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Abstract
Conversational Speech Synthesis (CSS) aims to express a target ut-
terance with the proper speaking style in a user-agent conversation
setting. Existing CSS methods employ effective multi-modal con-
text modeling techniques to achieve empathy understanding and
expression. However, they often need to design complex network
architectures and meticulously optimize the modules within them.
In addition, due to the limitations of small-scale datasets containing
scripted recording styles, they often fail to simulate real natural con-
versational styles. To address the above issues, we propose a novel
generative expressive CSS system, termed GPT-Talker. We trans-
form the multimodal information of the multi-turn dialogue history
into discrete token sequences and seamlessly integrate them to form
a comprehensive user-agent dialogue context. Leveraging the power
of GPT, we predict the token sequence, that includes both semantic
and style knowledge, of response for the agent. After that, the ex-
pressive conversational speech is synthesized by the conversation-
enriched VITS to deliver feedback to the user. Furthermore, we
propose a large-scale Natural CSS Dataset called NCSSD, that in-
cludes both naturally recorded conversational speech in improvised
styles and dialogues extracted from TV shows. It encompasses both
Chinese and English languages, with a total duration of 236 hours.
We conducted comprehensive experiments on the reliability of the
NCSSD and the effectiveness of our GPT-Talker. Both subjective
and objective evaluations demonstrate that our model outperforms
other state-of-the-art CSS systems significantly in terms of natural-
ness and expressiveness. The Code, Dataset, and Pre-trained Model
are available at: https://github.com/AI-S2-Lab/GPT-Talker.
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1 Introduction
Conversational Speech Synthesis (CSS) (or Conversational Text-to-
Speech (TTS), CTTS) aims to generate speech with proper style in
the user-agent conversation scenario. In such scenarios, the user
usually initiates a dialogue, then the agent and the user take turns to
speak. During the interaction, the agent is expected to understand
the user’s needs and provide assistance and emotional support.
Currently, with the increasing popularity of smart devices, there
is a growing demand for human-machine interaction in various
application scenarios such as smartphone assistants [47], smart
home control [21], intelligent vehicle systems [15], and virtual
reality / augmented reality interactions [13].

Many attempts on CSS have been proposed to enhance the natu-
ralness and expressiveness of synthesized conversational speech
from the perspective of context modeling. Guo et al, [17] proposed
a GRU-based context encoder to extract global prosodic informa-
tion for the agent from the dialogue context. FCTalker [19] fur-
ther incorporates the word- and sentence-level context knowledge,
that represents the fine- and coarse-grained context, to enhance
the context understanding ability of the agent. However, these
works only consider the textual information, ignoring the audio
and multi-modal dependencies in the conversation. To this end,
researchers contributed to the study of multi-modal context mod-
eling [10, 35, 39, 40]. However, they are increasingly inclined to-
wards designing complex network architectures and optimizing the
modules within them meticulously. For example, multi-scale multi-
modal CTTS (M2-CTTS) system [53] includes a textual context
module and an acoustic context module with both coarse-grained
and fine-grained modeling. Li et al. [28, 29] and Liu et al. [34] pro-
posed the graph neural network based context learning schemes.
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With the advancement of the Large Language Model (LLM),
several studies aim to construct spoken language models that ex-
tend language models for the speech domain [23]. We have no-
ticed that the Generative Pre-training Transformer (GPT) possesses
concise and powerful context modeling capabilities [14] and has
demonstrated impressive performance in capturing fine- and coarse-
grained dependencies in tasks such as dialogue generation [58] and
understanding [32, 33, 56]. Despite the successes, all the above
works are not applicable to CSS, where multi-modal context is used
as input to generate response speech output. We note that the con-
text modeling of GPT aligns well with the requirements of CSS,
yet it has been largely overlooked. Therefore, how to leverage GPT
to build concise yet powerful context understanding solutions for
user-agent interaction, will be the focus of this work.

In addition, the existing spoken dialogue dataset is challenging
to meet the requirements for training GPT-based generative ex-
pressive CSS models in terms of both scale and quality. Specifically,
M2-CTTS [53], EmoSit-TTS [35] and ECSS [34], etc. all utilized a
small-scale DailyTalk dataset [27], which contains 2541 dialogues
audio in about 20 hours in total. More importantly, it only consists
of recordings in a reading style, lacking sufficient expressiveness.
Some works [10, 29] have attempted to use datasets such as IEMO-
CAP [4] and ECC [28]. However, these datasets are designed for
purposes like conversational emotion recognition [4, 41] and con-
versation education, and they may contain background noise issues
that can affect the synthesis results. Therefore, it is necessary to
construct a large-scale and high-quality expressive CSS dataset to
support GPT-based CSS models in achieving a real natural conver-
sational style.

In this paper, we propose a novel generative expressive CSS
system, termed GPT-Talker. We transform the multimodal infor-
mation of the dialogue history into discrete token sequences and
seamlessly integrate them to form a comprehensive user-agent
dialogue context. Leveraging the power of GPT, we predict the
token sequence, that includes both semantic and style knowledge,
of response for the agent. After that, the expressive conversational
speech is synthesized by the conversation-enriched VITS to de-
liver feedback to the user. Furthermore, we propose a large-scale
Natural CSS Dataset called NCSSD, that includes both naturally
recorded conversational speech in improvised styles and dialogues
extracted from TV shows. It encompasses both Chinese and Eng-
lish languages, with a total duration of 236 hours. The NCSSD
dataset and related annotation will be public freely. We conducted
comprehensive experiments on the reliability of the NCSSD and
the effectiveness of our GPT-Talker. Both subjective and objec-
tive evaluations demonstrate that our model outperforms other
state-of-the-art CSS systems significantly in terms of naturalness
and expressiveness. In summary, our main contributions are as
follows: 1) To the best of our knowledge, we are one of the earliest
to introduce GPT into conversational speech synthesis and build a
concise and powerful context modeling scheme for the user-agent
conversation. 2) We have proposed a new large-scale Natural CSS
dataset, termed NCSSD, that can support our GPT-Talker, even fu-
ture GPT-style CSS model to achieve a real natural conversational
speech style. 3) We have conducted comprehensive validations of
the model’s effectiveness and the dataset’s reliability. Our model

significantly outperforms baseline models in terms of naturalness
and expressiveness.

