TrackIME: Enhanced Video Point Tracking via
Instance Motion Estimation

Seong Hyeon Park' Huiwon Jang' Byungwoo Jeon' Sukmin Yun?
Paul Hongsuck Seo® Jinwoo Shin'
I'KAIST 2Hanyang University ERICA 3Korea University

{seonghyp, huiwoen0516, imbw2024, jinwoos}@kaist.ac.kr
sukminyun@hanyang.ac.kr phseo@korea.ac.kr

Abstract

Tracking points in video frames is essential for understanding video content. How-
ever, the task is fundamentally hindered by the computation demands for brute-force
correspondence matching across the frames. As the current models down-sample
the frame resolutions to mitigate this challenge, they fall short in accurately repre-
senting point trajectories due to information truncation. Instead, we address the
challenge by pruning the search space for point tracking and let the model process
only the important regions of the frames without down-sampling. Our first key
idea is to identify the object instance and its trajectory over the frames, then prune
the regions of the frame that do not contain the instance. Concretely, to estimate
the instance’s trajectory, we track a group of points on the instance and aggregate
their motion trajectories. Furthermore, to deal with the occlusions in complex
scenes, we propose to compensate for the occluded points while tracking. To this
end, we introduce a unified framework that jointly performs point tracking and
segmentation, providing synergistic effects between the two tasks. For example,
the segmentation results enable a tracking model to avoid the occluded points
referring to the instance mask, and conversely, the improved tracking results can
help to produce more accurate segmentation masks. Our framework can be easily
incorporated with various tracking models, and we demonstrate its efficacy for
enhanced point tracking throughout extensive experiments. For example, on the
recent TAP-Vid benchmark, our framework consistently improves all baselines,
e.g., up to 13.5% improvement on the average Jaccard metric. The project url is
https://trackime.github.io/.

1 Introduction

Obtaining accurate point trajectories over the video frames is crucial for understanding complex
dynamics in video data, a necessity for advanced spatial-temporal tasks like action recognition [2],
novel-view rendering [3], video frame prediction/interpolation [4], and video depth estimation [5].
Recently, video point tracking task [6, 7, 8, 9, 10] has witnessed rapid progress, which aims to predict
the trajectory and visibility' of a given query point, proving long-term trajectories robust to partial
occlusions of objects in real video scenes.

Despite their success, we find current point tracking models are fundamentally challenged by an
excessive computation demand since the task requires brute-force comparisons over every spatial
location in every frame in a given video. As a result, to meet the computation constraints, the models

'The confidence whether the trajectory is visible in each frame; i.e., the point is not out-of-frame and not
occluded by different objects.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://trackime.github.io/

(Step 1) Instance Trajectory Estimation (Trajectory Aggregation)
e Query point

Point
Tracker
N

Sampling Semantic Neighbors Individual
Trajectories

(Step 2) TrackIME

Point
Tracker
N

Final
Tracking
Result

~ ¥ -
Pruned Input Frames

Figure 1: The workflow of TrackIME. Our framework enhances point tracking by pruning the
search space, along the instance trajectory in video frames. To estimate the instance trajectory, our
framework utilizes the point tracking results for a group of points (blue lines) on top of the object
instance predicted by segmentation model (e.g., SAM [1]) and aggregate their individual trajectories.

down-sample their tracking resolutions, sacrificing detailed visual features, which eventually leads to
sub-optimal tracking accuracy and triggers tracking failures on intricate object parts. In this regard,
we pursue the direction of pruning the excessive search space for point tracking, so that models can
avoid the down-sampling and focus only on important regions maintaining detailed visual features,
e.g., the object instance masks the query point lies in.

In this paper, we introduce TrackIME: Enhanced Video Point Tracking via Instance Motion Estimation
that focuses on the region occupied by the object instance that the queried point lies in and guides
point tracking models to prune the video frames along the instance’s motion trajectory. Here, to obtain
the instance trajectory, we first produce the instance mask for a given query point by utilizing the
recent segmentation foundation models, e.g., segment anything (SAM) [1], where these foundation
models show strong generalization performance to different objects/scenes and we find resulting
instance masks in quality are readily available. Then, given the instance mask, we sample a set of
points and aggregate their tracking results as the estimate of the instance trajectory.”

Furthermore, to deal with the occlusions in complex video scenes, we propose a unified framework
that jointly performs the point tracking and video segmentation, where it re-samples the occluded
points by referring to the instance mask. We note that our framework provides synergistic effects
for both tasks, i.e., the point tracking results assisted by the segmentation can conversely bolster
the quality of segmentation. Consequently, although our primary focus is on the advances in point
tracking, our method can also demonstrate improved segmentation results than the baselines (see
Section 4.2 for details).

Through the experiments on the TAP-Vid point tracking benchmark [11], we demonstrate the
effectiveness of TrackIME by incorporating it with different point tracking models such as TAPIR [6].
For example, in the DAVIS scenes [12] evaluating the point tracking for dynamic objects, our method
achieved up to 13.5% relative improvement (57.5 — 65.3 with TAPIR) in terms of the average Jaccard
(AJ) metric. Moreover, as our framework allows pruning non-instance regions for point tracking

ntuitively, the instance as a group of points moves together even if a fine-grained motion of individual
points may differ. Hence, we track multiple points on the same instance, and then aggregate their trajectories as
the instance motion, which we eventually utilize for pruning video frames.

models, the efficacy of our method stands out even more when evaluated on more harsh standards,
e.g., the 1-pixel error threshold, where the conventional metrics allow up to 16-pixel errors when
judging the prediction to be correct.

2 Method

In this section, we describe the detailed procedure of our TrackIME framework and its application to
video point tracking. Specifically, in Section 2.1, we describe the formulation for instance trajectory
estimation, which is based on the video point tracking of the query points found by the foundation
segmentation model [1].

Next, in Section 2.2, we present the detailed formulation of TrackIME given the instance trajec-
tory, which prunes unimportant regions in the video frame and achieves boosted point tracking
performances.

As for the data notations, we denote vectors with IV elements as bold letters := [x1; @2; ...; TN],
tensors with IV arrays as bold capital letters X := [Xy; Xo; ...; Xiv], where the subscripts represent
the indexed scalars or arrays. Otherwise, every non-bold symbol is scalar. We also introduce the
superscripts, e.g., (¥, when denoting there is special semantics for a data, such as the query point.

Finally, when making binary classifications based on probability (or normalized confidence) values,
we use threshold 0.5; nevertheless, the values are hyperparameters and can be altered in practice.

2.1 Instance Trajectory Estimation

In this section, we provide the definition of the instance trajectory and procedures to obtain it, such as
sampling a group of points on the instance, trajectory aggregation, and the point re-sampling modules.

Video point tracking. Let | € RLXH>XW X3 pe the tensor of video frames, where L denotes the time
duration and (H x W) denotes the image size, and let p@ € R? be the spatial coordinates of the
query point. Typically, we consider the query in the initial frame hence we do not denote the time
index of the query point for clarity. Given the video | and the query point p(¥, we consider a point
tracking model Tracker that predicts the query trajectory T(@ € RE*2 and the probability of being
visible 0@ € (0,1)% over the entire set of frames,

('1"(‘31)7 O(q)) = Tracker(P(q)a I) M

Here, one might utilize Equation (1) as the simplest representation of the instance motion trajectory.
However, modeling the instance motion solely using the query point has critical shortcomings. For
example, when the instance is partially occluded by other objects, the trajectory of the query point
may no longer exist (see Section 4.1 for the ablation study).

