampled numbers. The weight of sampling 306

the entity e is then formulated as: 307

W (e) =
r(e)∑
e∈E r(e)

, (1) 308

where the rating r(e) is given by: 309

r(e) = log

(
N

Ne

)
+

1

maxv∈Vi(S(v, e))
+ ϵ, (2) 310

where N is the total number of entities that have 311

been sampled, Ne is the number of times the 312

entity ent has been sampled, and ϵ is a small 313

constant added to ensure exploration. The term 314

maxv∈Vt(S(v, e)) represents the maximum cosine 315

similarity between the values in Vi and the entity e. 316

The weighted KG highlights the different entities 317

that distinguish imaphr from the KG of disease 318

d, where entities with larger weights are expected 319

to be sampled more frequently. After assigning 320

weights to the KG entities for the target disease d, 321

to effectively instruct the LLM to focus on entities 322

with high weights, we first sample entities from the 323

weighted KG based on their weights calculated by 324

Equation 1. We ensure that the sampled entities 325

include those related to symptoms, examinations, 326

and treatments. We then employ the GPT-4 model 327

(Achiam et al., 2023) to select from these sampled 328

entities and replace the values in the imap of the 329

recalled EHR hr with them, thereby generating a 330

new imap for the target rare disease d, denoted as 331

imapd. This process is illustrated in lines 17-19 of 332

Algorithm 1. A detailed prompt for this process is 333

presented in Table 6. 334

3.4 Rare Disease EHR Generation 335

In the previous stages, we structured the recalled 336

EHR into the imaphr and template tr, and replaced 337

the imaphr ’s values with the target rare disease’s 338

weighted knowledge graph to produce the new 339

imap for the target disease d as imapd. In this 340

4



stage, we aim to instruct the LLM to generate new341

EHR text for the rare disease d based on the imapd342

and the template tr.343

As shown in Figure 1, we make full use of the344

imapd, transformed by the weighted KG, in terms345

of symptom, examination, and treatment for dis-346

ease d. This is integrated with the EHR templates347

tr of related diseases to guide the LLM in filling348

in the masked content of tr concerning symptom,349

examination, and treatment for d. We then feed the350

imapd, which contains key diagnostic insights of351

the rare disease d, along with the template tr to the352

LLM. Subsequently, we instruct the LLM to select353

the appropriate entities to fill in all the masks in the354

template tr, thereby generating a new EHR hd for355

the rare disease d in natural language form. The356

EHR generation process is detailed in lines 21-22357

of Algorithm 1, and the prompt for this process is358

presented in Table 7.359

3.5 Stopping Mechanism360

As illustrated in Figure 1, we continue the four361

steps outlined above: recalling the related diseases362

and similar EHRs to obtain the EHR hr, structur-363

ing the EHR hr to get imaphr and the template364

tr, replacing imaphr to create imapd, and generat-365

ing the final EHR. This process results in the final366

synthetic EHR for the rare disease.367

We expect to synthesize EHRs enriched with in-368

sights from the rare disease KG to enhance rare369

disease diagnosis. To fully leverage the KG infor-370

mation and improve data synthesis efficiency, we371

propose the entity weighting mechanism for effi-372

cient entity utilization. Once all relevant entities are373

integrated into the synthetic data, we can conclude374

the iterative synthesis process described above. To375

assess the synthetic data’s coverage of the rare dis-376

ease KG, we introduce a metric that measures the377

proportion of sampled entities in the KG relative to378

the total number of entities, as follows:379

β(d) =

∑
e∈G(d) INe>0

U
, (3)380

where Ne represents the number of times entity e381

has been sampled, and G(d) denotes the sub-KG382

for disease d in terms of symptom, examination,383

and treatment. The indicator function I equals 1 if384

Ne > 0 and 0 otherwise. U is the total number of385

entities in G(d).386

The loop “for hr ∈ Hr” in Algorithm 1 can387

generate multiple EHRs as instructed in the prompt,388

but we set it to produce one per iteration. The total389

number of EHRs depends on β and the threshold 390

(we set as 0.98). Specifically, we generated 1,330 391

rare synthetic EHRs for JARVIS-D and 125 for 392

JarvisD2 (see Appendix Table 4). 393

Algorithm 1 EHR Synthesizing Algorithm
Require: Target rare disease d, its KG and related entities

number U , all EHRs H , K1,K2, N , and ϵ

Ensure: Synthesized EHRs Ĥd for d
1: Init the Encoder model M , set β,Ne = 0
2: while β <= 0.98 do
3: N = N + 1
4: # layered recalling of similar EHRs
5: Randomly Select seed a EHR h of disease d
6: Use M to get K1 diseases related to h, as Dr

7: Use M to get K2 EHRs to h diagnosed in Dr , as Hr

8: for hr in Hr do
9: # EHR structuring

10: Use LLMs to structure hr , as imaphr

11: Mask imaphr value in Hr to create template tr .
12: # KG Entity Weighting
13: for Entity e in KG with head = d and relationship

