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Abstract

Vision-and-Language Navigation (VLN) is a challenging task that requires an agent
to navigate through complex environments based on natural language instructions.
In contrast to conventional approaches, which primarily focus on the spatial domain
exploration, we propose a paradigm shift toward the Fourier domain. This alterna-
tive perspective aims to enhance visual-textual matching, ultimately improving the
agent’s ability to understand and execute navigation tasks based on the given instruc-
tions. In this study, we first explore the significance of high-frequency information
in VLN and provide evidence that it is instrumental in bolstering visual-textual
matching processes. Building upon this insight, we further propose a sophisticated
and versatile Frequency-enhanced Data Augmentation (FDA) technique to im-
prove the VLN model’s capability of capturing critical high-frequency information.
Specifically, this approach requires the agent to navigate in environments where
only a subset of high-frequency visual information corresponds with the provided
textual instructions, ultimately fostering the agent’s ability to selectively discern
and capture pertinent high-frequency features according to the given instructions.
Promising results on R2R, RxR, CVDN and REVERIE demonstrate that our FDA
can be readily integrated with existing VLN approaches, improving performance
without adding extra parameters, and keeping models simple and efficient. The
code is available at https://github.com/hekj/FDA.

1 Introduction

Vision-and-Language Navigation (VLN) requires an embodied agent to navigate in complex envi-
ronments following human instructions. This research area has garnered substantial attention due to
its potential applicability in human-robot interaction contexts, such as service and rescue robotics.
Despite the significant advancements [5, 12, 23, 25, 55, 34, 9, 42, 10, 37, 64, 50, 20, 68, 60] achieved
in devising deep learning models for VLN, the task remains arduous, primarily due to the complexities
involved in attaining precise visual-textual matching.

Recent studies in the field of VLN have focused on enhancing embodied agents’ ability to navigate
complex environments using natural language instructions. These studies aim to develop more robust
and efficient deep learning models that can tackle the challenges of visual-textual matching, thereby
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Figure 1: Examples of the high-frequency and low-frequency information. Blue background part is
the high-frequency spectrum and high-frequency information in spatial domain after inverse Fourier
Transform. Orange background part is about these two contents of the low-frequency information.

improving the agent’s capacity to understand and execute navigation tasks based on given instructions.
Some of the recent studies have investigated attention mechanisms [58, 25, 9, 64], detection models
[44, 1, 10], and fine-grained trajectory-instruction pairs [66, 24, 21] to enhance cross-modal matching
from the spatial domain perspective.

Validation Seen Validation Unseen

Figure 2: Sensitivity analysis of benchmark methods to high and low-frequency information, i.e.,
HAMT [9], DUET [10], and TD-STP [64]. Normal denotes the normal navigation scenes. HF-
Perturbed and LF-Perturbed denote the navigation scenes whose high-frequency and low-frequency
have been perturbed, respectively.

Beyond the spatial domain perspective, in this paper, we are interested in investigating the effective-
ness of other domain perspectives for VLN. We present a paradigm shift toward the Fourier domain to
enhance visual textual matching, a research area that has received limited prior investigation. Specifi-
cally, high-frequency and low-frequency information pertains to distinct components of an image
when analyzed within the Fourier domain. High-frequency information encompasses rapid changes,
fine details, edges, and texture patterns, as illustrated in Figure 1 (part of the blue background).
Conversely, low-frequency information signifies the overall structure and global features of an image,
including large shapes and smooth color gradients, thereby capturing the general appearance and
layouts, as shown in Figure 1 (part of the orange background).

We simply investigate the sensitivity of benchmark methods to low and high-frequency information
by perturbing the low-frequency or high-frequency components in images. Three powerful baseline
models, i.e., HAMT [9], DUET [10], and TD-STP [64], are used to analyze the significance
of low/high-frequency information on both R2R validation seen and unseen splits, wherein the
navigation views are disrupted in the Fourier domain. As Shown in Figure 2, the three models
maintain a relatively high Success Rate (SR) under low-frequency perturbations. However, the SR on
validation seen and unseen splits decrease markedly under the high-frequency perturbation navigation
process, exhibiting lower SR metrics compared to low-frequency perturbations. For example, on the
validation seen dataset, the SR results for HAMT [9], DUET [10], and TD-STP [64] decrease by
31.44, 27.52, and 27.23, respectively, when affected by high-frequency perturbations. These findings
reveal that VLN approaches exhibit a marked sensitivity to high-frequency information.

