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ABSTRACT

We present Segment Anything Model 2 (SAM 2), a foundation model towards
solving promptable visual segmentation in images and videos. We build a data
engine, which improves model and data via user interaction, to collect the largest
video segmentation dataset to date. Our model is a simple transformer architecture
with streaming memory for real-time video processing. SAM 2 trained on our data
provides strong performance across a wide range of tasks. In video segmentation,
we observe better accuracy, using 3× fewer interactions than prior approaches. In
image segmentation, our model is more accurate and 6× faster than the Segment
Anything Model (SAM). We believe that our data, model, and insights will serve
as a significant milestone for video segmentation and related perception tasks. We
are releasing our main model, the dataset, an interactive demo and code.

1 INTRODUCTION

Figure 1: We introduce the Segment Anything Model 2 (SAM 2), towards solving the promptable
visual segmentation task (a) with our foundation model (b), trained on our large-scale SA-V dataset
collected through our data engine (c). SAM 2 is capable of interactively segmenting regions through
prompts (clicks, boxes, or masks) on one or multiple video frames by utilizing a streaming memory
that stores previous prompts and predictions.

Segment Anything (SA) introduced a foundation model for promptable segmentation in images (Kir-
illov et al., 2023). However an image is only a static snapshot of the real world in which visual
segments can exhibit complex motion, and with the rapid growth of multimedia content, a significant
portion is now recorded with a temporal dimension, particularly in video data. Many important appli-
cations in AR/VR, robotics, autonomous vehicles, and video editing require temporal localization
beyond image-level segmentation. We believe a universal visual segmentation system should be
applicable to both images and videos.

Segmentation in video aims to determine the spatio-temporal extent of entities, which presents unique
challenges beyond those in images. Entities can undergo significant changes in appearance due to
motion, deformation, occlusion, lighting changes, and other factors. Videos often have lower quality
than images due to camera motion, blur, and lower resolution. Further, efficient processing of a
large number of frames is a key challenge. While SA successfully addresses segmentation in images,
existing video segmentation models and datasets fall short in providing a comparable capability to
“segment anything in videos”.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We introduce the Segment Anything Model 2 (SAM 2), a unified model for video and image
segmentation (we consider an image as a single-frame video). Our work includes a task, model, and
dataset (see Fig. 1).

We focus on the Promptable Visual Segmentation (PVS) task that generalizes image segmentation to
the video domain. The task takes as input points, boxes, or masks on any frame of the video to define
a segment of interest for which the spatio-temporal mask (i.e., a ‘masklet’) is to be predicted. Once a
masklet is predicted, it can be iteratively refined by providing prompts in additional frames.

Our model (§4) produces segmentation masks of the object of interest, in single images and across
video frames. SAM 2 is equipped with a memory that stores information about the object and previous
interactions, which allows it to generate masklet predictions throughout the video, and also effectively
correct these based on the stored memory context of the object from previously observed frames.
Our streaming architecture is a natural generalization of SAM to the video domain, processing video
frames one at a time, equipped with a memory attention module to attend to the previous memories
of the target object. When applied to images, the memory is empty and the model behaves like SAM.

We employ a data engine (§5) to generate training data by using our model in the loop with
annotators to interactively annotate new and challenging data. Different from most existing video
segmentation datasets, our data engine is not restricted to objects of specific categories, but instead
targeted to provide training data for segmenting any object with a valid boundary, including parts and
subparts. Compared to existing model-assisted approaches, our data engine with SAM 2 in the loop is
8.4× faster at comparable quality. Our final Segment Anything Video (SA-V) dataset (§5.2) consists
of 35.5M masks across 50.9K videos, 53× more masks than any existing video segmentation dataset.
SA-V is challenging with small objects and parts that get occluded and re-appear throughout the video.
Our SA-V dataset is geographically diverse, and a fairness evaluation of SAM 2 indicates minimal
performance discrepancy in video segmentation based on perceived gender, and little variance among
the three perceived age groups we evaluated.

Our experiments (§6) show that SAM 2 delivers a step-change in the video segmentation experience.
SAM 2 can produce better segmentation accuracy while using 3× fewer interactions than prior
approaches. Further, SAM 2 outperforms prior work in established video object segmentation
benchmarks, under multiple evaluation settings, and delivers better performance compared to SAM
on image segmentation benchmarks, while being 6× faster. SAM 2 is shown to be effective across
a variety of video and image distributions as observed through numerous zero-shot benchmarks
including 17 for video segmentation and 37 for single-image segmentation.

We are releasing our work under permissive open licences, including the SA-V dataset, the SAM 2
model checkpoints, training code, and code for an interactive web demo.

2 RELATED WORK

Image segmentation. Segment Anything (Kirillov et al., 2023) introduces a promptable image
segmentation task where the goal is to output a valid segmentation mask given an input prompt such
as a bounding box or a point that refers to the object of interest. SAM trained on the SA-1B dataset
allows for zero-shot segmentation which enabled its adoption to a wide range of applications. Recent
work has extended SAM, e.g., by introducing a High-Quality output token to train on fine-grained
masks (Ke et al., 2024), or improve SAM’s efficiency (Xiong et al., 2023; Zhang et al., 2023a;
Zhao et al., 2023). More broadly, SAM is used in a wide range of applications, including medical
imaging (Ma et al., 2024; Deng et al., 2023; Mazurowski et al., 2023; Wu et al., 2023a), remote
sensing (Chen et al., 2024; Ren et al., 2024), motion segmentation (Xie et al., 2024), and camouflaged
object detection (Tang et al., 2023).

Interactive Video Object Segmentation (iVOS). Interactive video object segmentation has emerged
as a crucial task to efficiently obtain object segmentations in videos (masklets) with user guidance,
often in the form of scribbles, clicks, or bounding boxes. A few early approaches (Wang et al., 2005;
Bai & Sapiro, 2007; Fan et al., 2015) deploy graph-based optimization to guide the segmentation
annotation process. More recent approaches (Heo et al., 2020; Cheng et al., 2021b; Delatolas et al.,
2024) often adopt a modular design, converting user inputs into a mask representation on a single
frame and then propagating it to other frames.
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Click-based input is easier to collect (Homayounfar et al., 2021) for interactive video segmentation.
Recent works have used a combination of SAM on images with video trackers based on masks (Cheng
et al., 2023b; Yang et al., 2023; Cheng et al., 2023c) or points (Rajič et al., 2023). However, these
approaches have limitations: the tracker may not work for all objects, SAM may not perform well
on video frames, and there is no mechanism to interactively refine a model’s mistakes, other than
re-annotating using SAM in each frame and restarting the tracking from there.

Our work shares a similar goal to these works to segment objects across videos interactively, and we
build a strong unified model that directly takes prompts for interactive video segmentation, along
with a large and diverse dataset in pursuit of solving this goal.

Video Object Segmentation (VOS). The VOS task begins with an object mask as input in the first
frame, which must be accurately tracked throughout the video (Pont-Tuset et al., 2017). The task is
referred to as “semi-supervised VOS” since the input mask can be seen as supervision signal of the
object which is available only in the first frame. This task has drawn significant attention due to its
relevance in applications, including video editing or robotics.

Early deep learning based approaches have often used fine-tuning on the first video frame (Caelles
et al., 2016; Perazzi et al., 2016; Yoon et al., 2017; Maninis et al., 2017; Hu et al., 2018a; Bhat et al.,
2020; Robinson et al., 2020) or on all frames (Voigtlaender & Leibe, 2017) to adapt the model to the
target object. Faster inference has been achieved with offline-trained models, conditioned either only
on the first frame (Hu et al., 2018b; Chen et al., 2018), or also integrating the previous frame (Oh
et al., 2018; Yang et al., 2018; 2020). This multi-conditioning has been extended to all frames with
RNNs (Tokmakov et al., 2017; Xu et al., 2018a) and transformers (Oh et al., 2019; Cheng et al.,
2021a; Li et al., 2022a; Yang et al., 2021b; 2024; Cheng & Schwing, 2022; Yang & Yang, 2022;
Wang et al., 2022; Cheng et al., 2023a; Goyal et al., 2023; Zhang et al., 2023b; Wu et al., 2023b).

Semi-supervised VOS can be seen as a special case of our Promptable Visual Segmentation (PVS)
task, with only a mask prompt in the first video frame. Notably, annotating the required high-quality
object mask in the first frame in VOS is practically challenging and time-consuming for inference.

Video segmentation datasets. Many datasets have been proposed for VOS. Early VOS datasets (Prest
et al., 2012; Li et al., 2013; Ochs et al., 2014; Fan et al., 2015), such as DAVIS (Pont-Tuset et al.,
2017; Caelles et al., 2019), include high-quality annotations but their size limits deep-learning based
approaches. YouTube-VOS (Xu et al., 2018b) is the first large-scale dataset for VOS. As algorithms
became better and benchmark performance started to saturate, researchers have looked at increasing
the difficulty of the VOS task by specifically focusing on occlusions (Qi et al., 2022; Ding et al.,
2023), long videos (Hong et al., 2023; 2024), extreme transformations (Tokmakov et al., 2022), object
diversity (Wang et al., 2021b; 2023) or scene diversity (Athar et al., 2022; Xu et al., 2023).

We find that current video segmentation datasets lack sufficient coverage to achieve the capability
of “segmenting anything in videos”. Their annotations typically cover entire objects (not parts) and
datasets are often centered around specific object classes, such as people, vehicles, and animals. In
comparison to these datasets, our released SA-V dataset not only focuses on whole objects but also
extensively covers object parts and contains over an order of magnitude more masks.

3 TASK: PROMPTABLE VISUAL SEGMENTATION

Our PVS task allows providing prompts to the model on any frame of a video. Prompts can be
positive/negative clicks, boxes, or masks, either to define an object to segment or to refine a model-
predicted one. To provide an interactive experience, upon receiving a prompt on a specific frame, the
model should immediately respond with a valid segmentation mask of the object on this frame. After
receiving initial prompts (either on the same frame or different frames), the model should propagate
these prompts to obtain the masklet of the object across the entire video, localizing the segmentation
mask of the target on every video frame. Additional prompts can be provided to the model on any
frame to refine the segment throughout the video (example in Fig. 2). For details on the task, see §B.

SAM 2 (§4) is applied as a data collection tool to the PVS task for building our SA-V dataset (§5).
We evaluate the model (§6) by simulating interactive video segmentation scenarios across multiple
frames, in the conventional semi-supervised VOS setting where annotations are limited to the first
frame, and for image segmentation on the SA benchmarks.
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frame 1

step 1

step 2

frame 2 frame 3 frame 4

Figure 2: Interactive segmentation with SAM 2. Step 1 (selection): we prompt SAM 2 in frame 1
to obtain the segment of the target object (the tongue). Green/red dots indicate positive/negative
prompts respectively. SAM 2 automatically propagates the segment to the following frames (blue
arrows) to form a masklet. If SAM 2 loses the object (after frame 2), we can correct the masklet by
providing an additional prompt in a new frame (red arrow). Step 2 (refinement): a single click in
frame 3 is sufficient to recover the object and propagate it to obtain the correct masklet. A decoupled
SAM + video tracker approach would require several clicks in frame 3 (as in frame 1) to correctly
re-annotate the object as the segmentation is restarted from scratch. With SAM 2’s memory, a single
click can recover the tongue.

4 MODEL

SAM 2 (Fig. 3) can be seen as a generalization of SAM to the video (and image) domain, taking point,
box, and mask prompts on individual frames to define the spatial extent of the object to be segmented
spatio-temporally. Spatially, the model behaves similarly to SAM. A promptable and light-weight
mask decoder takes an image embedding and prompts (if any) and outputs a segmentation mask for
the frame. Prompts can be iteratively added on a frame in order to refine the masks.

The frame embedding used by the SAM 2 decoder is not directly from an image encoder and is instead
conditioned on memories of past predictions and prompted frames. It is possible for prompted frames
to also come “from the future” relative to the current frame. Memories of frames are created by the
memory encoder based on the current prediction and placed in a memory bank for use in subsequent
frames. The memory attention operation takes the per-frame embedding from the image encoder and
conditions it on the memory bank, before the mask decoder ingests it to form a prediction.

We describe individual components and training below and provide more details in Appendix D.

Image encoder. For real-time processing of arbitrarily long videos, we take a streaming approach,
consuming video frames as they become available. The image encoder is only run once for the entire
interaction and its role is to provide unconditioned tokens (feature embeddings) representing each
frame. We use an MAE (He et al., 2022) pre-trained Hiera (Ryali et al., 2023; Bolya et al., 2023)
image encoder, which is hierarchical, allowing us to use multiscale features during decoding.

Memory attention. The role of memory attention is to condition the current frame features on
the past frames features and predictions as well as on any new prompts. We stack L transformer
blocks, the first one taking the image encoding from the current frame as input. Each block performs
self-attention, followed by cross-attention to memories of (prompted/unprompted) frames and object
pointers (see below), stored in a memory bank (see below), followed by an MLP. We use vanilla
attention operations for self- and cross-attention, allowing us to benefit from recent developments in
efficient attention kernels (Dao, 2023).

Prompt encoder and mask decoder. Our prompt encoder is identical to SAM’s and can be prompted
by clicks (positive or negative), boxes, or masks to define the extent of the object in a given frame.
Sparse prompts are represented by positional encodings summed with learned embeddings for each
prompt type, while masks are embedded using convolutions and summed with the frame embedding.

4
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Figure 3: The SAM 2 architecture. For a given frame, the segmentation prediction is conditioned on
the current prompt and/or on previously observed memories. Videos are processed in a streaming
fashion with frames being consumed one at a time by the image encoder, and cross-attended to
memories of the target object from previous frames. The mask decoder, which optionally also takes
input prompts, predicts the segmentation mask for that frame. Finally, a memory encoder transforms
the prediction and image encoder embeddings (not shown in the figure) for use in future frames.

Our decoder design largely follows SAM. We stack “two-way” transformer blocks that update prompt
and frame embeddings. As in SAM, for ambiguous prompts (i.e., a single click) where there may be
multiple compatible target masks, we predict multiple masks. This design is important to ensure that
the model outputs valid masks. In video, where ambiguity can extend across video frames, the model
predicts multiple masks on each frame. If no follow-up prompts resolve the ambiguity, the model
only propagates the mask with the highest predicted IoU for the current frame.

Unlike SAM where there is always a valid object to segment given a positive prompt, in the PVS task
it is possible for no valid object to exist on some frames (e.g. due to occlusion). To support this new
output mode, we add an additional head that predicts whether the object of interest is present on the
current frame. Another novelty are skip connections from our hierarchical image encoder (bypassing
the memory attention) to incorporate high-resolution embeddings for mask decoding (see §D).

Memory encoder. The memory encoder generates a memory by downsampling the output mask
using a convolutional module and summing it element-wise with the unconditioned frame embedding
from the image-encoder (not shown in Fig. 3), followed by light-weight convolutional layers to fuse
the information.