2 Related Work
2.1 Conversational Language Model
Text and audio are two important modalities for human communi-
cations. Text-based LLMs have demonstrated remarkable achieve-
ments across various domains, including conversational chatbots
[2], code generation [6], creative writing [46], and machine transla-
tion [36].

Inspired by the aforementioned works, many studies have re-
cently explored conversational language modeling to address a
variety of tasks involving speech and text [48, 49], such as auto-
matic speech recognition [12], spoken question answering [1], and
speech-to-text translation [51], etc. For instance, SpeechGPT [57]
exhibited cross-modal conversational capabilities by employing
discrete unit representations to convert continuous speech signals,
and integrating LLMs with unit vocoder. This enables the model
to effectively process multimodal input and generate correspond-
ing output. dGSLM [38] proposed a dual-tower spoken LLM on
discrete speech units to model two-channel spoken dialogue, but
the generated spoken sentences lack semantic meaning. USDM
[24] proposed a generalized speech-text pretraining scheme that
leverages the chain-of-reasoning capabilities of LLMs to generate
coherent spoken responses based on conversational speech. In hu-
man conversation, while the dialogue primarily relies on the lexical
aspect, the speaking styles convey rich information beyond text,
and can even alter the semantics of the spoken sentences [5]. To
this end, E-Chat [52] proposed a novel LLM-based spoken dialogue
system, that leverages an emotion embedding extracted by a speech
encoder, enabling it to respond according to different emotional
contexts. ParalinGPT [31] takes the conversational context of text,
speech embeddings, and paralinguistic attributes as input prompts
for LLM to improve current and response sentiment prediction, as
well as response text generation, in natural human-human speech
dialogue. Furthermore, Spoken-LLM [32] proposed to fuse the LLM
and a self-supervised speech emotion representation model to help
the LLM to predict response speaking style and text, enabling the
subsequent expressive TTS model to generate natural and diverse
speech responses.

Our work performs significantly differently from the above-
mentioned studies. Specifically, our work focuses on the task of
CSS, where we integrate multi-turn multi-modal dialogue context
into a unified sequence and predict the semantic and stylistic rep-
resentations of the speech to be synthesized along with the current
utterance. We then utilize this representation to generate the final
expressive conversational speech. However, the aforementioned
works, such as dGSLM, SpeechGPT, and USDM, overlooked effec-
tive mechanisms for modeling multi-turn dialogue history, while E-
chat, ParalinGPT and Spoken-LLM etc. only generate text responses
based on dialogue history rather than speech representations. Al-
though MQTTS [7] and Pheme [3] also claim to be conversational
speech generation systems, they do not model the dialogue context
and only focus on the naturalness of the synthesized speech. Our
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Table 1: Comparison among other conversational datasets
and NCSSD. ∗ means that the handling of collection data
requires manual involvement. (EN: English; CN: Chinese;
RC: Recording; CL: Collection.)

Dataset Language Source Scale

Duration (h) Speaker

IEMOCAP [4] EN RC 12 10
MELD [41] EN CL* 13.66 407
M3ED [59] CH CL* 14.14 626
CPED [8] CH CL* 78.34 392

ECC [28] EN CL* 24 26
DailyTalk [27] EN RC 20 2
STUDIES [44] JP RC 8.2 3
ASLP-CH [17] CH RC 3 2

RyanSpeech [54] EN RC 10 1
CALLS [43] JP RC 6.5 1

NCSSD (Ours) EN, CH RC, CL 236 >776

GPT-Talker is similar to the recent style transfer TTS model, GPT-
SoVITS [16], but an obvious difference is that GPT-SoVITS does not
pay attention to the dialogue context information.

2.2 Conversational Speech Datasets
Table 1 provides a summary of the existing relevant datasets to
our knowledge. Lines 6-11 present information about some con-
versational speech datasets specifically designed for CSS task. It
can be observed that these datasets are relatively small in scale. For
example, ECC [28] gathered 66 sets of public videos from YouTube’s
English Conversation channel, amassing 24 hours of content. These
dialogues involve two, three, or multiple participants. DailyTalk
[27] is derived from DailyDialog dataset [30]. It showcases 2,541
high-quality English conversations between a male and female,
spanning a total of 20 hours. The Japanese corpus for empathic
conversations STUDIES [44] and CALLS [43] covers two scenar-
ios, that are communication between teachers and students in school
and customer service via telephone, featuring 8.2 and 6.5 hours of
speech, respectively. RyanSpeech [54] is a high-quality male TTS
corpus in the conversational domain, that contains 9.84 hours audio
samples. Note that CALLS and RyanSpeech claim to be conver-
sational datasets, but they only contain one speaker and are not
suitable for CSS task. Guo et al. [17] recorded an internal dataset
(we call “ASLP-CH” here) comprising 3 hours of conversations be-
tween 2 Chinese women, who assumed the roles of a customer and
a customer service representative, respectively.

