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ABSTRACT

Video frame interpolation (VFI), which generates intermediate frames from given
start and end frames, has become a fundamental function in video generation appli-
cations. However, existing generative VFI methods are constrained to synthesize
a fixed number of intermediate frames, lacking the flexibility to adjust generated
frame rates or total sequence duration. In this work, we present ArbInterp, a novel
generative VFI framework that enables efficient interpolation at any timestamp and
of any length. Specifically, to support interpolation at any timestamp, we propose
the Timestamp-aware Rotary Position Embedding (TaRoPE), which modulates
positions in temporal RoPE to align generated frames with target normalized times-
tamps. This design enables fine-grained control over frame timestamps, addressing
the inflexibility of fixed-position paradigms in prior work. For any-length interpo-
lation, we decompose long-sequence generation into segment-wise frame synthesis.
We further design a novel appearance-motion decoupled conditioning strategy: it
leverages prior segment endpoints to enforce appearance consistency and temporal
semantics to maintain motion coherence, ensuring seamless spatiotemporal tran-
sitions across segments. Experimentally, we build comprehensive benchmarks
for multi-scale frame interpolation (2× to 32×) to assess generalizability across
arbitrary interpolation factors. Results show that ArbInterp outperforms prior
methods across all scenarios with higher fidelity and more seamless spatiotempo-
ral continuity. Video demos and code are provided on the anonymous website:
https://noname-cv.github.io/iclr2026website/.

1 INTRODUCTION

With the advancements enabled by large-scale pretraining, text-to-video and image-to-video gen-
eration models (Kong et al., 2024; Wang et al., 2025; Yang et al., 2024; Chen et al., 2025; Zhou
et al., 2024) have demonstrated remarkable prowess in synthesizing realistic videos for complex
scenes, enabling a wide spectrum of downstream applications. Among these, Video Frame In-
terpolation (VFI)—the task of generating coherent intermediate frames from given start and end
frames—remains a fundamental and widely used capability. Recent work has explored adapting
pretrained video generation models for VFI, such as leveraging image-to-video models to produce
high-quality interpolations conditioned on start and end frames (Wang et al., 2024; Feng et al., 2024;
Xing et al., 2024b; Zhang et al., 2025; Xing et al., 2024a).

However, all existing works strictly adhere to the fixed interpolation paradigm, as shown in Figure 1,
where a predetermined number of intermediate frames is generated from given start and end frames.
This paradigm inherently hinders practical flexibility, as it precludes users from dynamically adjusting
frame counts or frame rates (FPS) to meet specific needs. Moreover, unlike other conditional tasks
(e.g., video prediction), VFI imposes unique requirements: it not only demands temporal consistency
between intermediate and input frames but also requires fine-grained semantic understanding of input
frames to generate plausible in-between frames. The fixed-frame paradigm, however, fails to fully
model continuous motion dynamics—this is because it only accommodates fixed-frame-rate inputs.
This limitation thereby restricts the model’s capacity to reason about coherent motion fields and
synthesize smooth spatiotemporal transitions.

To overcome the aforementioned bottleneck, we introduce ArbInterp, a novel generative frame
interpolation paradigm that enables frame generation specified at any timestamps and of any length,
as illustrated in Figure 1 (b). Specifically, by defining the start frame at timestamp t = 0 and the
end frame at t = 1, ArbInterp aims to synthesize intermediate frames for any target timestamp
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Figure 1: A comparison between the fixed interpolation paradigm (a) and our proposed ArbInterp
(b). ArbInterp enables flexible control of the temporal positions of generated intermediate frames by
specifying any timestamps between 0 and 1.

t within this interval. This design allows flexible control over the temporal position of generated
frames: for example, t = [0, 0.5, 1] generates a single middle frame for 2× interpolation, while
t = [0, 0.25, 0.5, 0.75, 1] achieves 4× interpolation. What’s more, by sampling only a small set of
timestamps each time rather than requiring full video sequences, our approach substantially reduces
computational costs while enhancing the generative model’s fine-grained temporal awareness.

The key challenge lies in effectively injecting timestamp information into the generative model. To
achieve this, we propose Timestamp-aware Rotary Position Embedding (TaRoPE), built on the insight
that in existing DiT-based (Peebles & Xie, 2023) video generative models, each frame determines its
relative position within the video sequence exclusively through temporal RoPE (Zhao et al., 2025).
This means that adjusting the temporal RoPE directly alters how the current frame perceives its actual
position in the sequence. By adapting the temporal RoPE to target timestamps, our method allows
the model to perceive custom positions without introducing additional parameters. In practice, this
requires only minimal fine-tuning to transfer pre-trained generative models to the frame interpolation
task, demonstrating remarkable efficiency and generality.

Theoretically, treating the interval between start and end frames as a continuous motion field enables
our approach to generate an infinite number of interpolations. Moreover, by specifying timestamps
incrementally, long-term frame generation can be decomposed into sequential segments. For example,
a long video generation with timestamps [0, 0.01, 0.02, . . . , 0.99, 1] can be divided into multiple
segments, such as [0, 0.01, . . . , 0.10, 1], [0, 0.11, . . . , 0.20, 1], and so on. However, the inherent
stochasticity of generative models can cause discontinuities in motion and appearance across segments.
To address this, we further introduce a motion-appearance decoupling conditioning strategy to enhance
spatiotemporal continuity between segments. Specifically, we feed the last frame of the previous
segment as a conditioning input to preserve appearance consistency and inject motion information
extracted from the last N frames into the DiT forward process to maintain motion coherence. This
dual injection mechanism significantly enhances cross-segment consistency, enabling high-fidelity
infinite frame interpolation with seamless transitions in both visual appearance and motion dynamics.

Experimentally, we validate the effectiveness of the ArbInterp framework on the recently open-
sourced video generation model of Wan (Wang et al., 2025). We find that fine-tuning for only 20,000
steps using 8 GPUs (96GB) is sufficient to achieve our goals. To rigorously assess generalizability,
we construct comprehensive benchmarks spanning multi-scale frame interpolation tasks (e.g., 2×, 8×,
16×, and 32× interpolation). Experimental results show that ArbInterp outperforms prior methods
across all tested scenarios: it achieves higher fidelity and seamless spatiotemporal continuity in
different interpolation ratios from 2x to 32x. These results underscore our framework’s superiority in
balancing flexibility and generative quality for real-world VFI.

Contributions. In summary, the contributions of this paper are as follows:

• We propose a novel generative frame interpolation paradigm, ArbInterp, which can control
the generated frames by specifying any continuous timestamps. By integrating timestamp
controllability into generative modeling, our approach demonstrates a superior flexibility
and ability to model continuous dynamics.

• To achieve long-term frame interpolation, we design a novel motion-appearance decoupling
conditioning strategy to efficiently enhance the spatiotemporal continuity between adjacent
segments.