Memory bank. The memory bank retains information about past predictions for the target object in
the video by maintaining a FIFO queue of memories of up to N recent frames and stores information
from prompts in a FIFO queue of up to M prompted frames. For instance, in the VOS task where the
initial mask is the only prompt, the memory bank consistently retains the first frame’s memory along
with memories of up to N recent (unprompted) frames. Both sets of memories are stored as spatial
feature maps.

In addition to the spatial memory, we store a list of object pointers as lightweight vectors for high-
level semantic information of the object to segment, based on mask decoder output tokens of each
frame. Our memory attention cross-attends to both spatial memory features and these object pointers.

We embed temporal position information into the memories of N recent frames, allowing the model
to represent short-term object motion, but not into those of prompted frames, because the training
signal from prompted frames is sparser and it is more difficult to generalize to the inference setting
where prompted frames may come from a very different temporal range than seen during training.

Training. The model is trained jointly on image and video data. Similar to previous work (Kirillov
et al., 2023; Sofiiuk et al., 2022), we simulate interactive prompting of the model. We sample
sequences of 8 frames and randomly select up to 2 frames to prompt and probabilistically receive
corrective clicks which are sampled using the ground-truth masklet and model predictions during
training. The training task is to sequentially (and “interactively”) predict the ground-truth masklet.
Initial prompts to the model can be the ground-truth mask with probability 0.5, a positive click
sampled from the ground-truth mask with probability 0.25, or a bounding box input with probability
0.25. See §D for more details.
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5 DATA

To develop the capability to “segment anything” in video, we built a data engine to collect a large and
diverse video segmentation dataset. We employ an interactive model in the loop setup with human
annotators. Similar to Kirillov et al. (2023), we do not impose semantic constraints on the annotated
masklets, and focus on both whole objects (e.g., a person) and parts (e.g., a person’s hat). Our data
engine went through three phases, each categorized based on the level of model assistance provided
to annotators. Next, we describe each data engine phase and our SA-V dataset.

5.1 DATA ENGINE

Phase 1: SAM per frame. The initial phase used the image-based interactive SAM (Kirillov et al.,
2023) to assist human annotation. Annotators are tasked with annotating the mask of a target object in
every frame of the video at 6 frames per second (FPS) using SAM, and pixel-precise manual editing
tools such as a “brush” and “eraser”. There is no tracking model involved to assist with the temporal
propagation of masks to other frames. As this is a per-frame method, and all frames require mask
annotation from scratch, the process is slow, with an average annotation time of 37.8 seconds per
frame in our experiment. However, this yields high-quality spatial annotations per frame. In this
phase, we collected 16K masklets across 1.4K videos. We further use this approach to annotate our
SA-V val and test sets to mitigate potential biases of SAM 2 during evaluation.

Phase 2: SAM + SAM 2 Mask. The second phase added SAM 2 into the loop, where SAM 2 only
accepted masks as prompts. We refer to this version as SAM 2 Mask. Annotators used SAM and
other tools as in Phase 1 to generate spatial masks in the first frame, and then use SAM 2 Mask to
temporally propagate the annotated mask to other frames to get the full spatio-temporal masklets. At
any subsequent video frame, annotators can spatially modify the predictions made by SAM 2 Mask
by annotating a mask from scratch with SAM, a “brush” and/or “eraser”, and re-propagate with SAM
2 Mask, repeating this process until the masklet is correct. SAM 2 Mask was initially trained on the
Phase 1 data and publicly available datasets. During Phase 2, we re-trained and updated SAM 2 Mask
in the annotation loop twice using the collected data. In Phase 2, we collected 63.5K masklets. The
annotation time went down to 7.4 s/frame, a ∼5.1x speed up over Phase 1.

Despite an improvement in annotation time, this approach requires annotating masks in intermediate
frames from scratch without previous memory. We then advanced to develop the fully-featured
SAM 2, capable of both interactive segmentation and mask propagation in a unified model.

Phase 3: SAM 2. In the final phase, we utilize the fully-featured SAM 2, which accepts various
types of prompts, including points and masks. SAM 2 benefits from memories of objects across
the temporal dimension to generate mask predictions. This means annotators only need to provide
occasional refinement clicks to SAM 2 to edit the predicted masklets in intermediate frames, as
opposed to annotating from scratch with a spatial SAM which has no such memory context. During
Phase 3, we re-trained and updated SAM 2 using the collected annotations five times. With SAM 2 in
the loop, the annotation time per frame went down to 4.5 seconds, a ∼8.4x speed up over Phase 1. In
Phase 3, we collected 197.0K masklets.

Quality verification. To uphold a high standard for annotation, we introduce a verification step.
A separate set of annotators are tasked with verifying the quality of each annotated masklet as
“satisfactory” (correctly and consistently tracking the target object across all frames) or “unsatisfactory”
(target object is well defined with a clear boundary but the masklet is not correct or consistent).
Unsatisfactory masklets were sent back to the annotation pipeline for refinement. Any masklets
tracking not well defined objects were rejected entirely.

Auto masklet generation. Ensuring diversity in annotation is important to enable the anything
capability of our model. As human annotators might typically focus more on salient objects, we
augment the annotations with automatically generated masklets (referred to as “Auto”). This serves a
dual purpose of increasing the coverage of annotations and helping identify model failure cases. To
generate auto masklets, we prompt SAM 2 with a regular grid of points in the first frame and generate
candidate masklets. These are then sent to the masklet verification step for filtering. Automatic
masklets tagged as “satisfactory” are added to the SA-V dataset. Masklets identified as “unsatisfactory”

6
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Model in the Loop
Time per

Frame
Edited
Frames

Clicks per
Clicked
Frame

Phase 1 Mask Alignment Score (IoU>0.75)

All Small Medium Large

Phase 1 SAM only 37.8 s 100.00 % 4.80 - - - -
Phase 2 SAM + SAM 2 Mask 7.4 s 23.25 % 3.61 86.4 % 71.3 % 80.4 % 97.9 %
Phase 3 SAM 2 4.5 s 19.04 % 2.68 89.1 % 72.8 % 81.8 % 100.0 %

Table 1: Evolution of data engine phases showing the average annotation time per frame, the average
percent of edited frames per masklet, the number of manual clicks per clicked frame, and Mask
Alignment to Phase 1 by mask size.

(i.e., model failure cases) are sampled and presented to annotators to refine with SAM 2 in the loop
(Phase 3 of the data engine). These automatic masklets cover large salient central objects but also
objects of varying sizes and positions in the background.

Analysis. Table 1 shows a comparison of the annotation protocol in each data engine phase through a
controlled experiment (details in §E.2.2). We compare the average annotation time per frame, the
average percentage of manually edited frames per masklet, and the average number of clicks per
clicked frame. For quality evaluation, we define the Phase 1 Mask Alignment Score as the percentage
of masks whose IoU compared to the corresponding masks in Phase 1 exceeds 0.75. Phase 1 data is
chosen as a reference as it has per-frame high quality manual annotations. Phase 3 with SAM 2 in
the loop leads to increased efficiency and comparable quality: it is 8.4× faster than Phase 1, has the
lowest edited frame percentage and clicks per frame, and results in better alignment.

Training data SA-V val 9 zero-shot
VOS + SA-1B 50.0 62.5

+ Phase 1 53.0 66.9
+ Phase 2 58.8 70.9
+ Phase 3 62.5 71.2

+ Auto 63.2 71.5

Table 2: Segmentation accuracy
(J&F metric) improvement from
adding data from each data engine
phase. “VOS” is a set of video object
segmentation datasets. Details are in §F.

In Table 2, we show the performance comparison of
SAM 2 trained on the available data at the end of each
phase keeping the number of iterations fixed, therefore
measuring solely the impact of the additional data. We
evaluate on our own SA-V val set and also on 9 zero-
shot benchmarks (see §F.1 for details) using the stan-
dard J&F accuracy metric (the higher the better) when
prompting with 3-clicks on the first frame. We note a
consistent improvement after iteratively including the
data from each phase, not only on the in-domain SA-V
val set, but also on the 9 zero-shot benchmarks.

5.2 SA-V DATASET

The SA-V dataset collected with our data engine comprises 50.9K videos with 642.6K masklets.
In Table 3 we compare the SA-V composition to common VOS datasets across the number of videos,
masklets, and masks. Notably, the number of annotated masks is 53× (15× without auto) larger than
any existing VOS dataset, providing a substantial resource for future work. We are releasing SA-V
under a permissive license.

Videos. We collected a new set of 50.9K videos captured by crowdworkers. Videos comprise 54%
indoor and 46% outdoor scenes with an average duration of 14 seconds. Videos feature “in-the-wild”
diverse environments, and cover various everyday scenarios.

Masklets. The annotations comprise 190.9K manual masklet annotations and 451.7K automatic
masklets collected using our data engine. Example videos with masklets overlaid (manual and
automatic) are shown in Fig. 4. SA-V has 53× (15× without auto annotations) more masks than the
largest VOS dataset. The disappearance rate (Ding et al., 2023) in SA-V Manual (the percentage of
annotated masklets that disappear in at least one frame and then re-appear) is 42.5%, competitive
among existing datasets.

SA-V training, validation and test splits. We split SA-V based on the video authors (and their
geographic locations) to ensure minimal overlap of similar objects. To create SA-V val and SA-V test
sets, we focus on challenging scenarios in selecting videos, and ask annotators to identify challenging
targets that are fast-moving, have complex occlusions by other objects as well as disappearance/re-
appearance patterns. These targets were annotated at 6 FPS using the data engine Phase 1 setup in
§5.1. There are 293 masklets and 155 videos in the SA-V val split, and 278 masklets and 150 videos
in the SA-V test split.
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Figure 4: Example videos from the SA-V dataset with masklets overlaid (manual and automatic).
Each masklet has a unique color, and each row represents frames from one video, with 1 second
between them. More examples in Fig. 11.

#Videos Duration #Masklets #Masks #Frames Disapp. Rate

DAVIS 2017 (Pont-Tuset et al., 2017) 0.2K 0.1 hr 0.4K 27.1K 10.7K 16.1 %
YouTube-VOS (Xu et al., 2018b) 4.5K 5.6 hr 8.6K 197.3K 123.3K 13.0 %
UVO-dense (Wang et al., 2021b) 1.0K 0.9 hr 10.2K 667.1K 68.3K 9.2 %
VOST (Tokmakov et al., 2022) 0.7K 4.2 hr 1.5K 175.0K 75.5K 41.7 %
BURST (Athar et al., 2022) 2.9K 28.9 hr 16.1K 600.2K 195.7K 37.7 %
MOSE (Ding et al., 2023) 2.1K 7.4 hr 5.2K 431.7K 638.8K 41.5 %

Internal 62.9K 281.8 hr 69.6K 5.4M 6.0M 36.4 %
SA-V Manual 50.9K 196.0 hr 190.9K 10.0M 4.2M 42.5 %
SA-V Manual+Auto 50.9K 196.0 hr 642.6K 35.5M 4.2M 27.7 %

Table 3: Comparison of our datasets with open source VOS datasets in terms of number of videos,
duration, number of masklets, masks, frames, and disappearance rate. SA-V Manual contains
only manually annotated labels. SA-V Manual+Auto combines manually annotated labels with
automatically generated masklets.

Internal dataset. We also used internally available licensed video data to further augment our
training set. Our internal dataset is comprised of 62.9K videos and 69.6K masklets annotated in
Phase 2 and Phase 3 (see §5.1) for training, and 96 videos and 189 masklets annotated using Phase 1
for testing (Internal-test).

See Appendix E for more details on the data engine and SA-V dataset, including a fairness evaluation.

6 ZERO-SHOT EXPERIMENTS

Here, we compare SAM 2 with previous work on zero-shot video and image tasks. We report the
standard J&F metric (Pont-Tuset et al., 2017) for video and mIoU metric for image tasks. Unless
otherwise mentioned, the results in this section follow our default setup using Hiera-B+ image encoder
with a resolution of 1024 and trained on the full combination of datasets, i.e., SAM 2 (Hiera-B+) in
Table 6 (see also §D.2 for details).

6.1 PROMPTABLE VIDEO SEGMENTATION

We first evaluate promptable video segmentation, which involves simulating an interactive setting
that resembles the user experience. We have two settings, offline evaluation, where multiple passes
are made through a video to select frames to interact with based on the largest model error, and
online evaluation, where the frames are annotated in a single forward pass through the video. These
evaluations are conducted on 9 densely annotated zero-shot video datasets using Nclick = 3 clicks
per frame (see §F.1 for details).
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(a) offline average J&F across datasets (3-click) (b) online average J&F across datasets (3-click)

Figure 5: Zero-shot accuracy over 9 datasets in interactive offline and online evaluation settings.

We create two strong baselines, SAM+XMem++ and SAM+Cutie, based on two state-of-the-art
models for video object segmentation, XMem++ (Bekuzarov et al., 2023) and Cutie (Cheng et al.,
2023a). We use XMem++ to generate a video segmentation based on mask inputs on one or multiple
frames. SAM is used to provide an initial mask or to refine an output (by feeding the current
segmentation as a mask prompt to SAM). For the SAM+Cutie baseline, we modify Cutie to allow
taking mask inputs on multiple frames.

In Fig. 5, we report the average J&F accuracy over Nframe = 1, . . . , 8 interacted frames. SAM
2 outperforms SAM+XMem++ and SAM+Cutie for both offline and online evaluation settings.
Across all 9 datasets (see per-dataset results in §F.1), SAM 2 dominates both methods, generating
high-quality video segmentation from a few clicks while allowing continued refinement with prompts.
Overall, SAM 2 can generate better segmentation accuracy, with >3× fewer interactions.

6.2 SEMI-SUPERVISED VIDEO OBJECT SEGMENTATION
Method 1-click 3-click 5-click bounding box ground-truth mask‡

SAM+XMem++ 56.9 68.4 70.6 67.6 72.7
SAM+Cutie 56.7 70.1 72.2 69.4 74.1
SAM 2 64.7 75.3 77.6 74.4 79.3

Table 4: Zero-shot accuracy across 17 video datasets using different prompts. We report average
accuracy for each type of prompt (1, 3 or 5 clicks, bounding boxes, or ground-truth masks) in the first
video frame (‡: this case directly uses masks as inputs into XMem++ or Cutie without SAM).
We evaluate the semi-supervised video object segmentation (VOS) setting (Pont-Tuset et al., 2017)
with click, box, or mask prompts only on the first frame of the video. When using click prompts, we
interactively sample either 1, 3 or 5 clicks on the first video frame.

Similar to the interactive setting in §6.1, we compare to XMem++ and Cutie, using SAM for click
and box prompts, and in their default setting when using mask prompts. We report the standard J&F
accuracy (Pont-Tuset et al., 2017), except for on VOST (Tokmakov et al., 2022), where we report the
J metric following its protocol. The results are in Table 4. SAM 2 outperforms both methods on the
17 datasets. The results underline that SAM 2 also excels at the conventional, non-interactive VOS
task with mask input, for which these other works are specifically designed. Details are in §F.1.3.