In summary, the scale of these datasets is insufficient to train a
high-quality CSS model based on the GPT model. This necessitates
the creation of a large-scale, freely available CSS dataset. Addi-
tionally, our dataset has advantages in terms of language diversity
and data source diversity compared to existing datasets. Specifi-
cally, it includes bilingual data in both Chinese and English, as well
as subsets of recorded data and collected data. Furthermore, we
have developed an automated processing pipeline for collected data,
greatly improving the efficiency of creating natural CSS datasets.
We hope that this initiative can contribute to the development of

the community. Furthermore, in Table 1, we have listed some of
the latest dialogue speech datasets designed for tasks such as dia-
logue emotion understanding. It can be seen that our data still has
significant advantages in terms of language diversity, data source
diversity, and dataset scale compared to these datasets.

3 GPT-Talker: Methodlogy
3.1 Task Definition
In user-agent spoken conversation, the user and the agent take
turns speaking. The user speaks first, and the agent understands the
user’s semantics to provide a spoken response. As time progresses,
multi-turn user-agent dialogue history accumulates and forms. The
task setting in our CSS task, therefore is to generate the speech of
agent’s response according to the conversation context, where the
text of the response is given. Specifically, assume that the 𝑁 -turn
conversation context includes the multi-modal dialogue history H
and the current utterance C, whereH = {(𝑈 𝑡

1 ,𝑈
𝑎
1 , 𝑆1), (𝑈

𝑡
2 ,𝑈

𝑎
2 , 𝑆2)...,

(𝑈 𝑡
𝑁−1, 𝑈

𝑎
𝑁−1, 𝑆𝑁−1)} and C = (𝑈 𝑡

𝑁
, 𝑆𝑁 ). (𝑡 and 𝑎 means the text

and audio modalities respectively, 𝑆 is the speaker identify label.)
The goal of CSS is to ensure that the synthesized speech 𝑈 𝑆

𝑁
is

suitable for the whole dialogue situation. Therefore, how to model
the multi-turn multi-modal conversational context and provide a
proper speaking style for the agent is the focus of the task.

To this end, our GPT-Talker consists of two key components,
that are GPT-based context modeling and Expressive conversational
speech synthesis. Specifically, GPT-based context modeling proposes
a novel Conversation GPT (ConGPT) to model the multi-turn multi-
modal conversational context by treating the discrete token se-
quence of context as the condition prompt, and predict proper se-
mantic and style expression for the agent. Expressive conversational
speech synthesis proposes the Conversational VITS (ConVITS) to
enrich the VITS with the agent’s semantics, style, and timbre to
generate expressive conversational speech based on the known
response content.

3.2 Conversational GPT
As shown on the left side of Fig. 1, The ConGPT encompasses
1) Multi-turn Multi-modal Context Tokenization and 2) ConGPT-
based Semantic and Style Inference. The former module converts
the multi-modal context into a unified discrete sequence, and then
constructs a discrete representation of the multi-turn conversation
context. Based on this representation, The latter module infers the
semantics and style of the response speech.

3.2.1 Multi-turn Multi-modal Context Tokenization. Unlike tradi-
tional CSSworks that adopt complex graph neural networks [29, 34]
or cascade pipelines [35] to understand the context, our ConGPT
seeks to understand the multi-modal context within a unified dis-
crete sequence directly.

Textual Tokenization: Similar with VALL-E [48], we convert
the text data of dialogue history H and current utterance C, in-
cluding𝑈 𝑡

1→𝑁−1 and𝑈
𝑡
𝑁
, into the discrete phoneme sequences. As

shown in Fig. 1, the discrete phoneme sequences of𝑈 𝑡
1→𝑁

are repre-
sented by𝑇 𝑡

1→𝑁
. The phoneme encoder is built based on the g2p_en
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Conversational GPT

Phoneme
Encoder

Unit
Encoder

Phoneme
Encoder

Unit
Encoder

Phoneme
Encoder

...

User-Agent Multi-modal Context

<EOS>

Conversational VITS

Content Encoder

Reference Speaker
for Agent

Cross-Attention

Timbre Encoder

GPT-based Context Modeling Expressive Conversational Speech Synthesis

...

...

Token Encoder

Synthesized Conversational
Speech for Agent

Agent's Utterance Agent's Semantic and Style

Figure 1: The overview of GPT-Talker, that includes the Conversational GPT and the Conversational VITS.

python module 1 for English and the opencpop-strict dictionary 2

for Chinese.
Acoustic Tokenization: To model natural speech conversa-

tions, the discrete speech representation must contain not only the
semantics of the utterance but also expressiveness features such as
speaking style, which are crucial for CSS task. Previous research
[24] has demonstrated that HuBERT tokens contain rich semantic
information as well as strong traces of paralinguistic features that
can be used to accurate classify speech emotions. Therefore, we
follow [24] and employ HuBERT [18] to acquire high-dimensional
speech representations. Inspired by [26], we do not employ unit
deduplication on HuBERT units, since it maintains a consistent
length ratio with the speech, removing the need to prepare a sep-
arate duration predictor. Specifically, we adopt speech units as
acoustic context units that are derived from k-means clustering
of the HuBERT’s intermediate speech representation. We follow
GPT-SoVITS and then adopt a Vector Quantization (VQ) layer to
convert the acoustic context units to the learnable token sequence,
thus better matching the expressive speech generation task. In this
way, the audio data of dialogue context 𝑈 𝑎

1→𝑁−1 are represented
by 𝑇𝑎

1→𝑁−1.
Unified Context Serialization: After acquiring discrete tokens

for text and audio modalities of context, we emulate the real-time di-
alogue flow and combine the textual and acoustic tokens alternately
into a multi-modal conversational format as {𝑇 𝑡

1 , 𝑇
𝑎
1 , 𝑇

𝑡
2 , 𝑇

𝑎
2 , ..., 𝑇

𝑡
𝑁
}.