∈ {Symptom, Examination, Treatment} do
14: Ne+ = 1
15: Use M to compute e’s similarity with imaphr ’s

values, find max, and get e’s weight via eq. 1, 2
16: end for
17: # imap Replacement
18: Sample entities Ew based on weighted KG
19: Instruct LLM to replace imaphr ’s values with Ew

to get imap for d, as imapd
20: # EHRs Generation
21: Guide LLM to synthesize EHR hd on imapd & tr
22: Update β via equ. 3
23: end for
24: end while

4 Experimental Settings 394

4.1 Datasets and Baseline 395

Medical Knowledge Graph. We used the medi- 396

cal knowledge graph2 in RareSyn and, following 397

(Zhao et al., 2024b), trained the encoder for dis- 398

ease and EHR retrieval with 2,585 disease-related 399

triples. Each triple consists of two entities and a 400

relationship, in the form (entitya, relation, entityb); 401

for example, (Tuberculosis of kidney, Symptom, 402

Back pain). We also incorporated question-answer 403

pairs from medical licensing exams for training 404

(see Appendix A for details). 405

Electronic Health Records. We evaluated 406

RareSyn using two datasets: JARVIS-D (Zhao 407

et al., 2024b) and JarvisD2 (Zhao et al., 2025). 408

JARVIS-D contains 12,776 EHRs from five hospi- 409

tals, covering 193 diseases with patient demograph- 410

ics, complaints, exams, and treatments. We split 411

2https://jarvislab.tencent.com/kg-intro.html
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Table 1: This table shows the Micro-F1 scores for rare diseases (on JARVIS-Drare and JarvisD2rare) and overall
diagnosis (on JARVIS-D and JarvisD2). We compare the results of training with only original EHRs and with
additional synthetic rare disease EHRs from MedSyn and RareSyn (ours) across different diagnosis models. GPT-4,
DeepSeek-R1, and MedPaLM-2 use in-context learning with either 4 original EHR examples or a mix of 2 original
and 2 synthetic examples. All RareSyn instances significantly (p < 0.05) outperform Original and MedSyn. The
highest F1 score is underlined. The Macro-F1 results are presented in Appendix D.

Methods JARVIS-Drare JARVIS-D JarvisD2rare JarvisD2

Original MedSyn RareSyn Original MedSyn RareSyn Original MedSyn RareSyn Original MedSyn RareSyn
Embedding-Based

BERT (Devlin et al., 2018) 20.5 84.0 92.4 87.3 89.2 89.9 41.2 71.2 78.8 88.1 89.4 91.9
MedBERT (Ting et al., 2020) 21.2 84.7 93.1 87.7 88.3 91.2 47.5 76.2 80.0 88.5 90.6 92.8
GP (Yang et al., 2022a) 21.5 73.6 88.9 84.6 85.8 87.7 42.5 67.5 77.5 86.4 87.2 89.4
KEPT (Yang et al., 2022b) 23.3 81.2 93.1 86.8 87.0 89.5 45.0 73.8 80.0 87.2 88.5 91.5
MKeCL (Zhao et al., 2024b) 25.0 76.4 93.8 88.6 90.3 91.2 50.0 77.5 81.2 89.8 90.6 92.3

General LLMs
ChatGLM2-6B (GLM et al., 2024) 75.0 83.3 95.5 90.9 92.3 92.5 87.5 90.0 91.2 91.1 92.3 92.8
Qwen1.5-7B (Bai et al., 2023) 37.2 78.5 94.8 88.9 89.2 90.4 90.0 93.8 96.2 93.6 94.5 94.5
GPT-4 (Achiam et al., 2023) 27.8 43.1 44.1 46.6 46.8 48.3 95.0 95.0 95.0 96.6 96.6 97.0
DeepSeek-R1 (Guo et al., 2025) 96.9 97.6 97.6 96.2 96.4 96.4 98.8 98.8 98.8 97.4 97.4 98.3

Specialized LLMs
HuatuoGPT2-7B (Zhang et al., 2023) 69.1 78.1 94.8 89.2 91.8 92.1 91.2 93.8 95.0 94.0 94.0 94.9
MedPaLM-2 (Singhal et al., 2025) 29.2 38.2 43.1 45.3 46.1 46.1 85.0 86.2 87.5 91.5 91.5 92.8