In light of these observations, we hypothesize that high-frequency information from images may
be of paramount importance for cross-modal navigation tasks. Through extensive experiments, we
ascertain that high-frequency information indeed serves a pivotal role in enriching visual representa-
tions, thereby contributing to a marked enhancement in the navigation performance of models when
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faced with novel environments. To efficiently leverage the benefits of high-frequency information, we
further propose a Frequency-enhanced Data Augmentation (FDA) tailored for VLN, a simplistic yet
efficacious approach to augment the model’s ability to capture essential high-frequency information.
Specifically, the FDA method utilizes the Discrete Fourier Transform on navigation views, extracting
high and low-frequency components from RGB channels. It replaces part of the high-frequency
components with those from an interference image to introduce high-frequency perturbations. Aug-
mented data is obtained by applying inverse Fourier Transform to the combination of the perturbed
high-frequency and original low-frequency components. By training the agent to match original
instructions with both the original and augmented navigation views concurrently, the FDA method
encourages the agent to hone its ability to capture the relevant high-frequency information that best
aligns with the given instruction. This, in turn, enhances the agent’s overall performance in VLN
tasks, making it more adept at identifying and leveraging critical high-frequency features.

Leveraging FDA during training, existing SoTA methods can achieve significant performance im-
provements without the need for additional parameters. This demonstrates the effectiveness of FDA
in enhancing visual-textual matching capabilities in Vision-and-Language Navigation (VLN) tasks
while maintaining model simplicity and efficiency. Our contributions are summarized as follows:
1) we conduct a first-of-its-kind in-depth analysis of frequency domain information in VLN task,
highlighting the importance of high-frequency information in improving navigation performance.
This novel perspective offers fresh research opportunities for the community to explore and enhance
VLN models. 2) We further introduce a simple, effective data augmentation method, Frequency-
enhanced Data Augmentation (FDA), which enhances a model’s ability to discern and capture
essential high-frequency information without added complexity, offering practical solutions for the
research community. 3) Our method has achieved superior results on various cross-modal navigation
tasks, i.e., R2R, RxR, CVDN and REVERIE, and shown great adaptability across different models.

2 Frequency Perspective for Vision-and-Language Navigation

In this section, we first introduce the VLN problem formulation. Then we explore the potential
value of high-frequency and low-frequency information for VLN. Finally, we present the Frequency-
enhanced Data Augmentation (FDA) for enhancing model’s ability to capture essential high-frequency
information.

2.1 Problem Formulation

According to the VLN setup, an agent navigates in an in-door environment E = {p1, p2, ..., p|E|} with
numbers of preset points pi in it, following a human instruction T = {w1, w2, ..., w|T |}. Assuming at
step t, the agent standing on the point pit can perceive the surrounding panoramic vision Ot = (okt )

36
k=1

around it which is composed by 36 discrete observations okt . Each observation okt = (Ikt , θ
k
t , ϕ

k
t ) is

the combination of the kth view Ikt with its relative heading θkt and elevation ϕk
t to the oriented view.

The neighboring navigable points N(pit) distribute among some of these views. The agent selects the
next point from these neighboring points N(pit) based on the correlation between instruction T and
the observations okt where N(pit) locate in. Then, the agent will be teleported to that selected point.
This navigation continues until the agent predicts a stop action or exceeds a preset step threshold.
Navigation is considered a success when the agent stops within 3 meters of the target destination.

2.2 High Frequency or Low Frequency: Which Benefits VLN Performance?

Considering the observations of Figure 2, we posit that high-frequency information in images may
be of paramount importance for cross-modal navigation tasks. In order to validate this hypothesis,
we conduct a straightforward experiment that entails the fusion of original image features with
their corresponding high-frequency or low-frequency components. These amalgamated features
subsequently serve as input for the navigation network during training and testing, as shown in
Figure 3. The results on TD-STP [64] are present in Table 1. We can observe the integration of
high-frequency features leads to an improvement in navigation accuracy, such as SR increasing from
69.65 to 70.37 for unseen environments. Conversely, incorporating low-frequency features appears to
have an adverse effect, resulting in a decrease in accuracy with SR dropping from 69.65 to 68.75.
The above observation highlights the critical role of high-frequency information in cross-modal
navigation. This is because 1) high-frequency information encompasses fine details such as edges,
corners, and texture patterns. These details are essential for accurately identifying and differentiating
objects, scenes, and locations, which can lead to more effective visual-textual matching and better
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(a) Navigator with high-frequency information as extra input (b) Navigator with low-frequency information as extra input

