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ABSTRACT

While training large language models (LLMs) from scratch can indeed lead to
models with distinct capabilities and strengths, it incurs substantial costs and
may lead to redundancy in competencies. Knowledge fusion aims to integrate
existing LLMs of diverse architectures and capabilities into a more potent LLM
through lightweight continual training, thereby reducing the need for costly LLM
development. In this work, we propose a new framework for the knowledge fusion
of chat LLMs through two main stages, resulting in FUSECHAT. Firstly, we
conduct pairwise knowledge fusion on source chat LLMs of varying structures
and scales to create multiple target LLMs with identical structure and size via
lightweight fine-tuning. During this process, a statistics-based token alignment
approach is introduced as the cornerstone for fusing LLMs with different structures.
Secondly, we merge these target LLMs within the parameter space, where we
propose a novel method for determining the merging coefficients based on the
magnitude of parameter updates before and after fine-tuning. We implement and
validate FUSECHAT using six prominent chat LLMs with diverse architectures
and scales, including OpenChat-3.5-7B, Starling-LM-7B-alpha, NH2-SOLAR-
10.7B, InternLM2-Chat-20B, Mixtral-8x7B-Instruct, and Qwen-1.5-Chat-72B.
Experimental results on two instruction-following benchmarks, AlpacaEval 2.0
and MT-Bench, demonstrate the superiority of FUSECHAT-7B over baselines of
various sizes. Our model is even comparable to the larger Mixtral-8x7B-Instruct
and approaches GPT-3.5-Turbo-1106 on MT-Bench as Figure 1(b).
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Figure 1: Demonstration (left) of distinct strengths of existing chat LLMs and comparison (right) between
FUSECHAT-7B and baseline LLMs. While the left figure plots the percentage of first-ranked responses of
each LLM as measured by PairRM (Jiang et al., 2023) on AlpacaEval 2.0 and MT-Bench, the right shows that
FUSECHAT-7B achieves comparable performance to Mixtral-8x7B and approaches GPT-3.5 on MT-Bench. The
red dashed line is linearly fitted from data points of all chat LLMs except FUSECHAT-7B.
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1 INTRODUCTION

Large language models (LLMs) such as GPT (Brown et al., 2020) and LLaMA (Touvron et al., 2023)
series have demonstrated remarkable success across a wide range of natural language processing
(NLP) tasks. Currently, it has become prevalent and imperative for individuals and corporations to
build their own LLMs. However, the computational resources and time costs associated with LLM
development remain prohibitively high. Furthermore, despite the structural and functional differences
among LLMs, they often exhibit similar capabilities across various tasks. Therefore, besides training
an LLM from scratch, another option is to combine the distinct advantages of existing LLMs into
a more potent LLM, which is termed knowledge fusion of LLMs (Wan et al., 2024). Figure 1(a)
illustrates the results of our preliminary experiment conducted on AlpacaEval 2.0 and MT-Bench,
where we plot the percentage of questions each LLM answers best (measured by PairRM (Jiang
et al., 2023)) among six prominent chat LLMs. These established LLMs, regardless of their potency,
exhibit distinct strengths. Therefore, knowledge fusion not only reduces the developmental costs of
creating a new LLM but also has the potential to integrate the diverse strengths of existing models.

The endeavor to integrate the capabilities of multiple models has been a long-standing pursuit. For
example, ensemble methods (Littlestone & Warmuth, 1994; Jiang et al., 2023) directly aggregate
the outputs of multiple models to enhance prediction performance and robustness. However, this
approach requires maintaining multiple trained models during inference, which is inefficient for LLMs
due to their substantial memory and inference time requirements. Another approach is to directly
merge several neural networks into a single network through arithmetic operations in the parameter
space (Gupta et al., 2020), whereas this approach typically assumes uniform network architectures and
requires manually-tuned (Wortsman et al., 2022; Yadav et al., 2024) or automatically-learned (Matena
& Raffel, 2022; Jin et al., 2023) coefficients to merge the parameters of different neural networks. In
contrast, knowledge fusion (Wan et al., 2024) seeks to integrate the capabilities of multiple LLMs,
irrespective of their architectures, into a single LLM through lightweight continual training. This
process essentially embodies a traditional multi-teacher knowledge distillation procedure (You et al.,
2017), but faces new challenges such as token alignment and fusion strategies across different LLMs.

In this study, we introduce a fuse-and-merge framework to extend the fusion of LLMs to chat-based
LLMs1 with diverse architectures and scales through two stages, resulting in FUSECHAT. Firstly,
we conduct pairwise knowledge fusion for source chat LLMs to generate multiple target LLMs of
identical structure and size. To achieve this, we first select a pivot LLM and perform token alignment,
followed by knowledge fusion between the pivot and each of the remaining LLMs. These target
LLMs are expected to inherit the strengths of source chat LLMs through knowledge transfer during
lightweight fine-tuning. Secondly, these target LLMs are merged within the parameter space, where
we introduce a novel method called SCE to determine the merging coefficients based on the magnitude
of parameter updates before and after fine-tuning. Moreover, SCE allocates parameter matrix-level
coefficients that enable the merging at a fine-grained granularity without additional training efforts.

FUSECHAT offers superior potential compared to FUSELLM (Wan et al., 2024). Firstly, while
FUSELLM limits its exploration to source LLMs of the same size as the target LLM, FUSECHAT
broadens the scope by incorporating six source LLMs with varying scales. This allows for greater
adaptability to the fusion of diverse chat LLMs. Secondly, the framework of FUSELLM does not
seamlessly support the inclusion of new source LLMs as it requires the combination of distribution
matrices from all source LLMs during continual training. In contrast, integrating a new source LLM
in FUSECHAT is plug-and-play, requiring only obtaining a target LLM from the new source LLM
and merging it with the existing FUSECHAT. Thirdly, compared to many-to-one knowledge fusion,
pairwise fusion empirically mitigates the challenges of knowledge distillation from source LLMs.

To verify the effectiveness of FUSECHAT, we implemented FUSECHAT-7B using six prominent
open-source chat LLMs: OpenChat-3.5-7B (Wang et al., 2024a), Starling-LM-7B-alpha (Zhu et al.,
2023), NH2-SOLAR-10.7B (Kim et al., 2023), InternLM2-Chat-20B (Cai et al., 2024), Mixtral-
8x7B-Instruct (Jiang et al., 2024), and Qwen-1.5-Chat-72B (Bai et al., 2023). Experimental results
on two representative instruction-following benchmarks, AlpacaEval 2.0 (Dubois et al., 2024b)
and MT-Bench (Zheng et al., 2024), demonstrate the superiority of FUSECHAT-7B across a broad
spectrum of chat LLMs at 7B, 10B, and 20B scales. Moreover, we validated the proposed token
alignment method and the SCE merging method through a series of analytical experiments.

1We will refer to “chat-based LLMs” simply as “chat LLMs” for brevity.
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2 RELATED WORK

Model Fusion Combining the capabilities of diverse models has been a long-standing objective.
Existing approaches to model fusion mainly fall into three categories. Firstly, traditional model
ensemble techniques combine the outputs of multiple models by weighted averaging (Littlestone &
Warmuth, 1994) or majority voting (Monteith et al., 2011) to enhance overall system performance.
Recently, Jiang et al. (2023) introduced a sequence-level ensemble framework for LLMs, which
first conducts pairwise comparisons to rank the outputs of LLMs and then employs another LLM
to consolidate the top-ranked candidates into an improved output. In addition to the sequence-level
ensemble, Ding et al. (2024) blended multiple LLMs using a token-level gating mechanism on the
output logits. To avoid additional training during ensemble, Mavromatis et al. (2024) leveraged the
perplexity of different LLMs over input prompts to determine the importance of each model.

Secondly, model merging facilitates the fusion of models of identical structure and scale within the
parameter space. Wortsman et al. (2022) combined multiple models, obtained by fine-tuning a model
on the same dataset but with distinct strategies, through linear averaging. Matena & Raffel (2022)
enhanced simple weighted average by incorporating Fisher Information Matrix (Fisher, 1922) to
determine the significance of individual model parameter. Jin et al. (2023) performed merging by
addressing an optimization problem that minimizes the L2 distance between merged and individual
models, and conducting a closed-form solution. Although these methods can automatically compute
merging coefficients, they necessitate either forward or backward propagation using additional data,
making model merging compute-inefficient and memory-intensive. Ilharco et al. (2023) and Zhang
et al. (2023) conducted simple arithmetic operations on the task vectors or LoRA (Hu et al., 2022)
modules of different models, thereby enhancing multi-task ability and domain generalization. To
mitigate parameter interference, Yu et al. (2023) and Yadav et al. (2024) introduced sparsification
techniques that trim redundant values from task vectors prior to model merging. Moreover, Kim et al.
(2023) and Akiba et al. (2024) advanced the field by merging multiple LLMs across both parameter
and data flow spaces, yielding a merged LLM with up-scaled depth and superior performance.