6.3 IMAGE SEGMENTATION

We evaluate SAM 2 on the Segment Anything task across 37 zero-shot datasets, including 23 datasets
previously used by SAM for evaluation. 1-click and 5-click mIoUs are reported in Table 5 and we
show the average mIoU by dataset domain and model speed in frames per second (FPS) on a single
A100 GPU.

The first column (SA-23 All) shows accuracy on the 23 datasets from SAM. SAM 2 achieves higher
accuracy (58.9 mIoU with 1 click) than SAM (58.1 mIoU with 1 click), without using any extra data
and while being 6× faster. This can be mainly attributed to the smaller but more effective Hiera
image encoder in SAM 2.

The bottom row shows how training on our SA-1B and video data mix can further improve accuracy
to 61.4% on average on the 23 datasets. We also see exceptional gains on the video benchmarks from
SA-23 (video datasets are evaluated as images, identical to Kirillov et al. (2023)), and the 14 new
video datasets we added. More detailed results including a breakdown by dataset are in §F.4.
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1 (5) click mIoU

Model Data SA-23 All SA-23 Image SA-23 Video 14 new Video FPS

SAM SA-1B 58.1 (81.3) 60.8 (82.1) 54.5 (80.3) 59.1 (83.4) 21.7
SAM 2 SA-1B 58.9 (81.7) 60.8 (82.1) 56.4 (81.2) 56.6 (83.7) 130.1
SAM 2 our mix 61.9 (83.5) 63.3 (83.8) 60.1 (83.2) 69.6 (85.8) 130.1

Table 5: Zero-shot accuracy on the Segment Anything (SA) task across 37 datasets. The table shows
the average 1- and 5-click mIoU of SAM 2 compared to SAM by domains (image/video). We report
the average metrics on the 23 datasets used by SAM (SA-23) and the average across 14 additional
zero-shot video datasets (as detailed in §F.4).

J&F G
Method MOSE

val
DAVIS

2017 val
LVOS

val
SA-V

val
SA-V
test

YTVOS
2019 val

STCN (Cheng et al., 2021a) 52.5 85.4 - 61.0 62.5 82.7
SwinB-AOT (Yang et al., 2021b) 59.4 85.4 - 51.1 50.3 84.5
SwinB-DeAOT (Yang & Yang, 2022) 59.9 86.2 - 61.4 61.8 86.1
RDE (Li et al., 2022a) 46.8 84.2 - 51.8 53.9 81.9
XMem (Cheng & Schwing, 2022) 59.6 86.0 - 60.1 62.3 85.6
SimVOS-B (Wu et al., 2023b) - 88.0 - 44.2 44.1 84.2
JointFormer (Zhang et al., 2023b) - 90.1 - - - 87.4
ISVOS (Wang et al., 2022) - 88.2 - - - 86.3
DEVA (Cheng et al., 2023b) 66.0 87.0 55.9 55.4 56.2 85.4
Cutie-base (Cheng et al., 2023a) 69.9 87.9 66.0 60.7 62.7 87.0
Cutie-base+ (Cheng et al., 2023a) 71.7 88.1 - 61.3 62.8 87.5

SAM 2 (Hiera-B+) 76.6 90.2 78.0 76.8 77.0 88.6
SAM 2 (Hiera-L) 77.9 90.7 78.0 77.9 78.4 89.3

Table 6: VOS comparison to prior work. SAM 2 performs well in accuracy (J&F , G) for video
segmentation based on first-frame ground-truth mask prompts. SAM 2 performs significantly better
on SA-V val/test.

7 COMPARISON TO STATE-OF-THE-ART IN SEMI-SUPERVISED VOS

Our primary focus is on the general, interactive PVS task, but we also address the specific semi-
supervised VOS setting (where the prompt is a ground-truth mask on the first frame), as it is a
historically common protocol. We evaluate two versions of SAM 2 with varying image encoder sizes
(Hiera-B+/-L) with different speed-vs-accuracy tradeoffs. We measure frames per second (FPS) on a
single A100 GPU using a batch-size of one. SAM 2 based on Hiera-B+ and Hiera-L runs at real-time
speeds of 43.8 and 30.2 FPS, respectively.

We present a comparison with existing state-of-the-art in Table 6, reporting accuracy using standard
protocols. SAM 2 shows significant improvement over the best existing methods. We observe that
using a larger image encoder brings significant accuracy gains across the board.

We also evaluate existing work on the SA-V val and test sets which measure performance for open-
world segments of “any” object class. When comparing on this benchmark, we see that most previous
methods peak at around the same accuracy. The best performance on SA-V val and SA-V test for
prior work is significantly lower demonstrating the gap to a “segment anything in videos” capability.
Finally, we see that SAM 2 also brings notable gains in long-term video object segmentation as
observed in the LVOS benchmark result. For data and model ablations, see §A.

8 CONCLUSION

We present a natural evolution of Segment Anything into the video domain, based on three key aspects:
(i) extending the promptable segmentation task to video, (ii) equipping the SAM architecture to use
memory when applied to video, and (iii) the diverse SA-V dataset for training and benchmarking
video segmentation. We believe SAM 2 marks a significant advancement in visual perception,
positioning our contributions as milestones that will propel further research and applications.
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APPENDIX

Table of contents:
• §A: Data and Model Ablations
• §B: Task Details
• §C: Limitations
• §D: Model Details
• §E: Dataset Details
• §F: Zero-shot Experiments Details
• §G: Comparison to state-of-the-art
• §H: Other related work
• §I: Dataset, Annotation, and Model Cards

A DATA AND MODEL ABLATIONS

This section presents ablations that informed the design decisions for SAM 2. We evaluate on SA-V
val, Internal-test, our MOSE development set (“MOSE dev”) which contains 200 randomly-sampled
videos from the MOSE training split, excluded from our training data and the average over 9 zero-shot
video datasets. As the metric for comparison, we report J&F under 3-click input on the first frame
as a balance between the 1-click regime and the VOS-style mask prompts. Additionally, we report
the average 1-click mIoU on the 23-dataset benchmark used by SAM for the SA task on images.
Unless otherwise specified, we perform our ablations at 5122 spatial resolution, trained with SA-V
manual and a 10% subset of SA-1B. Additional details are in §D.2.

A.1 DATA ABLATIONS

Training data J&F mIoU

VOS Internal SA-V SA-1B SA-V val Internal-test MOSE dev 9 zero-shot SA-23
1 ✓ 48.1 60.2 76.9 59.7 45.4
2 ✓ 57.0 72.2 70.6 70.0 54.4
3 ✓ 63.0 72.6 72.8 69.7 53.0
4 ✓ ✓ 62.9 73.2 73.6 69.7 58.6
5 ✓ ✓ 63.0 73.2 73.3 70.9 55.8
6 ✓ ✓ ✓ 63.6 75.0 74.4 71.6 58.6
7 ✓ ✓ 50.0 63.2 77.6 62.5 54.8
8 ✓ ✓ 54.9 71.5 77.9 70.6 55.1
9 ✓ ✓ 61.6 72.8 78.3 69.9 51.0
10 ✓ ✓ ✓ 62.2 74.1 78.5 70.3 57.3
11 ✓ ✓ ✓ 61.8 74.4 78.5 71.8 55.7
12 ✓ ✓ ✓ ✓ 63.1 73.7 79.0 71.6 58.9

Table 7: We train our model on different data mixtures including VOS (DAVIS, MOSE,
YouTubeVOS), and subsets of Internal-train, SA-V, and SA-1B. We report the J&F accuracy
when prompted with 3 clicks in the first frame on SA-V val and Internal-test, MOSE, and 9 zero-shot
datasets, and the average 1-click mIoU on SA-23 datasets.

Data mix ablation. In Table 7, we compare the accuracy of SAM 2 when trained on different data
mixtures. We pre-train on SA-1B and then train a separate model for each setting. We fix the number
of iterations (200k) and batch size (128) with only the training data changing between experiments.
We report accuracy on our SA-V val and Internal set, MOSE, 9 zero-shot video benchmarks, and the
SA-23 tasks (§6.3).

Row 1 shows that a model purely trained on existing VOS datasets (DAVIS, MOSE, YouTubeVOS)
performs well on the in-domain MOSE dev, but poorly on all the others including the 9 zero-shot
VOS datasets (59.7 J&F). We observe tremendous benefit from adding our data engine data into
the training mix, including +12.1% average performance improvement on 9 zero-shot datasets (row
11 vs 1). This can be attributed to the limited coverage and size of VOS datasets. Adding SA-1B
images improves the performance on the image segmentation task (rows 3 vs 4, 5 vs 6, 9 vs 10, 11 vs
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12) without degrading the VOS capability. Training only on SA-V and SA-1B (row 4) is enough to
obtain strong performance on all benchmarks except for MOSE (specific object categories). Overall,
we obtain the best results when mixing all datasets: VOS, SA-1B, and our data engine data (row 12).

Data quantity ablation. Next, we study the effect of scaling training data. SAM 2 is pre-trained on
SA-1B before training on varying sizes of SA-V. We report average J&F score (when prompted
with 3 clicks in the first frame) over 3 benchmarks: SA-V val, zero-shot, and MOSE dev. Fig. 6 shows
a consistent power law relationship between the quantity of training data and the video segmentation
accuracy on all benchmarks.
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Figure 6: SAM 2 accuracy as a function of the SA-V quantity. We report J&F accuracy for 3-click
prompts in the first frame on SA-V val (left), 9 zero-shot datasets (center), and MOSE dev (right).

Data quality ablation. In Table 8, we experiment with filtering strategies for quality. We subsample
50k masklets from SA-V, either randomly or by taking the masklets that have been edited the most by
annotators. Filtering based on the number of edited frames leads to strong performance using just
25% of the data, and outperforms random sampling, but is worse than using all 190k SA-V masklets.

J&F mIoU

Setting SA-V val Internal-test MOSE dev 9 zero-shot SA-23

SA-1B + SA-V 50k random 63.7 70.3 72.3 68.7 59.1
SA-1B + SA-V 50k most edited 66.2 73.0 72.5 69.2 58.6
SA-1B + SA-V 69.9 73.8 73.9 70.8 59.8

Table 8: We train our model on different subsets of our SA-V Manual data: 50k randomly sampled
masklets, 50k masklets with the most edited frames, and the full SA-V dataset (190k masklets).

A.2 MODEL ARCHITECTURE ABLATIONS

In this section, we present model ablations that guided design decisions, conducted under a smaller
model setup with 512 input resolution by default. For each ablation setting, we report segmentation
accuracy for video (J&F) and image (mIoU) tasks, and its relative video segmentation speed (the
maximum inference throughput relative to the ablation default setup in gray ). We find design
choices for image and video components to be largely decoupled – this can be attributed to our
modular design and training strategy.

A.2.1 CAPACITY ABLATIONS

Input size. During training, we sample sequences of frames of fixed resolution and fixed length (here
denoted by # frames). We ablate their impact in Tables 9a, 9b. A higher resolution leads to significant
improvements across image and video tasks, and we use a spatial input resolution of 10242 in our
final model. Increasing the number of frames brings notable gains on video benchmarks and we use a
default of 8 to balance speed and accuracy.

Memory size. Increasing the (maximum) number of memories, N , generally helps the performance
although there could be some variance, as in Table 9c. We use a default value of 6 past frames to
strike a balance between temporal context length and computational cost. Using fewer channels for
memories does not cause much performance regression as in Table 9d, while making the memory
required for storage 4× smaller.
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J&F mIoU

res. MOSE dev SA-V val 9 zero-shot speed SA-23

512 73.0 68.3 70.7 1.00× 59.7
768 76.1 71.1 72.5 0.43× 61.0
1024 77.0 70.1 72.3 0.22× 61.5

(a) Resolution.

J&F mIoU

#frames MOSE dev SA-V val 9 zero-shot speed SA-23

4 71.1 60.0 67.7 1.00× 60.1
8 73.0 68.3 70.7 1.00× 59.7

10 74.5 68.1 71.1 1.00× 59.9

(b) #Frames.
J&F mIoU

#mem. MOSE dev SA-V val 9 zero-shot speed SA-23

4 73.5 68.6 70.5 1.01× 59.9
6 73.0 68.3 70.7 1.00× 59.7
8 73.2 69.0 70.7 0.93× 59.9

(c) #Memories.

J&F mIoU

chan. dim. MOSE dev SA-V val 9 zero-shot speed SA-23

64 73.0 68.3 70.7 1.00× 59.7
256 73.4 66.4 70.0 0.92× 60.0

(d) Memory channels.
J&F mIoU

(#sa, #ca) MOSE dev SA-V val 9 zero-shot speed SA-23

(2, 2) 73.3 67.3 70.2 1.13× 59.9
(3, 2) 72.7 64.1 69.5 1.08× 60.0
(4, 4) 73.0 68.3 70.7 1.00× 59.7

(e) Memory attention.

J&F mIoU

img. enc. MOSE dev SA-V val 9 zero-shot speed SA-23

S 70.9 65.5 69.4 1.33× 57.8
B+ 73.0 68.3 70.7 1.00× 59.7
L 75.0 66.3 71.9 0.60× 61.1

(f) Image encoder size.

Table 9: We ablate modeling capacity along input size (resolution, #frames), memory size (#memories,
memory channel dim) and model size (memory attention, image encoder). Ablation defaults in gray .

Model size. More capacity in the image encoder or memory-attention (#self-/#cross-attention blocks)
generally leads to improved results, as shown in Tables 9e, 9f. Scaling the image encoder brings gains
on both image and video metrics, while scaling the memory-attention only improves video metrics.
We default to using a B+ image encoder, which provides a reasonable balance for speed and accuracy.

A.2.2 RELATIVE POSITIONAL ENCODING

J&F mIoU

RPB 2d-RoPE MOSE dev SA-V val LVOSv2 val 9 zero-shot speed SA-23

✓ 73.0 68.3 71.6 70.7 1.00× 59.7
✓ ✓ 73.6 67.9 71.0 71.5 0.93× 60.0

72.8 67.1 70.3 70.3 1.04× 59.9

Table 10: We use 2d-RoPE positional encoding in memory attention while removing RPB from the
image encoder by default ( gray ). Removing RPB also allows us to enable FlashAttention-2 (Dao,
2023), which gives a significant speed boost at (10242) resolution. At such higher resolution , the
speed gap between 2d-RoPE (1st row) and the no RoPE baseline (3rd row) becomes small (4%).

By default, we always use absolute positional encoding in both the image encoder as well as memory
attention. In Table 10, we study relative positional encoding design choices. Here we also evaluate
on LVOSv2 (Hong et al., 2024) with 3 clicks on the 1st frame as a benchmark for long-term video
object segmentation.