To address this challenge, we propose to sample additional tracking points automatically. Specifically,
our idea is to identify the instance mask of the query point so that extra query points can be added
from the mask.

Sampling points on the instance. Let My € (0,1)7>W denote the segmentation mask that

represents the object instance associated with the query point p(@. Given this mask, we sample a
group of points on the instance,

N @)= {p™),... p"}, @

which we refer to it as the semantic neighbors of p(¥. We note that S is the number of sampled
points, where the query point is also counted as its semantic neighbor, i.e., p(*0) = p(@).

For each semantic neighbor point, we employ Tracker in Equation (1) to produce its trajectory and
visibility, (T(”i), o("i)) := Tracker (p(”i), I),3 and pass it to the trajectory aggregation module.
Since the query point also participate in our tracking procedure, the total effective number of points
would be S + 1. For example, we choose S + 1 = 32 in our main experiments discussed in Section 2.

3In practice, we batch-process a set of multiple points simultaneously.

Trajectory aggregation. We produce an instance motion trajectory by aggregating the tracking

results of the semantic neighbors. Specifically, we consider the velocity, ATt(T“ = Tt("’i) — Tt(fi),
and calculate the weighted average:

(”1) (ns)
ATt(q) — o; - AT,

5- 3)

(n,
(ogﬂ’i)20.5) Z(oi"ﬂzo.s) 0;"”

In Equation (3), we note that velocities are aggregated only if the points are classified visible

(OE”” > 0.5), and the visibility acts as the aggregation weight. Finally, we accumulate the aggregated

velocity starting from To(q) := p(9, to obtain the instance motion trajectory,

Tt(q) — Tt@1 + ATt(q). 4)

Instance mask. In order to identify the instance mask, we employ the recent foundation segmentation
model, e.g., Segment Anything Model (SAM) [1], and prompt the model with the query point p(?, to
produce the pixel-wise confidence representing the object instance indicated by the query point. We
denote this function as Seg,

M, := Seg(p'?, ly) € (0, 1), Q)

Given the mask My, we employ a weighted sampling for the semantic neighbors. Specifically, we
encode the sampling weights with the distance transform (DT) [13, 14] to the mask’s region with
positive classifications,

In this way, the points near the mask’s contour are preferred, which we find efficiently represent the
object instance because the contour is approximately linearly proportional to the mask’s radius.

Point re-sampling for robustness to occlusion. Occlusions are common in real video frames, due to
dynamic objects and the camera’s motion. In the extreme case, Equation (3) can become degenerate
when all semantic neighbors are invisible in future frames ¢ > 0. Therefore, maintaining a sufficient
number of visible tracking points is crucial, and we tackle this issue by re-sampling occluded points
from the instance mask jointly predicted while point tracking.

In a nutshell, whenever we find a certain semantic neighbor point p(™:) becomes invisible at time

t’ and does not show up again (oim) < 0.5 for t > t'), we query the segmentation model with the
tracking results of other semantic neighbors to obtain a new mask to re-sample the occluded point:

M) = seg(T™) 1) € (0,1)7W %
However, they could also have been affected by occlusions (e.g., when oi,nj) is close to the threshold

0.5), or by the severe errors in the trajectory Tt(,nJ) due to sub-optimal tracking performance of
Equation (1). Hence, predicting segmentation with these points in a naive way can lead to erroneous
masks being produced.

To address this problem, our key idea is to aggregate the group of segmentation masks. Specifically, we
collect individual masks by Equation (7), then apply a weighted average of the positive classifications,

M, = Z

()
(027“20.5) Z(oiff)zo.s)) 0"

ol M) > 0.5]

e (0,1)1xW, ®)

We find the mask produced by Equation (8) reflects the confidence of each segmentation mask, as
well as the visibility of the associated point, and refer to it as the mixture of segmentation distributions,
where the value in each index represents the segmentation probability of the queried object.

Based on the constructed mixture of segmentation distributions, we obtain the sampling weight in
similar manner to Equation (6) as, Wy, := DT(1[My > r]), where the threshold r € [0, 1) is set much
smaller than the standard 0.5.* This is because we should allow the confident partial segmentation
distributions, but ignore the unconfident noise segmentation distributions.

Finally, we re-sample the additional points with W,/ as the sampling weight. They replace the
occluded points for the instance trajectory estimation in subsequent frames ¢ > ¢'. We execute this
procedure during the tracking, which ensures that a sufficient number of visible points participate
in Equations (3) and (4). For example, we set it to be the same as the number of initial semantic
neighbors S.

2.2 TrackIME: Enhanced Video Point Tracking via Instance Motion Estimation

In this section, we describe our enhanced point tracking, which prunes the search spaces in frames
and produces more accurate tracking results.

Search space pruning. Given the instance trajectory in Equation (4), we now aim to utilize it for
pruning the search space. Specifically, we prune unimportant non-instance regions, by sampling each
frame around the (Hy x Wj) regions centered at the aggregated trajectory,

19 := Prune(l, T9, Hy, W) € RE*HoxWox3,)

We note that the sizes (Hy x W) are set to be close to the down-sampling resolution considered by
a tracking model (e.g., (256 x 256) for TAPIR [6]) so that the information loss is minimized.

Given the frames with pruned search spaces, we execute Tracker again to produce the enhanced
tracking outputs. Also, for convenience, we abstract the entire process of the instance trajectory
estimation (Section 2.1), the pruning (Equation (9)) and the tracking into a function TrackerHD,

(T o)) .= TrackerHD(p'¥, 1, Hy, Wy)

(10)

:= Tracker(p@,19).
We note that the feature resolutions inside the tracking model are not modified, therefore the compu-
tational complexity does not increase.

Progressive inference. To achieve a further boost in the tracking performance, we can additionally
use a progressive inference structure. Formally, we consider a collection of K different TrackerHD
models equipped with different pruning sizes (Hy, Wy):

™), .. ,TI((“D)] and [oﬁ“"); ,of,’;[’)] : (11)

where Tk(HD) € RL*2 and ol(CHD) € (0,1)" denotes the outputs of the k-th TrackerHD model.

This progressive structure can boost the tracking performance in two ways. The first is utilizing a past
k-th TrackerHD as the tracking model that estimates the instance trajectory for the next (k 4 1)-th
TrackerHD. In this way, the pruning is guided by a more accurate trajectory estimate. The second
is that these K tracking results can be aggregated to produce the final trajectory. Specifically, we
aggregate based on the visibility, in a similar manner to Equations (3) and (8):

K (i) (HD)
; oT,
T(Flnal) — Z Oy k (12)
K HD) °’
k=1 2oi—1 Oz()

where © indicates the element-wise product. This aggregation allows processing multiple scales in
visual features, which can enhance the generalization performance of vision models [15, 16]. We
note that the visibility predictions are averaged over the K predictions.

*For example, we choose = 0.1 for our main experiments discussed in Section 4.