• We meticulously constructed comprehensive benchmarks encompassing multi-scale frame
interpolation. Experimental results demonstrate that ArbInterp significantly outperforms
previous models in both flexibility and performance.
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2 RELATED WORK

2.1 VIDEO FRAME INTERPOLATION

Current video frame interpolation methods are broadly categorized into deterministic and generative
approaches. Deterministic methods (Huang et al., 2022; Zhang et al., 2023; Reda et al., 2022),
dominated by flow-based frameworks, typically predict intermediate optical flows between input
frames and synthesize intermediate frames via warping operations. In these works, timestamps
are typically integrated via optical flow scale factors or fed into networks as feature. However,
constrained by limited data scales and model capacities, these methods struggle to accurately model
motions in complex scenes. In contrast, generative models (Zhang et al., 2025; Jain et al., 2024; Feng
et al., 2024; Wang et al., 2024; Xing et al., 2024b;a)—particularly those leveraging pre-trained video
generation models adapted for interpolation tasks—exhibit superior generalization in challenging
scenarios. These generative strategies can be further classified into two paradigms: (1) leveraging
image-to-video conditional models (e.g., SVD) to generate videos conditioned on start and end frames
separately and then merge the results into one video; and (2) latent-space conditioning methods,
which integrate input frame information by concatenating or replacing latent codes and fine-tune
models to guide intermediate frame synthesis. Despite their advancements, both categories adhere
to a fixed-interpolation paradigm, restricting output to a predefined number of frames with uniform
temporal spacing. In contrast, our method, ArbInterp, overcomes these limitations by enabling the
generation of frames at arbitrary continuous timestamps between input frames.

2.2 ROPE IN VIDEO GENERATION

Rotary Position Embedding (RoPE) (Su et al., 2024) has become the prevailing approach in con-
temporary DiT-based video generative models (Zhuo et al., 2024; Wang et al., 2025; Yang et al.,
2024), thanks to its precisely defined relative position information and outstanding performance. In
most scenarios, the temporal position of each frame is simply its position within the current clip.
For long-term generation, some methods endow frames with their true indices throughout the entire
video (Guo et al., 2025; Zhang & Agrawala, 2025; Wu et al., 2024). A recent study, RIFLEx (Zhao
et al., 2025), demonstrates effective training-free length extrapolation by adjusting the intrinsic
frequency in RoPE, highlighting the significance of RoPE in the temporal sequencing of generated
videos. In this work, we introduce Timestamp-aware RoPE (TaRoPE), which assigns each frame
a continuous timestamp within the range of 0 to 1 as its temporal position, rather than its index.
This innovative design empowers the model to capture motions between input frames with infinite
fine-grained precision and generate any frame at any timestamp.

2.3 LONG-TERM VIDEO GENERATION

Current approaches for long-video generation can be categorized into two distinct types. The first
type involves decomposing a long video generation into the generation of multiple consecutive short
segments (Henschel et al., 2024; Kim et al., 2024; Yin et al., 2024; Weng et al., 2024; Zhang &
Agrawala, 2025; Villegas et al., 2022). The mainstream of such methods employs an autoregressive
manner akin to frame-by-frame or segment-by-segment generation, with the key challenge lying in
ensuring overall coherence and quality. For example, the recent work FramePack (Zhang & Agrawala,
2025) balances efficiency and performance by compressing the tokens of historical frames by manual
strategy. The second type first generates anchor frames and then generates videos segmentally.
Nuwa-XL (Yin et al., 2023), for instance, adopts a divide-and-conquer approach to achieve coarse-
to-fine video generation. Notably, our proposed ArbInterp can seamlessly accommodate both of
these two designs, enabling any-length frame interpolation. Meanwhile, we introduce a novel
appearance-motion decoupled conditioning strategy to enhance spatio-temporal coherence.

3 METHOD

3.1 ARBINTERP

Given the first frame x0 and the last frame x1, the goal of video frame interpolation is to generate
intermediate frames. Previous works on generative frame interpolation (Wang et al., 2024; Feng
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Figure 2: Overall architecture of ArbInterp. Our framework enables arbitrary-length interpo-
lation with continuous timestamps using Timestep-aware Rotary Position Embedding (TaROPE).
Additionally, we introduce an appearance-motion decoupling conditioning strategy to enhance the
performance of long-term interpolation. This strategy ensures appearance consistency via prefix
frame guidance and enforces motion continuity through motion tokens.

et al., 2024; Xing et al., 2024b) can only produce a fixed number of frames, lacking flexibility and
the ability to model continuous motion between frames at a fine-grained level. To address these
limitations, we propose a novel framework, ArbInterp, which can generate intermediate frames at
arbitrary temporal positions specified by continuous timestamps. Formally, given a timestamp list
T = [0, t1, . . . , tn, 1] and input frames x0 and x1, ArbInterp generates corresponding intermediate
frames as follows:

[xt1 , . . . ,xtn ] = ArbInterp (x0,x1,T ) , (1)

where ti can be any value between 0 and 1. To leverage the powerful generative capabilities of pre-
trained models, we build ArbInterp upon the recent open-source video generation model Wan (Wang
et al., 2025). As shown in Figure 2, ArbInterp introduces two novel designs. First, we enable
the denoising network to generate frames corresponding to specific timestamps by introducing
Timestamp-aware Rotary Position Embedding (TaRoPE), achieving fine-grained temporal modeling
capabilities, as detailed in Section 3.3. Subsequently, to enhance the quality of long-term video
interpolation, we design an appearance-motion decoupling conditioning strategy to strengthen the
spatio-temporal coherence across different segments, as explained in Section 3.4. Based on these two
designs, ArbInterp supports generating frames of arbitrary length at any continuous timestamps.

3.2 TRANSFERRING VIDEO GENERATION MODELS TO FRAME INTERPOLATION

For a video x, Wan (Wang et al., 2025) first performs spatio-temporal compression via a tok-
enizer (Kingma & Welling, 2022) to obtain video latents z. During training, for any sampled timestep
n ∈ [0, 1], Wan adds Gaussian noise ϵn ∼ N (0, I) to z to produce noisy latents zn, and trains a
denoising network using the flow matching framework (Lipman et al., 2023; Liu et al., 2023):

L = ∥vn − uθ(z
n, n,y)∥2, where vn = ϵn − z, (2)

where y denotes additional conditional information such as text, and uθ represents the denoising
network. The denoising network is composed of L diffusion transformer blocks, each encompassing
Adaptive Layer Normalization (AdaLN) (Peebles & Xie, 2023), self-attention, cross-attention, and
a multi-layer perceptron (MLP). Self-attention facilitates information exchange within the video,
while cross-attention incorporates auxiliary conditional information. To adapt Wan to the frame
interpolation task, we adopt the token replace method in Open-Sora (Zheng et al., 2024), substituting
the noisy latents of the first and last frames with the ground-truth latents to guide the prediction
of intermediate frames. Additionally, to simplify the correspondence between each latent and its
timestamp, we perform only spatial compression during tokenization. Since our method does not
require predicting all frames simultaneously, the training cost remains computationally feasible.
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Figure 3: Comparison of interpolation strategies in ArbInterp. ArbInterp supports multiple
interpolation strategies: (a) Direct Interpolation for short-range interpolation, and two for long-term
scenarios: (b) Segment-by-Segment Interpolation and (c) Hierarchical Interpolation.