Figure 3: Integrate high-frequency and low-frequency information into the navigator (TD-STP). FFT
and iFFT denote the Fourier Transform and inverse Fourier Transform. GHPF and GLPF denote the
Gaussian High-Pass Filter and Gaussian Low-Pass Filter, respectively. The green background part is
the pipeline of the baseline model (TD-STP).

Table 1: Results on R2R task: integrating high-frequency (HF) and low-frequency (LF) information.

Validation Seen Validation Unseen

TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑
TD-STP 12.66 2.53 76.30 71.70 13.53 3.28 69.65 62.97
TD-STP+LF 12.83 2.42 76.49 71.36 14.29 3.30 68.75 61.96
TD-STP+HF 12.29 2.30 78.75 73.78 13.68 3.14 70.37 63.62

navigation performance. 2) Models trained with high-frequency information tend to be more robust
to environmental variations and exhibit greater generalization ability to unseen environments, as
the model learns to focus on a more diverse set of features, rather than just memorizing specific
low-frequency, global patterns present in the training data.

2.3 Frequency-enhanced Data Augmentation

To systematically capitalize on the advantages of high-frequency information, we subsequently intro-
duce a Frequency-enhanced Data Augmentation (FDA) method, specifically designed for VLN tasks.
This approach is both straightforward and effective in bolstering the model’s capacity to apprehend
and incorporate crucial high-frequency information. As illustrated in Figure 4, the reference image
I is a navigation view corresponding to the navigation instruction T (“Go forward, pass by the
refrigerator, turn left behind the dining table, go straight through the doorway..."). The interference
image Î is another navigation view sampled from the Matterport3d (Mp3d) dataset [6] randomly. To
prevent information leakage, all interference images are sampled from training/validation seen splits,
and no image from the validation unseen and test splits is used. First, we transform these two images
to the frequency domain space via FFT, resulting in two frequency spectrums F {rgb}

I and F
{rgb}
Î

:

F
{rgb}
I = F{rgb}(I), F

{rgb}
Î

= F{rgb}(Î) (1)

where F{rgb} denotes the Fourier Transform on RGB color channels. Afterward, we apply High-Pass
and Low-Pass Gaussian Filters on the two frequency spectrums to obtain the reference high-frequency
H{rgb}, reference low-frequency L{rgb} and interference high-frequency Ĥ{rgb}.

H{rgb} = Gh ⊙ F
{rgb}
I , L{rgb} = Gl ⊙ F

{rgb}
I , Ĥ{rgb} = Gh ⊙ F

{rgb}
Î

(2)

where Gh and Gl denote the Gaussian High-Pass Filter (GHPF) and Gaussian Low-Pass Filter (GLPF),
and ⊙ is element-wise multiplication. Then, we mix the high-frequency components of these two
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Figure 4: Our approach mixes the interference high-frequency and the reference high-frequency
together. Then the augmented image is obtained by applying inverse Fourier Transform on the
combination of the mixed high-frequency and reference low-frequency. Finally, the augmented image
containing only a portion of the reference high-frequency is aligned to the instruction to encourage
agent to discern and capture the reference high-frequency information. FFT and iFFT represent the
Fourier Transform and inverse Fourier Transform. GHPF and GLPF denote the Gaussian High-Pass
Filter and Gaussian Low-Pass Filter, respectively.

images. Specifically, for each RGB channel of the reference image, there is a certain probability that
its high-frequency component is replaced by the interference high-frequency from the same channel:

Hc
mix = Mix(Hc, Ĥc) =

{
Hc, probability of 1/3

Ĥc, others
, c ∈ {r, g, b} (3)