Table 1: The evaluation of point tracking performance for dynamic objects. We benchmark the
quality of point tracking in DAVIS [12] videos with the point annotations provided by TAP-Net [11].
We note that TrackIME is incorporated with TAPIR point tracker [6].

First Query Strided Query
Method Jq Al o 5§Vg OA Jq Al oF 6§Vg OA
TAPNet [11] 20.7 51.6 30.1 63.8 798 253 565 363 682 826
PIPS2 [9] 19.6 466 358 694 803 69 528 142 658 835
TAPIR [6] 23.0 575 343 705 844 28.1 628 41.0 751 877

CoTracker [7] 283 608 435 761 86.0 349 643 509 789 89.1
OmniMotion [8] 21.5 52.6 39.1 68.1 854 30.1 556 45.1 703 889
TrackIME 354 653 482 78.6 865 419 693 550 814 89.0

3 Related Work

Optical Flow. Optical flow deals with the dense computation of instantaneous motion patterns
between two given video frames. Starting with the pioneering work of applying neural networks for
motion estimation [17, 18], the seminal works such as DCFlow [19], PWC-Net [20] and RAFT [21]
introduced the concept of dense correspondence matching between pairs of image patches. Despite
their success, the optical flow’s inherent limitations incapable of modeling trajectories and occlusions
triggered the recent progress in the point tracking methods.

Point Tracking. In essence, point tracking attempts to find the long-term point correspondences
over the entire video frames, and model the occlusions and trajectories. The current models in this
domain, such as PIPs [22], TAPNet [11], TAPIR [6], CoTracker [7], and OmniMotion [8] has led
rapid progress, with advanced neural architectures [6, 7] or test-time optimizations [8]. However,
they are fundamentally hindered by the excessive search space for correspondence matching over the
entire frames. Our focus is to address this issue by pruning the search space, where our method can
be readily incorporated with these baselines.

Instance Segmentation. Recently, the important advancement within image segmentation has
been the introduction of segment anything (SAM) [1]. SAM is specifically designed to perform
image segmentation by general point prompts and exhibits an impressive capacity for class-agnostic
segmentation. Specifically, in the context of point tracking, SAM serves as a valuable resource by
generating segmentation masks for the object instance indicated by the query point. We also note the
line of zero-shot video segmentation [23, 24, 25, 26, 27, 28, 29, 30]. Specifically, the recent SAM-PT
[30] focuses on bolstering video segmentation based on point tracking, which is fundamentally
different from our work; our primary goal is obtaining better point tracking, while that for SAM-PT
is for better segmentation. Nevertheless, our method provides synergistic effects for both tasks, and
even outperforms SAM-PT for segmentation tasks (see Table 4).

4 Experiments

In this section, we demonstrate the effectiveness of the proposed TrackIME on point tracking tasks
and the downstream video object segmentation.

In Section 4.1, we focus on the point tracking tasks. Specifically, we first experiment the efficacy of
the instance motion trajectory estimation and our search space pruning technique for point tracking
by measuring the performance in video scenes that capture dynamic objects.

Next, we verify the universality of our method to different point tracking models and find whether it
can provide general performance improvements when incorporated into the five recent baselines, e.g.,
TAPNet [11], PIPS2 [9], CoTracker[7], OmniMotion[8] and TAPIR [6].

In the ablation study, we validate the effect of each component, namely the trajectory aggregation,
the search space pruning, and the progressive inference modules described in Section 2.

Table 2: Universality of TrackIME with different point tracking models. We incorporate recent
point tracking model baselines [6, 7, 8, 9, 11] with our method, and benchmark its performance on
DAVIS [12], RGBStacking [33], and Kinetics [34]. {: the underlined results are obtained with subsets
of RGBStacking and Kinetics datasets due to a large optimization cost for the OmniMotion [8].

DAVIS RGBStacking Kinetics

Method Al 5§Vg Al 5§vg Al 6§Vg
TAPNet [11] 51.6 63.8 56,5 79.0 493 60.7
+ TrackIME 579 724 669 80.0 51.0 63.6
PIPS2 [9] 46.6 694 523 749 - -

+ TrackIME 503 740 528 75.8 - -

CoTracker [7] 60.8 76.1 64.1 78.0 47.7 63.7
+ TrackIME 645 79.2 68.2 82.1 48.1 63.8
OmniMotion} [8] 52.6 68.1 712 81.1 51.0 643
+ TrackIME 541 693 719 819 512 064.6
TAPIR [6] 575 70.5 663 80.6 502 623
+ TrackIME 653 78.6 66.6 81.8 514 65.8

In Section 4.2, we verify the efficacy of the enhanced point tracking results by TrackIME in the
downstream video object segmentation. Specifically, we compare the zero-shot video segmentation
performances with the recent SAM-PT [30] baseline which utilizes the point trajectories as the inputs,
as well as the conventional baselines that input the semantic classes [27, 28, 29].

Common implementation details. We note that TrackIME is mainly incorporated with TAPIR
point tracker [6] (as it empirically performs best) unless specified otherwise, and we subject it to all
experiments including the point tracking and other downstream tasks.

For the segmentation model, we utilize the Segment Anything (SAM) [1] to perform the point-queried
segmentation function described in Equation (5).

To prepare video frames, we always adjust the resolutions of raw video data to 1080p (1080 pixels in
the shorter frame edges), then apply further resizing functions required by individual baseline models.
For example, we resize the 1080p frames to 256 x 256 for TAPIR [6] baseline, following the default
setting provided by the official open-source repository. When experimenting TrackIME, we choose
the hyperparameters for each baseline, e.g., progressive inference steps K = 2, and the pruning sizes
Hy =Wy =960 and H; = W; = 384 when incorporated with TAPIR [6].

Since TrackIME is a plug-in to all baselines, we reproduce all results in the same system configuration
for fair comparisons. We note that such modification can induce minor perturbation in the numerical
values due to library and hardware-dependent characteristics, e.g., different characteristics between
JAX [31] and PyTorch [32] libraries, and the difference in the filtering algorithm used when re-sizing
the video frames.’ We refer the readers to Appendix A for more implementation details.

4.1 Point Tracking

Baselines. We compare our method to the recent baselines OmniMotion[8], CoTracker [7], TAPIR
[6], PIPS2 [9], and TAPNet [11]. We utilize the official checkpoints provided by the official project
pages and reproduce all experimental results under our common experimental set-up, except for
OmniMotion [8] which does not provide checkpoints. Instead, we reproduced the training of
OmniMotion models to obtain the experimental results. We use .S = 31 semantic neighbors to
incorporate our framework with the baselines.

Datasets. We evaluate these models on three different datasets, DAVIS [12], Kinetics [34], and RGB-
Stacking [33], each representing different characteristics. For example, DAVIS contains 30 videos

The open-source version of TrackIME is available at https://github. com/kami93/trackime.

https://github.com/kami93/trackime

Table 3: Ablation study of the components in our model. We ablate the effect of search space
pruning (Pruning), trajectory aggregation (Aggregation), and the progressive inference (Progressive)
modules for point tracking. We evaluate the tracking benchmark in DAVIS scenes [11, 12].