3.3 TIMESTAMP-AWARE ROPE

3.3.1 DEFINITION

Vanilla Temporal RoPE To distinguish the spatio-temporal positions of each token, Wan applies
3D RoPE (Su et al., 2024) to each token in z. Specifically, Wan partitions the channels of each token
into three equal parts and applies RoPE for each dimension respectively. Since our work primarily
focuses on temporal RoPE, we omit spatial RoPE in the following discussion. For the k-th latent zk
in the given video latent z, the original temporal RoPE rotates it by θk, as shown in Equation 3:

z̃k = RoPE(zk, k) = zke
iθk , θk = kθbase, (3)

By applying temporal RoPE to both query (Q) and key (K) in self-attention, the attention score
between any two latents at indices k and j is influenced by their relative positions:

Ak,j = Re[⟨z̃k, z̃j⟩] = Re[⟨zk, zj⟩ei(k−j)θbase ]. (4)

Notably, temporal RoPE is the sole component in the denoising model that enables each frame’s
latent to perceive its temporal position, as all other operations are position-agnostic. This implies
that altering the temporal RoPE assigned to each frame can modify its temporal position in the final
generated sequence.

Introduction of Timestamp In the default temporal RoPE, each latent’s temporal position is
represented by an absolute index, meaning the range of |k − j| is fixed and always integer-valued
when training with a fixed sequence length. For frame interpolation tasks, this leads the model to
over-rely on latents at specific fixed positions. For example, when trained on 16 frames, the model
tends to depend on the latents at positions 0 and 15, as these frames provide the actual conditional
information. This rigid dependency restricts the model’s ability to generalize to sequences of varying
lengths.

To address this issue, we propose Timestamp-aware RoPE (TaRoPE), which specifies the temporal
position of frames using continuous timestamps. Instead of using the latent’s position in the input
sequence, we adopt its real relative position between the first and last frames as the timestamp for
temporal RoPE. For a sampled video with N frames, the timestamp tk of the k-th frame is computed
as:

tk =
k − 1

N − 1
, s.t. 1 ≤ k ≤ N. (5)

As illustrated in Figure 2, the timestamp of the first frame is fixed at 0, and that of the last frame at 1.
This approach normalizes frame interpolation for videos of arbitrary lengths into a continuous interval
from 0 to 1. Consequently, the network learns to utilize information from latents at timestamps 0 and
1 to model the continuous motion field in a length-invariant manner.

3.3.2 TRAINING AND INFERENCE

To fully train the model’s sensitivity to continuous timestamps, we adopt a segment-wise training
strategy. During each sampling step, the model only predicts a segment of the complete video

5
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Figure 4: Comparison of different conditioning strategies: (a) direct latent conditioning, (b) cross-
attention conditioning, and (c) our proposed appearance-motion decoupling conditioning strategy.

sequence. In practice, because TaRoPE treats videos of arbitrary length as continuous segments
within [0, 1], we can fully train on timestamps of varying granularities during training. For example,
for a 200-frame video, we set the first and last frames as timestamps 0 and 1. When predicting frames
100 and 101, the input timestamp list becomes [0, 1/2, 101/200, 1]. As described in the appendix,
our training involves predicting 1 to 19 intermediate frames, with a maximum interval of 2 seconds
between the first and last frames. Given that the training set includes videos with frame rates ranging
from 30fps to 120fps, the training timestamps naturally cover values from 1/2 to 1/240. Through
this approach, the denoising network can effectively learn to generate corresponding frames from
continuous timestamps. Concurrently, training costs are significantly reduced as there is no need to
process entire video sequences.

In inference, timestamps are always normalized to [0, 1], regardless of test length. For example, pre-
dicting [0, 0.2, 0.4, 0.6, 0.8, 1] can be decomposed into [0, 0.2, 0.6, 1] then [0.6, 0.8, 1], ensuring test
sequences never exceed the training maximum. Building on the design described above, ArbInterp
supports multiple adaptive inference strategies to accommodate varying sequence lengths, as shown
in Figure 3. For short sequences, we employ direct interpolation, generating the entire interpo-
lated sequence in a single forward pass. For longer sequences with high computational demands,
we introduce two approaches: segment-by-segment interpolation, where target timestamps are
partitioned into non-overlapping segments processed sequentially; and hierarchical interpolation,
which first predicts sparse anchor frames at coarse temporal intervals then refines the sequence by
interpolating between these anchors. Hierarchical interpolation can better orchestrate global motion
trajectories. However, segment-by-segment interpolation offers stronger real-time responsiveness in
latency-sensitive scenarios (e.g., gaming). Both strategies reduce the computational complexity in
self-attention from O(N2) to O

(
N2

M

)
when dividing a sequence of length N into M segments.

3.4 APPEARANCE-MOTION DECOUPLING CONDITIONING

Despite the effectiveness of segment-wise inference in ArbInterp for handling long-term interpola-
tion, the stochastic nature of generative models introduces spatio-temporal inconsistencies between
adjacent segments due to the indeterminate motion patterns between input frames. To address this
challenge, specifically, our objective is to ensure spatio-temporal coherence between the current
segment si and its preceding segment si−1 by leveraging information from si−1. A straightforward
solution, as shown in Figure 4(a), is to concatenate the latent of si−1 directly into the input. Al-
though effective, this method significantly increases computational overhead during both training
and inference. Alternatively, another simple approach is to inject prior segment information through
cross-attention (Figure 4(b)). While efficient, this approach yields weaker appearance consistency
compared to direct latent concatenation (Zhang et al., 2024).

To balance efficiency and performance, we introduce the appearance-motion decoupled conditioning
strategy, as shown in Figure 4(c). For appearance coherence, we use the last frame of si−1 as a
prefix frame in the input to guide the generation of si. This minimal modification ensures visual
continuity while incurring an acceptable computational cost. For motion coherence, inspired by
the fact that modern generative models can control video motion using text prompts (e.g., ”rotating
movement”), we extract semantic-level motion tokens from the last N frames of si−1 using a Motion
Semantic Extractor (MSE) to regulate the motion of the current segment. The MSE first employs a
temporally enhanced CLIP model (Radford et al., 2021b) to extract spatio-temporal features aligned

6
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Table 1: Quantitative comparison with the state-of-the-art methods on MultiInterpBench. The
boldfaced and underlined colors indicate the best and second best performing methods, respectively.
↑ indicates higher is better, ↓ indicates lower is better (applied to individual metrics in the header).

Method
Interp.
Rate

FID
(↓)

FVD
(↓)

LPIPS
(↓)

CLIPimg

(↑)

VBench Metrics (↑ for all)

Subject

Consist.