it into JARVIS-Dcommon and JARVIS-Drare, the lat-412

ter comprising the rarest 9.3% of diseases (3% of413

EHRs, 18 diseases). JarvisD2 includes 10,953 diag-414

nosis question-answer pairs from CMExam, CMB,415

and MedBench, spanning 4,949 diseases. After416

filtering for diseases with at least 20 questions, we417

obtained 929 pairs across 36 diseases. Using GPT-418

4, we extracted EHR-diagnosis pairs and further419

split JarvisD2 into common and rare subsets, with420

JarvisD2rare containing the five rarest diseases. For421

both JARVIS-Drare and JarvisD2rare, we used 16422

EHRs per rare disease for testing, with the remain-423

der for training, ensuring thorough evaluation of424

synthetic EHRs’ utility. For JARVIS-Dcommon and425

JarvisD2common, we split them 80-20% into train-426

ing and testing datasets. All training datasets were427

used during the Encoder pretraining stage. More428

details are in Appendix A.429

Baseline. We compared MedSyn (Kumichev430

et al., 2024), which uses LLMs to generate syn-431

thetic EHRs by sampling medical contexts from432

external knowledge bases. Due to the limited rare433

disease EHR data, other synthesis methods like434

MedGAN were not applicable.435

4.2 Implementation436

We trained a BERT-based Encoder for disease437

and EHRs recalling with contrastive learning on438

question-answer pairs derived from medical knowl-439

edge graphs, medical licensing exams, and EHRs.440

For similar EHRs layered recalling, we selected441

one rare disease EHR as a seed, then retrieved the442

top 5 related diseases and top 5 EHRs. GPT-4 was443

prompted to generate the imap for these EHRs, fol-444

lowing Wang et al. (2024). After weighting KG 445

entities, GPT-4 replaced the imap to produce the 446

final synthetic EHRs. This process was repeated 447

until the synthetic EHRs’ imaps fully covered the 448

rare disease KG and matched the average size of 449

common disease EHRs (about 70 for JARVIS-Drare 450

and 25 for JarvisD2rare). Example prompts and 451

dataset details are in Appendices G and A. 452

We assessed the utility of RareSyn-generated 453

synthetic EHRs by training various models on 454

a multi-class disease diagnosis task, including 455

embedding-based models (BERT, MedBERT, GP, 456

KEPT, MKeCL), general LLMs (ChatGLM2- 457

6B, Qwen1.5-7B, GPT-4), and specialized LLMs 458

(HuatuoGPT2-7B, MedPaLM-2). We selected 459

these models based on the state-of-the-art methods 460

for disease diagnosis task. Due to resource lim- 461

its, only smaller models (6B/7B) were fine-tuned, 462

while larger models (e.g., GPT-4, DeepSeek) used 463

in-context learning. All models were trained in 464

two settings: (1) with original EHRs only, and (2) 465

with both original and synthetic EHRs. Additional 466

details are in Appendix B. 467

5 Main Results and Analysis 468

We conducted extensive evaluations of RareSyn’s 469

effectiveness in rare disease diagnosis, along with 470

analyses of its medical factual correctness (Valid- 471

ity), breadth of medical knowledge (Diversity), and 472

de-identification capability (Privacy). 473

5.1 Main Results 474

Table 1 presents the Micro-F1 scores for disease di- 475

agnosis when training different models using only 476
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(a) (b) (c)

Figure 2: (a) Impact of different components in RareSyn on MKeCL, Qwen1.5, and HuatuoGPT2’s rare disease
diagnosis accuracy, including imap distance-based weighting, layered recalling of similar EHRs, and the use of
common disease EHRs as templates for synthesis. (b) Comparison of disease distribution among similar EHRs
recalled using "Renal Tuberculosis" EHRs as the seed, through direct EHRs recalling and layered recalling methods.
(c) Rare disease diagnostic accuracy of MKeCL under two conditions: 1) trained with synthetic EHRs at different KG
coverage levels, and 2) trained with reduced EHR volumes while maintaining full KG coverage. The experiments
are performed on JARVIS-Drare (see Appendix D for JarvisD2rare results).

Figure 3: Visualization of EHRs generated by MKeCL
using t-SNE. The EHRs include four common diseases
(Anemia, Nephritis, Enteritis, Pneumonia), and original
and synthetic EHRs for three rare diseases (Renal Tu-
berculosis (RT), Chronic Subdural Hematoma (CSH),
Subphrenic Abscess (SA)) in JARVIS-D.