We adopt an alternating approach between the text and speech
modalities instead of serializing the conversation history by first
combining the text modality and then concatenating the speech
modality. We believe that the alternating approach can better cap-
ture the cross-modal contextual dependencies in the conversation
history.

3.2.2 ConGPT-based Semantic and Style Inference. To inference
the Semantic and Style information of response speech according
to the serialized multi-modal user-agent context. the ConGPT takes
the entire serialized conversation context {𝑇 𝑡

1 ,𝑇
𝑎
1 ...,𝑇

𝑡
𝑁−1,𝑇

𝑎
𝑁−1,𝑇

𝑡
𝑁
}

as input, then predicts the semantic and style knowledge 𝑇𝑎
𝑁
. The

process is formulated as follows:

𝑇𝑎
𝑁 = 𝐶𝑜𝑛𝐺𝑃𝑇 ({𝑇 𝑡

1 ,𝑇
𝑎
1 ,𝑇

𝑡
2 ,𝑇

𝑎
2 ...,𝑇

𝑡
𝑁 }) (1)

1https://pypi.org/project/g2p-en/
2https://wenet.org.cn/opencpop/

where 𝑇𝑎
𝑁
also follows the same tokenization method as𝑈 𝑎

1→𝑁−1
to discretize𝑈 𝑎

𝑁
in advance, serving as the output of ConGPT. The

sub-tokens in the discrete token sequence𝑇𝑎
𝑁

are decoded using an
autoregressive approach until the End of Sequence (EOS) label is
decoded. Please note that, similar to [33], we do not assign explicit
speaker identities to the token sequence of the serialized context.

3.3 Conversational VITS
After unified context modeling, the Conversational VITS (ConVITS)
is proposed to provide proper expressive speech for the agent’s
response. Note that ConVITS takes three information sources of the
agent, including the agent’s utterance 𝑈 𝑡

𝑁
for content rendering,

the semantic and style representations of the agent inferred by
the ConGPT for semantic and style rendering, and the additional
reference speaker for timbre rendering. As shown in the right panel
of Fig. 1, it consists of four key complements, which are the context
encoder, token encoder, timbre encoder and the VITS synthesizer.
The cross-attention mechanism is used to integrate the content,
semantic and style information of agent.

3.3.1 Content, Semantic and Style Rendering. First, we utilize the
text encoder 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑡 (·), that consists of 6 layers of transformer
encoder, to process the response content 𝑈 𝑡

𝑁
, extracting its inher-

ent textual information 𝑓𝑐 to ensure the intelligible of synthesized
speech. After that, the predicted context-aware semantic and style
tokens 𝑇𝑎

𝑁
are converted into a high-level style representation 𝑓𝑠

using the token encoder 𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑠 (·), which consists of 3 layers of
transformer encoder.

Finally, to achieve unified content, semantic and style rendering
for expressive CSS, textual information 𝑓𝑐 and high-level style rep-
resentation 𝑓𝑠 are integrated into a final agent’s style embedding 𝑓

via the cross-attention layer. We use a multi-head attention module
in the cross-attention layer, which accommodates different input
lengths. Here, we treat 𝑓𝑠 as the query and 𝑓𝑐 as both the key and
value.

3.3.2 Timbre Rendering. In order to achieve flexible and diverse
expressive styles, we do not rely on fixed speaker IDs for speaker
control. Instead, we employ a timbre encoder with a reference en-
coder to perform timbre transfer on any reference speech, allowing
for flexible speaker timbre rendering based on content, semantics,
and style rendering. As shown in the Fig. 1, the timbre encoder

https://pypi.org/project/g2p-en/ 
https://wenet.org.cn/opencpop/
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𝐸𝑛𝑐𝑜𝑑𝑒𝑟𝑡𝑖𝑚 (·), consists of 6 convolutional layers, a GRU layer, and
a linear layer, takes a reference speech𝑈 𝑎

𝑎𝑔𝑒𝑛𝑡 for a specific speaker
and extracts the timbre embedding 𝑓𝑡𝑖𝑚 .

During training, the speech𝑈 𝑎
𝑁−2 from the agent in the last turn

is chosen as the reference speech𝑈 𝑎
𝑎𝑔𝑒𝑛𝑡 . During the inference stage,

we can assign a reference with any speakers to achieve zero-shot
timbre rendering performance.

3.3.3 Speech Generation. The speech generation stage extends the
vanilla VITS [25] into conversational settings by leveraging the
above conversational expressiveness rendering. It’s important to
highlight that the ConVITS architecture excludes the Stochastic
Duration Predictor, since the semantic and style tokens predicted
by ConGPT already encompass duration information, there’s no
necessity to predict it separately.

The final agent’s style embedding 𝑓 is processed by a projection
layer to derive the mean 𝜇 and variance 𝜃 . The agent’s timbre em-
bedding 𝑓𝑡𝑖𝑚 is encoded by the posterior encoder to produce the
latent normal posterior distribution variable 𝑧, which is then de-
coded by a Flow-based Decoder to generate the normalized stream
𝑓𝜃 (𝑧). The HiFi-GAN generator then upsamples the latent variables
𝑧 to the speech waveform𝑈 𝑎

𝑁
.