Pruning Aggregation Progressive | J; Al of 6%

avg

23.0 575 343 705
282 625 41.1 753
283 62.6 412 756
340 629 480 770
354 653 482 78.6

NSNS x
NN X X X
X% N X X%

specifically curated to evaluate the tracking performance under large variances in the appearance and
motion of object entities. Its two variants, DAVIS-F (First) and DAVIS-S (Strided) differ in how the
query points are given to the models: DAVIS-F queries the model only once in the first frame, while
DAVIS-S queries the model in strides of five frames. Because DAVIS-F requires long-term tracking,
it is generally a more difficult setting. Kinetics contains 1,144 web videos collected from YouTube
that represent realistic noisy characteristics of the video in the wild, such as sudden scene changes.
RGB Stacking is a synthetically rendered dataset representing 50 different moves by a robotic arm.
For all datasets, we refer to the point tracking annotations provided by TAP-Vid [6] and utilize them
as the ground truth for evaluation.

Metric. To measure the quality of point tracking, we consider point tracking accuracy considered
following TAP-Vid [11], such as the d-average accuracy (d5,,) and the average Jaccard (AJ). The
average metrics are based on the §-n accuracy (9;) which indicates the proportion of correct trajectory
sequence as judged by whether they are within the n-pixel error threshold around the ground truth.
In addition, the Jaccard-n (J,,) judges a trajectory sequence to be correct only if the visibility
prediction is also correct. Given these definitions, the average metrics are calculated by averaging
n € {1,2,4,8,16}. To evaluate the fine-grained tracking performance in a harsh error threshold, we
also report 0-1 accuracy (67) and Jaccard-1 (J). For Table 1, we also discuss the occlusion accuracy
(OA), the proportion of correct visibility sequence given the ground truth.

Effectiveness on point tracking in dynamic objects. We first present the point tracking scenarios
with dynamic objects. Specifically, we experiment with the DAVIS video scenes [12], which is curated
for evaluating instance motion estimation tasks. As shown in Table 1, we find our method achieves
the best point tracking accuracy surpassing all baselines, e.g., up-to 7.4% relative improvements
in average Jaccard, i.e., 60.8 AJ (CoTracker [7]) vs. 65.3 AJ (TrackIME) when evaluated with the
DAVIS-F (denoted First Query in Table 1). We also measure the occlusion accuracies (OA) and find
a relatively incremental improvement than other metrics. Intuitively, there is a trade-off between
modeling the occlusions among different objects and the search space pruning for one instance, as
the pruning removes information from other instances. Nevertheless, our method is beneficial for
detecting occlusion in fine-grained object parts, and we recommend searching for optimal pruning
parameters that fit a user’s purpose. Finally, we discuss the efficacy of TrackIME under the harsh 67
and J; metrics, where the conventional metrics allows up to 16-pixel errors and takes the average
when judging whether the prediction is correct. For example, the improvement can be even larger,
e.g., up to relative 25.1%), i.e., 28.3 J; (CoTracker [7]) vs. 35.4 J; (TrackIME) when evaluated with
DAVIS-F. We highlight these benefits of TrackIME allowed by pruning the search space.

Universality to different point tracking models. We validate the universality of our method when
plugged into the state-of-the-art baselines by evaluating the average tracking accuracy (AJ and §7)
of the vanilla models and the variants incorporated with our method in Table 2 on DAVIS (First)
[12], RGBStacking [33], and Kinetics [34] datasets. As a result, we observe that our method can
provide consistent and significant performance improvements in all the baselines, e.g., 13.6% relative
improvements (i.e., 57.5 — 65.3 AJ) in TAPIR [6] when evaluated on the DAVIS. Since the model
variant incorporated with TAPIR demonstrates the best performance, we chose it as our main model
and subjected it to other studies. We note that the experiments for OmniMotion [8] have been
conducted in 16 subsets for RGBStacking and Kinetics, and K = 1 progressive inference, due to its

Figure 2: Demonstration of the video instance segmentation results by our TrackIME framework.
Given the query points in the reference frame, our framework can produce the video instance
segmentation masks at quality by performing the weighted aggregation of the mask associated each
query point, based on the visibility values.

heavy optimization costs, e.g., approximately 13 gpu-hours for processing one scene. We also note
that PIPS2 [9] in Kinetics [12] is unavailable, as its memory requirement for processing Kinetics
exceeds our system’s capacity.

Ablation study. We perform an ablation study to understand how each component affects the point
trajectory accuracy in Table 3. Specifically, we consider the search space pruning, the trajectory
aggregation, and progressive inference modules as the subjects for the ablation.

First of all, we reveal the pure efficacy of our pruning method, separate from the effect of segmentation
prior. Notably, when the trajectory aggregation module is removed (the first 2 rows in Table 3), we
observe the pruning solely based on the query point’s trajectory provides the most significant effect
(e.g., 23.0 — 28.2 in J;). This validates our key motivation for pruning the search space, which
provides superior results even if SAM [1] is not employed.

Next, we discuss the effect of employing SAM [1] by enabling the trajectory aggregation. As
expected, aggregating the trajectories for a group of points found in the segmentation mask provides
another comparable gain (e.g., 28.2 — 34.0 in J;), which validates that the aggregation improves the
quality of instance trajectory estimation.

It is worth noting that the progressive inference boosts the performance, (e.g., 34.0 — 35.4in J;)
when combined with the trajectory aggregation, otherwise the gain is lesser (e.g., 28.2 — 28.3 in
J1). As the progressive inference refers to the estimated instance trajectory, the estimation quality is
essential for this module.

We also note that further ablation study is available in Appendix D, e.g., the number of semantic
neighbors, progressive inference steps, or the pruning sizes.

4.2 Video Object Segmentation

In this section, we validate the efficacy of TrackIME by performing the zero-shot video segmentation.
We also provide the visualization results for selected scenes from DAVIS [12] in Figure 2.

Baselines. We experiment with zero-shot video object segmentation to check the efficacy
of TrackIME for improving segmentation. Specifically, we consider the class-guided baselines
for unsupervised video segmentation tasks, e.g., EntitySeg [29]. In addition, we consider the SAM-PT
[30] baseline which also proposes to take point tracking for producing segmentation. To consider the
equivalent experimental set-ups for SAM-PT [30] and TrackIME, we incorporate the models with

Table 4: Zero-shot video object segmentation performance in DAVIS benchmark. We consider
two set of zero-shot baselines, those utilizing the set of classes [23, 24, 25, 26, 27, 28, 29] and the
baseline utilizing a set of query points [30] in a similar manner to our TrackIME. {: we produced the
results for TrackIME and SAM-PT [30] under the common set-up, such as the number of tracking
points, segmentation function (HQ-SAM [35]), and the same mask formatting for the benchmark.

DAVIS-2017-val DAVIS-2017-test-dev

Method Input (J&F),, Jn Fn (0&F), Jn. Fn
PDB [23] class 55.1 53.2 57.0 40.4 377 43.0
RVOS [24] class 41.2 36.8 45.7 22.5 177 273
AGS [25] class 57.5 55.5 595 45.6 42.1 49.0
MAST [26] class 65.5 63.3 67.6 - - -

Propose-Reduce [27] class 70.4 67.0 73.8 - - -

UnOVSOT [28] class 67.9 66.4 69.3 58.0 540 62.0
EntitySeg [29] class 73.4 704 76.4 62.1 - -

SAM-PT{ [30] points 78.8 76.3 81.3 65.3 62.3 68.3
TrackIME{ points 79.6 76.4 82.8 65.9 62.5 694

HQ-SAM [35] variant for the segmentation, 16 points from the initial frame’s mask, and employ the
iterative refinement technique [35] to produce the video segmentation results.