H
{rgb}
mix = Mix(H{rgb}, Ĥ{rgb}) (4)

where H
{rgb}
mix is the mixed high frequency. We combine it with the reference low frequency L{rgb}

and then apply iFFT to obtain the frequency-enhanced augmented image Imix:

Imix = F−1(F
{rgb}
mix ) = F−1(H

{rgb}
mix , L{rgb}). (5)

Finally, the original image I and augmented image Imix share the same textual instruction label T
and are used alternately to train the agent during the training phase:

L(θ) =

{
NavigatorLoss(I, T, θ), odd-numbered step
NavigatorLoss(Imix, T, θ), even-numbered step

(6)

where L(θ) denotes the navigation loss considering both the original image I and frequency-enhanced
augmented image Imix, θ denotes the parameters of the navigator.

3 Experiments

3.1 Datasets

The visual environments are based on the photo-realistic dataset Matterport3d (Mp3d) [6]. There
are a total of 90 houses, with 61, 11, and 18 houses allocated for training/validation seen, validation
unseen, and test splits, respectively. Four datasets containing the instruction-trajectory pairs have been
adopted: R2R [5], RxR [29], CVDN [52] and REVERIE [45]. R2R includes 7,189 trajectories and
each trajectory has 3 corresponding English instructions. RxR has 16,522 trajectories and 126,069
multilingual (English, Hindi and Telugu) instructions in total. Compared to R2R, its trajectories
are longer and instructions are more complex. CVDN is based on human-to-human dialogs. The
multi-turn dialogs instruct the agent to navigate to the destinations. There are 2,050 dialogs and
over 7,000 trajectories in this dataset. REVERIE contains a total of 21,702 high-level instructions,
including descriptions of navigation destinations and the objects to be found.
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3.2 Evaluation Metrics

According to the conventions of each task, we adopt a total of ten evaluation metrics, namely Success
Rate (SR), Success Rate weighted by Path Length (SPL), Trajectory Length (TL), Navigation Error
(NE), normalized Dynamic Time Warping (nDTW), Success weighted by normalized Dynamic Time
Warping (SDTW), Goal Progress (GP), Navigation Oracle Success Rate (OSR), Remote Grounding
Success Rate (RGS) and Remote Grounding Success Rate weighted by Navigation Path Length
(RGSPL). SR measures the proportion of successful navigation. SPL is a trade-off metric between
SR and TL. TL is the average trajectory length. NE measures the average distance between the final
position and the destination. nDTW measures the fidelity between the predicted trajectory and the
groundtruth trajectory. SDTW combines the evaluation of SR with nDTW. GP measures the progress
toward the goal. OSR measures the proportion of successful arrivals at or passage through the
destinations. RGS represents the proportion of successful groundings to the correct object. RGSPL is
a trade-off metric between RGS and TL. R2R uses the SR, SPL, TL and NE metrics. RxR adopts the
SR, SPL, nDTW and SDTW metrics. CVDN uses the GP metric. REVERIE adopts the TL, OSR,
SR, SPL, RGS and RGSPL metrics.

3.3 Ablation Study

Table 2: Models enhanced by the FDA method on R2R task.
Validation Unseen

TL NE↓ SR↑ SPL↑

Transformer-based Models

HAMT 11.50 3.57 65.64 60.15
HAMT+FDA 11.86 3.44 67.52 62.16
DUET 12.95 3.38 70.20 60.28
DUET+FDA 13.61 3.16 71.86 61.16
TD-STP 13.53 3.28 69.65 62.97
TD-STP+FDA 13.68 3.02 71.78 64.00

LSTM-based Models

Follower - - 38.3 -
Follower+FDA - - 45.6 -

EnvDrop 10.08 5.15 51.1 47.8
EnvDrop+FDA 13.43 5.00 54.5 49.1

FDA Assists in the R2R Task. We enhance both Transformer-based and LSTM-based strong
baselines, i.e., HAMT [9], DUET [10], TD-STP [64], Follower [15] and EnvDrop [49], with our
FDA method on R2R task, as shown in Table 2. The three enhanced Transformer-based models
have achieved clear advantages over the baselines, with SR improved by 1.88, 1.66, 2.13 and SPL
improved by 2.01, 0.88, 1.02, respectively on the validation unseen split. Meanwhile, our FDA
method can also boost the performances of the two LSTM-based models, with SR improved by 7.3
and 3.4, respectively. These results demonstrate the adaptability of our approach across various
models, which can significantly improve their performances and alleviate overfitting.