3.4 Training Strategy
We propose a Three-Stage training strategy to ensure the perfor-
mance of our GPT-Talker: 1) In the first stage, we focused on the
modeling capabilities of ConGPT and ConVITS in single-sentence
speech scenarios. we trained ConGPT and ConVITS with single-
sentence speech datasets including LibriTTS [55], LJSpeech [20],
AISHELL-3 [45], etc., that the total duration is about 2.5k hours. In
this way, ConGPT can predict the speech tokens based on the text
token sequence. The ConVITS performs stable speech generation
after inputting the provided text. 2) In the second stage, we con-
tinue to train the ConGPT using the collection subset of NCSSD.
This enabled it to accurately predict the semantics and stylistic
knowledge of the current sentence, leveraging the provided dia-
logue context and multimodal information. 3) In the third stage, we
further enhance the naturalness and expressiveness of the synthe-
sized speech by fine-tuning both ConGPT and ConVITS using the
recording subset of NCSSD.

Concerning the computation of the model’s total loss. The GPT-
Talker’s loss 𝐿𝑡𝑜𝑡𝑎𝑙 is composed of two elements: 𝐿𝐶𝑜𝑛𝐺𝑃𝑇 and
𝐿𝐶𝑜𝑛𝑉 𝐼𝑇𝑆 . 𝐿𝐶𝑜𝑛𝐺𝑃𝑇 calculates the cross-entropy loss between the
predicted acoustic units and the real units. 𝐿𝐶𝑜𝑛𝑉 𝐼𝑇𝑆 includes mel
reconstruction loss𝐿𝑟𝑒𝑐𝑜𝑛 , KL divergence loss𝐿𝑣𝑎𝑒 fromVAE, feature-
matching loss 𝐿𝑓𝑚 , adversarial training loss 𝐿𝑎𝑑𝑣 , and 𝐿𝑣𝑞 from
Vector Quantization. Specifically, 𝐿𝑣𝑞 computes the commitment
loss between the quantized vector and the input discrete token.

4 NCSSD Construction
As mentioned before, we also propose a large-scale natural con-
versational speech corpus, NCSSD, to support the GPT-based CSS
training. As illustrated in Table 1, the dataset includes two sub-
sets, that are the collection part and the recording part, covering
a total duration of over 236 hours. Our dataset is available with
the CC-BY-SA 4.0 license. Unlike the traditional data production
method with human participation [8, 41, 59], note that we propose

an automatic data construction pipeline for the collection subset
and a ChatGPT-assisted workflow for the recording subset. We will
report the data collection process 3 and the data statistics results.

4.1 Automatic Data Construction for Collection
Subset

The automatic data construction pipeline for the collection subset
consists of 1) Video Selection, 2) Dialogue Scene Extraction, 3)
Dialogue Segment Extraction, and 4) Dialogue Script Recognition.

4.1.1 Video Selection. In order to build a large-scale, diversified,
and natural conversational dataset, we collect videos from different
TV series, which can simulate spontaneous conversation behavior
in the real-world environment [41, 59]. We collect 79, and 34 TV
shows for English and Chinese respectively. The detailed list of all
TV series are introduced in Appendix. Unlike other data creation
methods that requiremanual selection of TV shows based on certain
rules [59], we automatically filter out eligible dialogues and cor-
responding timestamps using Dialogue Scene Extraction, Dialogue
Segment Extraction, and Dialogue Script Recognition modules.

4.1.2 Dialogue Scene Extraction. A complete TV show consists of
multiple dialogue scenes (may include two or more speakers) that
are interconnected but independent from each other. To extract
these dialogue scenes, we employ Voice Activity Detection (VAD)
technology, which uses silent segments in the audio information of
the entire TV show to identify dialogue scenes. Subsequently, the
extracted dialogue scene audio is further processed to obtain clean
dialogue speech.

Specifically, we first employ a pre-trained VAD model, silero-
vad4, to identify the timestamps of non-silent voice chunks in the
video, since the silero-vad was trained on huge corpora that include
over 100 languages and it performs well on audios from different
domains with various background noise and quality levels. We set
the silent segments threshold to 4 seconds to get the VAD results,
since 4 seconds of silence often indicates the start of a new dialogue,
as proven by extensive preliminary data testing. Then we segment
the complete audio file of a video into various discontinuous audio
clips that represent the various dialogue scenes. To ensure that
each dialogue scene includes multi-turn dialogues with appropriate
length, we further discard the audio clips where “the ratio of silent
to non-silent segments exceeds 30%” or the “total duration is less
than 15 seconds”.

Subsequently, we then perform background music separation
with Demucs 5 to discard the background music and other distract-
ing information. To further refine the vocal component’s quality,
we thoroughly assess the signal-to-noise ratios (SNR) of both vocal
and background noise, retaining only vocal chunks with an SNR
above 4, and adopt speech enhancement model, sepformer 6, to
obtain the clean audio for all dialogue scenes.
4.1.3 Dialogue Segment Extraction. Dialogue segment extraction
aims to extract the conversational speech containing only two-
person interaction from the previously obtained dialogue scene
speech.

3For a more intuitive flowchart, please refer to the Appendix.
4https://github.com/snakers4/silero-vad
5https://github.com/facebookresearch/demucs
6https://huggingface.co/speechbrain/sepformer-dns4-16k-enhancement
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To achieve this, we utilized a speaker recognition interface 7

based on ByteDance to analyze the speech information from all
dialogue scenes. This interface provides us with numerical speaker
labels and corresponding timestamp information. Subsequently, we
extract dialogue segments for two-person conversations based on
the speaker labels and timestamps. Our extraction criteria required
the dialogue segment to have more than four utterances, with each
speaker contributing at least two utterances.