original EHRs, as well as with additional synthetic477

rare disease EHRs generated by RareSyne (Ours)478

or MedSyn, on both JARVIS-D and JarvisD2. The479

results show that RareSyne consistently outper-480

formed MedSyn across all models and datasets. By481

using a two-tier selection of real EHR templates482

and KG sampling that highlights distinguishing483

features, RareSyne generates more realistic and484

diverse rare disease notes. In contrast, MedSyn’s485

limited template diversity and less effective sam-486

pling often miss key symptoms, resulting in less487

accurate synthetic data. Furthermore, all models488

showed significant improvements in both rare dis-489

ease and overall disease diagnosis Micro-F1 scores490

when synthetic EHRs were incorporated into the491

training dataset (evidenced by the comparison be-492

tween Original and RareSyn/MedSyn).493

Comparing the results across different diagnostic494

models, we found that the improvements for GPT-495

4, MedPaLM-2, and DeepSeek-R1 were modest, 496

likely because they were trained with in-context 497

learning. Notably, the exceptionally high F1 scores 498

of ChatGLM2, HuatuoGPT2, and DeepSeek-R1 on 499

JARVIS-Drare suggest possible data leakage. Simi- 500

larly, all LLMs performed much better on JarvisD2, 501

likely due to its open-source data being included in 502

pre-training. 503

During the similar EHRs layered recall stage, 504

our first recalling diseases as constraints prevents 505

noisy EHR templates from unrelated diseases. This 506

advantage is demonstrated by the superior perfor- 507

mance of “RareSyn” over “w/o layered recall” in 508

Figure 2(a). For example, as shown in Figure 2(b), 509

using Renal Tuberculosis EHRs as seeds can recall 510

EHRs from diseases like AIDS, since patients may 511

share a history of tuberculosis. First recalling simi- 512

lar diseases and then recalling EHRs within those 513

disease categories ensures the recalled EHRs are 514

all renal-related. Moreover, weighted imap sam- 515

pling ensures the synthetic EHR is distinct from 516

its templates. As shown in Figure 2(a), this im- 517

proves disease diagnosis accuracy by 10.7% on 518

average compared to without weighting. Further- 519

more, using common disease EHRs as templates in 520

RareSyn can diversify the expression of synthetic 521

EHRs, especially when original EHRs are scarce. 522

As shown in Figure 2(a), omitting common EHR 523

templates (“w/o Common EHRs”) reduces accu- 524

racy on JARVIS-Drare by 5.5%, 4.5%, and 2.7% for 525

MKeCL, Qwen1.5, and HuatuoGPT2, respectively. 526

5.2 Analysis 527

Validity We conducted two tests with the assis- 528

tance of three medical experts to manually verify 529

the validity of the synthetic EHRs. Firstly, we ran- 530
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domly selected 20 synthetic EHRs for each rare dis-531

ease in JARVIS-Drare and JarvisD2rare and asked532

the experts to verify if each synthetic EHR was533

medically accurate and corresponded to the target534

rare disease. The average accuracy across all dis-535

eases and experts was around 97% for both datasets.536

Secondly, we created 20 pairs of real and synthetic537

EHRs for each rare disease, using the remaining538

synthetic EHRs not used in the first test. The ex-539

perts were then tasked with distinguishing the syn-540

thetic EHR in each pair. The average success rate541

across all experts was approximately 51.6% for542

JARVIS-Drare and 48.3% for JarvisD2rare, indicat-543

ing that the synthetic EHRs were highly similar to544

the real ones, making them challenging to differen-545

tiate. Results are detailed in Table 2, with human546

annotation process in Appendix C.547

Diversity The diversity of knowledge and tem-548

plate expressions in synthetic EHRs is crucial.549

As shown in Figure 2(c), diagnostic accuracy im-550

proves with increased rare disease KG coverage,551

but adding more synthetic EHRs after full coverage552

may slightly reduce performance. To further con-553

firm this, we reduced EHR volume while maintain-554

ing full KG coverage and found that performance555

remained stable, indicating data size has minimal556

impact once full coverage is achieved.557

Figure 3 provides a visualization of EHRs for558

several common diseases, as well as both original559

and synthetic EHRs for rare diseases in JARVIS-D.560

It’s evident that the synthetic data for a given rare561

disease clusters around its original data and is well562

separated from other diseases. Beyond just overlap-563

ping with the primary cluster in the original EHRs,564

the synthetic Renal Tuberculosis EHRs also create565

a cluster around an outlier. This indicates that the566

process of synthesizing EHRs with diverse medi-567

cal knowledge not only broadens the information568

spectrum in rare disease EHRs but also ensures that569

outliers are given due attention and incorporated570

during the generation of synthetic data.571

Privacy To evaluate the privacy of our synthetic572

EHRs, we measured the smallest distance in the573

embedding space between the synthetic and orig-574

inal data in JARVIS-Drare and JarvisD2rare. As575

shown in Table 3, the minimum distance between576

a synthetic EHR and an original EHR is greater577

than the smallest distance within the original EHRs578

themselves for both datasets. Additionally, the av-579

erage minimum distance between the original and580

synthetic data groups is slightly higher than the581

Table 2: Validity evaluation of RareSyn. The table
shows the accuracy rates of three experts assessing the
medical accuracy (Acc.) of 20 sampled synthetic EHRs
for each rare disease, and the success rates (SR) of these
experts in differentiating between 20 sampled pairs of
original and synthetic EHRs per rare disease.

Dataset Evaluators Accuracy Test (Acc.) Identification Test (SR)

Min Max Avg Min Max Avg

JARVIS-Drare

Expert1 90.0 100.0 97.2 45.0 60.0 53.3
Expert2 85.0 100.0 96.7 40.0 65.0 49.4
Expert3 90.0 100.0 97.5 45.0 65.0 52.2

JarvisD2rare

Expert1 95.0 100.0 98.0 40.0 50.0 45.0
Expert2 90.0 95.0 94.0 40.0 55.0 49.0
Expert3 95.0 100.0 99.0 45.0 60.0 51.0

Table 3: Privacy evaluation of RareSyn. This table
shows the minimum and average cosine distances (using
BERT) between synthetic and original EHRs. All values
are multiplied by 100 for clarity.