While SAM (Kirillov et al., 2023) follows Li et al. (2022c) in adding relative positional biases (RPB)
to all image encoder layers, Bolya et al. (2023) improve upon this by removing RPB in all but
the global attention layers while adopting “absolute-win” positional encoding which brings large
speed gains. We improve upon this further by removing all RPB from the image encoder, with no
performance regression on SA-23 and minimal regression on video benchmarks (see Table 10), while
giving a significant speed boost at 1024 resolution. We also find it is beneficial to use 2d-RoPE (Su
et al., 2021; Heo et al., 2024) in the memory attention.

A.2.3 MEMORY ARCHITECTURE ABLATIONS

Recurrent memory. We investigate the effectiveness of feeding the memory features to a GRU before
adding them to the memory bank. Similar to §A.2.2, we also evaluate on LVOSv2 as an additional
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benchmark for long-term object segmentation. While prior works have commonly employed GRU
(Cho et al., 2014) states as a means of incorporating memory into the tracking process, our findings
in Table 11 suggest that this approach does not provide an improvement (except slightly on LVOSv2).
Instead, we find it sufficient to directly store the memory features in the memory bank, which is both
simpler and more efficient.

Object pointers. We ablate the impact of cross-attending to the object pointer vectors from the mask
decoder output in other frames (see §4). The results presented in Table 11 show that while cross-
attending to object pointers does not enhance average performance across the 9 zero-shot datasets,
it significantly boosts performance on SA-V val dataset as well as on the challenging LVOSv2
benchmark (validation split). Hence, we default to cross-attending to object pointers together with
the memory bank embeddings from the memory encoder.

J&F mIoU

Object Pointers GRU MOSE dev SA-V val LVOSv2 val 9 zero-shot speed SA-23

73.1 64.5 67.0 70.9 1.00× 59.9
✓ 72.3 65.3 68.9 70.5 0.97× 60.0

✓ 73.0 68.3 71.6 70.7 1.00× 59.7

Table 11: Ablations on memory design. We use object pointers by default ( gray ) and also study
recurrent GRU memory.

B DETAILS ON THE PVS TASK

The Promptable Visual Segmentation (PVS) task can be seen as an extension of the Segment Anything
(SA) task from static images to videos. In the PVS setting, given an input video, the model can
be interactively prompted with different types of inputs (including clicks, boxes, or masks) on any
frame in the video, with the goal of segmenting (and tracking) a valid object throughout the video.
When interacting with a video, the model provides an instant response on the frame being prompted
(similar to the interactive experience of SAM on images), and also returns the segmentation of the
object throughout the entire video in near real-time. Similar to SAM the focus is on valid objects
which have a clearly defined boundary, and we do not consider regions without visual boundaries
(e.g. Bekuzarov et al. (2023)). Fig. 7 illustrates the task.

Segment

Anything


(SA)

Promptable Visual

Segmentation


(PVS)

Semi-supervised Video

Object Segmentation


(VOS)

Figure 7: An illustration of the Promptable Visual Segmentation task (PVS). Previously studied tasks
such as Segment Anything (SA) and semi-supervised Video Object Segmentation (VOS) can be seen
as special cases of the PVS task.

PVS is related to tasks in the image and video domains. For images, the SA task can be considered a
subset of PVS with the video reduced to a single frame. Similarly, traditional semi-supervised and
interactive VOS (Pont-Tuset et al., 2017) tasks are special cases of PVS, limited to mask prompts
provided only on the first frame and scribbles on multiple frames to segment objects throughout
a video, respectively. In PVS, prompts can either be clicks, masks, or boxes, and the focus is on
enhancing the interactive experience, enabling refinement of a segmentation with minimal interaction.
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C LIMITATIONS

SAM 2 demonstrates strong performance in both static image and video domains, yet it encounters
difficulties in certain scenarios. The model may fail to segment objects across shot changes and
can lose track of or confuse objects in crowded scenes, after long occlusions or in extended videos.
To alleviate this issue, we designed the ability to prompt SAM 2 in any frame: if the model loses
the object or makes an error, refinement clicks on additional frames can quickly recover the correct
prediction in most cases. SAM 2 also struggles with accurately tracking objects with very thin or fine
details especially when they are fast-moving. Another challenging scenario occurs when there are
nearby objects with similar appearance (e.g., multiple identical juggling balls). Incorporating more
explicit motion modeling into SAM 2 could mitigate errors in such cases.

While SAM 2 can track multiple objects in a video simultaneously, SAM 2 processes each object sep-
arately, utilizing only shared per-frame embeddings without inter-object communication. While this
approach is simple, incorporating shared object-level contextual information could aid in improving
efficiency.

Our data engine relies on human annotators to verify masklet quality and select frames that require
correction. Future developments could include automating this process to enhance efficiency.

SAM 2 tackles the promptable visual segmentation task, and the capabilities of SAM 2 do not extend
to semantic recognition tasks. We believe that the advances made by SAM 2 can serve as a foundation
for future work in recognition for both images and videos, similar to how SAM or SA-1B dataset was
extended in (Li et al., 2023a; Yuan et al., 2024).

D SAM 2 DETAILS

D.1 ARCHITECTURE

Here we discuss further architecture details, expanding on the model description in §4.

Image encoder. We use a feature pyramid network (Lin et al., 2017) to fuse the stride 16 and
32 features from Stages 3 and 4 of the Hiera image encoder respectively to produce the image
embeddings for each frame. In addition, the stride 4 and 8 features from Stages 1 and 2 are not used
in the memory attention but are added to the upsampling layers in the mask decoder as shown in
Figure 8, which helps produce high-resolution segmentation details. We follow Bolya et al. (2023) in
using windowed absolute positional embeddings in the Hiera image encoder. In Bolya et al. (2023),
RPB provided positional information spanning across windows in the image encoder, in lieu of which
we adopt a simpler approach of interpolating the global positional embedding instead to span across
windows. We do not use any relative positional encoding. We train models with varying image
encoder sizes – T, S, B+ and L. We follow Li et al. (2022c) and use global attention in only a subset
of the image encoder layers (see Table 12).

Memory attention. In addition to sinusoidal absolute positional embeddings, we use 2d spatial
Rotary Positional Embedding (RoPE) (Su et al., 2021; Heo et al., 2024) in self-attention and cross-
attention layers. The object pointer tokens are excluded from RoPE as they do not have specific
spatial correspondence. By default, the memory attention uses L = 4 layers.

Prompt encoder and mask decoder. The prompt encoder design follows SAM, and we next discuss
additional details on design changes in the mask decoder. We use the mask token corresponding to
the output mask as the object pointer token for the frame, which is placed in the memory bank. As
discussed in §4, we also introduce an occlusion prediction head. This is accomplished by including
an additional token along with the mask and IoU output tokens. An additional MLP head is applied
to this new token to produce a score indicating the likelihood of the object of interest being visible
in the current frame (as shown in Figure 8). In the memory bank, we also add a learned occlusion
embedding to the memory features of those frames that are predicted to be occluded (invisible) by
the occlusion prediction head.

SAM introduced the ability to output multiple valid masks when faced with ambiguity about the
object being segmented in an image. For example, when a person clicks on the tire of a bike, the
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Figure 8: Mask decoder architecture. The design largely follows SAM, and we additionally include
the stride 4 and 8 features from the image encoder during upsampling. We also use the mask token
corresponding to the output mask as an object pointer and generate an occlusion score which indicates
if the object of interest is visible in the current frame.

model can interpret this click as referring to only the tire or the entire bike and output multiple
predictions. In videos, this ambiguity can extend across video frames. For example, if in one frame
only the tire is visible, a click on the tire might relate to just the tire, or as more of the bike becomes
visible in subsequent frames, this click could have been intended for the entire bike. To handle this
ambiguity, SAM 2 predicts multiple masks at each step of the video. If further prompts do not resolve
the ambiguity, the model selects the mask with the highest predicted IoU for the current frame for
further propagation in the video.

Memory encoder and memory bank. Our memory encoder does not use an additional image
encoder and instead reuses the image embeddings produced by the Hiera encoder, which are fused
with the predicted mask information to produce memory features (as discussed in §4). This design
allows the memory features to benefit from the strong representations produced by the image encoder
(especially when we scale the image encoder to a larger size). Further, we project the memory
features in our memory bank to a dimension of 64, and split the 256-dim object pointer into 4 tokens
of 64-dim for cross-attention to the memory bank.

Handling multiple objects in a video. When applying SAM 2 to segment multiple objects in the
same video (such as multi-object tracking in the semi-supervised VOS evaluation), we perform
inference on each object independently. More specifically, we share the visual features from the
image encoder between all the objects in the video but run all the other model components (such as
the memory bank and the mask decoder) separately for each object.

D.2 TRAINING

D.2.1 PRE-TRAINING

We first pre-train SAM 2 on static images on the SA-1B dataset. Table 12a details the settings used
during pre-training on SA-1B – other settings not mentioned here follow Kirillov et al. (2023). The
image encoder is initialized from MAE pre-trained Hiera (Ryali et al., 2023). Similar to SAM, we
filter masks covering more than 90% of the image and restricted training to 64 randomly sampled
masks per image.

Unlike SAM, we found it beneficial to use an ℓ1 loss to more aggressively supervise the IoU
predictions and to apply a sigmoid activation to the IoU logits to restrict the output into the range
between 0 and 1. For multi-mask predictions (on the first click), we supervise the IoU predictions of
all masks to encourage better learning of when a mask might be bad, but only supervise the mask
logits with the lowest segmentation loss (linear combination of focal and dice loss). In SAM, during
iterative sampling of points, two iterations were inserted with no additional prompts (only feeding
the previous mask logits) – we do not add such iterations during our training and use 7 correction
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clicks (instead of 8 in SAM). We also employ horizontal flip augmentation during training and resize
the image to a square size of 1024×1024.

We use AdamW (Loshchilov & Hutter, 2019) and apply layer decay (Clark et al., 2020) on the image
encoder and follow a reciprocal square-root schedule (Zhai et al., 2022). See Table 12 (a) for the
hyperparameters in our pre-training stage.

D.2.2 FULL TRAINING

After pre-training, we train SAM 2 on our introduced datasets SA-V + Internal (section §5.2), a 10%
subset of SA-1B, and a mixture of open-source video datasets including DAVIS (Pont-Tuset et al.,
2017; Caelles et al., 2019), MOSE (Ding et al., 2023), and YouTubeVOS (Xu et al., 2018b). Our
released model is trained on SA-V manual + Internal and SA-1B.

SAM 2 is designed for two tasks; the PVS task (on videos) and the SA task (on images). Training
is done jointly on image and video data. To optimize our data usage and computational resources
during training, we adopt an alternating training strategy between video data (multiple frames) and
static images (one single frame). Specifically, in each training iteration, we sample a full batch either
from the image or video dataset, with their sampling probabilities proportional to the size of each
data source. This approach allows for a balanced exposure to both tasks and a different batch size
for each data source to maximize compute utilization. Settings not explicitly mentioned here for the
image task follow settings from the pre-training phase. See Table 12 (b) for the hyperparameters
in our full training stage. The training data mixture consists of ∼15.2% SA-1B, ∼70% SA-V and
∼14.8% Internal. The same settings are used when open-source datasets are included, with the
change that the additional data is included (∼1.3% DAVIS, ∼9.4% MOSE, ∼9.2% YouTubeVOS,
∼15.5% SA-1B, ∼49.5% SA-V, ∼15.1% Internal). When training on SA-V and other video datasets,
we only use those manually annotated masklets (without adding automatically generated ones), which
are sufficient to achieve strong performance based on our analyses.

We apply a series of data augmentations to the training videos (detailed in Table 12), including
random horizontal flips, random affine transforms, random color jittering, and random grayscale
transforms, as listed in Table 12. We also adopt a mosaic transform to simulate challenging scenarios
with multiple similar-looking objects – with 10% probability, we tile the same training video into a
2×2 grid and select a masklet from one of the 4 quadrants as the target object to segment. In this case,
the model must focus on other cues like motion or temporal continuity to distinguish the target object
from their identical-looking counterparts in other quadrants. In addition, the videos and objects in
each quadrant are smaller in size (only half the original width and height) after this mosaic transform,
which also facilitates learning to segment small objects.

We train by simulating an interactive setting, sampling 8-frame sequences and randomly selecting up
to 2 frames (including the first) for corrective clicks. During training, we use ground-truth masklets
and model predictions to sample prompts, with initial prompts being the ground-truth mask (50%
probability), a positive click from the ground-truth mask (25%), or a bounding box input (25%).

We restrict the maximum number of masklets for each sequence of 8 frames to 3 randomly chosen
ones. We reverse the temporal order with a probability of 50% to help generalization to bi-directional
propagation. When we sample corrective clicks, with a small probability of 10%, we randomly
sample clicks from the ground truth mask, irrespective of the model prediction, to allow additional
flexibility in mask refinement.

Fine-tuning using 16-frame sequences. A potential shortcoming of the procedure above is that
the model only sees sampled 8-frame sequences during training, which is relatively short compared
to the full video length during inference. To alleviate this issue and further boost the segmentation
quality on long videos, we introduce an extra fine-tuning stage where we sample 16-frame sequences
on challenging videos (those videos with the highest number of edited frames, as described in §E.2.1).
More specifically, we sort our masklets by number of edited frames and only consider the top 50%
most edited masklets for training, for both SA-V and Internal datasets. We still keep the complete
versions of the OSS datasets (DAVIS, MOSE, and YouTubeVOS) in the training mix. We fine-tune
for 50k iterations (1/3 of the original schedule) using half of the original learning rate and freeze the
image encoder to fit the 16-frame sequence into the 80 GB memory of A100 GPUs.
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config value
data SA-1B
steps ∼90k
resolution 1024
precision bfloat16
optimizer AdamW
optimizer momentum β1, β2=0.9, 0.999
gradient clipping type: ℓ2, max: 0.1
weight decay 0.1
learning rate (lr) 4e-4
lr schedule reciprocal sqrt, timescale=1000
warmup linear, 1k iters
cooldown linear, 5k iters
layer-wise decay 0.8 (T, S), 0.9 (B+), 0.925 (L)
augmentation hflip, resize to 1024 (square)
batch size 256
drop path 0.1 (T, S), 0.2 (B+), 0.3 (L)
mask losses (weight) focal (20), dice (1)
IoU loss (weight) ℓ1 (1)
max # masks per image 64
# correction points 7
global attn. blocks 5-7-9 (T), 7-10-13 (S), 12-16-20 (B+), 23-33-43 (L)

(a) Pre-training

config value
data SA-1B, Internal, SA-V
steps ∼150k
resolution 1024
precision bfloat16
optimizer AdamW
optimizer momentum β1, β2=0.9, 0.999
gradient clipping type: ℓ2, max: 0.1
weight decay 0.1
learning rate (lr) img. enc.: 6e-5, other: 3.0e-4
lr schedule cosine
warmup linear, 7.5k iters
layer-wise decay 0.8 (T, S), 0.9 (B+), 0.925 (L)
image augmentation hflip, resize to 1024 (square)
video augmentation hflip, affine (deg: 25, shear: 20), colorjitter (b: 0.1, c: 0.03, s: 0.03, h:

null), grayscale (0.05), per frame colorjitter (b: 0.1, c: 0.05, s: 0.05, h:
null), mosaic-2×2 (0.1)

batch size 256
drop path 0.1 (T, S), 0.2 (B+), 0.3 (L)
mask losses (weight) focal (20), dice (1)
IoU loss (weight) ℓ1 (1)
occlusion loss (weight) cross-entropy (1)
max. masks per frame. image: 64, video: 3
# correction points 7
global attn. blocks 5-7-9 (T), 7-10-13 (S), 12-16-20 (B+), 23-33-43 (L)

(b) Full training

Table 12: Hyperparameters and details of SAM 2 pre-training and full training. Note that some
settings vary with image encoder size (T, S, B+, L).