4.1.4 Dialogue Script Recognition. Through the above steps, we
obtained the dialogue-level audio and visual information of the
two-person conversation. In order to obtain the dialogue script,
we employ the Alibaba automatic speech recognition engine 8

to recognize the speech. Finally, the audio, scripts and the visual
information of all dialogues are combined tighter as the collection
suset of NCSSD.

4.2 ChatGPT-assisted Data Construction for
Recording Subset

Unlike the collection subset, the construction of the recording sub-
set involves designing dialogue scripts and inviting volunteers to
record their voices and upper body image signals. The script serves
as a prompt for the dialogue content rather than a strict guideline,
and volunteers are allowed to spontaneously expand on the dia-
logue during the recording process. The resulting dialogue speech,
the upper body image and the script are then recorded to obtain
the final recorded data.

4.2.1 Dialogue Script Draft Generation. The first step in preparing
recorded speech data is to create dialogue scripts. Manual prepa-
ration of scripts can be time-consuming, labor-intensive, and may
lack diversity in terms of dialogue topics. Therefore, we leverage
the powerful text generation capabilities of ChatGPT by using a
prompt-based approach to generate diverse dialogue scripts that
meet our expectations.

Specifically, we employ GPT-3.5 Turbo version of ChatGPT to
generate the script of a two-person conversation. As shown in Fig.
??, we design a two-step prompt template to prompt the ChatGPT
to output large-scale dialogue scripts to reflect spontaneous conver-
sation behavior in the real world. In the first step, we aim to prompt
ChatGPT to generate various topic words of human conversation
ensuring the richness of communication content. In the second
step, we select a specific dialogue topic and set the emotional state
of the starting speaker. We prompt ChatGPT to generate multi-turn
dialogues with a range of 4 to 15 turns. Additionally, we request
GPT to add emotion and intent labels 9 to the generated scripts
to enhance their interpretability and provide more reference in-
formation for subsequent speech recordings. The detailed prompt
templates are shown in Appendix.

4.2.2 Spoken Dialogue Recording. Based on the previously ob-
tained scripts, we invited volunteers to record the dialogue speech.
We also captured the upper body images of the participants during

7https://www.volcengine.com/product/voice-tech
8https://ai.aliyun.com/nls/
9The emotion categories are labeled using a 7-category scheme [59], that are

Neutral, Happy, Surprise, Fear, Angry, Disgust, and Sad. The intention labels are
labeled using a 9-category scheme [50], including Question, Agree, Acknowledge,
Sympathize, Encourage, Console, Suggest, Wish, and Neutral.

Table 2: The detailed data statistics of NCSSD.

Item Collection Recording

Language 𝐸𝑁 𝑍𝐻 𝐸𝑁 𝑍𝐻

Dialogues 7,033 8,776 1,196 2,451
Utterances 62,603 99,126 10,033 21,688
Words 856,011 1,688,778 157,967 507,008

Min words per utterance 1 1 2 2
Max words per utterance 299 322 53 92

Duration(h) 72.94 115.22 19.10 29.57
Max dialogue duration(s) 177.51 308.21 108.52 75.82
Min dialogue duration(s) 4.74 5.54 20.06 15.73

Mean utterance duration(s) 4.19 4.18 6.85 4.90

Max dialogue turns 39 69 15 14
Mean dialogue turns 8.90 11.29 8.38 8.84
Min dialogue turns 4 4 5 6

Speakers > 339 > 410 11 16

the recording. Importantly, during the recording process, volun-
teers are encouraged to freely add dialogue content based on the
emotional and intent information provided in the script, in order
to create spontaneous and natural dialogue speech.

Specifically, we employed 27 young volunteers with English as
their second language 10 to participate in the recording sessions.
Their compensation is based on the number of dialogues recorded.
The recording venues varied, including classrooms, meeting rooms,
seminar halls, and more, providing a diverse range of settings. We
allow the volunteers to engage in spontaneous dialogues guided by
the provided script, emotion label, and intent label. This approach
ensured that the final recorded voice sounded natural and authentic.

4.2.3 Dialogue Script Re-identification. Due to the presence of
spontaneous utterances by the voice actors during the recording,
we use a speech recognition interface 8 to re-transcribe the recorded
speech and obtain the recognized text as the final dialogue script.
Together with the recorded speech and upper body images, this
forms our final recording subset.

4.3 Data Statistics
Table 2 presents the overall statistics of the NCSSD dataset. It con-
tains a total of 19,456 dialogues and 193,450 sentences from 113
TV shows, ensuring the scale and diversity of the data. The dataset
spans approximately 236 hours, featuring the longest Chinese con-
versation at 308.21 seconds and the longest English conversation
at 177.51 seconds. Every conversation exceeds 4 seconds, satisfy-
ing the minimum duration needed for dialogue tasks. On average,
each conversation contains at least 8 turns, facilitating the training
of models for extended dialogue sequences. With over 776 speak-
ers, the dataset encompasses a diverse range of speaking styles
and habits. For additional statistics of the NCSSD, please refer to
Appendix.

10Due to budget limitations, we did not invite native English speakers for the
recording. Although the language proficiency of our participants may not be their
native language, they possess fluent English listening, speaking, reading, and writing
skills. We believe they are competent enough to carry out our data recording tasks.
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VITS Ground Truth

NCSSD (EN)

NCSSD (ZH)

23.13% 42.52%

25.83% 40.82%

34.35%

33.35%

No preference

Figure 2: The ABX preference test results between VITS and
Ground Truth (GT) speech on our NCSSD.

5 Experiments
In the experiment part, we will first assess the quality of NCSSD
in a single-sentence speech synthesis scenario. Subsequently, we
validate the GPT-Talker by comparing it with various state-of-the-
art baselines of CSS task. We will introduce the baselines, and
evaluation metrics in the following subsections and report the
results in the next section. Note that the experimental setup can be
viewed in the Appendix.