Thirdly, mixture of experts (MoEs) combines specialized expert modules with a sparsely activated
mechanism (Fedus et al., 2022), presenting another venue for model fusion. Komatsuzaki et al. (2023)
first proposed initializing a sparse MoEs module using multiple copies from a dense checkpoint. To
integrate multiple domain experts, Sukhbaatar et al. (2024) trained multiple domain-specific LLMs
from a seed LLM separately and then used feed-forward networks on top of these dense experts
to instantiate a sparse MoEs module, followed by further fine-tuning to learn token-level routing.
Similarly, Feng et al. (2024) trained multiple domain-specific LoRA (Hu et al., 2022) modules as
experts and combined these domain experts using an explicit sequence-level routing strategy.

Lastly, FUSELLM (Wan et al., 2024) introduces another paradigm for the fusion of LLMs with struc-
tural differences. This approach builds upon knowledge distillation and leverages the probabilistic
distribution matrices generated by source LLMs to transfer collective knowledge into a target LLM.
Unlike model ensembles and MoEs, knowledge fusion does not require the parallel deployment of
multiple models (experts). Furthermore, compared to model merging, which only applies to models
with identical architectures, FUSELLM allows for the fusion of LLMs with different architectures.
Knowledge Distillation Knowledge fusion essentially performs knowledge distillation to transfer
knowledge from source LLMs to a target LLM. Knowledge distillation (Hinton et al., 2015) aims to
train a small student model guided by one or more larger teacher models. Previous studies primarily
focus on training a student model to mimic the teacher’s behavior in text classification tasks, by
replicating the teacher’s output logits (Sanh et al., 2019; Turc et al., 2019), as well as hidden states
(Sun et al., 2019; Jiao et al., 2020) and relations (Wang et al., 2020). In the realm of generative models,
prevailing approaches maximize the log-likelihood of the student on the distributions (Khanuja et al.,
2021; Gu et al., 2024; Agarwal et al., 2024) or sequences (Kim & Rush, 2016; Peng et al., 2023)
generated by the teacher model. This paradigm can be extended to accommodate multiple teachers by
either averaging the distributions (You et al., 2017) or blending the sequences (Wang et al., 2024a).

Compared to vanilla knowledge distillation, knowledge fusion of LLMs faces new challenges.
Firstly, due to the differences in tokenization among various LLMs, token alignment is essential
for transferring knowledge from source to target LLMs. Secondly, when dealing with distributions
generated from multiple source LLMs, the fusion function becomes crucial for optimally integrating
their distributions. Thirdly, to leverage the unique advantages of different LLMs, it is necessary and
challenging to create a compact knowledge fusion dataset that is diverse in capabilities and domains.
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Figure 2: Overview of FUSECHAT in comparison with FUSELLM (Wan et al., 2024). Distinct animal icons
symbolize different LLMs, where each species and size indicate a unique architecture and scale, respectively.

3 FUSECHAT

3.1 OVERVIEW

Figure 2 presents an overview of our FUSECHAT in comparison with FUSELLM (Wan et al., 2024).
The FUSECHAT framework consists of two main stages: fuse and merge. In the fuse stage, pairwise
knowledge fusion is conducted on source chat LLMs2 to derive multiple target LLMs with identical
structure and size. This process begins by selecting a pivot LLM, followed by performing knowledge
fusion between the pivot and each remaining LLM. In the merge stage, these target LLMs are
combined within the parameter space, where we introduce a novel method to determine the merging
coefficients based on the magnitude of parameter updates before and after fine-tuning.

Specifically, considering K source LLMs {Ms
i}Ki=1 with varying architectures and scales, FUSECHAT

first specifies one of the source LLMs, Ms
v , as the pivot and then applies pairwise knowledge fusion

to obtain (K − 1) target LLMs, {Mt
j}

K−1
j=1 , which share the same architecture and initialized weights

as the pivot LLM. The selection of the pivot depends on the desired structure and scale for the target
LLMs, while also considering the capabilities and performance of a candidate LLM.

To perform pairwise knowledge fusion, FUSECHAT prompts these source LLMs using a supervised
fine-tuning dataset D = {Ii, Ri}Mi=1 to showcase their inherent knowledge by responding to each
instruction in D. Token alignment (Fu et al., 2023; Wan et al., 2024) between the source LLMs and
the pivot is then conducted to properly map the resulting probabilistic distribution matrices. These
distribution matrices are subsequently used for pairwise knowledge fusion (Wan et al., 2024) through
lightweight fine-tuning to obtain (K − 1) target LLMs. Following this, the target LLMs are merged
in the parameter space to yield the final fused LLM Mf . To incorporate fine-grained advantages of
target LLMs, we introduce a new merging method named SCE to obtain the merging coefficients
based on selection, calculation, and erasure on the task vectors (Ilharco et al., 2023) which represent
variation of model weights before and after fine-tuning. SCE enables the automatic allocation of
parameter matrix-level merging coefficients, facilitating the merging of LLMs at a finer granularity.

3.2 PRELIMINARIES

Given an instruction Ii and the corresponding response Ri of length N from the fine-tuning dataset
D, we use Ri,<t = (ri,1, ri,2, . . . , ri,t−1) to represent the sequence preceding the tth token in the
response. The supervised fine-tuning (SFT) objective for a pre-trained language model parameterized
by θ is defined as minimizing the following negative log-likelihood:

LSFT = −E(Ii,Ri)∼D

∑
t≤N

log pθ(ri,t|Ri,<t, Ii)

 , (1)

where pθ(ri,t|Ri,<t, Ii) is the model’s predicted probability for the tth token ri,t in Ri given the
instruction and preceding tokens in the response.

2We will use “source chat LLMs” and “source LLMs” interchangeably when there is no ambiguity.
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3.3 PAIRWISE KNOWLEDGE FUSION

To facilitate the description of pairwise knowledge fusion, we reframe the above token-level view into
a matrix format. Specifically, for each instruction Ii, we transform the token-level predictions into a
probabilistic distribution matrix, Pθ

i ∈ RN×V , where V denotes the vocabulary size. The distribution
matrix is assumed to reflect certain inherent knowledge of the language model in responding to the
instruction (Wan et al., 2024). Consequently, different probabilistic distribution matrices obtained
from different chat LLMs can be used to represent the diverse knowledge embedded within these
models. Based on this assumption, FUSECHAT performs pairwise knowledge fusion by fine-tuning
the target LLMs, initialized from the pivot, using the probabilistic distribution matrices.

Model Fusion For each instruction Ii in D, we first feed it into the K source chat LLMs to obtain a
set of probabilistic distribution matrices, denoted as {Pθj

i }Kj=1, where θj represents the parameters of
the jth chat LLM. Since these LLMs may employ different tokenizers, token alignment is necessary
to properly map their probabilistic distribution matrices (Fu et al., 2023; Wan et al., 2024). Then,
pairwise knowledge fusion is conducted between the pivot LLM and each of the remaining source
LLMs. To achieve this, we denote the probabilistic distribution matrix generated by the pivot LLM as
Pθv

i and merge it with each P
θj
i |j ̸=v to obtain a set {Pj

i}
K−1
j=1 of fused matrices as follows:

Pj
i = Fusion(Pθv

i ,P
θj
i )|j ̸=v, (2)

where Fusion(·) represents the fusion function that merges two matrices. The resulting matrix Pj
i

is seen as a representation of the collective knowledge and distinctive strengths of the two source
LLMs. Among various fusion strategies, this work employs minimum cross-entropy (MinCE) (Wan
et al., 2024) as the fusion function, which empirically performs the best.