Dataset Training Data Min Dist Avg Min Dist

JARVIS-Drare

Original vs Original 3.25 4.25
Original vs Synthetic 4.18 4.97

JarvisD2rare

Original vs Original 3.91 5.11
Original vs Synthetic 4.52 6.07

average minimum distance within the original data 582

groups. These larger distances suggest that the syn- 583

thetic data points are more unique and less similar 584

to the original dataset compared to the similarity 585

among the original data points. The fact that these 586

distances are larger indicates that the synthetic data 587

does not closely mimic specific instances from the 588

original dataset. This effectively demonstrates the 589

synthetic data’s ability to maintain privacy, as it 590

reduces the risk of sensitive information being in- 591

ferred from the synthetic data. 592

A case study on how RareSyn generates syn- 593

thetic EHRs is presented in Appendix E. 594

6 Conclusion 595

To address data scarcity and privacy issues in 596

rare disease diagnostic modeling based on EHRs, 597

we propose RareSyn, a synthetic data generation 598

method. RareSyn leverages KG for rare disease 599

insights and common disease EHRs for varied tem- 600

plates. It recalls similar EHRs from both common 601

and rare diseases, extracts key information using 602

a special data structure called imap, reshapes the 603

imap with a novel KG entity-weighted algorithm, 604

and produces new EHRs based on the reshaped 605

imap and recalled EHR templates. Extensive ex- 606

periments demonstrate RareSyn’s effectiveness in 607

disease diagnosis improving, medical factual cor- 608

rectness, knowledge diversity, and de-identification 609

capability. 610
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Limitations611

We acknowledge two limitations of our study.612

First, the scope of our study is somewhat narrow,613

as it only investigates rare disease data synthesizing614

in Chinese. A potential progression of this research615

would involve expanding the range of diseases stud-616

ied and exploring additional language systems.617

Second, our fine-tuned baseline LLM models618

are approximately 7 billion parameters in size, and619

their results may differ from those of larger mod-620

els. Due to resource limitations, we were unable to621

fine-tune larger LLMs for comparison. Future re-622

search could extend our experiments by fine-tuning623

larger LLMs to further validate the superiority of624

the proposed framework.625

Ethics Statement626

Our work adheres to the ACL Ethics Policy. This627

paper aims to highlight the synthesis of electronic628

health records (EHRs) for rare disease diagnosis,629

addressing potential issues from improper applica-630

tion of the proposed models in the medical domain.631

The primary objective is to explore an effective632

EHR synthesis method using LLMs to alleviate633

data scarcity and privacy concerns in rare disease634

diagnosis modeling. However, it is crucial to note635

that these methods and the synthetic data are not636

yet ready for real-world medical deployment. A637

significant concern is the potential for these meth-638

ods to mislead users about the reasons behind their639

predictions, which could lead to incorrect decisions640

and serious implications for patient care and out-641

comes.642

Beyond accuracy and reliability, the ethical con-643

siderations of our work include the privacy and644

security of sensitive medical data. We have en-645

forced rigorous measures to safeguard this infor-646

mation throughout the data collection and utiliza-647

tion process, even when using previously proposed648

datasets. In conclusion, while our work shows649

promise for improving disease diagnosis, it is es-650

sential to approach its application with caution. We651

must continue to prioritize ethical considerations of652

accuracy, transparency, data privacy, and security653

as we further develop and refine these methods.654
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A Datasets844