5.1 Baseline Models
To validate the reliability of NCSSD, we evaluate it on the single-
sentence speech synthesis task and select the advanced end-to-end
TTS model, VITS [25], as the baseline. Note that VITS was also
chosen as the backbone network by many CSS models [9, 11], and
we believe it is appropriate to serve as the baseline.

To evaluate the validity of GPT-Talker in terms of context under-
standing and modeling, we develop three advanced CSS systems
that represent various context learning methods with the following
three categories: (1)GRU-based Context Learning: The conversa-
tional context-aware TTS (we call “CCATTS” here) model proposed
by [17] employs a GRU-based network to model the sentence-level
dependency among the dialogue context; (2) Multi-scale Context
Learning: FCTalker [19] is an representative work that consider
both the sentence-level and word-level contextual within the dia-
logue context; (3) Heterogeneous Graph-based Context Learn-
ing: ECSS [34] is an advanced expressive and emotional CSS model
that adopts heterogeneous graph to model the complex relation
among the multi-modal context.

5.2 Metrics
We conduct comprehensive evaluations using both objective and
subjective metrics.

Subjective Metrics. The subjective evaluation includes three
components: (1) ABX preference test, where listeners had to de-
cide which of the transformed speeches, A or B (produced by two
different methods), sounded closer to ground truth speech or if they
had no preference. (2) Dialogue-level Mean Opinion Score in
terms of Naturalness (N-DMOS), which requires participants
to primarily assess its naturalness under the dialogue context. (3)
Dialogue-level Mean Opinion Score in terms of Emotion (E-
DMOS), which primarily focuses on assessing the emotional expres-
sion conveyed through the speech and determining its alignment
with the ongoing emotional tone of the dialogue context.

ObjectiveMetrics. (1) Dynamic TimeWarpingDistanceDTWD:
we follow [42] and adopt average dynamic time warping (DTW)
distance [37] of the pitch distribution for the ground-truth speech

and synthesized speech to evaluate expressiveness-related perfor-
mance. (2) Speaker Similarity (SSIM), we follow [22] and utilize
the speaker verification model, that fine-tuned with WavLM11, to
extract the speaker embedding for the ground-truth speech and the
synthesized speech. After that, we calculate the cosine similarity
score between two embeddings as the final speaker similarity met-
ric. The similarity score ranges from [-1, 1], where a higher value
indicates a greater similarity.

6 Results and Discussions
We report the results of the following aspects, including “Reliability
verification of NCSSD”, “Validity verification of GPT-Talker” and
“Analysis of Three-Stage Training”. Please refer to the Appendix to
check more results.

6.1 Reliability Verification of NCSSD
We train VITS using our NCSSD in single-sentence scenarios, and
the ABX preference test results of synthesizing Chinese and English
speech are shown in Fig. 2.

For each language, we combine the collection and recording sub-
sets to train the VITS model. We randomly select 50 sentences from
both the Chinese and English datasets for synthesis and conducte
an ABX preference test with 30 volunteers to mark the speech
that has higher naturalness between the speech synthesized by
the VITS model and the ground truth (GT) speech. The results of
Fig. 2 indicate that the performance of VITS is very close to that
of the GT. The proportion of ”No Preference” in Chinese speech
reaches as high as 33.35%, while in English speech, it is approx-
imately 34.35%. This demonstrates that our NCSSD can support
advanced TTS model in synthesizing high-quality speech.

Undoubtedly, the performance of GT speech is expected to be
better. However, since our NCSSD is designed to mimic real-world
human conversations, effectively incorporating contextual model-
ing methods is an effective approach to further enhance the perfor-
mance of TTS models. Therefore, in the next section, we further
validate the effectiveness of the proposed GPT-Talker in context
learning.

6.2 Validity Verification of GPT-Talker
In this section, we will compare GPT-Talker with three advanced
CSS baselines. Since these baselines have conducted experiments
using the English dataset DailyTalk in their respective studies, we
will validate our model using the English portion of the NCSSD
dataset and the DailyTalk dataset 12. Similar to the previous section,
the English portion will be trained by combining the collection
subset and the recording subset.

For subjective evaluation, due to budget constraints, we don’t
invite native English speakers as volunteers. Instead, we invite 30
Chinese students who are proficient in English listening, speaking,
reading, and writing as volunteers.We randomly select 50 sentences
from the test set to synthesize speech for each system to be tested.
Then, we ask the volunteers to rate the speech using N-DMOS

11https://huggingface.co/microsoft/wavlm-base-plus-sv
12Please note that directly training the GPT-Talker model on the DailyTalk dataset

leads to poor performance. Therefore, the experimental results in this section are
obtained by fine-tuning all systems based on the pre-training described in section 3.4.
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Table 3: Subjective and objective experimental results on DailyTalk and NCSSD datasets (CL-EN & RC-EN).

Methods DailyTalk NCSSD (EN)

SSIM (↑) DTWD (↓) N-DMOS (↑) E-DMOS (↑) SSIM (↑) DTWD (↓) N-DMOS (↑) E-DMOS (↑)
CCATTS [17] 0.734 67.376 3.402 ± 0.025 3.429 ± 0.019 0.752 65.234 3.425 ±0.025 3.493 ± 0.022
FCTalker [19] 0.741 65.241 3.405 ± 0.026 3.537 ± 0.016 0.756 65.375 3.490 ± 0.029 3.491 ± 0.023
ECSS [34] 0.749 64.564 3.597 ± 0.024 3.585 ± 0.028 0.761 63.654 3.507 ± 0.018 3.587 ± 0.031
GPT-Talker (Ours) 0.882 42.125 3.890 ± 0.033 3.908 ± 0.029 0.884 45.627 3.884 ± 0.031 3.891 ± 0.017
Ground Truth - - 4.486 ± 0.026 4.501 ± 0.025 - - 4.399 ± 0.020 4.493 ± 0.027

Table 4: Subjective and objective experimental results on the analysis of three-stage training. (∗ means suboptimal result.)