After that, we enforce alignment between the prediction of each target LLM Mt
j and the correspond-

ing fused representation matrices Pj
i . We use Qϕj

i to represent the output distribution matrix of target
LLM Mt

j for instruction Ii and define the fusion objective for training each target LLM as follows:

LFusion = −E(Ii,Ri)∼D

[
H(Pj

i ||Q
ϕj

i )
]
, (3)

where H(·||·) represents the cross entropy between two probabilistic distribution matrices.

The overall training objective for each pairwise knowledge fusion consists of a weighted combination
of the supervised fine-tuning objective LSFT and the fusion objective LFusion as follows:

L = λLSFT + (1− λ)LFusion. (4)

Token Alignment Token alignment aims to address the mappings of probabilistic distribution ma-
trices {Pθj

i ∈ RN×V }Kj=1 generated by different source LLMs for a given instruction Ii. Therefore,
the alignment involves two dimensions of the matrices: the sequence dimension for the tokenized
response and the distribution dimension for the probabilistic distributions. In the sequence dimension,
we follow previous works (Fu et al., 2023; Wan et al., 2024) and adopt dynamic programming to
recursively minimize the total cost of editing the tokens from a source LLM to align them with the
pivot LLM. This process may result in 1-1, 1-n, and n-1 mappings, as shown in Figure 7. In the
distribution dimension, Fu et al. (2023) focused on aligning distributions based on the exact match
(EM) between tokens in source and target distributions, which restricts the alignment to only 1-1
mappings and may result in too many unmatched tokens. Wan et al. (2024) relaxed the EM constraint
by aligning the distributions based on the minimum edit distance (MinED) between tokens in the
vocabularies of source and target LLMs. While this approach improves the mapping success rate and
expands to 1-n mappings, it ignores n-1 mappings and may introduce many misalignments.

In this work, we propose an enhanced token alignment strategy that utilizes mapping statistics (MS)
from the sequence dimension as the criteria for alignment in the distribution dimension. We construct
a global statistical matrix, where each column represents the frequency of mappings from a pivot
token to all potential source tokens, derived from sequence-dimensional token alignments. In the case
of 1-1 and 1-n mappings, we align the distributions based on the maximum mapping frequency in the
respective columns of the statistical matrix for each pivot token in the distribution. For n-1 mappings,

5
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we first calculate a weighted average of the source tokens’ distributions according to their mapping
frequencies in the statistical matrix to obtain a merged distribution. This merged distribution is then
aligned to the pivot distribution similar to the procedure employed for 1-1 mappings. As illustrated in
Figure 7, this approach better reflects the token mapping statistics in the dataset, thereby preserving
significant information in the aligned distribution matrices while minimizing alignment errors.

3.4 MODEL MERGING

Since the target LLMs {Mt
j}

K−1
j=1 resulting from pairwise knowledge fusion share identical architec-

ture and scale while possessing diverse advantages and capabilities learned from the source LLMs,
we further merge them in the parameter space to obtain the final fused LLM Mf . To ensure the adapt-
ability and scalability of FUSECHAT, it is essential to maintain the simplicity of the merging strategy.
Primarily, the calculation of merging coefficients should be automated, obviating the complex hy-
perparameter tuning. Secondly, the merging procedure should not demand forward or backward
propagation over additional data, which is computationally inefficient and memory-intensive.

As described in Algorithm 1, we propose a novel merging method named SCE (select, calculate, and
erase) for parameter matrix-level merging. Analogous to task vectors (Ilharco et al., 2023), we first
define fusion vectors {δj}K−1

j=1 (Eq. 5) as the direction and magnitude of weight updates from pivot
LLM Ms

v to target LLMs {Mt
j}

K−1
j=1 during model fusion. For each parameter matrix unit in target

LLMs, we derive the merged weights using fusion vectors through a three-step process.

Algorithm 1 SCE Procedure

Input: target LLMs parameters {ϕj}K−1
j=1 , pivot

LLM parameters θv , threshold τ .
Output: merged LLM parameters Φ
▷ Create fusion vectors

{δj}K−1
j=1 = {ϕj − θv}K−1

j=1 (5)

▷ Calculate parameter matrix-level
merging coefficients

for {δj,m}K−1
j=1 ∈ {δj}K−1

j=1 do
▷ Step 1: Select salient elements

{δ̂j,m}K−1
j=1 = Select({δj,m}K−1

j=1 , τ) (6)

▷ Step 2: Calculate coefficients

{ηj,m}K−1
j=1 = Calculate({δ̂2j,m}K−1

j=1 ) (7)

▷ Step 3: Erase minority elements

{δ
′

j,m}K−1
j=1 = Erase({δ̂j,m}K−1

j=1 ) (8)

▷ Update merged LLM parameters

Φm = θv,m +

K−1∑
j=1

ηj,mδ
′

j,m (9)

end
return Φ

(1) Select: During the pairwise knowledge fu-
sion, target LLMs dynamically evolve their pa-
rameters to incorporate the advantages of their
corresponding source LLMs. Fusion vectors for
each parameter matrix unit with substantial vari-
ations across different target LLMs are supposed
to signify distinctive and significant strengths.
Therefore, we first select the top τ% elements
from each parameter matrix-level fusion vector
{δj,m}K−1

j=1 with high variance across multiple
target LLMs, resulting in {δ̂j,m}K−1

j=1 (Eq. 6).
(2) Calculate: We then calculate the sum of
squares of elements in δ̂j,m and obtain a matrix-
level merging coefficient for each target LLM

as ηj,m =
∑

δ̂2j,m∑
j

∑
δ̂2j,m

. (3) Erase: Each param-

eter may exhibit conflicting signs across fusion
vectors from different target LLMs, which could
cause interference during model merging (Ya-
dav et al., 2024). Thus, for each parameter we
sum its values in {δ̂j,m}K−1

j=1 across target LLMs
and erase elements with minority directions (Eq.
8). Finally, the filtered {δ′

j,m}K−1
j=1 are merged

based on the calculated coefficients, and added
to the pivot LLM’s parameters (Eq. 9).

3.5 DISCUSSIONS

The reasons why FUSECHAT adopts pairwise rather than many-to-one knowledge fusion as
FUSELLM (Wan et al., 2024) are twofold. Firstly, directly fusing all the source LLMs proves
to be difficult, as evidenced by the results of OpenChat-3.5-7B Multi in Table 1. Instead, FUSECHAT
adopts a fuse-and-merge strategy, wherein the fusing stage employs pairwise knowledge fusion be-
tween the pivot LLM and other source LLMs, which reduces the difficulty of model fusion. Secondly,
FUSECHAT offers superior scalability compared to FUSELLM. The framework of FUSELLM re-
quires the combination of distribution matrices from all source LLMs during continual training, which
does not easily support the inclusion of new LLMs. In contrast, FUSECHAT supports plug-and-play
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integration of new source LLMs at any scale. This requires only obtaining a target LLM by fusing
the new source LLM with the pivot, and then merging it with the existing version of FUSECHAT.

4 EXPERIMENTS

In our experiments, we explore the fusion of chat LLMs with diverse architectures and scales. Specif-
ically, we conduct experiments using six representative chat LLMs as the source LLMs, including
OpenChat-3.5-7B (Wang et al., 2024a), Starling-LM-7B-alpha (Zhu et al., 2023), NH2-SOLAR-
10.7B (Kim et al., 2023), InternLM2-Chat-20B (Cai et al., 2024), Mixtral-8x7B-Instruct (Jiang et al.,
2024), and Qwen-1.5-Chat-72B (Bai et al., 2023). As for the pivot LLM, which also serves as
the starting point for the target LLMs, we opt for OpenChat-3.5-7B due to its balanced scale and
performance. To begin, we first apply pairwise knowledge fusion (Section 3.3) to create five distinct
target LLMs with the same structure. These target LLMs are then merged using the SCE method
(Section 3.4), resulting in the final FUSECHAT-7B.

4.1 EXPERIMENTAL SETUP

Training Dataset To leverage the strengths of source LLMs during knowledge fusion while
alleviating catastrophic forgetting, we curate a high-quality dataset named FUSECHAT-MIXTURE
from two different sources. First, 50% of the training instances are sampled from the dataset used by
the pivot LLM, OpenChat-3.5-7B. Second, we gather the remaining training instances, which have
not been encountered by the pivot LLM, from open-source communities. These two sources result in
a corpus comprising approximately 95,000 dialogues across spanning various domains. For further
details on FUSECHAT-MIXTURE, please refer to Appendix C.