Background

Consist.

Temporal

Flick.

Motion

Smooth.

Aesthetic

Quality

Imaging

Quality

Overall

Average

LDMVFI

2x

85.8 - 0.297 0.863 0.9212 0.9198 0.9120 0.9403 0.4732 0.5901 0.7928
TRF 108.5 - 0.435 0.879 0.8958 0.9060 0.8714 0.8744 0.4736 0.6224 0.7739
GI 90.8 - 0.496 0.893 0.9202 0.9156 0.8496 0.8527 0.4735 0.6252 0.7728
DynamiCrafter 83.6 - 0.249 0.877 0.9228 0.9219 0.9189 0.9357 0.4829 0.6154 0.7996
ArbInterp-SVD 59.1 - 0.152 0.902 0.9395 0.9473 0.9284 0.9475 0.4925 0.6314 0.8144
ArbInterp 44.9 - 0.076 0.913 0.9590 0.9719 0.9353 0.9644 0.5027 0.6382 0.8286
LDMVFI

8x

62.2 - 0.232 0.881 0.9198 0.9371 0.9269 0.9609 0.4725 0.6036 0.8035
TRF 59.0 - 0.410 0.877 0.8974 0.9035 0.9080 0.9378 0.4551 0.5932 0.7825
GI 62.5 - 0.505 0.887 0.9190 0.9146 0.9117 0.9264 0.4584 0.6118 0.7903
DynamiCrafter 51.8 - 0.282 0.876 0.9246 0.9242 0.9387 0.9648 0.4701 0.6169 0.8066
ArbInterp-SVD 40.6 - 0.183 0.893 0.9352 0.9497 0.9412 0.9695 0.4857 0.6342 0.8193
ArbInterp 33.0 - 0.123 0.910 0.9529 0.9681 0.9485 0.9749 0.5036 0.6405 0.8314
LDMVFI

16x

49.6 397.2 0.281 0.897 0.9301 0.9242 0.9477 0.9790 0.4681 0.6057 0.8091
TRF 47.3 530.4 0.407 0.871 0.8997 0.9255 0.9331 0.9609 0.4714 0.5973 0.7980
GI 53.4 534.2 0.516 0.879 0.9176 0.9279 0.9385 0.9562 0.4741 0.6116 0.8043
DynamiCrafter 42.3 368.6 0.297 0.864 0.9266 0.9261 0.9515 0.9744 0.4703 0.6107 0.8099
ArbInterp-SVD 35.3 279.8 0.205 0.898 0.9384 0.9446 0.9490 0.9801 0.4951 0.6359 0.8286
ArbInterp 28.4 211.2 0.155 0.904 0.9486 0.9645 0.9572 0.9807 0.5077 0.6418 0.8334
LDMVFI

32x

52.6 753.6 0.358 0.817 0.9019 0.9320 0.9501 0.9695 0.4924 0.5997 0.8076
TRF 50.8 1011.5 0.500 0.823 0.8751 0.9132 0.9274 0.9528 0.4538 0.5582 0.7801
GI 54.3 986.7 0.557 0.846 0.8963 0.9166 0.9291 0.9503 0.4566 0.5639 0.7855
DynamiCrafter 46.4 732.7 0.374 0.825 0.8985 0.9334 0.9528 0.9750 0.4756 0.6009 0.8060
ArbInterp-SVD 32.8 409.3 0.174 0.882 0.9247 0.9549 0.9562 0.9783 0.4973 0.6198 0.8219
ArbInterp 26.5 319.9 0.145 0.906 0.9441 0.9628 0.9624 0.9817 0.5023 0.6411 0.8324

with the text semantic space. These features are then compressed into a fixed number of motion
tokens via the Q-Former (Li et al., 2023a) to reduce redundancy. We enhance the temporal modeling
of CLIP by adapting last L layers of the original CLIP into spatio-temporal full attention augmented
with temporal embeddings. Additionally, we also extract in-clip motion tokens from the start and
end frames of si using a shared MSE, enabling the model to better align generated motions with
input constraints. Both types of motion tokens are injected into the network through the original
cross-attention that interact with text prompts. When the cross-attention parameters are frozen, the
MSE would learn to extract semantic information capable of controlling video motion, ensuring
consistent motion dynamics across segments. More structure details and ablations of the MSE are
provided in the supplementary materials.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We initialize ArbInterp based on the latest open-source video generation model Wan2.1-T2V-
1.3B (Wang et al., 2025). Our training dataset comprises 50,000 videos meticulously curated
from OpenVid (Nan et al., 2024). ArbInterp is trained on 8 GPUs (96GB) with a total batch size
of 16. Inspired by He et al. (2025), we divide the training into three stages: In the first stage, we
transfer the generation model to the frame interpolation task and finetune all parameters of DiT. The
input includes start and end frames, a random number of intermediate frames to be predicted, and an
optional prefix frame to ensure spatial consistency across different segments during testing. In the
second stage, we freeze the denoising network and train the motion semantic extractor individually to
learn the ability to extract motion semantics. The motion semantic extractor takes up to 8 preceding
frames as input. In the third stage, we train the entire model. The three stages are trained for 10k, 5k,
and 5k steps, respectively. More implementation details are provided in the supplementary materials.

4.2 MULTIINTERPBENCH

To evaluate the flexibility and coherence in video interpolation at different interpolation ratios, we
propose a new benchmark: MultiInterpBench. MultiInterpBench covers interpolation ratios of 2x,
8x, 16x, and 32x. For the first three ratios, ArbInterp employs direct interpolation in Figure 3(a),
while for 32x, we adopt the strategy in Figure 3(c) combined with our proposed appearance-motion
decoupling conditioning. The metrics include: (1) image-level metrics including LPIPS (Zhang et al.,
2018), FID (Heusel et al., 2017), and CLIP similarity score (CLIPimg) (Radford et al., 2021a); (2)
video-level metrics including FVD (Unterthiner et al., 2018; 2019) and VBench (Huang et al., 2024).
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Start/End 

Frames

GI

ArbInterp

(Ours)

DynamiCrafter

LDMVFI

TRF

Figure 5: Visual comparison. The timestamps of the intermediate frames are 0.25, 0.5, and 0.75,
respectively. ArbInterp demonstrates significant advantages in stability and consistency.

Table 2: Ablation study on key designs of ArbInterp.

Timestamp
injection

Spatiotemporal
continuity

Step-time
(s) FID FVD Subject

Consist.

Background

Consist.

Temporal

Flick.

Motion

Smooth.