Medical Licensing Exams. We used 41,626845

multiple-choice questions from past Medical Li-846

censing Exams for Encoder pretraining. These847

questions span six categories of medical knowl-848

edge: treatment, lab test, body part, medicine,849

disease cause, symptom, and others, comprising850

33.6%, 23.5%, 1.1%, 5.3%, 5.3%, 9.1%, and 18.6%851

of the data, respectively. Each exam question was852

converted into a question-answer pair, with the cor-853

rect answer forming a positive instance and each854

incorrect option forming a negative instance. We855

extracted the EHR descriptions from diagnostic856

medical examination questions. These questions857

are meticulously edited and high in information858

density, ensuring that the clinical text can be defini-859

tively diagnosed.860

An example is:861

Female, young. Suddenly experienced chills,862

high fever, lower back pain, and symptoms of fre-863

quent urination and painful urination for a week.864

She has no history of similar episodes. Examina-865

tion: Body temperature 39.4°C, positive percus-866

sion pain in the right kidney area, urine protein867

(+), 20-30 white blood cells/HP, 0-2 white blood868

cell casts/low power field. What is the most likely869

diagnosis for this patient?870

We can extract the description part as the EHR.871

JARVIS-Drare. The tail 18 disease EHRs in872

JARVIS-D account for 9.3% of all diseases, rep-873

resenting 3% of JARVIS-D. These tail diseases874

and their corresponding EHR counts are Obsessive-875

Compulsive Disorder(22), Sigmoid Volvulus(22),876

Hypopituitarism(22), Rickets(22), Cystitis(22),877

Esophagitis(21), Hematogenous Pulmonary Ab-878

scess(21), Pulmonary Embolism(21), Eclamp-879

sia(21), Acute Stress Disorder(21), Periodic Paraly-880

sis(20), Uterine Perforation(20), Hypoxic Ischemic881

Encephalopathy(20), Gonorrhea(20), Dermato-882

myositis(20), Subphrenic Abscess(20), Chronic883

Subdural Hematoma(20), and Renal Tuberculo-884

sis(20).885

JarvisD2rare. Since the original JarvisD2 con-886

tains 10,953 disease diagnosis questions covering887

4,949 distinct diseases, and most of these diseases888

have fewer than 3 corresponding questions, we fil-889

tered out diseases with at least 20 questions each890

to create a dataset for our disease diagnosis clas-891

sification task. The tail 5 disease EHRs account892

for 13.9% of the diseases, respresenting 10.8% of893

the filtered JarvisD2. These tail diseases and their 894

corresponding EHR counts are Adenomyosis(20), 895

Ventricular Septal Defect(20), Phenylketonuria(20), 896

Peptic Ulcer(20) and Pulmonary Tuberculosis(20). 897

Synthetic EHRs. Using EHRs in JarvisD2rare 898

and JARVIS-Drare as seeds, we created their corre- 899

sponding synthetic EHR datasets using RareSyn. 900

More dataset details for JARVIS-D, JarvisD2, and 901

their corresponding original and synthetic rare dis- 902

ease datasets are presented in Table 4. 903

B Experiment Settings 904

Implementations In training various models on 905

the disease diagnosis task, we applied the subse- 906

quent hyperparameter configurations: 907

• All embedding-based models were trained 908

with a learning rate of 1×10−4, 100 warm-up 909

steps, a batch size of 16, a maximum sequence 910

length of 256 and a maximum of 100 epochs. 911

• ChatGLM2-6B, Qwen1.5-7B, and 912

HuatuoGPT2-7B were fully fine-tuned 913

using 8 V100 with deepspeed, ZeRO stage 2, 914

fp16 enabled, a learning rate of 1 × 10−5, a 915

batch size of 1, gradient accumulation steps 916

16, and a maximum of 3 epochs. 917

• For GPT-4, DeepSeek-R1 and MedPaLM-2, 918

we used in-context learning to simulate the 919

training process by providing 4 examples to 920

the model. We compared the results of sam- 921

pling examples entirely from original EHRs 922

with those that sampled half from original 923

EHRs and half from synthetic EHRs. 924

C Human Evaluation 925

The medical experts involved in the validation pro- 926

cess were medical students from our partner hos- 927

pitals. Their participation was voluntary, and they 928

were not compensated for their contributions. We 929

provide detailed human evaluation instructions as 930

following: 931
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Table 4: Dataset details for JARVIS-D, JarvisD2, and their corresponding original and synthetic rare disease
datasets.

Dataset # of Diseases # of EHRs EHR Avg Length
JARVIS-D 193 12,776 87.5
JARVIS-Drare 18 397 76.8
JARVIS-Drare synthetic 89 1,330 87.6
JarvisD2 36 929 64.4
JarvisD2rare 5 100 57.5
JarvisD2rare synthetic 5 125 65.3

Annotation Process

Phase 1: Synthetic EHRs’ Medical Fac-
tual Correctness Verification

• Carefully check the demographics,
symptom logic, lab results (with ref-
erences), and diagnostic disease.

Annotation:

• Accuracy:

– Fully Accurate: No contradic-
tions

– Partially Accurate: ≤2 errors
– Inaccurate: >2 errors

• Error Marking:

– Highlight in red; comment on er-
ror type (e.g., Data Contradiction,
Temporal Inconsistency) and sug-
gest revisions.

• Confidence: 1–5 scale

Phase 2: Disease Diagnosis Verification

• Carefully review the synthetic EHRs
and verify whether their diagnoses
match the target rare disease.

Annotation:

• Full Match: exactly the same diagnosis

• Partial Match: related disease, e.g.,
nephritis, acute nephritis

• Mismatch: incorrect diagnosis

• Confidence: 1–5 scale
932

Synthetic EHR Validation Protocol

Objective: Evaluate synthetic EHRs for
accuracy and disease alignment using
evidence-based standards.
Steps:

1. Medical Accuracy: Assess temporal
logic, data consistency, and treatment
appropriateness. Highlight errors in
red, specify error type and revision,
and assign confidence (1–5).