Training Details In all experiments, we train the target LLMs using a batch size of 128 and a
maximum length of 2048 on a single node with 8x80GB NVIDIA A800 GPUs for three epochs,
which takes approximately 9 hours. The models are optimized using the AdamW (Loshchilov &
Hutter, 2019) optimizer with β1 = 0.9 and β2 = 0.999. We use a weight decay of 0.0 and gradient
clipping of 1.0. A cosine learning rate schedule is employed, with a maximum learning rate of 5e-6
and a warmup ratio of 0.03. We empirically set the combination weight λ in Eq. 4 to 0.9 and the
rationale behind the value of λ is detailed in Appendix H. Our training framework is implemented
based on the HuggingFace Transformers (Wolf et al., 2020).

Evaluation We assess the performance of FUSECHAT-7B on two representative benchmarks to
evaluate its ability to follow instructions and engage in conversations effectively. The first benchmark,
AlpacaEval 2.0 (Dubois et al., 2024b), comprises 805 instructions across five test subsets. It compares
the Win Rate and Length-Controlled Win Rate (LC Win Rate) (Dubois et al., 2024a) of a model
against GPT-4. We employ the default settings and utilize GPT-4 (GPT-4-1106-Preview) to evaluate
the quality of generated responses. The second benchmark, MT-Bench (Zheng et al., 2024), consists
of 80 multi-turn dialogues spanning various domains including writing, roleplay, reasoning, math,
coding, extraction, STEM, and humanities. Originally, GPT-4 (GPT-4-0613) was used as the evaluator,
providing a scalar score ranging from 1 (lowest) to 10 (highest) for each generated response. However,
due to inaccuracies in the reference responses, we adopt an updated version, GPT-4-0125-Preview, as
per the latest works3, to correct the errors and evaluate the generated responses.

Baselines In our experiments, we compare our FUSECHAT-7B with four categories of baseline
LLMs, including (i) Proprietary LLMs, (ii) Source LLMs, (iii) Ensemble LLMs, and (iv) Fused
LLMs. The details of these baselines are shown in Appendix D.

4.2 OVERALL RESULTS

In Table 1, we present the overall results of FUSECHAT-7B in comparison with baselines of various
architectures and scales on AlpacaEval 2.0 and MT-Bench. Our key observations are as follows.
Firstly, after supervised fine-tuning on our high-quality dataset, OpenChat-3.5-7B SFT demonstrates
slightly better performance than the pivot LLM OpenChat-3.5-7B. Secondly, in comparison to
OpenChat-3.5-7B Multi, which fuses multiple source LLMs simultaneously as FUSELLM (Wan
et al., 2024), the target LLMs resulting from pairwise knowledge fusion exhibit superior perfor-
mance, demonstrating the effectiveness of pairwise fusion in reducing the fusion difficulty. For

3https://github.com/lm-sys/FastChat/pull/3158
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Model #Params
AlpacaEval 2.0 MT-Bench

(GPT-4-1106-Preview) (GPT-4-0125-Preview)
Win Rate LC Win Rate 1st Turn 2nd Turn Average Score

Proprietary LLMs
GPT-3.5-Turbo-1106(Achiam et al., 2023) - 9.18 19.30 7.56 7.41 7.48
Claude-3-Opus(Anthropic, 2024) - 29.04 40.39 8.84 8.30 8.57
GPT-4-1106-Preview(Achiam et al., 2023) - 50.00 50.00 8.86 8.71 8.79

Source LLMs
OpenChat-3.5-7B(Wang et al., 2024a) 7B 10.20 14.90 7.14 6.55 6.84
Starling-LM-7B-alpha(Zhu et al., 2023) 7B 14.20 14.70 7.54 6.49 7.01
NH2-SOLAR-10.7B(Kim et al., 2023) 10.7B 12.22 18.13 7.11 6.36 6.74
InternLM2-Chat-20B(Cai et al., 2024) 20B 21.70 18.70 7.78 6.34 7.06
Mixtral-8x7B-Instruct(Jiang et al., 2024) 8x7B 18.30 23.70 7.76 7.00 7.38
Qwen1.5-Chat-72B(Bai et al., 2023) 72B 26.50 36.60 7.83 7.36 7.59

Ensemble LLMs
Top1-PPL(Mavromatis et al., 2024) 162B 25.11 27.97 7.79 6.95 7.37
Top1-LLM-Blender(Jiang et al., 2023) 162B 24.45 29.11 7.85 6.70 7.28
Top1-GPT4(Achiam et al., 2023) 162B 42.82 43.87 8.79 8.01 8.40

Fused LLMs
OpenChat-3.5-7B SFT 7B 10.56 14.50 7.36 6.40 6.88
OpenChat-3.5-7B Multi 7B 10.19 (-3.50%) 13.43 (-7.38%) 7.69 (+4.48%) 6.26 (-2.19%) 6.99 (+1.60%)
OpenChat-3.5-7B Starling 7B 11.43 (+8.24%) 16.20 (+11.72%) 7.69 (+4.48%) 6.73 (+5.16%) 7.22 (+4.94%)
OpenChat-3.5-7B SOLAR 7B 11.12 (+5.30%) 16.51 (+13.86%) 7.58 (2.99%) 6.76 (+5.62%) 7.17 (+4.22%)
OpenChat-3.5-7B InternLM 7B 11.82 (+11.93%) 15.21 (+4.90%) 7.63 (+3.67%) 6.78 (+5.94%) 7.21 (+4.80%)
OpenChat-3.5-7B Mixtral 7B 11.74 (+11.17%) 16.52 (+13.93%) 7.58 (+2.99%) 6.90 (+7.81%) 7.24 (+5.23%)
OpenChat-3.5-7B Qwen 7B 10.93 (+3.50%) 14.98 (+3.31%) 7.69 (+4.48%) 6.78 (+5.94%) 7.23 (+5.09%)

FUSECHAT-7B 7B 11.52 (+9.09%) 17.16 (+18.34%) 7.70 (+4.62%) 7.05 (+10.16%) 7.38 (+7.27%)

Table 1: Results of FUSECHAT-7B and baselines on AlpacaEval 2.0 and MT-Bench. The bold font denotes the
best performance among fused LLMs, while the underscore indicates the second-best performance. Moreover,
the percentages represent the relative performance improvement compared to the OpenChat-3.5-7B SFT.
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Figure 3: The effect of pairwise knowledge fusion for source LLMs across various domains on MT-Bench. It
combines the strengths of each source LLM and the pivot (OpenChat-3.5-7B) into a more potent target LLM.

instance, through the integration of OpenChat-3.5-7B and Mixtral-8x7B-Instruct, the fused target
LLM OpenChat-3.5-7B Mixtral achieves relative gains of 13.93% LC Win Rate and 5.23% Average
Score over OpenChat-3.5-7B SFT, significantly surpassing OpenChat-3.5-7B Multi. Furthermore,
after merging these target LLMs, FUSECHAT-7B shows substantial performance enhancements of
18.34% and 7.27% in the two metrics. This illustrates the superiority of FUSECHAT-7B across a
range of source LLMs at various scales, even comparable to 8x7B MoEs and approaching GPT-3.5.

Moreover, in comparison to the ensemble LLMs of 162B, which generate the 1st response from six
parallel deployed LLMs based on different ranking criteria, FUSECHAT-7B outperforms most of
these LLMs except Top1-GPT4 on MT-Bench, while being 23x smaller and independent of GPT-4.
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Figure 4: The impact of merging target
LLMs into FUSECHAT-7B across domains
on MT-Bench.

To further illustrate that our performance improvements
stem from the integration of distinct knowledge from mul-
tiple LLMs, we evaluate the source LLMs, target LLMs,
and FUSECHAT across various domains on MT-Bench. The
results in Figure 3 reveal that the target LLMs demonstrate
noticeable performance enhancements in most domains after
pairwise knowledge fusion. Typically, the performance of
each target LLM falls between that of the pivot LLM and the
respective source LLM. This phenomenon can be attributed
to the fusion function we employed to select the optimal
target distributions with minimal cross-entropy, which pro-
motes the incorporation of unique advantages from the pivot
LLM and source LLMs into more potent target LLMs. No-
tably, in math and coding domains, the performance of cer-
tain target LLMs surpasses that of either the pivot or source
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LLMs. This enhancement can be explained by the strong performance of the source LLMs in these
domains, coupled with the relatively high proportion of math and coding samples in our dataset. It is
also consistent with findings from knowledge distillation (Wu et al., 2023), where the student model
occasionally outperforms the teacher in specific tasks. The effect of further merging these target
LLMs into FUSECHAT-7B is shown in Figure 4. By integrating the capabilities of the target LLMs,
FUSECHAT achieves a balanced and robust performance across diverse domains.