Aesthetic

Quality

Imaging

Quality

1 None N/A 2.3 38.7 476.8 0.9193 0.9402 0.9415 0.9620 0.4833 0.6299
2 Vanilla N/A 2.3 35.2 454.2 0.9210 0.9404 0.9439 0.9637 0.4852 0.6298
3 TaRoPE N/A 2.3 33.7 401.6 0.9272 0.9519 0.9517 0.9707 0.4859 0.6296
4 TaRoPE Latent Cond. 4.4 27.6 336.3 0.9390 0.9597 0.9601 0.9810 0.4922 0.6342
5 TaRoPE Cross-attn Cond. 2.7 28.4 342.1 0.9381 0.9582 0.9584 0.9792 0.4935 0.6358
6 TaRoPE w/o Motion 2.4 29.8 354.0 0.9376 0.9584 0.9549 0.9764 0.4937 0.6380
7 TaRoPE w/o Appearance 2.3 31.7 382.7 0.9297 0.9533 0.9592 0.9803 0.4902 0.6331
8 TaRoPE Ours 2.5 26.5 319.9 0.9441 0.9628 0.9624 0.9817 0.5023 0.6411

4.3 COMPARISON WITH THE STATE-OF-THE-ART METHODS

We compare ArbInterp with state-of-the-art generative frame interpolation methods: LDMVFI (Danier
et al., 2024), DynamiCrafter (Xing et al., 2024b), TRF (Feng et al., 2024), and GI (Wang et al., 2024).
Due to their inability to flexibly generate frames at arbitrary timestamps, we can only obtain their
results through approximate strategies. Specifically, when exceeding their default frame counts, we
use an iterative prediction strategy similar to Figure 3(c); when below, we use uniform sampling to
select frames. Since most baselines are based on SVD-like architectures, we also trained a variant of
ArbInterp based on SVD (Blattmann et al., 2023) (denoted as ArbInterp-SVD) for fair comparison.
Unlike the DiT architecture, we interpolate the absolute positional encoding in SVD to enable
generation at any timestamp.

Quantitative comparison. As shown in Table 1, benefiting from the flexibility and fine-grained
timestamp awareness brought by TaRoPE, our model significantly outperforms previous methods
across different interpolation ratios. Meanwhile, the performance superiority at 32x further demon-
strates the advantage of ArbInterp in long-term interpolation.

Qualitative comparison. As shown in Figure 5, compared to previous methods, our method
can generate smooth and continuous intermediate frames solely by specifying timestamps, fully
showcasing the flexibility and performance advantages of ArbInterp.

4.4 METHOD EXPLORATION

Ablation study. As presented in Table 2, we conduct ablation studies on the core components of
ArbInterp via performance analysis under 32x interpolation ratio. For timestamp incorporation, we
compare two baselines: direct fine-tuning without timestamp awareness (None) and MLP-based
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Segment#1 Segment#2

(a)

(b)

Figure 6: Visual comparison of appearance-motion decoupling conditioning strategies. (a) is
produced by direct segment-by-segment prediction. (b) is the result with our proposed strategy.

t = 0 t = 1/8 t = 2/8 t = 3/8 t = 4/8 t = 5/8 t = 6/8 t = 7/8 t = 1

Figure 7: Visualization of independently predicted intermediate frames at different timestamps.

injection (Vanilla). Meanwhile, we compare different strategies in Figure 4 and perform separate
ablations on motion and appearance components, as shown in rows ID 4-8 of the table. Based
on the ablation results, we can derive two key insights: (1) The TaRoPE approach outperforms
the Vanilla baseline across all metrics, with a particularly pronounced improvement in motion
smoothness. (2) Incorporating motion information yields substantial enhancements in temporal
flicker and motion smoothness, while integrating appearance information significantly boosts subject
and background consistency. In Figure 10, we further present a visual comparison, demonstrating the
improvement in spatiotemporal coherence achieved by our proposed strategy. What’s more, during
inference, compared to latent concatenation, our strategy not only delivers better performance but
also significantly improves computational efficiency by approximately 40%.

Evaluate the capability of arbitrary-time interpolation To demonstrate that ArbInterp, empow-
ered by the proposed TaRoPE, can directly generate intermediate frames corresponding to specified
continuous timestamps, we independently predicted frames at different timestamps, as shown in
Fig. 9. It is evident that ArbInterp can indeed perceive the continuous motion between the first and
last frames and generate corresponding frames according to the specified timestamps.

5 CONCLUSION

In this work, we present ArbInterp, a novel generative frame interpolation paradigm that can generate
an arbitrary number of intermediate frames by specifying continuous timestamps. To achieve this,
we introduce Timestamp-aware RoPE (TaRoPE), enabling the model to perceive the actual temporal
position of each frame rather than relying on fixed input indices. Through this simple yet effective
mechanism, ArbInterp theoretically supports infinite-length interpolation. Furthermore, we propose
an appearance-motion decoupling conditioning strategy to enhance spatio-temporal consistency
in long sequences. We design MultiInterpBench to rigorously evaluate ArbInterp. Experimental
results demonstrate the superior flexibility of ArbInterp across various interpolation ratios and
strong coherence of long-term video interpolation, offering new architectural possibilities for future
generative frame interpolation research.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors of this work have read and adhere to the ICLR Code of Ethics, and commit to upholding
ethical standards throughout the research, submission, and discussion processes.

For experimental validation, we use publicly available video datasets that comply with open data
usage agreements. These datasets do not contain unauthorized private content or copyrighted material
without permission, ensuring the legality and ethics of data acquisition and utilization.

Regarding potential societal impacts: While video frame interpolation (VFI) technology may be
misused for malicious purposes such as video forgery, our research focuses on its positive applications
(e.g., video frame rate enhancement). We advocate that users of this technology abide by ethical and
legal norms to avoid harmful use.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of the findings presented in this work on ArbInterp, we have made
comprehensive efforts as detailed in the main text, appendix, and supplemental materials.

The main text provides clear descriptions of the core architecture of ArbInterp, including the design
principles of the Timestamp-aware Rotary Position Embedding (TaRoPE) and the appearance-motion
decoupled conditioning strategy, which are essential for reconstructing the model. The appendix
further supplements key experimental details: it includes full specifications of dataset preprocessing
steps for the publicly used datasets and detailed training configurations (e.g., optimizer type, learning
rate schedule, batch size) employed in the experiments.

Additionally, we have prepared anonymous downloadable source code in provided website, which
contains the complete implementation of ArbInterp, along with scripts for model training and
evaluation. This code package aligns with the parameters and procedures described in the main text
and appendix, enabling researchers to replicate our experimental results. All evaluation metrics used
to assess interpolation performance are also clearly defined in the main text, ensuring consistency in
result verification.
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Sylvain Gelly. Fvd: A new metric for video generation. 2019.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang,
Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, and Dumitru Erhan. Phenaki: Variable
length video generation from open domain textual description. arXiv preprint arXiv:2210.02399,
2022.

Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
Jianxiao Yang, Jianyuan Zeng, et al. Wan: Open and advanced large-scale video generative models.
arXiv preprint arXiv:2503.20314, 2025.

Xiaojuan Wang, Boyang Zhou, Brian Curless, Ira Kemelmacher-Shlizerman, Aleksander Holynski,
and Steven M Seitz. Generative inbetweening: Adapting image-to-video models for keyframe
interpolation. arXiv preprint arXiv:2408.15239, 2024.