Evaluation. We evaluate our model on the DAVIS-2017 [12] video segmentation. In particular,
we use the validation and the test-dev sets for the zero-shot benchmark. Both sets contain 30
non-overlapping scenes with single or multiple objects.

To measure the quality of video instance segmentation, we consider the standard metrics in baselines:
the mean Jaccard (J,,,); the mean F-measure (F,,); and the average (J&F),,. Specifically, we follow
the official implementation suite provided by the DAVIS challenge [12].

Effectiveness on zero-shot video object segmentation. In Table 4, we first confirm that the
point tracking provides useful guidance for video segmentation, observing that both SAM-PT [30]
and TrackIME demonstrates significant improvement over the conventional class-prompted baselines.
More importantly, as our framework brings synergistic improvements for both point tracking and
segmentation tasks, we find TrackIME achieves even larger improvement, e.g., 78.8 vs. 79.6 (J&F),,
in the validation set of DAVIS-2017 [12].

Discussions. As for the commentary on the efficacy of TrackIME, our key advantage is removing
erroneous query points for segmentation caused by the tracking failure on intricate object parts,
enabling even finer query points for segmentation, e.g., the accuracy in harsh 1-pixel thresholds
in Table 1, which is possible due to the pruning structure in our framework to maintain the high-
frequency information.

5 Conclusion

In this work, we introduce TrackIME, a novel approach for point tracking to overcome the fundamen-
tal challenge of computation demands in existing models. Specifically, we reduce the search space
by identifying the instance trajectory and pruning the video frames along it. To obtain the instance
trajectory, we aggregate the motion for a group of points on the segmentation masks. To this end, we
propose a unified framework that jointly performs point tracking and segmentation, with the tech-
niques to ensure robustness to occlusion in complex video scenes. TrackIME demonstrates consistent
and significant impacts by bolstering existing point tracking baselines. The joint framework also
reveals the synergistic effects, which also demonstrates the improvements in the video segmentation
task. Overall, our work highlights the effectiveness of considering instance motion trajectory and
jointly solving the tracking and segmentation, and we believe our work could inspire researchers to
consider a new direction to further leverage it in the future.

10

Acknowledgements

This work was partly supported by Institute of Information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (No.RS-2019-11190075, Artificial Intelligence Graduate
School Program(KAIST); No.RS-2021-11212068, Artificial Intelligence Innovation Hub; No.RS-2020-11201819,
ICT Creative Consilience Program), and Culture, Sports and Tourism R&D Program through the Korea Creative
Content Agency grant funded by the Ministry of Culture, Sports and Tourism in 2024(Project Name: International
Collaborative Research and Global Talent Development for the Development of Copyright Management and
Protection Technologies for Generative Al, Project Number: RS-2024-00345025).

References

(1]

2

—

3

—

[4

—

(5

—

(6]

[7

—

[8

—_—

(91

(10]

(11]

(12]

(13]

[14]

(15]

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. arXiv preprint
arXiv:2304.02643, 2023.

Haoqi Fan, Yanghao Li, Bo Xiong, Wan-Yen Lo, and Christoph Feichtenhofer. Pyslowfast. https:
//github.com/facebookresearch/slowfast, 2020.

Zhengqi Li, Qiangian Wang, Forrester Cole, Richard Tucker, and Noah Snavely. Dynibar: Neural dynamic
image-based rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4273—4284, June 2023.

Jiaben Chen and Huaizu Jiang. Sportsslomo: A new benchmark and baselines for human-centric video
frame interpolation. arXiv preprint arXiv:2308.16876, 2023.

Zhoutong Zhang, Forrester Cole, Richard Tucker, William T Freeman, and Tali Dekel. Consistent depth of
moving objects in video. ACM Transactions on Graphics (TOG), 40(4):1-12, 2021.

Carl Doersch, Yi Yang, Mel Vecerik, Dilara Gokay, Ankush Gupta, Yusuf Aytar, Joao Carreira, and Andrew
Zisserman. Tapir: Tracking any point with per-frame initialization and temporal refinement. arXiv preprint
arXiv:2306.08637,2023. URL https://github.com/google-deepmind/tapnet.

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker: It is better to track together. arXiv preprint arXiv:2307.07635, 2023. URL
https://github.com/facebookresearch/co-tracker.

Qiangian Wang, Yen-Yu Chang, Ruojin Cai, Zhengqi Li, Bharath Hariharan, Aleksander Holynski, and
Noah Snavely. Tracking everything everywhere all at once. arXiv preprint arXiv:2306.05422, 2023.

Yang Zheng, Adam W Harley, Bokui Shen, Gordon Wetzstein, and Leonidas J Guibas. Pointodyssey: A
large-scale synthetic dataset for long-term point tracking. arXiv preprint arXiv:2307.15055, 2023. URL
https://github.com/aharley/pips2.

Yuxi Xiao, Qiangian Wang, Shangzhan Zhang, Nan Xue, Sida Peng, Yujun Shen, and Xiaowei Zhou.
Spatialtracker: Tracking any 2d pixels in 3d space. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2024.

Carl Doersch, Ankush Gupta, Larisa Markeeva, Adria Recasens, Lucas Smaira, Yusuf Aytar, Jodo
Carreira, Andrew Zisserman, and Yi Yang. Tap-vid: A benchmark for tracking any point in a
video. Advances in Neural Information Processing Systems, 35:13610-13626, 2022. URL https:
//github.com/google-deepmind/tapnet.

Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeldez, Alex Sorkine-Hornung, and Luc
Van Gool. The 2017 davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675,
2017.

Christina Karam, Kenjiro Sugimoto, and Keigo Hirakawa. Fast convolutional distance transform. /EEE
Signal Processing Letters, 26(6):853-857, 2019.

Duc Duy Pham, Gurbandurdy Dovletov, and Josef Pauli. A differentiable convolutional distance transform
layer for improved image segmentation. In Pattern Recognition: 42nd DAGM German Conference,
DAGM GCPR 2020, Tiibingen, Germany, September 28—October 1, 2020, Proceedings 42, pages 432-444.
Springer, 2021.

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature
pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2117-2125, 2017.

11

https://github.com/facebookresearch/slowfast
https://github.com/facebookresearch/slowfast
https://github.com/google-deepmind/tapnet
https://github.com/facebookresearch/co-tracker
https://github.com/aharley/pips2
https://github.com/google-deepmind/tapnet
https://github.com/google-deepmind/tapnet

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In Computer Vision—-ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11—-14, 2016, Proceedings, Part I 14, pages 21-37.
Springer, 2016.

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov, Patrick
Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with convolutional
networks. In Proceedings of the IEEE international conference on computer vision, pages 2758-2766,
2015.

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas Brox.
Flownet 2.0: Evolution of optical flow estimation with deep networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2462-2470, 2017.

Jia Xu, René Ranftl, and Vladlen Koltun. Accurate optical flow via direct cost volume processing. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1289-1297,
2017.