4.3 DIFFERENT PIVOT LLM

Model AlpacaEval 2.0 MT-Bench
Starling-LM-7B-alpha 14.70 7.01
Starling-LM-7B-alpha SFT 13.20 (-10.20%) 6.89 (-1.71%)

FUSECHAT-Starling-7B 17.29 (+17.62%) 7.16 (+2.14%)

Table 2: Starling-LM-7B-alpha as pivot LLM
results on AlpacaEval 2.0 and MT-Bench.

We conduct experiments using Starling-LM-7B-alpha to
replace OpenChat-3.5-7B as a more robust pivot LLM,
which achieved an LC Win Rate of 14.70 on AlpacaEval
2.0 and an Average Score of 7.01 on MT-Bench. The eval-
uation results presented in Table 2 show that FUSECHAT-
Starling-7B outperforms Starling-LM-7B-alpha, with rela-
tive performance improvements of 17.62% on AlpacaEval
2.0 and 2.14% on MT-Bench. Notably, although Starling-LM-7B-alpha SFT does not result in
performance gains, the pairwise knowledge fusion and model merging processes lead to significant
enhancements using the same training data.

4.4 DATASET SCALING

Dataset Scale
MT-Bench

1st Turn 2nd Turn Average Score
10,000 7.34 6.86 7.10
25,000 7.58 6.85 7.21
95,000 7.70 7.05 7.38

Table 3: Comparison of different dataset
scales on MT-Bench.

We perform experiments across different dataset scales
for pairwise knowledge fusion, followed by merging the
resulting target LLMs in the parameter space to obtain the
final fused LLM. The results in Table 3 indicate that the
performance of the final fused LLM consistently improves
as the training data scales up from 10k to 95k on MT-
Bench, demonstrating the potential effectiveness of scaling
up dataset to our method.

4.5 ANALYSIS OF MODEL MERGING

Model AlpacaEval 2.0 MT-Bench
FUSECHAT-7B Linear 17.12 7.03
FUSECHAT-7B TA 15.74 7.08
FUSECHAT-7B TIES 16.55 7.33
FUSECHAT-7B DARE 16.57 7.15

FUSECHAT-7B SCE 17.16 7.38

Table 4: Comparison of different merging
methods on AlpacaEval 2.0 and MT-Bench.

To investigate the effectiveness of the proposed SCE
approach, we incorporate the target LLMs using differ-
ent merging methods, including Linear (Wortsman et al.,
2022), TA (Ilharco et al., 2023), TIES (Yadav et al., 2024),
and DARE (Yu et al., 2023). We evaluate the performance
of these merged LLMs on AlpacaEval 2.0 and MT-Bench.
As depicted in Table 4, FUSECHAT-7B SCE outperforms
all baseline merging methods on the two benchmarks. For
more details of baselines and hyperparameters in model
merging, please refer to Appendix B.
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Figure 5: Results of FUSECHAT by merging
varying numbers of target LLMs.

In Figure 5, we further illustrate the performance of
FUSECHAT-7B SCE by incorporating varying numbers
of target LLMs on MT-Bench. The findings demonstrate
a progressive enhancement in Average Score, which in-
creases from 7.24 to 7.38 as the number of integrated
target LLMs rises from 1 to 5. Moreover, we observe
that after the integration of OpenChat-3.5-7B SOLAR, the
performance of the merged LLM remains stable. This
stabilization might be attributed to the comparatively sub-
optimal performance of OpenChat-3.5-7B SOLAR and
its corresponding NH2-SOLAR-10.7B compared to other
target or source LLMs. Therefore, we suggest that both
the diversity and quality of integrated source LLMs are
critical factors for optimal knowledge fusion.
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4.6 ABLATION STUDIES FOR SCE

Model AlpacaEval 2.0 MT-Bench
FUSECHAT-7B SCE 17.16 7.38
FUSECHAT-7B CE 15.69 (-8.57%) 7.29 (-1.22%)
FUSECHAT-7B C 16.62 (-3.15%) 7.11 (-3.66%)

Table 5: Comparison of different merging
methods on AlpacaEval 2.0 and MT-Bench.
“CE” and “C” mean only the calculate&erase
and calculate operations are used.

In this section, we conduct experiments to examine the
effectiveness of the select, calculate, and erase operations
in SCE. The results in Table 5 demonstrate that, without
the select operations, FUSECHAT-7B CE suffers substan-
tial performance degradation on the two benchmarks. This
underscores the benefits of selecting salient elements from
fusion vectors with high variance among target LLMs to
signify their distinctive and significant strengths. More-
over, removing both the select and erase operations leads
to FUSECHAT-7B C with decreased performance on MT-Bench, highlighting the importance of
resolving parameter interference in fusion vectors from different target LLMs.

4.7 ANALYSIS OF TOKEN ALIGNMENT
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Figure 6: Results of OpenChat-3.5-7B In-
ternLM via pairwise knowledge fusion with
different token alignment strategies.

Finally, we delve into exploring the impact of various to-
ken alignment strategies. Specifically, we apply EM (Fu
et al., 2023) and MinED (Wan et al., 2024), and our MS
methods to align distributions generated by InterLM2-
Chat-20B with those of OpenChat-3.5-7B. Then, we con-
duct pairwise knowledge fusion to derive OpenChat-3.5-
7B InternLM. As depicted in Figure 6, our proposed MS
method, rooted in mapping statistics, consistently outper-
forms EM and MinED, which rely on exact matching
and minimal edit distance, respectively. We propose that
this performance enhancement arises from MS’s effective
utilization of token mapping statistics within the dataset,
which greatly improves the effect of token alignment in
the distribution dimension.

5 CONCLUSION

In this work, we propose a fuse-and-merge framework for knowledge fusion of structurally and
scale-varied chat LLMs to integrate their collective knowledge and individual strengths into a more
potent chat LLM, resulting in FUSECHAT. FUSECHAT first undertakes pairwise knowledge fusion for
source chat LLMs to derive multiple target LLMs of identical structure and size via lightweight fine-
tuning. Then, these target LLMs are merged within the parameter space using a novel method SCE to
calculate the merging coefficients based on the magnitude of parameter updates before and after fine-
tuning. Experimental results on two representative instruction-following benchmarks demonstrate the
superiority of FUSECHAT across different model scales, even comparable to Mixtral-8x7B-Instruct
and approaching GPT-3.5-Turbo-1106 on MT-Bench.

The concept of knowledge fusion shares similarities with related approaches, such as the recently
popular mixture of experts (MoEs). Both methods aim to leverage the strengths of multiple models
(experts). However, while MoEs require loading multiple experts during inference, leading to higher
time and memory requirements, knowledge fusion allows the integration of multiple LLMs with
diverse architectures and scales into a single LLM without additional time or memory overhead. This
makes knowledge fusion more efficient, especially when model size is a critical consideration.

6 LIMITATIONS AND FUTURE WORK

Our work relies on constructing a knowledge fusion dataset that spans diverse domains and leverages
the strengths of source LLMs. This process demands substantial data engineering efforts, which may
limit the scalability of our methodology. Future research should focus on developing more efficient
data synthesis techniques to expand the scope of the knowledge fusion dataset. Additionally, while
our study shows improvements in chat model capabilities, it does not address other critical aspects of
LLMs, such as knowledge comprehension and the mitigation of hallucinations. Further investigation
is necessary to evaluate the applicability and effectiveness of our approach in these areas.
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A DETAILS OF TOKEN ALIGNMENT

1.0 0 0 0
0 0.6 0.6 0
0 0.1 0.1 0
0 0.2 0.1 1.0

<s>
flowers
flown
flower

<s> ers flo
w_

flo
wer

<s>

flow_

flower

<s>

flowers

flower

beautiful

Source Dist.

0.42
0.23
0.11
0.07
...

girl
flow_
dance
flower

...

Token

...There are beautiful flowers in...

...variety and mutation belongs to...

...interaction between the organism...