Wenming Weng, Ruoyu Feng, Yanhui Wang, Qi Dai, Chunyu Wang, Dacheng Yin, Zhiyuan Zhao,
Kai Qiu, Jianmin Bao, Yuhui Yuan, et al. Art-v: Auto-regressive text-to-video generation with
diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7395–7405, 2024.

Ziyi Wu, Aliaksandr Siarohin, Willi Menapace, Ivan Skorokhodov, Yuwei Fang, Varnith Chordia,
Igor Gilitschenski, and Sergey Tulyakov. Mind the time: Temporally-controlled multi-event video
generation. arXiv preprint arXiv:2412.05263, 2024.

Jinbo Xing, Hanyuan Liu, Menghan Xia, Yong Zhang, Xintao Wang, Ying Shan, and Tien-Tsin Wong.
Tooncrafter: Generative cartoon interpolation. ACM Transactions on Graphics (TOG), 43(6):1–11,
2024a.

Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen, Wangbo Yu, Hanyuan Liu, Gongye Liu,
Xintao Wang, Ying Shan, and Tien-Tsin Wong. Dynamicrafter: Animating open-domain images
with video diffusion priors. In European Conference on Computer Vision, pp. 399–417. Springer,
2024b.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. arXiv preprint arXiv:2408.06072, 2024.

Shengming Yin, Chenfei Wu, Huan Yang, Jianfeng Wang, Xiaodong Wang, Minheng Ni, Zhengyuan
Yang, Linjie Li, Shuguang Liu, Fan Yang, et al. Nuwa-xl: Diffusion over diffusion for extremely
long video generation. arXiv preprint arXiv:2303.12346, 2023.

Tianwei Yin, Qiang Zhang, Richard Zhang, William T Freeman, Fredo Durand, Eli Shechtman,
and Xun Huang. From slow bidirectional to fast causal video generators. arXiv preprint
arXiv:2412.07772, 2024.

Guozhen Zhang, Yuhan Zhu, Haonan Wang, Youxin Chen, Gangshan Wu, and Limin Wang. Ex-
tracting motion and appearance via inter-frame attention for efficient video frame interpolation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5682–5692, 2023.

Guozhen Zhang, Yuhan Zhu, Yutao Cui, Xiaotong Zhao, Kai Ma, and Limin Wang. Motion-aware
generative frame interpolation. arXiv preprint arXiv:2501.03699, 2025.

Hui Zhang, Dexiang Hong, Yitong Wang, Jie Shao, Xinglong Wu, Zuxuan Wu, and Yu-Gang Jiang.
Creatilayout: Siamese multimodal diffusion transformer for creative layout-to-image generation.
arXiv preprint arXiv:2412.03859, 2024.

Lvmin Zhang and Maneesh Agrawala. Packing input frame context in next-frame prediction models
for video generation. arXiv preprint arXiv:2504.12626, 2025.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 586–595, 2018.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Min Zhao, Guande He, Yixiao Chen, Hongzhou Zhu, Chongxuan Li, and Jun Zhu. Riflex: A free
lunch for length extrapolation in video diffusion transformers. arXiv preprint arXiv:2502.15894,
2025.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. Advances in Neural Information
Processing Systems, 36:49842–49869, 2023.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou,
Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all. arXiv
preprint arXiv:2412.20404, 2024.

Yuan Zhou, Qiuyue Wang, Yuxuan Cai, and Huan Yang. Allegro: Open the black box of commercial-
level video generation model. arXiv preprint arXiv:2410.15458, 2024.

Le Zhuo, Ruoyi Du, Han Xiao, Yangguang Li, Dongyang Liu, Rongjie Huang, Wenze Liu, Lirui
Zhao, Fu-Yun Wang, Zhanyu Ma, et al. Lumina-next: Making lumina-t2x stronger and faster with
next-dit. arXiv preprint arXiv:2406.18583, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix
A Model details 16

A.1 Details of transferring video generation models to frame interpolation . . . . . . . 16

A.2 Details of motion semantic extractor . . . . . . . . . . . . . . . . . . . . . . . . . 16

B More implementation details 17

B.1 Evaluation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.2 Training details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

C Additional results 18

C.1 Extension to streaming frame interpolation . . . . . . . . . . . . . . . . . . . . . . 18

C.2 Visual comparison of TaRoPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C.3 The effectiveness of motion decoupling . . . . . . . . . . . . . . . . . . . . . . . 19

C.4 Interpolation ratio beyond training . . . . . . . . . . . . . . . . . . . . . . . . . . 19

C.5 Ablation experiments across training stages . . . . . . . . . . . . . . . . . . . . . 20

D Limitation and future work 20

E Broader impact 20

F License of datasets and pre-trained models 21

G Use of Large Language Models (LLMs) 21

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A MODEL DETAILS

M
LP

C
ro

ss
 A

tt
n

× 𝑁3

Se
lf 

At
tn

Image Tokens

……

Previous 
Frames

𝑇 × 𝑁 × 𝐶

Start & End
Frames

or

QFormer 𝑁𝑞 × 𝐶

Queries
(𝑇 × 𝑁) × 𝐶

Tunable Frozen

……

Flatten

Temporally Enhanced CLIP

(𝑇 × 𝑁) × 𝐶

𝑇 × 𝐶

𝑁𝑞 × 𝐶

Motion Tokens

Spatial & Temporal 
Self Attn

Norm

MLP

× 𝑁2

Norm

Spatial Self Attn

Norm

MLP

× 𝑁1

Norm

……

Temporal 
Embedding

Figure 8: Structure of the motion semantic extractor. We first extract spatio-temporal features
using the temporally enhanced CLIP, then compress these features into motion tokens via Q-Formers.

A.1 DETAILS OF TRANSFERRING VIDEO GENERATION MODELS TO FRAME INTERPOLATION

In Section 3.2, we have already briefly introduced our strategy for transferring video generation
models to frame interpolation. Here we provide more details.

Starting from an input video x = {x1,x2, ...,xt} with t frames, we encode it with the video
tokenizer (Kingma & Welling, 2022) provided by Wan (Wang et al., 2025), where each frame
xi is individually encoded without temporal compression to get frame-wise video latents z =
{z1, z2, ...,zt}.

During training stages, for any timestep n ∈ [0, 1], we add a Gaussian noise to non-condition frames,
namely, frames excluding starting and end frames (i.e. z1 and zt), as well as prefix frame (i.e. z2) if
it exists. Formally, the noising add process can be define as

zn
i = n× ϵni + (1− n)× zi, 2 ≤ i ≤ t− 1, (6)

where ϵni ∼ N (0, I) is the Gaussian noise we add to each frame. Afterwards, we can obtain noisy
video latents zn = {z1, z2/zn

2 , z
n
3 , ...,z

n
t−1, zt}, which is inputted into ArbInterp to predict velocity

vector uθ(z
n, n,y). We calculate loss for non-condition frames only as

L =

t∑
i=1

mi ⊙ ∥vn − uθ(z
n, n,y)∥2, (7)

where vn,y, uθ is as explained in Equation 2, and mi ∈ {0, 1} indicates whether a frame is a
non-condition frame.