Losses and optimization. We supervise the model’s predictions using a linear combination of focal
and dice losses for the mask prediction, mean-absolute-error (MAE) loss for the IoU prediction, and
cross-entropy loss for object prediction with a ratio of 20:1:1:1 respectively.

As during pre-training, for multi-mask predictions, we only supervise the mask with the lowest
segmentation loss. If the ground-truth does not contain a mask for a frame, we do not supervise any
of the mask outputs (but always supervise the occlusion prediction head that predicts whether there
should exist a mask in the frame).
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D.3 SPEED BENCHMARKING

We conduct all benchmarking experiments on a single A100 GPU using PyTorch 2.3.1 and
CUDA 12.1, under automatic mixed precision with bfloat16. We compile the image encoder with
torch.compile for all SAM 2 models and do the same for SAM and HQ-SAM for direct compar-
ison on the SA task (Tables 5 and 16). The FPS measurements for the SA task were conducted using
a batch size of 10 images, which was found to yield the highest FPS across all three model types. For
video tasks, we use a batch size of 1 following the common protocol in video segmentation.

E DATA DETAILS

E.1 SA-V DATASET DETAILS

(a) ML only (b) With Auto

Figure 9: Annotations overlaid on
the first frame: (a) manual labels
(ML) only, (b) with automatic la-
bels (Auto). Automatic labels in-
crease diversity and coverage.

Videos. Resolutions range from 240p to 4K with 1,401 × 1,037
on average. Duration ranges from 4 seconds to 2.3 minutes, with
an average of 13.8 seconds, totaling 4.2M frames and 196 hours.

Dataset diversity. As shown in Fig. 10, SA-V videos were
recorded across 47 countries (Fig. 10b), by diverse participants
(self-reported demographics in Fig. 10c). Fig. 10a shows a
comparison of mask size distribution (normalized by video reso-
lution) with DAVIS, MOSE, and YouTubeVOS. More than 88%
of SA-V masks have a normalized mask area less than 0.1.

Automatic masklets. Similar to the approach in Kirillov et al.
(2023), automatic masklets are generated by prompting the
model with regular grids. We prompt the model with a 32× 32
grid on the first frame, and we use a 16× 16 grid on 4 zoomed
image crops of the first frame (derived from a 2× 2 overlapped
window) and a 4×4 grid on 16 zoomed image crops of the first frame (derived from a 4×4 overlapped
window). We apply two post-processing steps across all frames. First, we remove tiny disconnected
components with areas smaller than 200 pixels. Second, we fill in holes in segmentation masks if the
area of the hole is less than 200 pixels. By combining automatically generated with manual masklets,
we enhance the coverage of annotations in the SA-V dataset, see Fig. 9.

E.1.1 FAIRNESS EVALUATION
1-click 3-click mask

gender
male 81.9 95.1 95.9
female 75.1 94.1 95.2

age
18-26 77.2 95.0 95.7
26-50 76.7 94.7 95.8
50+ 81.4 95.1 96.2

Table 13: Fairness evaluation of SAM 2
(under J&F metric) on protected demo-
graphic groups.

We evaluate SAM 2 for fairness across demographic
groups. We collect annotations for the people category
in the Ego-Exo4D (Grauman et al., 2023) dataset, which
contains self-reported demographic information supplied
by the subject of the video. We employ the same annota-
tion setup as for SA-V val and test sets and apply this to
20-second clips from the third-person (exo) videos. We
evaluate SAM 2 on this data using 1-, 3-clicks, and ground-
truth mask on the first frame.
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Figure 10: Dataset distribution: (a) masklets size distribution (normalized by video resolution), (b)
geographic diversity of the videos, and (c) self-reported demographics of the crowdworkers who
recorded the videos.
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Table 13 shows the comparison in J&F accuracy of SAM 2 for segmenting people across gender
and age. At 3 clicks and with ground-truth mask prompts there is minimal discrepancy. We manually
inspect 1 click predictions, and find the model frequently predicts the mask for a part instead of the
person. When limiting the comparison to clips where the person is correctly segmented, the gap
in 1 click shrinks substantially (J&F male 94.3, female 92.7), suggesting the discrepancy can be
partially attributed to ambiguity in the prompt.

In Appendix I, we provide model, data and annotation cards for SA-V.

Figure 11: Example videos from the SA-V dataset with masklets overlaid (manual and automatic).
Each masklet has a unique color, and each row represents frames from one video, with 1 second
between them.

E.2 DATA ENGINE DETAILS

E.2.1 ANNOTATION PROTOCOL

A diagram of the annotation protocol used in our data engine is shown in Fig. 12. The annotation
task was separated into steps each carried out by a different annotator: Steps 1 and 2 focus on object
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Figure 12: Annotation guideline overview. There are 3 main annotation tasks: masklet selection,
masklet tracking, and masklet verification. Each task has a different set of annotators working on it.

selection, Steps 3 and 4 on masklet tracking, and Step 5 on quality verification. SAM 2 was deployed
on GPU as an API and built into the annotation tool to enable interactive use.

Compared to image segmentation annotation, large-scale video segmentation annotation presents
unique challenges which require innovations in the annotation task design and protocol. To improve
our model’s ability to “segment anything”, it was important to focus annotation on challenging objects
where SAM 2 struggled. We leveraged our online model in the loop setup to enable this, requesting
annotators to use SAM 2 interactively to identify failure modes and then correct them.

We found the number of edited frames to be a proxy to the “challengingness” of an object as shown in
Table 8. Therefore, we asked annotators to annotate objects that required at least 2 edited frames with
SAM 2 in the loop. To focus annotation on less prominent and more challenging cases, annotators
were presented with videos pre-filled with verified satisfactory automatic masklets and asked to find
un-annotated challenging objects. We further decouple the object selection task from the annotation
task: in the selection task annotators focus on choosing the challenging objects in one frame, while in
the annotation task annotators are presented with a challenging target object and requested to annotate
the masklet consistently throughout the video.
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E.2.2 DATA ENGINE PHASE COMPARISON

The comparison of data engine phases shown in Table 1 was conducted as a controlled experiment
using 169 videos and 452 masklets. We ask three subsets of annotators to annotate the same set of
objects with the annotation protocol from each phase. We categorize masklets into three buckets
based on the mask area in the first frame (small: 1 to 322, medium: 322 to 962, and large: equal or
greater than 962). Phase 1 data is used as the quality reference, due to the high quality masks from
frame-by-frame manual annotation with SAM.

F DETAILS ON ZERO-SHOT TRANSFER EXPERIMENTS

In this section, we describe further details of our zero-shot experiments (§6). Unless otherwise noted,
the results reported in this section follow our default setup using Hiera-B+ image encoder with a
resolution of 1024 and trained on the full combination of datasets, i.e., SAM 2 (Hiera-B+) in Table 6.

F.1 ZERO-SHOT VIDEO TASKS

F.1.1 VIDEO DATASET DETAILS

We evaluate SAM 2 on a diverse benchmark of 17 zero-shot datasets: EndoVis 2018 (Allan et al.,
2020) contains medical surgery videos with robotic instruments. ESD (Huang et al., 2023) contains
videos from a robot manipulator camera often with motion blur. LVOSv2 (Hong et al., 2024)
is a benchmark for long-term video object segmentation. LV-VIS (Wang et al., 2023) contains
videos from a diverse set of open-vocabulary object categories. UVO (Wang et al., 2021b) contains
videos for open-world object segmentation, and VOST (Tokmakov et al., 2022) contains videos with
objects undergoing large transformations such as egg broken or paper torn. PUMaVOS (Bekuzarov
et al., 2023) contains videos with segments around object parts such as a person’s cheek. Virtual
KITTI 2 (Cabon et al., 2020) is a synthetic video dataset with driving scenes. VIPSeg (Miao et al.,
2022) provides object segmentation in panoptic videos. Wildfires (Toulouse et al., 2017) contains
wildfire videos under different conditions from the Corsican Fire Database. VISOR (Darkhalil
et al., 2022) contains egocentric videos in kitchen scenes with segments around hands and active
objects. FBMS (Brox et al., 2010) provides motion segmentation over moving objects in videos.
Ego-Exo4D (Grauman et al., 2023) is a large dataset with egocentric videos around various human
activities. Cityscapes (Cordts et al., 2016) contains videos for urban driving scenes. Lindenthal
Camera (Haucke & Steinhage, 2021) contains videos in a wildlife park with segments around observed
animals such as birds and mammals. HT1080WT Cells (Gómez-de Mariscal et al., 2021) contains
microscopy videos with cell segments. Drosophila Heart (Fishman et al., 2023) contains microscopy
videos for the heart of fruit flies.

Among these 17 zero-shot video datasets above, 9 of them (EndoVis, ESD, LVOSv2, LV-VIS,
UVO, VOST, PUMaVOS, Virtual KITTI 2, and VIPSeg) have dense object segments annotated for
every video frame. In the remaining 8 datasets (Wildfires, VISOR, FBMS, Ego-Exo4D, Cityscapes,
Lindenthal Camera, HT1080WT Cells, and Drosophila Heart), the object segments are sparsely
annotated over only a subset of video frames, and we compute the metrics on those frames where the
ground-truth segmentation masks are available. In most evaluations of the paper, we only evaluate
zero-shot performance on the 9 densely annotated datasets, while in our semi-supervised VOS
evaluation (§6.2), we evaluate on all these 17 datasets listed above.

F.1.2 INTERACTIVE OFFLINE AND ONLINE EVALUATION DETAILS

Offline evaluation involves multiple passes over the entire video. We start with click prompts on the
first frame, segment the object throughout the entire video, and then in the next pass, we select the
frame with the lowest segmentation IoU w.r.t. the ground-truth as the new frame for prompting. The
model then segments the object again throughout the video based on all prompts received previously,
until reaching a maximum of Nframe passes (with one new prompted frame in each pass).

Online evaluation involves only one pass over the entire video. We start with click prompts on the
first frame and propagate the prompts across the video, pausing propagation when encountering a
frame with a low-quality prediction (IoU < 0.75 with ground-truth). We then add additional click
prompts on the paused frame to correct the segment on this frame and resume the propagation forward
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until reaching another low quality frame with IoU < 0.75. This is repeated while the number of
prompted frames is less than the maximum Nframe. Unlike the previous offline evaluation, in this
setting, the new prompts only affect the frames after the current paused frame but not the frames
before it.

In both settings, we evaluate on 9 densely annotated datasets in §F.1.1 (EndoVis, ESD, LVOSv2,
LV-VIS, UVO, VOST, PUMaVOS, Virtual KITTI 2, and VIPSeg). If a video contains multiple objects
to segment in its ground-truth annotations, we perform inference on each object independently. We
simulate interactive video segmentation with Nclick = 3 clicks per frame, assuming that the user
would visually locate the object to label it (with initial clicks) or to refine the current segmentation
prediction of it (with correction clicks). Specifically, when starting the first pass (where there are not
any existing predictions yet), we place an initial click on the first frame at the center1 of the object’s
ground-truth mask and then interactively add two more clicks based on the center of the error region
(between the ground-truth mask and the predicted segments on the first frame). Then in subsequent
passes (where there are already predicted segments), we interactively add three clicks based on the
center of the error region (between the ground-truth mask and the predicted segments on the frame
being prompted).

We report the average J&F metric over Nframe = 1, . . . , 8 interacted frames and the J&F metrics
under different annotation time on a video based on the following assumptions:

• On each frame, it takes Tloc = 1 sec for the annotator to visually locate an object in the
frame, and Tclick = 1.5 sec to add each click, following Delatolas et al. (2024).

• In offline mode, it takes Texam = 30 sec on a 300-frame video to examine the results
throughout the video in each round, including finding the frame with the worst segmentation
quality to add corrections (and for longer or shorter videos, this time is proportional to the
video length L, assuming the annotator could examine the results at 10 FPS).

• In online mode, it takes Texam = 30 sec on a 300-frame video to follow the results
throughout the video in total, including pausing at a frame with low quality for further
corrections (and this time is proportional to the video length L similar to the offline mode).

• The annotation time for an object is (Texam · (L/300) + Tloc + Tclick ·Nclick) ·Nframe in
offline mode and Texam ·(L/300)+(Tloc + Tclick ·Nclick) ·Nframe in online mode, where L
is the total frame number in the video, Nframe = 1, . . . , 8 is the number of frames annotated
(i.e., the number of interactive rounds), and Nclick = 3 is the number of clicks per frame.2

We show per-dataset results of SAM 2 and the two baselines (SAM+XMem++ and SAM+Cutie,
see their details below) for interactive offline and online evaluation in Fig. 13 and Fig. 14. SAM 2
outperforms both baselines with a notable margin on all datasets and settings.

F.1.3 SEMI-SUPERVISED VOS EVALUATION DETAILS

In §6.2, we also compare with previous video tracking methods under the semi-supervised VOS setting
(Pont-Tuset et al., 2017), where prompts (which can be foreground/background clicks, bounding
boxes, or ground-truth object masks) are provided only on the first frame of the video. When using
click prompts, we interactively sample either 1, 3 or 5 clicks on the first video frame, and then track
the object based on these clicks. Following the click-based evaluation in prior work (Kirillov et al.,
2023; Sofiiuk et al., 2022), the initial click is placed on the object center and subsequent clicks are
obtained from the center of the error region.

Similar to the interactive setting, here we also use SAM+XMem++ and SAM+Cutie as two baselines.
For click or box prompts, SAM is first used to handle click or bounding box inputs, and its output
mask is then used as input to XMem++ or Cutie. For mask prompts, the ground-truth object masks on
the first frame are directly used as input to XMem++ and Cutie – this is the standard semi-supervised
VOS setting and evaluates XMem++ and Cutie without using SAM.

1The center of a mask is defined as the mask pixel that has the largest Euclidean distance to the mask
boundary.