1.0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1.0

<s>
flowers
flown
flower

<s> ers flo
w_

flo
wer

<s>

flow_

flower

<s>

flower

<unk>

1.0 0 0 0
0 0.4 0.1 0.2
0 0.1 0.6 0
0 0.1 0.2 0.7

<s>
flowers
flown
flower

<s> ers flo
w_

flo
wer

<s>

flow_

flower

<s>

flown

flower

1-1 Mapping

Exact Match (EM) Minimal Edit Distance (MinED) Mapping Statistics (MS)

1-n Mapping

n-1 Mapping

Weighted 
Average

Prob.
Aligned Dist.

0.42
0.00
0.11
0.07
...

girl
<unk>
dance
flower

...

Token Prob.
Aligned Dist.

0.42
0.23
0.11
0.07
...

girl
flown
dance
flower

...

Token Prob.
Aligned Dist.

0.42
0.23
0.11
0.07
...

girl
flowers
dance
flower

...

Token Prob.
Pivot Dist.

0.56
0.11
0.08
0.05
...

girl
flowers
dance
flower

...

Token Prob.

beautiful

WMinEDWEM WMS

mutation

Source Dist.

0.39
0.21
0.10
0.08
...

to
that
for
belo_

...

Token Prob.
Aligned Dist.

0.39
0.21
0.10
0.08
...

to
that
for

below
...

Token Prob.
Aligned Dist.

0.39
0.21
0.10
0.08
...

to
that
for

belongs
...

Token Prob.

Pivot Dist.

0.44
0.14
0.11
0.05
...

ation
ations
ator
ate
,,,

Token Prob.

mut

0.52
0.33
0.05
0.03
...

to
for
that

belongs
...

Token Prob.

ation

inter

Source Dist.

0.36
0.26
0.11
0.05
...

action
in

ation
nation

...

Token Prob.

action

0.40
0.22
0.20
0.08
...

between
within
potential

to
...

Token Prob.

Merged Dist.

0.32
0.18
0.16
0.09
...

between
within
potential

in
...

Token Prob.
Aligned Dist.

0.32
0.18
0.16
0.09
...

between
within
potential

in
...

Token Prob.
Pivot Dist.

0.56
0.11
0.08
0.05
...

between
potent
within

in
...

Token Prob.

interaction

WEM WMinED WMS

0.8 0.1 0.4 0
0.2 0.5 0.2 0.2
0 0.3 0.2 0.3
0 0.1 0.1 0

below
belong
belongs
been

bel
ow

bel
on

g
bel

o_
ng

s

WMinED

1.0 0 0.1 0
0 1.0 0 0
0 0 0.8 0.9
0 0 0 0

below
belong
belongs
been

bel
ow

bel
on

g
bel

o_
ng

s

WMS

WMinED WMS

1.0 0 0 0
0 1.0 0.1 0
0 0 0.8 0.1
0 0.1 0 0.9

people
potency
potent
pot

peo
ple
po

ten
cy

po
ten

tia
l

po
t

WMS

WMS

Figure 7: Illustration of EM, MinED, and our MS token alignment strategies in 1-1, 1-n, and n-1 mappings.

In Figure 7, we present the token pair mappings employed in three distinct token alignment strategies,
including EM (Fu et al., 2023), MinED (Wan et al., 2024), and our MS. For clarity, these mapping
strategies are depicted in a matrix format, where each column represents the probability of a source
token being aligned with a corresponding pivot token. The values within these matrices derive from
the respective alignment strategies employed. For instance, the matrix WEM relies on exact matches
between source and pivot token pairs, while WMinED inversely relates to the edit distance between
these pairs. WMS is based on the statistical mapping frequency between the source and pivot tokens.

In scenarios involving 1-1 or 1-n mappings, the EM and MinED methods utilize WEM or WMinED

respectively, which may lead to inaccurate mappings. For example, in EM, the token “flow_” might
be incorrectly aligned with “<unk>”, and in MinED, “flow_” could map to “flown”, or “belo_” to
“below”. In contrast, our MS method achieves more accurate alignments such as mapping “flow_”
to “flowers” and “belo_” to “belongs”, using WMS from sequence-dimensional token alignments.
For n-1 mapping, where only MS is applicable, multiple source distributions are combined using a
weighted average determined by WMS to derive a merged distribution. This unified distribution is
then processed similarly to the 1-1 mappings.
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B DETAILS OF MODEL MERGING

The hyperparameters for various merging methods are detailed as follows. For the Linear method
(Wortsman et al., 2022), merging parameters are calculated as the mean of all target LLMs. In the TA
method (Ilharco et al., 2023), we adhere to the original paper, exploring scaling coefficients within
the range of [0.3, 0.4, 0.5]. The optimal setting of 0.3 is selected based on performance. For the TIES
(Yadav et al., 2024) and DARE (Yu et al., 2023) approaches, we search for the trim/drop rate within
the range of [0.1, 0.2, · · · , 0.9]. The optimal trim/drop rate is 0.4, which results in the elimination
of the bottom/random 40% of delta parameters by resetting them to zero. Merging coefficients are
computed as the average of all target LLMs. For the SCE method, we search for the salient element
selection thresholds τ within the range of [10, 20, · · · , 90]. The optimal threshold is 10%. Merging
coefficients are automatically derived based on the magnitude of delta parameters.

C DETAILS OF TRAINING DATASET

We curated a comprehensive training dataset, FUSECHAT-MIXTURE, from various sources. This
dataset covers different styles and capabilities, featuring both human-written and model-generated,
and spanning general instruction-following and specific skills. These sources include:

Orca-Best4: We sampled 20,000 examples from Orca-Best, which is filtered from the GPT-4 (1M)
partition of Orca (Mukherjee et al., 2023) based on maximum length and clustering of instructions.

Capybara5: We incorporated all the 16,000 examples of Capybara, which is a high-quality collection
of multi-turn synthetic conversations.

No-Robots6: We included all the 9,500 examples of No-Robots, which is a dataset created by skilled
human annotators for supervised fine-tuning.

ShareGPT-GPT47: We utilized all 6,200 examples from ShareGPT-GPT4, which exclusively uses
dialogues generated by GPT-4 in ShareGPT.

Oasst-Top18: We selected 5,000 examples from Oasst-Top1, which is a refined version of
Oasst1 (Köpf et al., 2024), a human-annotated assistant-style conversation dataset.

MetaMathQA 9: We sampled 10,000 examples from MetaMathQA (Yu et al., 2024), which is
augmented from the GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) datasets for
mathematics problem-solving.

OSS-Instruct 10: We chose 10,000 examples from OSS-Instruct (Wei et al., 2023), which contains
code instruction data synthesized from open-source code snippets.

Evol-Alpaca 11: We sampled 10,000 examples from Evol-Alpaca, which is a code instruction dataset
generated by GPT-4 with evol-instruct proposed by WizardCoder (Luo et al., 2024).

Python-Code 12: We selected 10,000 examples from Python-Code, which comprises instructions and
responses generated by GPT-3.5 and GPT-4 for python code generation.

We followed the data processing code in FastChat (Zheng et al., 2024) to clean instances containing
non-English or special characters. Then, we split long conversations into blocks with a maximum
length of 2048 tokens, resulting in the final FUSECHAT-MIXTURE with 95,000 samples. We also
explored the domain distribution of the samples in the training data. Specifically, we used the
approach provided by Magpie (Xu et al., 2024), utilizing the Llama-3-8B-Instruct model (Dubey
et al., 2024) to classify our 95,000 training examples into eight distinct domains as defined by

4https://huggingface.co/datasets/shahules786/orca-best
5https://huggingface.co/datasets/LDJnr/Capybara
6https://huggingface.co/datasets/HuggingFaceH4/no_robots
7https://huggingface.co/datasets/shibing624/sharegpt_gpt4
8https://huggingface.co/datasets/OpenAssistant/oasst_top1_2023-08-25
9https://huggingface.co/datasets/meta-math/MetaMathQA

10https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
11https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
12https://huggingface.co/datasets/ajibawa-2023/Python-Code-23k-ShareGPT
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MT-Bench. After removing 7,000 samples due to anomalous classification errors, the final domain
distribution is presented in Table 6, which demonstrates substantial diversity, which aligns with our
primary objective to assess the model’s general capabilities rather than domain-specific performance.