A.2 DETAILS OF MOTION SEMANTIC EXTRACTOR

The overall architecture of our Motion Semantic Extractor (MSE) is presented in Figure 8. Taking
a video clip or start and end frames as input, MSE firstly encode each frame into image tokens
independently. Afterward, the image tokens are fed into a temporally enhanced CLIP model, which is
initialized from a pre-trained CLIP (Radford et al., 2021b). This enhanced model comprises N1 +N2

layers, each consisting of a self-attention module, an MLP module, and layer normalization. The
initial N1 layers focus on spatial feature extraction, where self-attention modules operate exclusively
on tokens within each frame to capture spatial relationships. To be noted, the initial N1 layers
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are frozen to retain CLIP’s ability to capture spatial feature. Following these N1 layers, temporal
embeddings are added to the features of all frames to provide explicit temporal positional information.
The receptive field of self-attention in the subsequent N2 layers is expanded to encompass tokens
from all frames, enabling the modeling of global spatio-temporal information across the entire video
segment. Finally, the temporally enhanced CLIP model outputs a spatio-temporal video embedding.
Both the temporal embedding and the final N2 layers are tunable to acquire new spatio-temporal
modeling capabilities.

To further compress motion information, we utilize a trainable Q-Former (Li et al., 2023b), which
comprises of initial queries, and N3 layers, each containing a self-attention module, a cross-attention
module, and an MLP module. The queries interact with the video embedding by cross-attention,
which distills the essential motion information from the video embedding into a fixed number of
output motion tokens, effectively compressing key spatio-temporal dynamics.

B MORE IMPLEMENTATION DETAILS

In Section 4.1 of the main paper, we provide an concise version of the implementation details. This
supplementary section intends to provide more necessary technical details.

B.1 EVALUATION DETAILS

To comprehensively evaluate the performance of ArbInterp under diverse frame interpolation settings,
we design a new benchmarks: MultiInterpBench. MultiInterpBench evaluates the model’s flexibility
and performance in generating frames at different timestamps and varying numbers, covering interpo-
lation ratios of 2x, 8x, 16x, and 32x. It consists of 552 frame pairs selected from widely used datasets
such as DAVIS (Pont-Tuset et al., 2017), SNU-FILM (Choi et al., 2020), and XTEST (Sim et al.,
2021).

To balance GPU memory usage and computational efficiency, we adopt the direct frame interpolation
method shown in Figure 3(a) for videos with fewer than 21 total frames. For example, the timestamp
list for 8x interpolation is [0, 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8, 1]. For scenarios requiring more
than 21 frames (e.g., 32x interpolation), we employ hierarchical design in from Figure 3(c) due
to its superior stability. Specifically, we first predict the frame x0.5 at t = 0.5, then generate two
15-frame segments from x0 to x0.5 and from x0.5 to x1, respectively. We utilize the appearance-
motion decoupling conditioning strategy to enhance the spatiotemporal coherence between these two
segments.

Following Wan (Wang et al., 2025), we employ UniPC (Zhao et al., 2023) to optimize our flow
matching-based denoising scheduler during inferences. In all inferences, we denoise from Gaussian
noise for 50 steps with timestep shift set to 5.0.

B.2 TRAINING DETAILS.

We load the pretrained weight of Wan2.1 1.3B (Wang et al., 2025) to initialize ArbInterp. The
model accepts two input components: (1) an interpolation sequence comprising 3 to 21 frames,
including a fixed starting frame, a fixed ending frame, an optional prefix frame, and the remaining
slots filled with noisy intermediate frames; (2) preceding motion conditioning frames consisting of
up to 8 contextual frames extracted from adjacent video segments. During training, prefix frame is
sampled at a rate of 50%. The time gap between the starting and end frame is limited to 2 seconds
at most. All input frames are adaptively resized to one of five predefined resolutions (480 × 832,
480× 640, 480× 480, 832× 480, and 640× 480) based on most matched aspect ratio. Specifically,
we first calculate the original aspect ratio of the input image and then select the target resolution that
maintains the closest matching aspect ratio from our predefined set. Our training dataset comprises
50,000 videos meticulously curated from OpenVid (Nan et al., 2024). ArbInterp is trained in 3
stages on 8 GPUs (96GB) with a total batch size of 16. For memory-efficient training, we employed
the Zero Redundancy Optimizer stage 3 (ZeRO-3) strategy (Rajbhandari et al., 2020). The base
optimizer is AdamW (Loshchilov & Hutter, 2019), configured with a learning rate of 1× 10−4, betas
of (0.9, 0.999), an epsilon of 1 × 10−8, and a weight decay of 0.01. The learning rate performs a
linear warmup (Goyal et al., 2017) over the first 1000 training steps.
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Figure 9: Visual comparison in long-term streaming frame interpolation scenarios.

First stage. In the first stage, we only finetune the parameters of all DiT blocks and the output head
for 10,000 optimization steps. The timestep shift of the noise scheduler is set to 1.0, ensuring uniform
training across diverse input noise levels.

Second stage. In the second stage, we freeze the parameters of DiT and train the motion semantic
extractor, with trainable parameters including temporal transformer layers in CLIP, Q-Former layers,
and MLPs for motion feature injection into DiT blocks. To enhance robustness, we implement
randomized input dropout: 20% probability of discarding preceding motion conditioning frames, 20%
probability of omitting boundary frames, 10% probability of dropping both inputs simultaneously,
and 50% probability of retaining full inputs. This stage executes approximately 5,000 training steps.
In this stage, the noise scheduler is configured with a timestep shift of 3.0 to increase the expected
noise intensity, which enhances the motion feature injection’s control over high-level semantic
content. In the stage, with 50% likelihood, previous frames are chosen before the starting frame while
intermediate frames are consecutive to and follow it; otherwise, previous frames and intermediate
frames are consecutive sequences sampled after the starting frame, with intermediate frames directly
succeeding previous frames. Such data sampling strategy aims at ensuring the model to be equally
proficient at utilizing motion context either prior to or subsequent to the starting frame, both are
required during inferences.

Third stage. In the third stage, all parameters during the first and second stages are trained. This
stage proceeds for 5,000 training steps. To be noted, we set the timestep shift of the noise scheduler
back to 1.0 for balanced training over all noise intensities.