Table 3: Ablations on the RxR and CVDN tasks.
RxR CVDN

nDTW↑ SDTW↑ SR↑ SPL↑ GP↑
HAMT 64.3 49.6 58.1 54.0 5.03
HAMT+FDA 66.4 51.6 59.8 55.8 5.39

FDA Facilitates Performances on Other Cross-Modal Navigation Tasks. Furthermore, we evaluate
our FDA method on RxR, CVDN and REVERIE tasks. Table 3 shows the results on validation
unseen splits of RxR and CVDN tasks. The HAMT equipped with FDA has obtained notable superior
performances compared to the baseline. On RxR task, the SR and SDTW have been improved by 1.7
and 2.0, respectively. On CVDN task, our method could boost the GP performance by 0.36. Table
4 shows our method’s performance on REVERIE task. The DUET enhanced by FDA significantly
outperforms the baseline, with SR and RGS improved by 2.92 and 3.49. These observations indicate
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Table 4: Ablabtion on the REVERIE task.
Validation Unseen

TL OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑
DUET 18.76 48.59 44.65 32.92 28.57 21.01
DUET+FDA 19.04 51.41 47.57 35.90 32.06 24.31

Table 5: Performances in navigation scenes with high-frequency interference on R2R task. Red
background part represents the baselines in normal navigation scenes. White and gray background
parts represent the baselines and our augmented models in scenes with high-frequency interference.
Note that this evaluation setting is non-standard R2R, and is specially designed to validate our method.

Validation Seen Validation Unseen

TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑
HAMT 11.06 2.49 75.02 71.78 11.50 3.57 65.64 60.15
[MP3d] HAMT 15.47 3.61 43.88 38.94 15.76 5.55 44.40 36.93
[MP3d] HAMT+FDA 11.99 3.40 67.38 62.93 13.67 4.40 58.32 51.12
[ImageNet] HAMT 17.19 6.05 41.23 33.37 18.60 6.10 38.87 31.04
[ImageNet] HAMT+FDA 13.26 4.24 59.06 52.90 13.43 4.67 55.56 48.99
DUET 11.73 2.38 78.55 73.71 12.95 3.38 70.20 60.28
[MP3d] DUET 16.96 5.31 51.03 41.30 15.75 5.19 51.04 39.20
[MP3d] DUET+FDA 14.06 3.17 69.44 60.78 14.69 3.74 65.73 53.16
[ImageNet] DUET 17.39 6.11 43.29 33.41 16.79 5.78 44.61 32.72
[ImageNet] DUET+FDA 17.01 3.90 62.49 59.79 16.89 3.94 63.69 49.78
TD-STP 12.66 2.53 76.30 71.70 13.53 3.28 69.65 62.97
[MP3d] TD-STP 21.34 5.23 49.07 40.62 21.25 5.73 45.13 37.41
[MP3d] TD-STP+FDA 13.50 3.04 69.93 63.44 16.65 4.02 62.11 52.77
[ImageNet] TD-STP 21.81 5.91 40.55 32.95 21.47 5.74 42.10 34.17
[ImageNet] TD-STP+FDA 16.20 3.69 63.08 54.74 16.80 4.02 61.13 51.37