Statistics Math Extraction Roleplay Writing STEM Reasoning Humanities Coding Total
Num. Sample 15079 20329 8137 7627 983 7948 1403 27119 88625
Percentage (%) 17.01 22.94 9.18 8.61 1.11 8.97 1.58 30.60 100

Table 6: The domain distribution of samples in the training dataset.

D DETAILS OF BASELINES

In this section, we present the details of baseline models compared in our experiments.

Proprietary LLMs: GPT-3.5-Turbo-110613 (Achiam et al., 2023), Claude-3-Opus14 (Anthropic,
2024), and GPT-4-1106-Preview15 (Achiam et al., 2023).

Source LLMs: OpenChat-3.5-7B16 (Wang et al., 2024a), Starling-LM-7B-alpha17 (Zhu et al., 2023),
NH2-SOLAR-10.7B18 (Kim et al., 2023), InternLM2-Chat-20B19 (Cai et al., 2024), Mixtral-8x7B-
Instruct20 (Jiang et al., 2024), and Qwen-1.5-Chat-72B21 (Bai et al., 2023).

Ensemble LLMs: Top1-PPL (Mavromatis et al., 2024), which selects the 1st ranked response from
source LLMs based on the perplexity of instruction; Top1-LLM-Blender (Jiang et al., 2023), which
ranks and combines the output text from source LLMs with ranker and fuser models. Due to the fuser
model’s constraints on maximum sequence length, only the ranker model is utilized to determine
and produce the 1st-ranked response; Top1-GPT4 (Achiam et al., 2023), which leverages GPT-4
judgment as ranking criteria and yields the 1st ranked response. Since our evaluations also rely on
GPT-4, this approach represents an upper bound for comparison.

Fused LLMs: OpenChat-3.5-7B SFT, a special scenario of knowledge fusion with a single source
LLM, serves as the supervised fine-tuning baseline using our training dataset; OpenChat-3.5-7B
Multi is the knowledge fusion of multiple source chat LLMs simultaneously like FUSELLM (Wan
et al., 2024); OpenChat-3.5-7B Starling, OpenChat-3.5-7B SOLAR, OpenChat-3.5-7B InternLM,
OpenChat-3.5-7B Mixtral, and OpenChat-3.5-7B Qwen are target LLMs resulting from pairwise
knowledge fusion of the pivot LLM OpenChat-3.5-7B and the rest source LLMs.

E EVALUATION OF ADDITIONAL BENCHMARKS

The primary objective of FUSECHAT is to integrate multiple chat LLMs into a more powerful model.
Consequently, our experiments primarily focus on alignment training data, such as ShareGPT, and
chat model evaluation benchmarks like AlpacaEval 2.0 and MT-Bench. In addition to the chat
model benchmarks, we also conducted experiments on six general evaluation benchmarks, including
MMLU-Pro (Wang et al., 2024b), PIQA (Bisk et al., 2020), BoolQ (Clark et al., 2019), GPQA (Rein
et al., 2023), GSM8K (Cobbe et al., 2021), and IFEval (Zhou et al., 2023), which assess knowledge
understanding, question-answering, common-sense reasoning, and instruction-following. The results
are presented in Table 7. It is important to note that the training data for FUSECHAT-7B is primarily
focused on alignment rather than general knowledge. Therefore, performance improvements on these
general benchmarks are less significant compared to those on AlpacaEval 2.0 and MT-Bench. This

13https://platform.openai.com/docs/models/gpt-3-5-turbo
14https://www.anthropic.com/news/claude-3-family
15https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
16https://huggingface.co/openchat/openchat_3.5
17https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha
18https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B
19https://huggingface.co/internlm/internlm2-chat-20b
20https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
21https://huggingface.co/Qwen/Qwen1.5-72B-Chat
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observation is consistent with recent studies on alignment (Meng et al., 2024; Wu et al., 2024), which
highlight the critical role of alignment dataset construction in determining downstream performance.

Model MMLU-Pro PIQA BoolQ GPQA GSM8K IFEval Average
OpenChat-3.5-7B 31.63 82.86 73.91 31.30 76.88 35.73 55.38
OpenChat-3.5-7B SFT 31.32 82.75 73.91 30.30 76.04 35.34 54.94
OpenChat-3.5-7B Multi 31.39 82.43 73.73 32.30 74.75 36.25 55.14

FUSECHAT-7B 31.65(+0.06%) 82.97(+0.13%) 75.50(+2.15%) 37.40(+19.49%) 77.10(+0.29%) 37.49(+4.93%) 57.02(+2.96%)

Table 7: Comparison results on general evaluation benchmarks.

F STATISTICAL SIGNIFICANCE OF PERFORMANCE IMPROVEMENTS

We conduct detailed statistical analyses using t-tests to evaluate the performance of our proposed
FUSECHAT-7B model on MT-Bench compared to two key baselines: Pairwise Fusion and OpenChat-
3.5-7B Multi, which fuses multiple source LLMs simultaneously.

Model Comparison t-statistic p-value
FUSECHAT-7B vs. Pairwise Fusion 2.95874 0.00318
FUSECHAT-7B vs. OpenChat-3.5-7B Multi 3.32756 0.00108

Table 8: T-test results comparing FUSECHAT-7B with
Pairwise Fusion and OpenChat-3.5-7B Multi on MT-
Bench, highlighting the statistical significance of perfor-
mance improvements across the models.

The results, summarized in Table 8, highlight the
strong statistical significance of the performance
improvements achieved by FUSECHAT-7B over
these baselines. Notably, the p-values are well
below the 0.05 threshold, confirming the sig-
nificance of the observed differences. These
findings provide strong evidence supporting the
superiority of FUSECHAT-7B compared to both
Pairwise Fusion and OpenChat-3.5-7B Multi.

G COMPARISON OF PAIRWISE FUSION AND SINGLE-MODEL DISTILLATION

The key distinction between pairwise fusion and single-model distillation lies in their learning
paradigms. In pairwise fusion, the model selectively acquires knowledge based on the quality of
outputs from the source LLM or pivot LLM, guided by lower cross-entropy (CE) values. This
approach ensures that the model consistently learns from the stronger performer for each sample. In
contrast, single-model distillation relies exclusively on the source LLM, implicitly assuming that the
source consistently provides superior outputs.

Model AlpacaEval 2.0 MT-Bench
OpenChat-3.5-7B Qwen (D/P) 5.98/14.98 6.79/7.23
OpenChat-3.5-7B Mixtral (D/P) 16.10/16.52 7.03/7.24
OpenChat-3.5-7B InternLM (D/P) 6.54/15.21 6.88/7.21
OpenChat-3.5-7B SOLAR (D/P) 12.21/16.51 7.09/7.17
OpenChat-3.5-7B Starling (D/P) 14.89/16.20 7.15/7.22

Table 9: Comparison of pairwise fusion (P) and single-
model distillation (D) across five source LLMs, evalu-
ated on AlpacaEval-2.0 and MT-Bench.

To rigorously assess the differences between
pairwise fusion and single-model distillation, we
conducted additional experiments. Specifically,
the pairwise fusion strategy in FUSECHAT was
replaced with direct distillation from a single
source model, omitting the merging phase. The
results, summarized in Table 9, demonstrate that
pairwise fusion consistently outperforms single-
model distillation across five source LLMs. For
clarity, the notation D/P indicates the perfor-
mance of direct distillation and pairwise fusion, respectively. The metrics reported include the
Average Score on MT-Bench and the Length-Controlled Win Rate on AlpacaEval 2.0.

Model AlpacaEval 2.0 MT-Bench
FUSECHAT-7B (D/P) 14.68/17.16 6.91/7.38

Table 10: Performance comparison of the final
FUSECHAT-7B models derived from single-model distil-
lation (D) and pairwise fusion (P) using the SCE method.

Furthermore, the SCE method was applied to
fuse the models obtained through single-model
distillation. As shown in Table 10, the results
reveal that merging the models derived from
pairwise fusion produces a superior fused model
compared to merging models from single-model
distillation. These results highlight the effective-
ness of the pairwise fusion approach, not only
in standalone performance but also in enhancing the quality of the final fused model.
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H RATIONALE BEHIND THE VALUE OF λ

In Eq. 4, λ is set to 0.9 to balance the contributions of the SFT loss and the fusion loss. This
value is carefully chosen due to the substantial difference in magnitude between these two losses.
To illustrate this, we conducted an experiment using Qwen-1.5-Chat-72B as the source LLM and
randomly selected 128 instances from the training dataset.