2We note that this estimation does not account for the model’s tracking FPS. The intuition is that human
annotators can only examine the results at a lower speed, and therefore the model’s tracking time is covered by
Texam.
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(a) J&F performance on each dataset with different number of interacted frames (3-click)

EndoVis Virtual
Method 2018 ESD LVOSv2 LV-VIS PUMaVOS UVO VIPSeg KITTI 2 VOST (average)

SAM + XMem++ 68.9 88.2 72.1 86.4 60.2 74.5 84.2 63.8 46.6 71.7
SAM + Cutie 71.8 87.6 82.1 87.1 59.4 75.2 84.4 70.3 54.3 74.7
SAM 2 77.0 90.2 87.9 90.3 68.5 79.2 88.3 74.1 67.5 80.3

(b) average J&F on each dataset over 8 interacted frames (3-click)

Figure 13: Zero-shot performance of SAM 2 vs baselines (SAM+XMem++ and SAM+Cutie) under
interactive offline evaluation with different numbers of interacted frames, using 3 clicks per interacted
frame. See §F.1.2 for details.

In this setting, we evaluate on all 17 zero-shot video datasets in §F.1.1. If a dataset does not follow
the standard VOS format, we preprocess it into a format similar to MOSE (Ding et al., 2023). During
processing, we ensure that all objects in each video have a valid non-empty segmentation mask on the
first frame to be compatible with semi-supervised VOS evaluation. In case an object doesn’t appear in
the first frame, we create a separate video for it starting from the first frame where the object appears.

We report the standard J&F metric (Pont-Tuset et al., 2017) for this evaluation. If a dataset provides
an official evaluation toolkit, we use it for evaluation (on the VOST dataset, we report the J metric
instead, following its official protocol (Tokmakov et al., 2022)). The results are shown in Table 4,
where SAM 2 performs better than both baselines on the majority of the 17 datasets across different
types of prompts.

We show per-dataset results of SAM 2 and the two baselines (SAM+XMem++ and SAM+Cutie,
see their details below) for semi-supervised VOS evaluation in Fig. 15. SAM 2 outperforms both
baselines on the majority of these datasets across different types of prompts.

F.1.4 SAM+XMEM++ AND SAM+CUTIE BASELINE DETAILS

We adopt SAM+XMem++ and SAM+Cutie as two baselines for promptable video segmentation,
where the click (or box) prompts are first processed by SAM to obtain an object mask, and then
XMem++ / Cutie models track this SAM mask across the video to obtain the final masklet. In these
two baselines, SAM can be used to provide both an initial object mask on the first frame, or to correct
an existing object mask output by XMem++ or Cutie. This is used for subsequent interacted frames
during interactive offline and online evaluation, where new positive and negative clicks are provided
as corrections over an existing mask.
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(a) J&F performance on each dataset with different number of interacted frames (3-click)

EndoVis Virtual
Method 2018 ESD LVOSv2 LV-VIS PUMaVOS UVO VIPSeg KITTI 2 VOST (average)

SAM + XMem++ 71.4 87.8 72.9 85.2 63.7 74.7 82.5 63.9 52.7 72.8
SAM + Cutie 70.5 87.3 80.6 86.0 58.9 75.2 82.1 70.4 54.6 74.0
SAM 2 77.5 88.9 87.8 88.7 72.7 78.6 85.5 74.0 65.0 79.8

(b) average J&F on each dataset over 8 interacted frames (3-click)

Figure 14: Zero-shot performance of SAM 2 vs baselines (SAM+XMem++ and SAM+Cutie) under
interactive online evaluation with different numbers of interacted frames, using 3 clicks per interacted
frame. See §F.1.2 for details.

When using SAM to apply a correction over an existing mask prediction in a given frame, we follow
the strategy in EVA-VOS (Delatolas et al., 2024) to first initialize SAM with the XMem++ or Cutie
output mask before incorporating the new correction clicks. Specifically, we first reconstruct the
XMem++ or Cutie output mask in SAM by sampling clicks from them and feeding them as inputs to
SAM until the reconstructed mask in SAM reaches IoU > 0.8 with the XMem++ or Cutie output
mask. Then, to incorporate new positive and negative clicks for correction, we concatenate these
additional correction clicks with the initial clicks sampled during mask construction, and feed the
joint concatenated list as input into SAM to obtain the final corrected masks. We find that this strategy
works better than several alternatives (such as feeding the XMem++ or Cutie output mask as a mask
prompt together with new correction clicks into SAM, or taking only the correction clicks as inputs
to SAM while ignoring the XMem++ or Cutie output mask).

F.2 DAVIS INTERACTIVE BENCHMARK

We also evaluate on the DAVIS interactive benchmark (Caelles et al., 2018), which resembles our
interactive offline evaluation in §6.1, where in each round of interaction, the evaluation server would
provide new annotations on frames with the worst segmentation performance. The official DAVIS eval
toolkit provides scribble prompts during interactions, while other work such as CiVOS (Vujasinović
et al., 2022) has also extended this to cover click prompts.

Here we follow CiVOS to use positive and negative clicks as input prompts and adopt the same
strategy for click sampling. We report the J&F@60s and AUC-J&F metrics on this benchmark
as provided by its evaluator, and compare to two baselines: MiVOS (Cheng et al., 2021b), which
directly uses the provided scribbles via a scribble-to-mask module (and is also extended to click
prompts in Vujasinović et al. (2022)), and CiVOS, which samples click from the provided scribbles.
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Figure 15: Zero-shot performance on 17 video datasets of SAM 2 vs two baselines (SAM+XMem++
and SAM+Cutie) under semi-supervised VOS evaluation using different prompts (1, 3 or 5 clicks,
bounding boxes, or ground-truth masks on the first video frame), with the averaged performance
across datasets for each type of prompt shown in Table 4 in the main text. See §F.1.3 for details.

Method input type AUC-J&F J&F@60s

MA-Net (Miao et al., 2020) scribbles 0.79 0.79
MiVOS (Cheng et al., 2021b) scribbles 0.87 0.88

MiVOS (Cheng et al., 2021b)‡ clicks 0.75 0.75
CiVOS (Vujasinović et al., 2022) clicks 0.83 0.84
SAM 2 clicks 0.86 0.90

Table 14: Performance of SAM 2 and other models on the DAVIS interactive benchmark. For SAM 2,
we use clicks as inputs following the click sampling strategy from CiVOS (Vujasinović et al., 2022).
See §F.2 for details (‡: performance reported in Vujasinović et al. (2022)).

The results are shown in Table 14, where SAM 2 (based on click inputs) outperforms both baselines
under click inputs. We note that SAM 2 often tends to segment object parts (e.g. a person’s arm) on
the first click while the DAVIS dataset mainly contains whole objects (e.g. an entire person), which
could penalize SAM 2’s J&F performance on this benchmark.

F.3 VIPOSEG BENCHMARK

We further evaluate SAM 2 on the VIPOSeg benchmark (Xu et al., 2023), a large-scale benchmark
for video object segmentation on panoptic wild scenes. We find that SAM 2 has strong performance
on this benchmark, as shown in Table 15.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

• In a zero-shot manner without training on this dataset, SAM 2 achieves G = 78.4 on the
VIPOSeg val split (where G is the overall metric defined in this benchmark, higher is better),
which already outperforms the G = 78.2 performance of the PAOT model (the best model
in Table 2 of Xu et al. (2023) trained on this dataset).

• When fine-tuned on the VIPOSeg training split, SAM 2’s performance is further improved
to G = 79.7 on the VIPOSeg val split.

• In addition, we find that SAM 2 is more robust in crowded scenes as measured by the
decay metric defined in the VIPOSeg benchmark (lower is better; reflecting how fast the
model’s performance declines with more objects). On the VIPOSeg val split, SAM 2 has
λ = 0.68 decay (without fine-tuning on VIPOSeg) and λ = 0.67 decay (when fine-tuned on
the VIPOSeg training split), both outperforming the λ = 0.70 decay of the PAOT model.

Method training data G λ (lower is better)

PAOT (Xu et al., 2023) VIPOSeg + YouTube-VOS + DAVIS 77.9 0.73
PAOT (Xu et al., 2023) VIPOSeg 78.2 0.70
SAM 2 (zero-shot) our mix 78.4 0.68
SAM 2 (fine-tuned on VIPOSeg) our mix + VIPOSeg 79.7 0.67

Table 15: Performance of SAM 2 on the VIPOSeg benchmark. SAM 2 outperforms PAOT (the best
model in Xu et al. (2023) trained on this dataset) under both zero-shot and fine-tuned settings.

F.4 ZERO-SHOT IMAGE TASKS

F.4.1 DATASET DETAILS

For the interactive segmentation task, we evaluated SAM 2 on a comprehensive suite of 37 datasets.
This suite includes the 23 datasets previously used by SAM for zero-shot evaluation. For completeness,
we list the 23 datasets: LVIS (Gupta et al., 2019), ADE20K (Zhou et al., 2019), Hypersim (Roberts
et al., 2021), Cityscapes (Cordts et al., 2016), BBBC038v1 (Caicedo et al., 2019), DOORS (Pugliatti
& Topputo, 2022), DRAM (Cohen et al., 2022), EgoHOS (Zhang et al., 2022), GTEA (Fathi et al.,
2011; Li et al., 2015), iShape (Yang et al., 2021a), NDD20 (Trotter et al., 2020), NDISPark (Ciampi
et al., 2021; 2022), OVIS (Qi et al., 2022), PPDLS (Minervini et al., 2016), Plittersdorf (Haucke
et al., 2022), STREETS (Snyder & Do, 2019), TimberSeg (Fortin et al., 2022), TrashCan (Hong
et al., 2020), VISOR (Darkhalil et al., 2022; Damen et al., 2022), WoodScape (Yogamani et al.,
2019), PIDRay (Wang et al., 2021a), ZeroWaste-f (Bashkirova et al., 2022), and IBD (Chen et al.,
2022). For more detailed information about these datasets, we refer the reader to Kirillov et al.
(2023). In addition to these 23 datasets, we evaluated on frames sampled from 14 video datasets to
assess SAM 2’s performance on images from the video domain. The video datasets used are listed
as follows: Lindenthal Camera Traps (LCT) (Haucke & Steinhage, 2021), VOST (Tokmakov et al.,
2022), LV-VIS (Wang et al., 2023), FBMS (Brox et al., 2010), Virtual KITTI 2 (Cabon et al., 2020),
Corsican Fire Database (CFD) (Toulouse et al., 2017), VIPSeg (Miao et al., 2022), Drosophila Heart
OCM (DH OCM) (Fishman et al., 2023), EndoVis 2018 (Allan et al., 2020), ESD (Huang et al.,
2023), UVO (Wang et al., 2021b), Ego-Exo4d (Grauman et al., 2023), LVOSv2 (Hong et al., 2024),
and HT1080WT (Gómez-de Mariscal et al., 2021). Table 17 has a more detailed description of these
datasets. (Some of these datasets are obtained from the same data source as the zero-shot video
datasets in §F.1.1.)

F.4.2 DETAILED ZERO-SHOT EXPERIMENTS

In this section, we include a more detailed version of the experiments in §6.3. We compare SAM 2 to
SAM and HQ-SAM with different model sizes in Table 16. The main metrics we use for evaluation
are the 1- and 5-click mIoU and we categorize the results by the dataset domain.

Table 16 first shows a comparison of the models trained only on images (for the SA task) with
different image encoder sizes on both the SA-23 benchmark as well as the 14 newly introduced
video datasets. SAM 2 (Hiera-B+) trained only on SA-1B outperforms SAM (ViT-H) on 1-click
accuracy, and both SAM (ViT-H) and HQ-SAM (ViT-H) on 5-click accuracy while being 6x faster.
SAM 2 (Hiera-L) further improves the 1-click accuracy by 1 point on average, but trading off speed.
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1 (5) click mIoU

Model Data SA-23 All SA-23 Image SA-23 Video 14 new Video FPS

SAM (ViT-B) SA-1B 55.9 (80.9) 57.4 (81.3) 54.0 (80.4) 54.5 (82.6) 76.7
SAM (ViT-H) SA-1B 58.1 (81.3) 60.8 (82.1) 54.5 (80.3) 59.1 (83.4) 21.7
HQ-SAM (ViT-B) HQSEG-44k 53.9 (72.1) 56.3 (73.9) 50.7 (69.9) 54.5 (75.0) 73.5
HQ-SAM (ViT-H) HQSEG-44k 59.1 (79.8) 61.8 (80.5) 55.7 (78.9) 58.9 (81.6) 21.4

SAM 2 (Hiera-B+) SA-1B 58.9 (81.7) 60.8 (82.1) 56.4 (81.2) 56.6 (83.7) 130.1
SAM 2 (Hiera-L) SA-1B 60.0 (81.8) 62.0 (82.2) 57.4 (81.2) 58.5 (83.8) 61.4

SAM 2 (Hiera-B+) our mix 61.9 (83.5) 63.3 (83.8) 60.1 (83.2) 69.6 (85.8) 130.1
SAM 2 (Hiera-L) our mix 63.6 (83.5) 64.7 (83.7) 62.2 (83.2) 71.1 (85.7) 61.4

Table 16: Zero-shot performance on the Segment Anything (SA) task across a suite of 37 datasets.
The table shows the average 1- and 5- click mIoU of SAM 2 compared to two baselines, categorized
by dataset domain. We report the average metrics on the 23 datasets used by SAM for zero-shot
evaluation, as well as the average across 14 newly introduced zero-shot video benchmarks.

Despite being slower than Hiera-B+, it is still 3.4x faster than SAM (ViT-H) and 1.5x faster than
SAM (ViT-B).

The last two rows in Table 16 illustrate the benefits of training with our mix of image and video data,
which boosts the average accuracy to 61.4% across the 23 datasets with the Hirea-B+ image encoder.
Additionally, we observe substantial improvements on the video benchmarks of SA-23 as well as the
14 newly introduced video datasets. We note that we do not scale beyond Hiera-L, but expect better
performance for a larger model.

A breakdown of the accuracy across datasets is presented in Fig. 16, where the per-dataset delta in
1-click mIoU relative to SAM is color-coded to indicate the data type (image or video). Notably,
SAM 2 (Hiera-B+) surpasses SAM on 29 datasets3 by up to 53.9 mIoU, despite using a smaller
Hiera-B+ image encoder.

G DETAILS ON COMPARISON TO STATE-OF-THE-ART IN SEMI-SUPERVISED
VOS

We provide additional details on the comparison to the previous state-of-the-art in semi-supervised
VOS (§7). We include results from SAM 2 trained only on SA-1B, SA-V and Internal data, for
different encoder sizes.

Qualitative comparison: In Fig. 17, we show a comparison between our baseline (Cutie-base+, top
row) and our model (SAM 2, bottom row) when prompted with a mask in the first frame. While
the mask prompt in the first frame only covers the shirt of the person, the masklet predicted by the
baseline wrongfully propagates to the whole person. Our model, however, is able to restrict the
masklet to the target object.