that our approach can be easily and effectively integrated into other cross-modal navigation tasks
while ensuring a significant performance boost.
Performances on Navigation Scenes with High-Frequency Interference. As analyzed before,
existing VLN methods are severely limited in high-frequency perturbed navigation scenes. Table
5 shows more details. We observe that the baselines can perform well under the normal navigation
scenes. Setting 1: Then, we introduce high-frequency interference, whose corresponding spatial
image is the navigation views randomly sampled from MP3d [6], into seen/unseen navigation views
as described in the method section to get the high-frequency perturbed unseen navigation scenes.
Navigating under such scenes, all models have experienced a significant decrease in SR metric.
Taking TD-STP as an example, its SR decreases by as much as 27.23 and 24.52 on validation seen
and validation unseen, respectively. The fact that the models are easily and severely affected by
high-frequency interference suggests their lack of ability to effectively identify and capture the
necessary high-frequency information based on the instructions. However, with the assistance of our
FDA, all models show notable improvement in performance. HAMT, DUET, and TD-STP see SR
metric increases of 23.5, 18.41, 19.96 on validation seen split, and 13.92, 14.69, 16.98 on validation
unseen split. Setting 2: To distinguish the source of interference from the training phase, we have
also sampled high-frequency interference from the 1000 classes of ImageNet [48]. Due to the out-of-
domain interference, we find that the SR of baseline models is significantly more affected under this
setting. Taking TD-STP as an example, its SR on validation seen and validation unseen decreases by
35.75 and 27.55, respectively. In such challenging scenes, our FDA-enhanced models whose training
data only contains high-frequency and low-frequency information from Mp3d, perform remarkably
well, improving the SR of HAMT, DUET, and TD-STP by 17.83, 19.2, and 22.53 on validation seen,
and by 16.69, 19.08, and 19.03 on validation unseen, respectively. In most cases, the navigation
performances of the models have gained even greater improvements compared to the first setting.
These two settings illustrate FDA-enhanced models excelling in both the seen/unseen perturbed
images (val seen/unseen) and the seen/unseen perturbation images (MP3d/ImageNet). This serves
as compelling evidence of our method’s remarkable capability to recognize and capture essential
high-frequency information to boost navigation performance.

7



Table 6: Comparison with the visual and textual data augmentation methods on R2R task.
Validation Unseen

TL NE↓ SR↑ SPL↑

Visual Data Augmentation

HAMT 11.50 3.57 65.64 60.15
HAMT+ENVEDIT 11.15 3.48 67.31 62.84
HAMT+FDA 11.86 3.44 67.52 62.16

TD-STP 13.53 3.28 69.65 62.97
TD-STP+ENVEDIT 14.70 3.20 69.82 62.55
TD-STP+FDA 13.68 3.02 71.78 64.00

Textual Data Augmentation

Follower - - 38.3 -
Follower+FDA - - 45.6 -
Follower+Speaker - - 40.4 -
Follower+Speaker+FDA - - 46.3 -

TD-STP− 13.78 3.62 65.73 58.72
TD-STP−+FDA 14.77 3.44 66.96 59.72
TD-STP−+PREVALENT 13.53 3.28 69.65 62.97
TD-STP−+PREVALENT+FDA 13.68 3.02 71.78 64.00

Comparison with Existing Data Augmentation Methods. Table 6 shows the comparison with the
visual data augmentation method ENVEDIT2 [33], and textual data augmentation methods Speaker
[15] and PREVALENT [20]. Compared to ENVEDIT which aims to increase the diversity of the
environment by using GANs to alter environment style, our method, which also serves as a visual
data augmentation method, demonstrates a clear superiority, with SR of HAMT/TD-STP increased by
0.21/1.96 on validation unseen, respectively. In comparison with the textual augmentation methods,
the results indicate that our FDA method demonstrates consistent improvements on both baseline
models Follower and TD-STP−3. Additionally, it effectively complements the two textual augmenta-
tion methods, further enhancing cross-modal navigation performance. Our FDA has demonstrated
superior performance without relying on external models such as visual/textual generative models.
As a result, our method could greatly reduce the complexity of data augmentation work in VLN field.

3.4 Comparison with the State-of-the-art Methods

We compare our method with SoTA methods on R2R, RxR, CVDN and REVERIE tasks.

On R2R task, Table 7 shows our method achieves the best performance on both validation unseen
and test splits. Compared to the DUET model which has been fed with the extra object features not
included in our method, the SR/SPL of our method still outperforms it by 2/4 points on validation
unseen. Compared to TD-STP, Our method shows SR/SPL improvements of 2/1 and 3/2 points on
validation unseen and test splits. On RxR task, Table 8 shows the comparisons between our method
and previous methods. The results show that our method outperforms the previous SoTA HAMT
with SPL/nDTW improved by 1.8/2.1 and 0.4/1.5 on validation unseen and test splits, respectively.
On CVDN task, our method also shows superior performance over previous methods in Table 9.
Compared to HAMT, the previous SoTA, our method gains a GP improvement of 0.05/0.36/0.25 on
validation seen, validation unseen and test splits, respectively. On REVERIE task, as shown in Table
10, our method outperforms the previous SoTA DUET with the increase of 2.92/2.98/3.49/3.30 and
1.21/0.49/2.03/1.47 in SR/SPL/RGS/RGSPL on validation unseen and test splits, respectively.