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow using pyramid,
warping, and cost volume. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 8934-8943, 2018.

Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In Computer
Vision—-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part Il
16, pages 402—419. Springer, 2020.

Adam W Harley, Zhaoyuan Fang, and Katerina Fragkiadaki. Particle video revisited: Tracking through
occlusions using point trajectories. In European Conference on Computer Vision, pages 59-75. Springer,
2022.

Hongmei Song, Wenguan Wang, Sanyuan Zhao, Jianbing Shen, and Kin-Man Lam. Pyramid dilated deeper
convlstm for video salient object detection. In Proceedings of the European conference on computer vision
(ECCV), pages 715-731, 2018.

Carles Ventura, Miriam Bellver, Andreu Girbau, Amaia Salvador, Ferran Marques, and Xavier Giro-i Nieto.
Rvos: End-to-end recurrent network for video object segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 5277-5286, 2019.

Wenguan Wang, Hongmei Song, Shuyang Zhao, Jianbing Shen, Sanyuan Zhao, Steven CH Hoi, and Haibin
Ling. Learning unsupervised video object segmentation through visual attention. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 3064-3074, 2019.

Zihang Lai, Erika Lu, and Weidi Xie. Mast: A memory-augmented self-supervised tracker. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6479-6488, 2020.

Huaijia Lin, Ruizheng Wu, Shu Liu, Jiangbo Lu, and Jiaya Jia. Video instance segmentation with a
propose-reduce paradigm. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 1739-1748, 2021.

Jonathon Luiten, Idil Esen Zulfikar, and Bastian Leibe. Unovost: Unsupervised offline video object
segmentation and tracking. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision, pages 2000-2009, 2020.

Lu Qi, Jason Kuen, Weidong Guo, Tiancheng Shen, Jiuxiang Gu, Wenbo Li, Jiaya Jia, Zhe Lin, and
Ming-Hsuan Yang. Fine-grained entity segmentation. arXiv preprint arXiv:2211.05776, 2022.

Frano Raji¢, Lei Ke, Yu-Wing Tai, Chi-Keung Tang, Martin Danelljan, and Fisher Yu. Segment anything
meets point tracking. arXiv preprint arXiv:2307.01197, 2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: compos-
able transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. = Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32,
pages 8024-8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-1library.pdf.

12

http://github.com/google/jax
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

(33]

(34]

[35]

(36]

Alex X. Lee, Coline Devin, Yuxiang Zhou, Thomas Lampe, Konstantinos Bousmalis, Jost Tobias
Springenberg, Arunkumar Byravan, Abbas Abdolmaleki, Nimrod Gileadi, David Khosid, Claudio Fan-
tacci, Jose Enrique Chen, Akhil Raju, Rae Jeong, Michael Neunert, Antoine Laurens, Stefano Sal-
iceti, Federico Casarini, Martin Riedmiller, Raia Hadsell, and Francesco Nori. Beyond pick-and-place:
Tackling robotic stacking of diverse shapes. In Conference on Robot Learning (CoRL), 2021. URL
https://openreview.net/forum?id=U0Q8CrtBJxJ.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics dataset.
In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 6299-6308,
2017.

Lei Ke, Mingqiao Ye, Martin Danelljan, Yifan Liu, Yu-Wing Tai, Chi-Keung Tang, and Fisher Yu. Segment
anything in high quality. arXiv preprint arXiv:2306.01567, 2023.

Klaus Greft, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J Fleet,
Dan Gnanapragasam, Florian Golemo, Charles Herrmann, et al. Kubric: A scalable dataset generator. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3749-3761,
2022.

13

https://openreview.net/forum?id=U0Q8CrtBJxJ

Appendix

A Experimental details for point tracking

In this section, we present detailed experimental setups considered by our experiments in Section 4.

Baselines. We consider 5 different baseline point tracking models, TAPNet [11], PIPS2 [9], CoTracker
[7], OmniMotion [8], and TAPIR [6]. We experiment with the checkpoint provided in the official
open-source repository hosted by their authors, following the default hyperparameters in each
model, e.g., for the input dimensions, in TAPNet [11] and TAPIR [6] consider a square-shaped
(256 x 256) dimension, while PIPS2 and CoTracker do rectangular-shaped dimensions, (512 x 896)
and (384 x 512), respectively. We also note that the backend library of TAPIR and TAPNet is ported
from JAX [31] to PyTorch [32] in our experiments, which provides subtle enhancements in the
tracking accuracy, e.g., AJ 56.2 [6] — 57.5 (Table 2) in DAVIS-F.

Table 5: The pruned resolutions in our method for each baseline point tracking model. We report
the specific values for Hy, H1, Wy, W1 when TAPNet[11], PIPS2[9], CoTracker[7], OmniMotion
[8], or TAPIR[6] is used as the baseline.

Baseline Model Hy H; Wo Wy

TAPNet [11] 960 384 960 384
PIPS2 [9] 960 512 1680 896
CoTracker [7] 960 384 1280 512
OmniMotion [8] 960 — 960 —

TAPIR [6] 960 384 960 384

Hyperparameters for point tracking. Unless otherwise specified, we always choose the number of
semantic neighbors S = 31, and the progressive inference steps K = 2 for TAPNet [11], PIPS2 [9],
CoTracker [7], and TAPIR [6]. For OmniMotion [8], we set the progressive inference step K = 1.
To incorporate our framework with the baselines, we select different pruning sizes to meet the shape
requirements of a specific model (e.g., TAPIR [6] needs a shape in multiples of 8 to be compatible
with its convolution layers). For example, if our method is plugged into TAPIR [6] and a video
with the 1080p resolution, e.g., (1080 x 1920), we set the pruning resolutions Hy = Wy = 960 and
H, = W; = 384. For clarity, we present the resolutions for all baseline models in Table 5.

Datasets. We evaluate the baselines and TrackIME in three different datasets from the TAP-Vid
benchmark [11]: DAVIS [12]; Kinetics [34]; and RGBStacking [8]. The sizes of the raw samples
can vary, e.g., from 256 to 2160 in their shorter sides, hence we process the frames by resizing
the shorter sides to 1080 with the aspect ratio fixed. As a result, the video frame resolutions are
typically (1080 x 1920) for DAVIS [12] and Kinetics [34]. We note that RGB-Stacking is originally
in (256 x 256), but we do bilinear up-sampling to (1080 x 1080) for simplicity.

Experimental environment. Every baseline model and internal module in TrackIME (e.g., Segment
Anything [1]) is implemented in PyTorch 2.1 [32] compiled for CUDA 11.8, which we run on an
NVIDIA RTX 3090 GPU. In default, we experiment with the float32 numerical precision; however,
in case of out-of-memory errors (e.g., RTX 3090’s 24 GiB VRAM cannot handle hundreds of frames),
we employ the bfloat16 precision to fit such samples into the limited memory.

B Backgrounds

In this section, we describe technical details behind the limitations in the current point tracking
models.