C ADDITIONAL RESULTS

C.1 EXTENSION TO STREAMING FRAME INTERPOLATION

The proposed design can naturally be extended to streaming frame interpolation scenarios. Specif-
ically, for a sequence of consecutive input frame pairs {(xi

0,x
i
1) | xi

0 = xi−1
1 }, we regard the

frames from the preceding generated interpolation of (xi−1
0 ,xi−1

1 ) as the previous segment to aid
the interpolation generation of (xi

0,x
i
1). By integrating our proposed appearance-motion decoupled

conditioning strategy, ArbInterp efficiently enforce spatio-temporal coherence across sequential frame
interpolation. Notably, our method is the first effort in the generative video field to address the
coherence challenge in streaming frame interpolation.

For streaming frame interpolation, we generate 16 intermediate frames between every two consecutive
anchors using direct interpolation. Meanwhile, the appearance-motion decoupling conditioning
strategy is also employed to ensure spatiotemporal consistency across different anchors. For long-
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Figure 10: Visualization of controlled motion transfer.

Table 3: Quantitative comparison with the state-of-the-art methods on 256x interpolation.

Method
Interp.
Rate

FID
(↓)

FVD
(↓)

LPIPS
(↓)

CLIPimg

(↑)

VBench Metrics (↑ for all)

Subject

Consist.

Background

Consist.

Temporal

Flick.

Motion

Smooth.

Aesthetic

Quality

Imaging

Quality

Overall

Average

LDMVFI

256x

39.7 572.3 0.271 0.658 0.8568 0.8854 0.9026 0.9210 0.4678 0.5697 0.7672
TRF 38.2 712.5 0.372 0.661 0.8313 0.8675 0.8810 0.9052 0.4311 0.5303 0.7411
GI 41.2 687.9 0.388 0.679 0.8515 0.8708 0.8827 0.9028 0.4336 0.5357 0.7462
DynamiCrafter 34.5 553.1 0.297 0.663 0.8536 0.8867 0.9052 0.9263 0.4518 0.5709 0.7658
ArbInterp-SVD 28.4 385.0 0.173 0.692 0.8835 0.9027 0.9097 0.9281 0.4733 0.5829 0.8144
ArbInterp 21.5 242.3 0.118 0.728 0.8969 0.9147 0.9143 0.9326 0.4772 0.6090 0.7908

term streaming interpolation scenarios, as shown in Figure 9, ArbInterp exhibits superior motion
coherence and appearance consistency by effectively leveraging previously generated frames to assist
subsequent generation. More video comparisons are provided in the website.

C.2 VISUAL COMPARISON OF TAROPE

We present visual comparisons, as shown in Figure 11, to further validate the effectiveness of TaRoPE.
Methods without timestamp injection or those solely relying on MLP-injected AdaLN fail to precisely
control the temporal position of generated intermediate frames. In contrast, our proposed TaRoPE
accurately generates frames corresponding to specific timestamps.

C.3 THE EFFECTIVENESS OF MOTION DECOUPLING

To rigorously verify the proper decoupling of appearance and motion in our framework, we trained a
new dedicated model. This model reconstructs the original video by being conditioned on the first
frame and leveraging our proposed Motion Semantic Extractor (MSE). During testing, we feed the
video into the MSE to extract motion semantics, then edit the first frame (appearance) while retaining
the extracted motion information, and observe whether the model can generate videos with consistent
motion. As illustrated in the Figure 10, our decoupling mechanism successfully extracts motion
information to a considerable extent, as evidenced by the generated videos that preserve the original
motion despite modified appearance.

C.4 INTERPOLATION RATIO BEYOND TRAINING

To further validate the ability to handle continuous timestamps, we provide 256× comparisons in
Table 3. Since our original test set lacked sufficient frames, we re-collected 10 videos for this test.
The result is obtained by averaging the results of each 32-frame sub-clip, as many metrics cannot
process sequences of such length. Despite the granularity exceeding the training range, the sustained
performance advantage further confirms the effectiveness of our method in handling continuous
timestamps.
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Figure 11: Comparison of different timestamp injection methods.

Table 4: Ablation study on different training stages.

Stage 1 Stage 2 Stage 3 FVD32x
(↓)

VBench32x
(↑)

✓ 401.6 0.819
✓ ✓ 359.2 0.8253

✓ 357.2 0.8247
✓ ✓ ✓ 319.9 0.8324

Training Stages Evaluation Metrics

C.5 ABLATION EXPERIMENTS ACROSS TRAINING STAGES

We also conducted ablation experiments on different training stages. As shown in Table 4, directly
learning all functions (only stage3) fails to achieve the best performance. In contrast, the staged
training approach, which first learns the basic frame interpolation function, then establishes spatio-
temporal continuity between different segments, and finally performs joint fine-tuning, exhibits a
higher performance ceiling.

D LIMITATION AND FUTURE WORK

As a research-oriented work, the primary contributions of this work lie in successfully demonstrating
that temporally fine-grained video frame interpolation can be achieved through introducing timestamp-
aware RoPE into generative models, and in designing an appearance-motion decoupling conditioning
strategy to facilitate long-term video frame interpolation. To maintain the simplicity of the overall
design, we omitted text inputs and only used the first and last frames as inputs, which inevitably
limits the model’s controllability and semantic reasoning capabilities. Additionally, due to limited
resources, we employed a relatively small generative model and a small-scale public dataset. Despite
outperforming state-of-the-art methods, the quality ceiling for complex scenarios remains constrained.
In the future, we plan to integrate text guidance, scale both the dataset and model, and thereby
advance the practical utility of our method for frame interpolation.

E BROADER IMPACT

This work proposes a novel generative frame interpolation paradigm, ArbInterp, which extends the ca-
pability boundary of current frame interpolation models. Similar to other generative models, although
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Table 5: Licenses and URLs for every benchmark, code, and pretrained models used in this paper.

License URL

OpenVid CC-BY-4.0 https://huggingface.co/datasets/nkp37/OpenVid-1M
SNU-FILM MIT license https://github.com/myungsub/CAIN
XTEST (-L) for research and education only https://github.com/JihyongOh/XVFI

Wan 2.1 Apache-2.0 License https://github.com/Wan-Video/Wan2.1
LDMVFI MIT license https://github.com/danier97/LDMVFI

DynamiCrafter Apache-2.0 License https://github.com/Doubiiu/DynamiCrafter
TRF for research only https://github.com/HavenFeng/time reversal
GI Apache-2.0 License https://github.com/jeanne-wang/svd keyframe interpolation

Assets

Benchmarks

Codes and
Pretrained Models

Seed A

Seed B

Seed C

Figure 12: Visualization of different random seeds.

we use carefully screened data, the generated content still has a certain degree of uncontrollability. In
the future, such uncontrollability can be constrained through further data cleaning and reinforcement
learning. In this way, we can further balance the innovation of content with the potential impacts that
fictionalization may incur.

F LICENSE OF DATASETS AND PRE-TRAINED MODELS

All the dataset we used in the paper are commonly used datasets for academic purpose. All the
licenses of the used benchmark, codes, and pretrained models are listed in Table 5.

G USE OF LARGE LANGUAGE MODELS (LLMS)

This paper only uses LLMs for grammar correction.
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