The remarkable performance analyzed above has demonstrated the excellence of our method in
enhancing cross-modal navigation, as well as the outstanding adaptability across different tasks.

4 Related Work

Vision-and-Language Navigation. Anderson et al. [5] are the first to introduce the Vision-and-
Language Navigation, where an agent is asked to follow an English instruction in R2R to navigate.

2Unlike ENVEDIT, our method operates without external models. To ensure fairness, we compare our
method with ENVEDIT’s Editing Style, which relies on the fewest external models.

3TD-STP− denotes the TD-STP model after excluding data augmentation PREVALENT.
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Table 7: Comparison with SoTA methods on R2R task.
Validation Unseen Test Unseen

TL NE↓ SR↑ SPL↑ TL NE↓ SR↑ SPL↑
Seq2Seq [5] 8.39 7.81 22 - 8.13 7.85 20 18
Speaker-Follower [15] 6.62 - 35 - 14.82 6.62 35 28
SMNA [39] - 5.52 45 32 18.04 5.67 48 35
RCM [58] 11.46 6.09 43 - 11.97 6.12 43 38
EGP [12] - 4.83 56 44 - 5.34 53 42
EnvDrop [51] 10.70 5.22 52 48 11.66 5.23 51 47
PREVALENT [20] 10.19 4.71 58 53 10.51 5.30 54 51
RelGraph [23] 9.99 4.73 57 53 10.29 4.75 55 52
RecBert [25] 12.01 3.93 63 57 12.35 4.09 63 57
Airbert [19] 11.78 4.01 62 56 12.41 4.13 62 57
DUET [10] 13.94 3.31 72 60 14.73 3.65 69 59
DUET∗ [10] 12.95 3.38 70 60 - - - -
HAMT [9] 11.46 2.29 66 61 12.27 3.93 65 60
HAMT∗ [9] 11.50 3.57 66 60 - - - -
TD-STP [64] - 3.22 70 63 - 3.73 67 61
TD-STP∗ [64] 13.53 3.28 70 63 14.71 3.79 66 60

Ours (TD-STP + FDA) 13.68 3.02 72 64 14.76 3.41 69 62

Table 8: Comparison with SoTA methods on RxR task.
Validation Unseen Test Unseen

nDTW↑ SDTW↑ SR↑ SPL↑ nDTW↑ SDTW↑ SR↑ SPL↑
Multilingual Baseline [29] 38.9 18.2 22.8 - 36.8 16.9 21.0 18.6
Monolingual Baseline [29] 44.5 23.1 28.5 - 41.1 20.6 25.4 22.6
SAA [34] 52.7 33.0 40.0 36.0 46.8 29.1 35.4 31.6
EnvDrop + CLIP-ViL [49] 55.7 - 42.6 - 51.1 32.4 38.3 35.2
HAMT [9] 63.1 48.3 56.5 56.0 59.9 45.2 53.1 46.6
HAMT∗ [9] 64.3 49.6 58.1 54.0 60.5 47.0 55.5 48.4

Ours (HAMT+FDA) 66.4 51.6 59.8 55.8 62.0 47.3 55.5 48.8

After that, model architecture [58, 4, 24, 12, 23, 25, 55, 1, 34, 9, 42, 10, 37, 7, 59, 2, 3, 22], strategy
design [28, 40, 39, 17, 8, 18], training paradigm [66, 62, 54, 38], loss design [65, 36, 32], reward
shaping [27, 56, 21], pretraining [35, 20, 41, 46, 49, 61, 47] and probing experiments [26, 63, 67] have
been widely explored. Then, a more challenging task RxR [29] containing multilingual instructions
and longer trajectories is proposed. A series of works [34, 32, 21, 9] have explored the above and
make significant progress. CVDN [52] is a task asking an agent to navigate following multi-turn
human-to-human dialog. In addition to requiring the agent to have cross-modal understanding, it also
demands a certain level of reasoning ability. Works [50, 20, 69, 68, 60, 9] focusing on that have been
investigated to advance the development of this field. While these works have conducted extensive
exploration, they have almost neglected the frequency domain that our work has demonstrated to be
crucial for VLN navigation.