In the common canonical design of recent model architectures for Equation (1), e.g., our baselines:
TAPNet [11], CoTracker [7], TAPIR [6], etc., the key component is the cost volume [21], which
represents the likelihood of the query point’s spatial-temporal location over the entire video frames.
In principle, predicting this cost map requires a brute-force search over every spatial-temporal
location, which is often computationally infeasible on the raw video dimensions, e.g., 1080p. To
mitigate this problem, current models first down-sample the raw video into a lower spatial resolutions,

14

Table 6: FLOP counts by each module in TrackIME. We report the FLOP counts for point tracking
given 64 video frames, during the instance motion stage, and the high-fidelity tracking with K = 2
progressive steps.

TrackIME Modules FLOPs
Instance trajectory estimation (stage 1) 1355G
- Segmentation 533G
- Instance Tracking (32 points; S = 31) 822G
Progressive inference (stage 2) 1434G
-k =0 (32 points; S = 31) 822G
-k =1 (1 point) 612G
Total 2789G

e.g., (256 x 256) in TAPIR [6]. While the reduced resolution enables models to process the entire
video frames for tracking, the lost information during the resolution reduction induces quantization
noises into the cost volume. Recent baselines, including the state-of-the-art [6], employ refinement
techniques to mitigate these noises.® Nevertheless, the lost detail in the visual feature after the
down-sampling still hinder representing high-frequency patterns, and the model can suffer from
tracking failure modes.

In this regard, our method pursues the direction of pruning the excessive search space for point
tracking, so that models can avoid the down-sampling and focus only on important regions maintaining
detailed visual features.

C Computational costs for point tracking

In this section, we study the computational costs and efficiency of TrackIME by examining the FLOP
(floating-point operations) counts for performing the point tracking.

FLOP count of TrackIME. To check the exact cost of each module in TrackIME, we report the
FLOPs for tracking under our default setting, e.g., TAPIR [6] as the baseline, given 64 video frames.
Specifically, as given in Table 6, the segmentation with SAM [1] needs 533 GFLOPs, tracking 32
points (e.g., S = 31 semantic neighbors plus one query point) demand 822 GFLOPs, and tracking a
single point demands 612 GFLOPs, respectively. As a result, the net FLOP count of TrackIME (with
K = 2 progressive steps) is 2789 GFLOPs.

Computation efficiency compared to baselines. Next, we compare the baseline TAPIR [6] with
various input dimensions and TrackIME, in terms of their FLOP counts versus the point tracking
performances, AJ (Average Jaccard), 6§Vg, and OA (Occlusion Accuracy), evaluated under DAVIS-F
and DAVIS-S in Table 7.

For TAPIR, the FLOP count is mostly governed by the input dimension of a model (256 x 256), e.g.,
612 GFLOPs for processing 64 video frames, and it grows quadratically as the input dimension gets
increased.

An interesting finding in Table 7 is that the baseline [6] cannot benefit from the larger input dimensions
without fine-tuning. For example, we observe that the baseline’s performance only deteriorates given
larger inputs, as the model is only optimized for a low-resolution input frames (256 x 256) to meet
the memory constraints while training; it is non-trivial to process high-resolution inputs without
fine-tuning. Furthermore, even if fine-tuning is employed (e.g., TAPIR Hi-Res [6]), the performance
gain (e.g., 62.8 — 65.7 AJ) is not significant considering the excessive increase in FLOP counts (e.g.,
612 — 8257 GFLOPs), and the occlusion accuracy (OA) can even get worse (e.g., 88.3 — 86.7).

These results further demonstrate the merits of employing TrackIME for point tracking, which can
enable point tracking models to process the frames in a computationally efficient manner, even without
fine-tuning, and provide consistent performance gains. For example, comparing TrackIME (ours) vs.

SWe refer the readers to literature for the refinement mechanisms [6, 7].

15

Table 7: The comparison of the FLOP counts of the TAPIR [6] models and TrackIME. We
report the FLOP counts to process 64 video frames by TAPIR with the input dimensions (256 x 256)
(default), (512 x 512), and (768 x 768), TAPIR Hi-Res (a fine-tuned model for (1080 x 1080))
and TrackIME (ours). For each model, we further report the benchmark results in terms of AJ
(Average Jaccard), 5§vg, and OA (Occlusion Accuracy), evaluated under DAVIS-F and DAVIS-S. For
TAPIR Hi-Res, numbers are excerpted from [6], where results for DAVIS-F are not available.

Method FLOP DAVIS-F DAVIS-S

(Input Dim.) S| AJ §§vg OA Al 5;”‘,% OA
TAPIR

(256 x 256) 612G | 57.5 70.5 85.5 | 62.8 75.1 88.3
TAPIR

(512 x 512) 2429G | 53.9 65.9 79.8 | 62.5 74.0 81.8
TAPIR

(768 x 768) 5457G | 53.3 65.5 73.2 | 58.3 70.2 76.6

TAPIR Hi-Res
(1080 x 1080)

TrackIME
(256 x 256)

8257G - - - 65.7 77.6 86.7

2789G | 65.3 78.6 86.5 | 69.3 81.4 89.0

Table 8: The comparison of the FLOP counts of the CoTracker [7] models and TrackIME.
We report the FLOP counts to process 64 video frames by CoTracker with the input dimensions
(384 x 512) (default), (768 x 1024), and (1080 x 1440) and TrackIME (ours). For each model, we
further report the benchmark results in terms of AJ (Average Jaccard), 6§vg, and OA (Occlusion
Accuracy), evaluated under DAVIS-F.

(Inl\}:[stt lll)oi(rln.) FLOPs Ay DA(S\;ZVI:_F OA
(ggg rjc;ffé) 2707G 60.8 76.1 86.0
(gfg fcg(fzr) 7670G 623 77.8 87.1
(%)E;F rjcé(gg) 5457G 622 767 86.6
5,21“;‘??2@) 6217G 645 792 885

TAPIR Hi-Res [60] gives: 2789G vs. 8257G (FLOPs); 69.3 vs. 65.7 (AJ); 81.4 vs. 77.6 (dfvg); and
89.0 vs. 86.7 (OA), in DAVIS-S, respectively.

In the similar manner, we also provide the FLOPs count for our method incorporated with [7] in
Table 8.

D Ablation study

In this section, we ablate the choice of hyperparameters in our enhanced point tracking, namely
the pruning sizes (Hy, W) without the progressive fusion (i.e., K = 1) and our default setting
in TrackIME (K = 2), and the number of sampling semantic neighbors S for estimating the instance
trajectory.

In Table 9, we find that smaller pruning sizes tend to introduce positive effects in the fine-grained
metrics (e.g., 1- and 2-pixel error thresholds), but also trade off the average-scale metrics (e.g., AJ
and 0y,,,). These results are expected, as the pruning size gets smaller, the amount of down-sampling
reduces and more detailed visual features would be preserved, but at the same time, the chance of
erroneous pruning increases where the true location of the query point is lost.

16

Table 9: Ablation study of the pruning size in our framework. We ablate the pruning size
considered in TrackIME. For the evaluation, we calculate both pixel-scale and average-scale metrics
under the DAVIS-F dataset [11].