2. Disease Alignment:

• Full Match: All major criteria
• Partial Match: ≥2 minor criteria
• Mismatch: Provide ICD-11 code

3. Confidence: 5 = clear evidence, 3 =
needs confirmation, 1 = speculative

933

D Experiment Results 934

This section reports further experimental results 935

and analyses of RareSyn. Table 5 summarizes 936

the Macro-F1 scores for both rare disease diag- 937

nosis and overall diagnostic performance. Our 938

method outperformed all baseline methods across 939

all datasets and models. We further report analyses 940

of the relationships between the breadth of med- 941

ical knowledge encapsulated in synthetic EHRs, 942

the percentage of EHRs employed when achieving 943

full knowledge graph coverage, and the diagnostic 944

accuracy of models trained with these synthetic 945

EHRs. Specifically, we explore how the extent 946

of medical knowledge in synthetic EHRs and the 947

proportion of EHRs used upon reaching full knowl- 948

edge graph coverage can influence the diagnostic 949

accuracy. Experiment results on JarvisD2rare is de- 950

picted in Figure 4. 951

Moreover, we conduct an ablative study on 952

RareSyn to examine the effects of imap distance- 953

based weighted sampling, layered recall of similar 954
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Figure 4: Rare disease diagnostic accuracy of MKeCL
on JarvisD2rare when trained with synthetic EHRs of
varying KG coverage, and the accuracy when using full
KG coverage but with different EHR coverage levels.

Figure 5: Impact of various RareSyn components on
the diagnosis accuracy of MKeCL, Qwen1.5, and Hu-
atuoGPT2 on the JarvisD2rare dataset. These compo-
nents include imap distance-based weighting, layered
recall of similar EHRs, and the use of common disease
EHRs as templates for synthesis.