Training Strategy NCSSD (EN) NCSSD (ZH)

SSIM (↑) DTWD (↓) N-DMOS (↑) E-DMOS (↑) SSIM (↑) DTWD (↓) N-DMOS (↑) E-DMOS (↑)
One-Stage (𝑤/ CL & RC) 0.843 57.734 3.609 ± 0.024 3.698 ± 0.014 0.851 56.842 3.625 ± 0.026 3.731 ± 0.021
Two-Stage (𝑤/ CL) 0.875 48.653 3.713 ± 0.021 3.714 ± 0.017 0.877 47.854 3.716 ± 0.018 3.690 ± 0.030
Two-Stage (𝑤/ RC) 0.879 47.863 3.716 ± 0.027 3.781 ± 0.023 0.884 48.125 3.696 ± 0.018 3.709 ± 0.029
Two-Stage (𝑤/ CL & RC) 0.888 44.834 3.902 ± 0.033 3.925 ± 0.028 0.891 44.682 3.910 ± 0.030 3.916 ± 0.032
Three-Stage (Ours) 0.904 42.076 3.910 ± 0.019 3.922 ± 0.022∗ 0.908 43.002 3.906 ± 0.020∗ 3.987 ± 0.021

and E-DMOS based on the guidelines. Their compensation was
calculated based on the number of test samples. Additionally, we
calculate SSIM and DTWD, for the 50 test samples. The results for
all metrics are presented in Table 3.

From the DTWD results in the table, it is evident that the speech
synthesized by GPT-Talker outperforms the baselines, indicating
that GPT-Talker is more capable of capturing pitch-related expres-
siveness similar to the GT. Furthermore, the N-DMOS and E-DMOS
results show that our GPT-Talker significantly outperforms all
the baselines. For example, in the DailyTalk dataset, GPT-Talker
achieves N-DMOS and E-DMOS scores of 3.890 and 3.908, respec-
tively, while the baselines score below 3.6. Similar trends are ob-
served in the results for the NCSSD dataset. Moreover, GPT-Talker
exhibits closer resemblance to GT compared to the baselines. These
results demonstrate that GPT-Talker, leveraging ConGPT, effec-
tively models the impact of context on the semantics and style of
the current sentence, while ConVITS successfully renders semantic
and stylistic aspects in CSS, resulting in highly natural and ex-
pressive synthesized speech. Lastly, by observing the SSIM metric
results, it can be seen that GPT-Talker achieves the highest speaker
similarity compared to all the baselines, proving that our ConVITS
excels in timbre rendering on top of semantic and stylistic rendering.
With the dialogue context modeling ability of ConGPT, ConVITS
achieves highly expressive conversational speech synthesis.

6.3 Analysis of Three-Stage Training
This section validates the three-stage strategy, introduced in Section
3.4, used to train GPT-Talker. We design the following four training
strategies for validation: 1) One-Stage (𝑤/ CL&RC) means we
directly use both the collection and recording subsets of NCSSD
to train the GPT-Talker; 2) Two-Stage (𝑤/ CL&RC) means we
follow the same method as described in section 3.4 for pre-training.
Afterward, we merge the two subsets together and perform fine-
tuning; 3) Two-Stage (𝑤/CL). This method is similar to the second
one, with the difference that during fine-tuning, only the collection
subset is selected; 4) Two-Stage (𝑤/ RC): This method is similar to

the second one, with the difference that during fine-tuning, only the
recording subset is selected. We conduct subjective and objective
experiments using the same configuration as in the previous section
and report all results in Table 4. We observe that the multi-stage
approach outperforms the single-stage approach in all metrics, sug-
gesting that using a pre-training strategy enables the model to learn
basic speech generation capabilities, and fine-tuning on the conver-
sational data helps improve dialogue context understanding and
expression abilities. Additionally, the “Two-Stage (𝑤/ CL&RC)” and
our three-stage approaches outperform previous two-stage meth-
ods, demonstrating that fine-tuning on the entire conversational
dataset allows the model to learn dialogue expression capabili-
ties with the support of a large volume of data. Comparing the
“Two-Stage (𝑤/ CL&RC)” approach with our three-stage approach,
although there is a slight lag in one metric for both the Chinese
and English datasets, our three-stage approach exhibits significant
advantages in the remaining six metrics. This confirms that our
three-stage method gradually guides the model to learn richer di-
alogue expression information, leading to better conversational
speech generation capabilities.

7 Conclusion
In this work, we propose a novel GPT-based conversational speech
synthesis (CSS) model, termed GPT-Talker, for user-agent interac-
tion. It consists of ConGPT and ConVITS to model the semantic and
style expression in the unified user-agent discrete dialogue context
sequence and infer the expressive speech for the agent. We also
propose the largest-scale conversational speech synthesis dataset
to date, termed NCSSD, which stands out in terms of language
and data source diversity. This dataset can support the training
of GPT-Talker and even future GPT-style CSS models, providing
a valuable resource for advancing CSS technology. The compre-
hensive experiments are conducted on the reliability of the NCSSD
and the effectiveness of our GPT-Talker. We encourage the research
community to use the NCSSD for spoken dialogue modeling.
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