Pruning Size (K) | J; of Jo 05 Al 6%

avg

1080 (K =1) 28.1 410 523 660 625 752
960 (K =1) 29.7 424 529 663 63.1 75.6
768 (K =1) 319 446 557 68.1 64.0 764
S512(K =1) 346 47.6 565 689 639 769
384 (K =1) 353 473 565 683 623 76.1

960 — 384
(K=2)

354 482 577 701 653 78.6

Table 10: Ablation study of the effect of the number of semantic neighbors in our method. We
ablate the number of semantic neighbors considered in our method. For the evaluation, we calculate
both pixel-scale and average-scale metrics under the DAVIS-F dataset [11].

S+1| 1 & I, 68 Al oF

avg

128 | 35.1 477 571 694 648 782
64 350 475 572 698 648 783
32 354 482 577 70.1 653 78.6
16 352 479 573 699 648 785
8 351 478 574 702 649 785
4 350 47.6 575 698 649 783
2 351 479 572 697 647 78.1

We note that the progressive fusion (KX = 2) in our method can mitigate the trade-off in pruning by
considering multiple scales, e.g., Hy = 960 and H; = 384, providing additional performance gains.

Next, in Table 10, we ablate the effect of the choice for the number of semantic neighbors .S + 1
(including the query point), halving down its value starting from (S + 1) = 128 to (S + 1) = 2. As
a result, we find that all of the choices can provide satisfactory performance in general, although
there exist mild trade-offs between the 1- and 2-pixel scale metrics and the average scale metrics. As
one of our goal is on achieving the optimal pixel-scale performance in point tracking, we empirically
choose (S + 1) = 32, which reveals the best 1-pixel scale metrics.

E Additional experiments and visualizations

In this section, we provide the additional experiment and visualizations with TrackIME.

The use of visibilities as the confidence weights. Our strategy combines both the hard 0-1 visibility
predictions as well as the confidence weights (e.g., Equation (3)). This strategy effectively mitigates
potentially erroneous confidences by the false positives, since our method tends to demonstrate a
high precision (the portion of true positives) for the visibility classification, e.g., we get 93.7% at the
threshold 0.5 in DAVIS-F. Our strategy is valid as far as a sufficient number of visible tracking points
are available. For the cases where an object is occluded for a few frames and then reappears, our
framework can maintain the number of tracking points via the point re-sampling, even if the visibility
classifier fails to predict the reappearance.

To further support the validity of our strategy, we measure the average confidence of the true positives
and the false positives and find 0.902 (true positives) and 0.737 (false positives), so the remaining
false positives would be penalized through the weighted aggregation. We also provide additional
study in Table 11, where we force equal weights in the aggregation experimented in DAVIS-F. For
example, we find 1.3 points improvement by using our strategy.

TAPNet results with an alternative checkpoint. In our main experiments, we have utilized ResNet18
backbone image backbone provided by the official checkpoint to reproduce TAPNet [11] and TAPIR
[6] results, instead of TSM-ResNet18 used by TAPNet in the original paper [11]. In Table 12, we

17

Table 11: Forcing equal weights in the aggregation. We ablate the use of aggregation weights
in our method. For the evaluation, we calculate both pixel-scale and average scale metrics under
DAVIS-F dataset [11].

Method I Al 07 Ong OA
TrackIME (equal weights) 349 64.0 479 785 863
TrackIME (default) 354 653 482 78.6 86.5

additionally provide the results based on the checkpoint with the original TSM-ResNet18 image
backbone. When experimented with DAVIS-F and DAVIS-S, we find TrackIME keeps demonstrating
significant gains, e.g., 32.8 — 47.0 AJs (14.2 points) in DAVIS-F.

Table 12: TAPNet results with an alternative checkpoint. We experiment with the use original
TSM-ResNet18 image backbone for the TAPNet baseline [11]. For the evaluation, we calculate both
pixel-scale and average scale metrics under DAVIS-F and DAVIS-S datasets [11].

First Query Strided Query
Method I AJ 07 Oay OA) Al 0f 0y OA

TAPNet [11] 58 328 11.1 484 776 6.7 384 126 534 8l4
+ TrackIME 18.7 47.0 28.6 60.6 80.9 215 508 324 638 814

Visualization of the progressive inference. We additionally visualize the progressive inference
structure in Figure 3. Specifically, we incorporated TrackIME with TAPIR [6] and apply the
progressive pruning sizes of (960 x 960) and (384 x 384). As depicted by Figure 3, the latest
progressive step is well focused around the query point, e.g., the dog’s ear, so that the search space
for point tracking is effectively pruned.

F Limitation

F.1 Limitation and Future Works

TrackIME relies on the pre-trained models for point tracking, often trained with synthetic datasets,
such as Kubric [36] and PointOdyssey [9], while the segmentation models are primarily trained on
the real images [1]. An interesting future direction is to integrate the TrackIME with training on the
real video scenes. As this could include the development of point tracking algorithms capable of
generalization to diverse intricate objects or, alternatively, optimizing the segmentation models for
better video scene understanding. This approach could further improve the accuracy and applicability
of TrackIME in various real-world scenarios.

F.2 Potential Negative Societal Impact

While point tracking by TrackIME can be beneficial for various video understanding applications,
such as novel-view synthesis, depth estimation, and action recognition, the emergence of unexpected
behavior within TrackIME can lead to misrepresentations of the real video data. For those applications
that require extremely accurate models for safety-related judgements, such as depth estimation for
autonomous driving, the unexpected behaviors must be carefully managed. To ensure the reliability
of systems using point tracking predictions, we recommend to conduct thorough investigations and
implement robust mitigation strategies to minimize potential risks, thereby increasing the overall
safety and effectiveness of these applications.

18

@ Query Point p@ =0 @ Semantic Neighbors N(p(q)) 1=0

Segment

Anything

—
seg(p@,1)

Semantic Neighbors Tracking 1=3

TrackIME

Segment
Anything

—
Seg(p@,1)

Semantic Neighbors Tracking
EEEE

TrackIME

Figure 3: Demonstration of the progressive inference by TrackIME framework.

19

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims in the introduction and abstract accurately reflect the contribution
and scope, which are then verified in Section 4.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Appendix F discusses it. The trade-offs regarding the hyperparameter selection
is discussed in Section 4.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

20

Answer: [NA]
Justification: We do not have a theory in this paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have included the implementation details of TrackIME in Section 4
and Appendix A.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

21

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will keep updating the open-soruce repository and the project page at
https://trackime.github.io/.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detail of the training/evaluation setup, dataset, and hyperpa-
rameters in Section 4 and Appendix A.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: All experiments are conducted with the same and commonly used random
seed.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

22

https://trackime.github.io/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the computational costs in Appendix C.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We do not have any ethical concerns regarding the paper.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discussed the societal impact in Appendix F
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

23

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our method does not introduce risks for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited all papers and datasets used in the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

24

paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:
Justification: We will release the Pytorch implementation of TrackIME after the acceptance.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We use existing benchmark datasets and do not have any crowdsourcing
datasets or experiments in the paper.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not have human subject in the research.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Method
	Instance Trajectory Estimation
	TrackIME: Enhanced Video Point Tracking via Instance Motion Estimation

	Related Work
	Experiments
	Point Tracking
	Video Object Segmentation

	Conclusion
	Experimental details for point tracking
	Backgrounds
	Computational costs for point tracking
	Ablation study
	Additional experiments and visualizations
	Limitation
	Limitation and Future Works
	Potential Negative Societal Impact