Quantitative comparison: In Table 18, we compare the performance of our model to previous
approaches on additional semi-supervised VOS metrics. SAM 2 outperforms prior work on all
evaluated benchmarks, in all metrics. Note that unlike these previous approaches, SAM 2 is not
specialized in the semi-supervised VOS task but is capable of more general promptable segmentation.
SAM 2 is also not restricted to a specific set of object classes. The performance of our model on the
SA-V benchmark (Table 18a) demonstrates its capability to segment anything in a video.

H OTHER RELATED WORK

We mention other related works that tackle tasks which are not our primary focus, but are highly
relevant and share some similarities with our work.

3We note that OVIS is not strictly zero-shot for SAM 2 since its videos are used in MOSE (part of our training
data mix).
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Figure 16: Zero-shot performance of SAM 2 vs SAM on a suite of 37 datasets. The figure shows the
center 1 click mIoU delta between SAM 2 and SAM. Datasets derived from video distribution are
highlighted in red, while those from image distribution are highlighted in blue.
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Figure 17: Comparison between our baseline (Cutie-base+, top row) and our model (SAM 2, bottom
row) when prompted with a mask in the first frame.

Video Instance Segmentation (VIS). The VIS (Yang et al., 2019) task focuses on simultaneous
detection, segmentation and tracking of instances in videos. Some notable works in VIS include
the use of transformer based architectures (Wang et al., 2021c; Li et al., 2023b; Lee et al., 2024).
Another line of work (Zhang et al., 2023c;d) focuses on decoupling the VIS task into three sub-tasks:
segmentation, tracking, and refinement.
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dataset abbreviation
& link

video
type description annotation

type source split # videos
sampled

# masklets
sampled

# frames
sampled

# masks
sampled

LV-VIS (Wang et al., 2023) LV-VIS Open Vocabulary Large scale open vocabulary video instance
segmentation Dense Validation 690 2536 15,604 54,077

A Drosophila heart optical
coherence microscopy
database for automatic
video
segmentation (Fishman
et al., 2023)

DH OCM Microscopy; heart Segmentation of a fruit fly heart in optical coherence
microscopy videos Sparse All 213 213 608,000 607,158

Video Object Segmentation
under
Transformations (Tokmakov
et al., 2022)

VOST Deformation Video object segmentation with emphasis on shape
transformations Dense Validation 635 882 67,004 89,722

Cityscapes-VPS (Cordts
et al., 2016; Kim et al.,
2020b)

Cityscapes-VPS Driving Panoptic segmentation for Cityscapes driving dataset Sparse Validation Instance 209 1372 4,259 4,579

Corsican Fire
Database (Toulouse et al.,
2017)

CFD Wildfire Segmentation of wildfires Sparse All 5 5 541 541

Partial and Unusual Masks
for Video Object
Segmentation (Bekuzarov
et al., 2023)

PUMaVOS Parts Video object segmentation with a focus on parts and
practical use cases Dense All 24 26 21,187 21,485

EPIC-KITCHENS
VISOR (Darkhalil et al.,
2022)

VISOR Egocentric
Video object segmentation benchmark containing
egocentric videos of cooking with an emphasis on
segmenting active objects.

Sparse Validation 921 921 736,030 4,426

HT1080WT cells
embedded in 3D collagen
type I matrices (Gómez-de
Mariscal et al., 2021)

HT1080WT Microscopy; cells Timelapse videos of HT1080WT cell movement Sparse All 60 150 1,010 2,694

Freiburg-Berkeley Motion
Segmentation Dataset (Brox
et al., 2010)

FBMS Moving Object Precise segmentation of moving objects Sparse All 45 70 9734 755

Virtual KITTI 2 (Cabon
et al., 2020) Virtual KITTI 2 Synthetic; Driving Synthetic driving videos generated by a game engine

that recreate real world KITTI videos. Dense All from video angle
Camera_0

996 1,638 109,368 162,708

EndoVis 2018 (Allan et al.,
2020) EndoVis 2018 Endoscopic video; surgery Segmentation of medical tools in endoscopic videos Dense All 15 29 2,325 4,314

Lindenthal Camera
Traps (Haucke & Steinhage,
2021)

LCT Stereo Wildlife videos captured using stereo cameras. Sparse All 12 12 4,012 412

LVOSv2 (Hong et al., 2024) LVOSv2 Long videos Long-term video object segmentation benchmark, on
average 1.14 minutes Dense Validation 136 225 64,523 91,510

UVO (Wang et al., 2021b) UVO Open World Open World instance segmentation of all objects in a
video Dense Validation 54 311 4,860 26,747

EgoExo4d (Grauman et al.,
2023) EgoExo4d Egocentric Egocentric videos of participants completing skilled

activities. Sparse Validation videos on
egocentric cameras 1185 1185 327,080 9,035

VIPSeg (Miao et al., 2022) VIPSeg Panoptic Large scale and real world scenarios for video panoptic
segmentation Dense Validation 152 1,457 3,416 30,408

Event-based Segmentation
Dataset (Huang et al., 2023) ESD Clutter Tabletop object segmentation in an indoor cluttered

environment Dense All 135 814 13,325 78,243

Table 17: Video segmentation datasets used for zero-shot evaluation.

UVO Ego-Exo4d LVOSv2 EndoVis 2018 LCT VIPSeg

Virtual KITTI 2 ESD FBMS HT1080WT VISOR

PUMaVOS CFD Cityscapes-VPS VOST DH OCM LV-VIS

Figure 18: Examples from SAM 2 zero-shot video benchmark suite.

Video Panoptic Segmentation (VPS). The VPS (Kim et al., 2020a) task requires segmenting both
things and stuff as well as associating instances across frames of the video. Recent works (Shin
et al., 2024; Li et al., 2022b; 2024) aim to tackle this task, and they have shown promising results on
benchmark datasets (Miao et al., 2022).
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SA-V val SA-V test
Method J&F J F J&F J F

STCN (Cheng et al., 2021a) 61.0 57.4 64.5 62.5 59.0 66.0
SwinB-AOT-L (Yang et al., 2021b) 51.1 46.4 55.7 50.3 46.0 54.6

SwinB-DeAOT-L (Yang & Yang, 2022) 61.4 56.6 66.2 61.8 57.2 66.3
RDE (Li et al., 2022a) 51.8 48.4 55.2 53.9 50.5 57.3

XMem (Cheng & Schwing, 2022) 60.1 56.3 63.9 62.3 58.9 65.8
SimVOS-B (Wu et al., 2023b) 44.2 40.0 48.3 44.1 40.5 47.7
DEVA (Cheng et al., 2023b) 55.4 51.5 59.2 56.2 52.4 60.1

Cutie-base (Cheng et al., 2023a) 60.7 57.7 63.7 62.7 59.7 65.7
Cutie-base+ (Cheng et al., 2023a) 61.3 58.3 64.4 62.8 59.8 65.8

SAM 2 (Hiera-B+) 76.8 73.4 80.1 77.0 73.5 80.5
SAM 2 (Hiera-L) 77.9 74.5 81.3 78.4 74.9 82.0
SAM 2 (Hiera-T)‡ 75.2 71.7 78.7 76.5 72.9 80.1
SAM 2 (Hiera-S)‡ 77.0 73.6 80.5 76.6 73.0 80.2

SAM 2 (Hiera-B+)‡ 77.5 74.1 80.9 78.2 74.8 81.7
SAM 2 (Hiera-L)‡ 78.6 75.3 82.0 79.5 76.0 83.0

(a) Comparisons between SAM 2 and previous work on our SA-V bench-
mark for the semi-supervised VOS task. We evaluated prior works on
SA-V using their open-sourced code and checkpoints.

LVOS val
Method J&F J F

DEVA (Cheng et al., 2023b) 55.9 51.1 60.7
DDMemory (Hong et al., 2023) 60.7 55.0 66.3
Cutie-base (Cheng et al., 2023a) 66.0 61.3 70.6

SAM 2 (Hiera-B+) 78.0 73.2 82.7
SAM 2 (Hiera-L) 78.0 73.2 82.7
SAM 2 (Hiera-T)‡ 77.5 73.0 82.1
SAM 2 (Hiera-S)‡ 77.3 72.3 82.2

SAM 2 (Hiera-B+)‡ 77.7 73.1 82.4
SAM 2 (Hiera-L)‡ 80.1 75.4 84.9

(b) Comparisons between SAM 2 and previous
work on the LVOS (Hong et al., 2023) benchmark.

LVOSv2 val
Method J&F Js Fs Ju Fu

STCN (Cheng et al., 2021a) 60.6 57.2 64.0 57.5 63.8
RDE (Li et al., 2022a) 62.2 56.7 64.1 60.8 67.2

SwinB-DeAOT-L (Yang & Yang, 2022) 63.9 61.5 69.0 58.4 66.6
XMem (Cheng & Schwing, 2022) 64.5 62.6 69.1 60.6 65.6

SAM 2 (Hiera-B+) 78.7 80.6 87.2 69.0 77.8
SAM 2 (Hiera-L) 79.6 81.0 87.4 70.4 79.8
SAM 2 (Hiera-T)‡ 77.3 79.9 86.9 67.1 75.4
SAM 2 (Hiera-S)‡ 78.3 79.2 85.9 69.0 79.0

SAM 2 (Hiera-B+)‡ 78.2 80.5 87.2 68.1 76.9
SAM 2 (Hiera-L)‡ 80.6 81.7 88.2 71.4 81.0

(c) Comparisons between SAM 2 and previous work on the
LVOSv2 (Hong et al., 2024) benchmark. We report the perfor-
mance of prior works as evaluated by the LVOSv2 authors.

MOSE val DAVIS17 val DAVIS17 test YTVOS19 val
Method J&F J F J&F J F J&F J F G Js Fs Ju Fu

STCN (Cheng et al., 2021a) 52.5 48.5 56.6 85.4 82.2 88.6 76.1 72.7 79.6 82.7 81.1 85.4 78.2 85.9
SwinB-AOT-L (Yang et al., 2021b) 59.4 55.5 63.2 85.4 82.4 88.4 81.2 77.3 85.1 84.5 84.0 88.8 78.4 86.7

SwinB-DeAOT-L (Yang & Yang, 2022) 59.9 55.7 64.0 86.2 83.1 89.2 82.8 78.9 86.7 86.1 85.3 90.2 80.4 88.6
RDE (Li et al., 2022a) 46.8 42.4 51.3 84.2 80.8 87.5 77.4 73.6 81.2 81.9 81.1 85.5 76.2 84.8

XMem (Cheng & Schwing, 2022) 59.6 55.4 63.7 86.0 82.8 89.2 79.6 76.1 83.0 85.6 84.1 88.5 81.0 88.9
SimVOS-B (Wu et al., 2023b) - - - 88.0 85.0 91.0 80.4 76.1 84.6 84.2 83.1 - 79.1 -

JointFormer (Zhang et al., 2023b) - - - 90.1 87.0 93.2 88.1 84.7 91.6 87.4 86.5 90.9 82.0 90.3
ISVOS (Wang et al., 2022) - - - 88.2 84.5 91.9 84.0 80.1 87.8 86.3 85.2 89.7 81.0 89.1

DEVA (Cheng et al., 2023b) 66.0 61.8 70.3 87.0 83.8 90.2 82.6 78.9 86.4 85.4 84.9 89.4 79.6 87.8
Cutie-base (Cheng et al., 2023a) 69.9 65.8 74.1 87.9 84.6 91.1 86.1 82.4 89.9 87.0 86.0 90.5 82.0 89.6

Cutie-base+ (Cheng et al., 2023a) 71.7 67.6 75.8 88.1 85.5 90.8 88.1 84.7 91.4 87.5 86.3 90.6 82.7 90.5
SAM 2 (Hiera-B+) 76.6 72.6 80.6 90.2 87.0 93.4 87.9 84.7 91.1 88.6 87.1 91.6 83.9 91.9
SAM 2 (Hiera-L) 77.9 73.9 81.9 90.7 87.5 94.0 87.7 84.6 90.9 89.3 87.5 92.0 84.8 92.8
SAM 2 (Hiera-T)‡ 71.8 67.4 76.1 89.4 85.8 92.9 86.9 83.4 90.3 87.4 85.7 90.1 82.7 91.1
SAM 2 (Hiera-S)‡ 73.5 69.2 77.7 89.6 86.3 92.9 87.6 84.1 91.1 88.0 85.9 90.2 83.9 91.9

SAM 2 (Hiera-B+)‡ 73.8 69.7 77.9 90.0 86.8 93.1 86.6 83.3 89.8 88.2 86.1 90.6 84.0 92.1
SAM 2 (Hiera-L)‡ 74.6 70.6 78.6 90.2 86.9 93.4 88.9 85.3 92.5 88.8 86.5 91.0 84.7 92.8

(d) Comparisons between SAM 2 and previous work on the semi-supervised VOS task.

Table 18: Detailed comparisons between SAM 2 and previous work on various benchmarks (‡: a
version of the model trained on SA-1B, SA-V, and our internal dataset as described in §5.2).
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I MODEL, DATA AND ANNOTATION CARDS

I.1 MODEL CARD

Model Overview
Name SAM 2 (Segment Anything Model 2)

Version 1.0
Date 2024

Mode type Promptable segmentation model
Architecture See Section 4

Intended Use
Primary intended users SAM 2 was designed as a unified model for promptable video and image segmentation tasks.

The model was primarily developed for research use cases. SAM 2 is released under an Apache
2.0 license.

Out-of-scope use cases See Ethical considerations and license for restrictions.
Caveats and recommendations See Appendix C for limitations.

Relevant Factors
Groups SAM 2 is class agnostic and was designed for promptable image and video segmentation. It can

segment and track any object.
Instrumentation and environment SAM 2 was evaluated across a variety of types of video and image data. The video benchmark

suite included domains such as driving data, microscopy, egocentric video, robotic surgery. See
Table 17 for descriptions of the benchmarks and Figure 18 for example frames. SAM 2 was
evaluated on the same suite of image benchmarks as Kirillov et al. (2023), which covers domains
including underwater images, paintings, fish-eye images.

Metrics
We evaluate the performance of SAM 2 using the following metrics:

J&F : We evaluate performance using J&F (Pont-Tuset et al., 2017) for the promptable video
segmentation and semi-supervised VOS tasks.
G: We use G for evaluation on YTVOS 2019 for the semi-supervised VOS task.
mIoU: We evaluate performance using mIoU for the promptable image segmentation task.

Evaluation Data
Data sources See Appendix F

Training Data
Data source SAM 2 was trained on the SA-V dataset alongside internally available licensed video data. See

Section 5 of the main text for more details and Appendix I.2 for the SA-V dataset data card.

Ethical Considerations
Data See Section 5 for more details about the SAM 2 training data. In Section E.1 we show a

geographic distribution of the videos and demographic distribution of the crowdworkers who
collected the videos in the SA-V dataset.