EHRs and the use of common disease EHRs as955

templates for synthesis. The results of these ex-956

periments on JarvisD2rare are depicted in Figure957

5.958

E Case Study959

Figure 6 presents a case study illustrating how960

RareSyn generates synthetic EHRs, specifically for961

Renal Tuberculosis (RT).962

The process begins with a seed RT EHR. Using963

our trained Encoder, we perform a layered recall of964

similar EHRs. Initially, we identify diseases most965

similar to RT. Within this range of diseases, we966

then recall EHRs that share similarities with our967

seed RT EHR.968

For each similar EHR recalled, we follow steps969

2 to 4 in RareSyn to generate a corresponding syn-970

thetic RT EHR. For instance, consider a recalled971

Nephritis EHR. In step 2, the imap structuring972

phase, we extract the imaps from this EHR and 973

mask them to create a template. 974

In step 3, we calculate the weight of each en- 975

tity in the RT knowledge graph. This is done by 976

comparing them with the imaps of the Nephritis 977

EHR and the frequency of their occurrence in ex- 978

isting synthetic RT EHRs. Entities present in the 979

RT knowledge graph but absent in the Nephritis 980

EHR imaps are given more weight. For exam- 981

ple, ’Normal-sized kidney’ and ’Ineffective Anti- 982

Infective Treatment’ are key pieces of information 983

that distinguish RT from Nephritis, as Nephritis 984

often leads to enlarged kidneys and can typically 985

be treated with anti-infective therapy. 986

Finally, in step 4, we use GPT-4 to combine the 987

sampled RT imaps and the Nephritis EHR template 988

obtained in step 2. This results in a complete syn- 989

thetic RT EHR. 990

F A Synthetic EHR Example 991

We present an example that demonstrates the pro- 992

cess from Seed EHR to Template EHR to Synthetic 993

EHR, using the case of "Renal Tuberculosis." This 994

example includes the original seed EHR, the re- 995

trieved template EHR, and the final generated syn- 996

thetic EHR. 997

Seed EHR: Female, young. She has been expe- 998

riencing episodic lower back pain accompanied by 999

frequent urination and urgency for five years. She 1000

was found to have hematuria during a routine urine 1001

test at the hospital. She was admitted to the hospi- 1002

tal due to fever accompanied by lower back pain 1003

and painful urination for two days. Examination: 1004

T380C. Blood pressure 18.7/2kPa (140/90mmHg). 1005

Urine protein (+), red blood cells (++), white 1006

blood cells (+++). Kidney ultrasound: right kidney 1007

11cm×5cm×3cm, left kidney 8cm×4cm×2cm. 1008

Seed disease: Renal Tuberculosis 1009

Template EHR: Female, young. Sore throat, 1010

cough, fever. Noticed red urine two weeks later. 1011

Eyelid edema. Urine output 1000ml/24h. Physical 1012

examination: no rash on the skin. Blood pressure 1013

150/100mmHg. Laboratory tests: urine protein 1014

(++). Red blood cells: 50 60/HP. Blood albumin 1015

329/L. Blood creatinine 123mol/L. Seed disease: 1016

Nephritis 1017

Synthetic EHR: Male, young. Recently expe- 1018

riencing lower back pain, decreased urination, no 1019

hematuria. Normal body temperature, blood pres- 1020

sure 120/80mmHg. Routine urine test: urine pro- 1021

tein (+), urine specific gravity 1.010, red blood 1022
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Figure 6: Case study on how RareSyn generates a synthetic Renal Tubercolosis EHR.
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Table 5: This table shows the Macro-F1 scores for rare diseases (on JARVIS-Drare and JarvisD2rare) and overall
diagnosis (on JARVIS-D and JarvisD2). We compare the results of training with only original EHRs and with
additional synthetic rare disease EHRs from MedSyn and RareSyn (ours) across different diagnosis models. GPT-4,
DeepSeek-R1, and MedPaLM-2 use in-context learning with either 4 original EHR examples or a mix of 2 original
and 2 synthetic examples. All RareSyn instances significantly (p < 0.05) outperform Original and MedSyn. The
highest F1 score is underlined.

Methods
JARVIS-Drare JARVIS-D JarvisD2rare JarvisD2

Original MedSyn RareSyn Original MedSyn RareSyn Original MedSyn RareSyn Original MedSyn RareSyn
Embedding-Based

BERT (Devlin et al., 2018) 20.4 83.9 92.4 84.2 86.8 87.4 41.2 71.1 78.6 87.1 88.6 91.8
MedBERT (Ting et al., 2020) 20.8 84.6 93.1 84.4 86.0 88.8 48.0 76.4 80.3 87.0 89.6 91.8
GP (Yang et al., 2022a) 21.3 73.6 88.8 81.6 82.5 85.4 42.0 67.6 77.2 85.7 85.2 88.6
KEPT (Yang et al., 2022b) 23.4 81.1 93.1 83.2 84.0 86.8 45.3 73.9 79.5 86.1 87.4 91.8
MKeCL (Zhao et al., 2024b) 25.0 76.3 93.7 86.1 88.2 88.9 50.2 77.5 81.8 88.3 89.6 91.6

General LLMs
ChatGLM2-6B (GLM et al., 2024) 75.0 83.3 95.5 88.7 90.5 90.8 87.3 89.9 91.2 89.7 92.1 92.0
Qwen1.5-7B (Bai et al., 2023) 37.0 78.7 94.7 86.6 86.6 88.2 89.9 93.8 96.2 92.3 93.7 94.2
GPT-4 (Achiam et al., 2023) 27.6 43.2 44.1 41.1 41.9 43.7 94.9 95.0 95.0 96.4 96.4 96.2
DeepSeek-R1 (Guo et al., 2025) 96.8 97.6 97.6 94.9 95.5 95.4 98.7 98.7 98.7 96.6 97.2 98.4

Specialized LLMs
HuatuoGPT2-7B (Zhang et al., 2023) 68.8 78.1 94.7 86.4 89.5 89.7 91.3 93.8 95.1 93.5 93.5 94.7
MedPaLM-2 (Singhal et al., 2025) 28.9 37.6 42.9 40.1 40.6 41.3 85.0 86.4 87.4 89.4 91.3 91.4

cells (+), white blood cells (++). Kidney ultra-1023

sound: right kidney 9cm×4cm×2cm, left kidney1024

7cm×3cm×2cm. Chest X-ray shows normal heart1025

and lungs. Despite the use of a large amount of1026

antibiotics, the treatment effect is not good. Seed1027

disease: Renal Tuberculosis1028

G Example Prompts1029

We provide the details of the prompts used for rare1030

disease EHR imap replacement and EHR genera-1031

tion, as presented in Tables 6 and 7.1032

16



<Task>: As an expert in the field of rare diseases, specifically [d], your clinical experience is
invaluable to us in synthesizing our Electronic Health Record (EHR) data related to [d].

You are given a <Structured EHR> from a different disease, formatted in term-value pairs,
as well as a <Knowledge Graph of d>. Your task is to extract related information from this
<Knowledge Graph of d> and use it to substitute the values in each term-value pair of the
<Structured EHR>. This process will generate a new structured EHR specifically for [d].

<Structured EHR>:
[EHR]
<Knowledge Graph of [d]>:
[KG]

<Output a New Structured EHR for [d]>:

Table 6: Rare disease EHR imaps replacement prompt.

<Task>:
As an expert in the field of rare diseases, specifically [d], your clinical experience is invaluable
to us in synthesizing our Electronic Health Record (EHR) data related to [d].

<Instructions>:
1. Carefully read the following provided <Knowledge about [d]> and the <EHR template>.
Incorporate all the content in <Knowledge about [d]> into the <EHR template> to produce a
comprehensive and logical EHR for [d].
2. Ensure that the EHR you produce is reasonable and valid, with no contradictions between
gender, age, and symptoms.
3. The completed EHR should contain ample information necessary for the diagnosis of [d].

<Knowledge about [d]>:
[IMAP]

<EHR Template>:
[TEMPLATE]

Please refer to the format of the <EHR Template> and sample specific content from the
<Knowledge about [d]> to fill in.

<Output [d] EHR>:

Table 7: Rare disease EHR generation prompt.
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