Table 9: Comparison with SoTA methods on CVDN task.

Val Seen Val Unseen Test Unseen

PREVALENT [20] - 3.15 2.44
CMN [69] 7.05 2.97 2.95
VISITRON [50] 5.11 3.25 3.11
SCoA [68] 7.11 2.85 3.31
MT-RCM+EnvAg [60] 5.07 4.65 3.91
HAMT [9] 6.91 5.13 5.58
HAMT∗ [9] 7.43 5.03 5.43

Ours (HAMT+FDA) 7.48 5.39 5.68
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Table 10: Comparison with SoTA methods on REVERIE task.

Validation Unseen Test Unseen

TL OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑ TL OSR↑ SR↑ SPL↑ RGS↑ RGSPL↑
RecBERT [25] 16.78 35.02 30.67 24.90 18.77 15.27 15.86 32.91 29.61 23.99 16.50 13.51
Airbert [19] 18.71 34.51 27.89 21.88 18.23 14.18 17.91 34.20 30.28 23.61 16.83 13.28
HAMT [9] 14.08 36.84 32.95 30.20 18.92 17.28 13.62 33.41 30.40 26.67 14.88 13.08
DUET [10] 22.11 51.07 46.98 33.73 32.15 23.03 21.30 56.91 52.51 36.06 31.88 22.06
DUET* [10] 18.76 48.59 44.65 32.92 28.57 21.01 16.31 52.77 48.41 35.96 28.31 20.61
DUET+FDA 19.04 51.41 47.57 35.90 32.06 24.31 17.30 53.54 49.62 36.45 30.34 22.08

Data Augmentation in Vision-and-Language Navigation. In terms of text augmentation, Fried et al.
[15], Wang et al. [57] and Dou et al. [14] use instruction generators to generate pseudo-instructions
according to sampled trajectories. In terms of vision augmentation, Fu et al. [16] learn a sampler
to sample the challenging paths to enhance the agent’s ability for handling them. Tan et al. [51]
use environment dropout on seen environments to mimic unseen environments and generate the
pseudo-instructions for it with instruction generator. Parvaneh et al. [43] learn a model to generate
counterfactuals on seen environments to simulate unseen environments. Li et al. [33] adopt GAN
to transfer the environment style for increasing the diversity of the environment. However, all of
these works focus on the augmentation in the spatial domain and have ignored the high-frequency
information which is crucial for cross-modal matching. Moreover, they have to rely on extra generator
models, which require intricate design and will increase the model burden.

Data Augmentation in Robotics. Domain randomization is a form of Data Augmentation (DA)
that has shown effectiveness in transferring reinforcement learning policies from simulation to the
real world [53]. In contrast, Cobbe et al. [11] propose a modification to Cutout [13], where multiple
rectangular regions of varying sizes are masked with a random color for each observation. Lee et al.
[31] use a randomized (convolutional) neural network that adds random perturbations to the input
observations, which helps the trained agents learn more robust features that are invariant across diverse
and randomized environments. RAD [30] investigates the general DAs for robotics on both pixel-
based and state-based inputs. In this paper, we propose a simple and effective frequency-enhanced
DA for the cross-modal task VLN, a fundamental task in robotics.

5 Conclusion

Shifting from the perspective of spatial domain previous works mainly focus on, we provide a first-
of-its-kind in-depth analysis of the frequency domain information in VLN tasks. Our findings have
demonstrated the importance of high-frequency information in enhancing navigation performance. In
light of the findings, we further propose the Frequency-enhanced Data Augmentation (FDA) method,
a simple and effective data augmentation technique to boost a model’s capability to discern and
capture essential high-frequency information without the need for additional auxiliary generative
models. Our method on a range of VLN tasks, including R2R, RxR, CVDN and REVERIE, achieves
notable performances and shows great adaptability across different VLN models. We hope our work
can offer a practical solution and bring new insights to the VLN research community.

Limitations and Future Work. Our work focuses on enhancing the model’s general ability to
recognize and capture essential high-frequency information. However, we have not yet explored
the fine-grained correlation between frequency and specific scenes or categories. This area of
investigation remains an avenue for future exploration.
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