Cost and impact of compute The released SAM 2 was trained on 256 A100 GPUs for 108 hours. This corresponds to 12165.12
kWH and an estimated emissions of 3.89 metric tons of CO2e (Patterson et al., 2021; Lacoste
et al., 2019). The emissions from training the released SAM 2 are equivalent to ∼10k miles
driven by an average gasoline-powered passenger vehicle (Agency, 2022).

Risks and harms In Section E.1.1 of the main text we analyze SAM 2 performance on people across demographic
groups. When using SAM 2 in new settings, we suggest that researchers perform their own
fairness evaluation for SAM 2 specific to their use case.

Use cases We implore users to use their best judgement.

Table 19: Model card for SAM 2 following the structure in Mitchell et al. (2019)
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I.2 DATASET CARD FOR SA-V DATASET

Motivation

1. For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap that needed to be filled?
Please provide a description. The dataset was designed for the PVS task. The contributions of our dataset to the vision community
are: (1) The dataset, composed of 50.9K videos and 642.6K masklets, is the largest video segmentation dataset publicly available
today (see 5.2 for comparisons to current VOS datasets) (2) The dataset is available under a Creative Commons Attribution 4.0
International Public License, (3) The data is a more geographically diverse, publicly available, video segmentation dataset than its
predecessors.

2. Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution, organization)?
The underlying videos were collected via a contracted third party company.

3. Any other comments? No.

Composition

1. What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Are there multiple types of
instances (e.g., movies, users, and ratings; people and interactions between them; nodes and edges)? Please provide a description.
All of the instances in the dataset are videos. Subject matter diversity was encouraged and no specific themes were applied during
video collection. Common themes of the video include: locations, objects, scenes. All the videos are distinct, however there are
some sets of videos that were taken of the same subject matter.

2. How many instances are there in total (of each type, if appropriate)? There are 50.9K videos.
3. Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger set? If the

dataset is a sample, then what is the larger set? Is the sample representative of the larger set (e.g., geographic coverage)? If so,
please describe how this representativeness was validated/verified. If it is not representative of the larger set, please describe why
not (e.g., to cover a more diverse range of instances, because instances were withheld or unavailable). While the dataset contains
all possible instances, reviewers were advised to refuse to annotate content containing explicit imagery.

4. What data does each instance consist of? “Raw” data (e.g., unprocessed text or images) or features? In either case, please provide
a description. Each instance is a video.

5. Is there a label or target associated with each instance? If so, please provide a description. Each video is annotated with masklets
that track objects throughout the video. There are no categories or text associated with the masklets. The data was annotated at 6
FPS. There are an average of 3.8 manual masklets, and 8.9 auto masklets per video, and there are 642.6K masklets in total.

6. Is any information missing from individual instances? If so, please provide a description, explaining why this information is missing
(e.g., because it was unavailable). This does not include intentionally removed information, but might include, e.g., redacted text.
No.

7. Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network links)? If so, please
describe how these relationships are made explicit. No.

8. Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a description. For manual masklets,
human errors may exist; for example, annotators may miss a frame to check or fix when needed. For auto masklets, as SAM 2 is
used to generates them, model errors such as inconsistencies in the masklets may exist.

9. Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other datasets)?
If it links to or relies on external resources, a) are there guarantees that they will exist, and remain constant, over time; b) are
there official archival versions of the complete dataset (e.g., including the external resources as they existed at the time the dataset
was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external resources that might apply to a
dataset consumer? Please provide descriptions of all external resources and any restrictions associated with them, as well as links
or other access points, as appropriate. The dataset is self contained.

10. Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege or by doctor-patient
confidentiality, data that includes the content of individuals’ non-public communications)? If so, please provide a description. No.

11. Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise cause anxiety?
If so, please describe why. We have three safety measures to prevent objectionable content: (1) The video collecting crowdworkers
were provided instructions to not record videos that might contain objectionable content (e.g., graphic, nudity, or inappropriate
content). (2) The expert annotators who annotated the videos were provided instructions to flag and reject videos if objectionable
content was present.

12. Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how these subpopulations are identified
and provide a description of their respective distributions within the dataset. The dataset does not identify any subpopulations of
the people in the videos. The demographics of the crowdworkers who collected the videos in the dataset are presented in 5.2.

13. Is it possible to identify individuals (i.e, one or more natural persons), either directly or indirectly (i.e., in combination with other
data) from the dataset? If so, please describe how. Videos were subjected to a face blurring model.

14. Does the dataset contain data that might be considered sensitive in any way (e.g., data that reveals race or ethnic origins, sexual
orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic
data; forms of government identification, such as social security numbers; criminal history)? If so, please provide a description.
The dataset is not focused on data that may be considered sensitive.

15. Any other comments? No.

Collection Process

1. How was the data associated with each instance acquired? Was the data directly observable (e.g., raw text, movie ratings),
reported by subjects (e.g., survey responses), or indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based
guesses for age or language)? If the data was reported by subjects or indirectly inferred/derived from other data, was the data
validated/verified? If so, please describe how. The released masklets associated with each video were collected using two methods.
(1) SAM 2 assisted manual annotation (2) automatically generated by SAM 2 and verified by annotators.
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2. What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or sensors, manual human curation,
software programs, software APIs)? How were these mechanisms or procedures validated? The videos in the dataset were collected
via a contracted third-party vendor. They are videos taken by crowdworkers with unknown equipment.

3. If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic, probabilistic with specific sampling
probabilities)? N/A.

4. Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they compensated (e.g.,
how much were crowdworkers paid)? (1) The videos in the dataset were collected via a contracted third-party vendor. They are
videos taken by crowdworkers who were compensated with an hourly wage set by the vendor. (2) The manually collected masklets
in the dataset were collected by annotators via another third-party vendor. Annotators were compensated with an hourly wage set
by the vendor.

5. Over what timeframe was the data collected? Does this timeframe match the creation timeframe of the data associated with the
instances (e.g., recent crawl of old news articles)? If not, please describe the timeframe in which the data associated with the
instances was created. The videos were filmed between November 2023 and March 2024. The masklet annotations were collected
between April 2024 and July 2024.

6. Were any ethical review processes conducted (e.g., by an institutional review board)? If so, please provide a description of these
review processes, including the outcomes, as well as a link or other access point to any supporting documentation. If the dataset
does not relate to people, you may skip the remaining questions in this section. The project underwent an internal review process.

7. Did you collect the data from the individuals in question directly, or obtain it via third parties or other sources (e.g. websites)? We
contracted with third-party vendors to collect the videos and to generate or review annotations.

8. Were the individuals in question notified about the data collection? If so, please describe (or show with screenshots or other
information) how notice was provided, and provide a link or other access point to, or otherwise reproduce, the exact language of
the notification itself. The videos were collected by crowdworkers via a contracted third-party vendor. The crowdworkers agreed to
consent forms.

9. Did the individuals in question consent to the collection and use of their data? If so, please describe (or show with screenshots or
other information) how consent was requested and provided, and provide a link or other access point to, or otherwise reproduce,
the exact language to which the individuals consented. The videos were collected via a contracted third-party who provided
appropriate representations regarding the collection of any notices and consents as required from individuals.

10. If consent was obtained, were the consenting individuals provided with a mechanism to revoke their consent in the future or for
certain uses? If so, please provide a description, as well as a link or other access point to the mechanism (if appropriate). Pursuant
to the contract, the contracted third-party collected consents and provided opportunity for consent revocation.

11. Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data protection impact analysis) been
conducted? If so, please provide a description of this analysis, including the outcomes, as well as a link or other access point to
any supporting documentation. See detail in E.1.1.

12. Any other comments? No.

Preprocessing / Cleaning / Labeling

1. Was any preprocessing / cleaning / labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-speech tagging,
SIFT feature extraction, removal of instances, processing of missing values)? If so, please provide a description. If not, you may
skip the remaining questions in this section. The videos were re-sampled to 24 fps and converted to mp4 format.

2. Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unanticipated future uses)? If so,
please provide a link or other access point to the “raw” data. No.

Uses

1. Has the dataset been used for any tasks already? If so, please provide a description. The dataset has been used to train and evaluate
SAM 2.

2. What (other) tasks could the dataset be used for? The data could be used for VOS, iVOS, or PVS tasks. If frames are sampled
from the videos, the dataset can be used for the image segmentation task.

3. Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/labeled that might
impact future uses? For example, is there anything that a dataset consumer might need to know to avoid uses that could result in
unfair treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other risks or harms (e.g., legal risks,
financial harms)? If so, please provide a description. Is there anything a dataset consumer could do to mitigate these risks or
harms? We have an analysis of the geography and crowdworker demographic of our dataset in 5.2. While we believe our dataset to
be more representative on these factors than most of the publicly existing datasets of its kind at this time, we acknowledge that
we do not have parity across all geographic and demographic groups, and we encourage users of the dataset to be mindful of any
potential biases models may learn using this dataset.

4. Any other comments? No.

Distribution

1. Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on behalf of which the
dataset was created? If so, please provide a description. The dataset will be available under the permissive Creative Commons
Attribution 4.0 International Public License.

2. Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under applicable terms of use
(ToU)? If so, please describe this license and/or ToU, and provide a link or other access point to, or otherwise reproduce, any
relevant licensing terms or ToU, as well as any fees associated with these restrictions. Yes, the dataset will be available under the
Creative Commons Attribution 4.0 International Public License.

3. Have any third parties imposed IP-based or other restrictions on the data associated with the instances? If so, please describe
these restrictions, and provide a link or other access point to, or otherwise reproduce, any relevant licensing terms, as well as any
fees associated with these restrictions.
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4. Do any export controls or other regulatory restrictions apply to the dataset or to individual instances? If so, please describe these
restrictions, and provide a link or other access point to, or otherwise reproduce, any supporting documentation.

5. Any other comments? No.

Maintenance

1. Is there an erratum? If so, please provide a link or other access point. No.
2. If the dataset relates to people, are there applicable limits on the retention of the data associated with the instances (e.g., were the

individuals in question told that their data would be retained for a fixed period of time and then deleted)? If so, please describe
these limits and explain how they will be enforced. There are no limits on data retention.

3. Will older versions of the dataset continue to be supported/hosted/maintained? If so, please describe how. If not, please describe
how its obsolescence will be communicated to dataset consumers. No. If updates are made to the dataset, previous versions will
not continue to be hosted.

4. If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so? If so, please provide
a description. Will these contributions be validated/verified? If so, please describe how. If not, why not? Is there a process for
communicating/distributing these contributions to dataset consumers? If so, please provide a description.

5. Any other comments? No.

I.3 DATA ANNOTATION CARD

Task Formulation

1. At a high level, what are the subjective aspects of your task? Selecting objects to mask and track in a video is inherently a subjective
task, and annotators might differ in their decision to mask objects.

2. What assumptions do you make about annotators? We assume our annotators understand the PVS task and are well trained on
video related tasks. Our annotators worked full time on our annotation task. This made it possible to train the annotators by sharing
feedback on a regular basis.

3. How did you choose the specific wording of your task instructions? What steps, if any, were taken to verify the clarity of task
instructions and wording for annotators? (1) The task instructions included visual examples (images and videos) to provide clarity.
(2) Annotators were well trained before working on production queues. (3) The research team shared feedback daily and met with
the annotators weekly for Q&A sessions.

4. What, if any, risks did your task pose for annotators and were they informed of the risks prior to engagement with the task?
Annotators were informed to reject objectionable videos.

5. What are the precise instructions that were provided to annotators? See detail in 12 for annotation instructions.

Selecting Annotations

1. Are there certain perspectives that should be privileged? If so, how did you seek these perspectives out? We chose to work with
annotators with previous video annotation experience.

2. Are there certain perspectives that would be harmful to include? If so, how did you screen these perspectives out? No.
3. Were sociodemographic characteristics used to select annotators for your task? If so, please detail the process. For masklet

annotations, sociodemographic characteristics were not used to select the annotators. For video collection, we emphasized the
importance of diversity among the crowdworkers to our third-party vendor. While it was not a strict requirement, we encouraged
the inclusion of a diverse group of crowdworkers to enrich the data collection process with a wide range of perspectives. This
approach aimed to naturally incorporate diversity without imposing strict selection based on sociodemographic factors.

4. If you have any aggregated socio-demographic statistics about your annotator pool, please describe. Do you have reason to
believe that sociodemographic characteristics of annotators may have impacted how they annotated the data? Why or why not?
Aggregated socio-demographic statistics about the crowdworkers who collected the videos are presented in 5.2.

5. Consider the intended context of use of the dataset and the individuals and communities that may be impacted by a model trained
on this dataset. Are these communities represented in your annotator pool? The SA-V dataset is a geographically diverse, publicly
available, video segmentation dataset, as discussed in 5.2. In addition, we analyze the responsible AI axes of a model trained on the
dataset, as discussed in E.1.1.

Platform and Infrastructure Choices

1. What annotation platform did you utilize? At a high level, what considerations informed your decision to choose this platform?
Did the chosen platform sufficiently meet the requirements you outlined for annotator pools? Are any aspects not covered? We
used an internal annotation platform.

2. What, if any, communication channels did your chosen platform offer to facilitate communication with annotators? How did this
channel of communication influence the annotation process and/or resulting annotations? The research team shared feedback daily
and met with the annotators weekly to align on the task instructions and expectations and to hold Q&A sessions. Outside of those
sessions, annotators had access to a spreadsheet and chat group to facilitate communication with the research team.

3. How much were annotators compensated? Did you consider any particular pay standards, when determining their compensation?
If so, please describe. (1) The video collecting crowdworkers were compensated with an hourly wage set by the vendor. (2)
Annotators were compensated with an hourly wage set by the vendor.

Dataset Analysis and Evaluation

1. How do you define the quality of annotations in your context, and how did you assess the quality in the dataset you constructed?
Annotators were required to follow a training before moving to production queues. Annotators followed a 2-day training session
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led by the vendor and then were asked to annotate jobs from a training queue. Annotators were able to move from training to
production after the vendor Q&A team or the research team reviewed their work and assessed quality. On average, annotators
spent 1 - 2 weeks in training before moving to production. Similarly, the vendor and research team Q&A manually reviewed the
production queues’ annotations daily, sharing feedback daily.

2. Have you conducted any analysis on disagreement patterns? If so, what analyses did you use and what were the major findings?
Did you analyze potential sources of disagreement? The disagreement patterns were shared daily and weekly during feedback and
Q&A sessions.

3. How do the individual annotator responses relate to the final labels released in the dataset? The final labels are after data cleaning
and post processing from the individual annotator responses.

Dataset Release and Maintenance

1. Do you have reason to believe the annotations in this dataset may change over time? Do you plan to update your dataset? No.
2. Are there any conditions or definitions that, if changed, could impact the utility of your dataset? No.

The SA-V dataset is released under a permissive CC by 4.0 license.
3. Were annotators informed about how the data is externalized? If changes to the dataset are made, will they be informed? No.
4. Is there a process by which annotators can later choose to withdraw their data from the dataset? If so, please detail. No.
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