Loss Type Loss Value
SFT 0.5077
Fusion 1.3081

Table 11: Loss values for
SFT and fusion during train-
ing with Qwen-1.5-Chat-72B
as the source LLM.

The observed loss values are presented in Table 11. The results indicate
that the fusion loss is approximately three times larger than the SFT loss
in this setting. This disparity necessitates assigning a proportionally
smaller weight to the fusion loss to prevent it from dominating the
optimization process. Without this adjustment, an overly high fusion
loss weight could distort the training dynamics, leading to suboptimal
learning. Therefore, the 0.9/0.1 weight distribution is a carefully cal-
ibrated choice designed to ensure balanced optimization and effective
learning within the framework of Eq. 4.

I CASE STUDIES

We present case studies to demonstrate the individual strengths of target LLMs (OpenChat-3.5-7B
Starling, OpenChat-3.5-7B SOLAR, OpenChat-3.5-7B InternLM, OpenChat-3.5-7B Mixtral, and
OpenChat-3.5-7B Qwen) obtained from pairwise knowledge fusion of source LLMs, and show the
collective knowledge and strengths of FUSECHAT (FUSECHAT-7B) obtained by further merging
target LLMs. OpenChat-3.5-7B SFT is used as the baseline for comparison.
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OpenChat-3.5-7B SFT; Math; ID 113;
Turn 1 Question: In a survey conducted at a local high school, preferences for a new school color were
measured: 58% of students liked the color blue, 45% preferred green, and 22% liked both colors. If we
randomly pick a student from the school, what’s the probability that they would like neither blue nor green?
Turn 1 Answer: Let’s use the principle of inclusion-exclusion to solve this problem. The total percentage of
students who like either blue or green is the sum of the individual percentages minus the percentage who like
both:

58%(blue) + 45%(green)− 22%(both) = 75%

This means that 100% - 75% = 25% of students like neither blue nor green. So, the probability that a
randomly picked student would not like neither blue nor green is 25% . The answer is: 25
Turn 1 Judgment: The assistant’s answer contains a mathematical error in calculating the total percentage
of students who like either blue or green. The correct calculation, as shown in the reference answer, should
be:

58% + 45%− 22% = 81%

This means that 81% of students like at least one of the colors, not 75% as the assistant stated. Consequently,
the correct percentage of students who like neither color is:

100%− 81% = 19%

Therefore, the correct probability that a randomly picked student would like neither blue nor green is 19%,
not 25% as the assistant incorrectly concluded. The assistant’s mistake significantly affects the correctness
of the response. However, the assistant did correctly apply the principle of inclusion-exclusion, which
indicates an understanding of the correct approach to solving the problem. The error seems to be purely in
the arithmetic calculation. Given the importance of accuracy in mathematical problems and the impact of
this error on the final answer, the response’s helpfulness is diminished. However, the attempt to apply the
correct principle shows some level of understanding. Rating: [[3]]
Turn 2 Question: If we select a student liked green, what’s the probability that he or she would dislike both
colors?
Turn 2 Answer: Since 22% of students like both colors, this means that 78% of students do not like both
colors. Out of these, 45% prefer green. Therefore, the probability that a student who likes green would
dislike the other color is 45% × 78% = 35.7%. So, the probability that a student who likes green would
dislike the other color is 35.7% . The answer is: 35.7
Turn 2 Judgment: The assistant’s response to the second question contains a fundamental misunderstanding
of the question posed. The question asks for the probability that a student who likes green would dislike
both colors, which is a contradiction. If a student likes green, they cannot simultaneously dislike green,
making it impossible for them to dislike both green and another color (in this case, blue). The correct answer,
as provided in the reference answer, is 0%. This is because the premise of selecting a student who likes
green excludes the possibility of that student disliking both colors. The assistant’s calculation of 35.7% is
incorrect because it misinterprets the question as asking for the probability that a student who likes green
would dislike the other color (blue), which was not the question asked. Therefore, the assistant’s response is
incorrect due to a misunderstanding of the question’s premise, leading to an erroneous calculation that does
not apply to the scenario described. Rating: [[1]]

Table 12: Case studies on MT-Bench. The answers are generated by OpenChat-3.5-7B SFT.
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OpenChat-3.5-7B Starling; Math; ID 113;
Turn 1 Question: In a survey conducted at a local high school, preferences for a new school color were
measured: 58% of students liked the color blue, 45% preferred green, and 22% liked both colors. If we
randomly pick a student from the school, what’s the probability that they would like neither blue nor green?
Turn 1 Answer: We can solve this problem using the principle of inclusion-exclusion. The total number of
students who like either blue or green is the sum of those who like blue, those who like green, minus those
who like both (to avoid double-counting). So, the number of students who like either color is:

58%(blue) + 45%(green)− 22%(both) = 75%

This means that 25% of students like neither color. Therefore, the probability that a randomly picked student
likes neither color is 25% . The answer is: 25
Turn 1 Judgment: The assistant’s answer contains a mathematical error in calculating the percentage of
students who like either blue or green. The correct calculation, as shown in the reference answer, should be:

At least one of the colors = 58% + 45%− 22% = 103%− 22% = 81%

This means that 81% of students like at least one of the colors, not 75% as the assistant stated. Consequently,
the percentage of students who like neither color is not 25% but rather:

Neither color = 100%− 81% = 19%

Therefore, the correct probability that a randomly picked student likes neither color is 19%, not 25%.
The assistant’s mistake significantly affects the correctness of the response. The correct approach and
calculation were provided in the reference answer, which the assistant failed to replicate accurately. This
error directly impacts the helpfulness of the response, as it provides the user with incorrect information.
Given the importance of accuracy in mathematical problems and the potential confusion caused by incorrect
percentages, the assistant’s response is rated lower due to the critical error in calculation. Rating: [[3]]
Turn 2 Question: If we select a student liked green, what’s the probability that he or she would dislike both
colors?
Turn 2 Answer: Since the student dislikes both colors, they must dislike green. Therefore, the probability
that a student who likes green would dislike both colors is 0%.
Turn 2 Judgment: The assistant’s response to the second question is correct and aligns with the reference
answer. It correctly states that if a student likes green, the probability that they would dislike both colors
(blue and green) is 0%. This is because the premise of the question already establishes that the student likes
green, making it impossible for them to dislike both colors simultaneously. The explanation is clear, concise,
and logically sound, directly addressing the user’s question without unnecessary complexity. The assistant’s
answer to the second question does not contain any mistakes and is both correct and helpful. It provides a
straightforward explanation that directly answers the user’s query, making it easy for the user to understand
the concept being discussed. Rating: [[10]]

Table 13: Case studies on MT-Bench. The answers are generated by OpenChat-3.5-7B Starling.
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OpenChat-3.5-7B SOLAR; Math; ID 113;
Turn 1 Question: In a survey conducted at a local high school, preferences for a new school color were
measured: 58% of students liked the color blue, 45% preferred green, and 22% liked both colors. If we
randomly pick a student from the school, what’s the probability that they would like neither blue nor green?
Turn 1 Answer: We can solve this problem using the principle of inclusion-exclusion. The total number of
students who like either blue or green is the sum of those who like blue and those who like green, minus the
number who like both. That is:

Total = Blue + Green − Both

We are given that 58% of students like blue, 45% like green, and 22% like both. So, we can calculate the
percentage of students who like neither as follows:

Neither = Total − Blue − Green + Both

Substituting the given percentages:

Neither = 100%− (58% + 45%− 22%)

Simplifying:

Neither = 100%− 75%

Therefore, the probability that a randomly picked student would like neither blue nor green is 25%.
Turn 1 Judgment: The assistant’s answer contains a critical error in the calculation process. The mistake
lies in the incorrect application of the principle of inclusion-exclusion and the subsequent calculation of the
percentage of students who like neither color. The correct application of the principle of inclusion-exclusion
for calculating the percentage of students who like at least one of the colors (blue or green) is as follows:

At least one of the colors = (Blue) + (Green)− (Both)

At least one of the colors = 58% + 45%− 22% = 103%− 22% = 81%

This means 81% of students like at least one of the colors, blue or green. To find the percentage of students
who like neither color, we subtract this percentage from 100%:

Neither color = 100%− At least one of the colors

Neither color = 100%− 81% = 19%

Therefore, the correct probability that a randomly picked student would like neither blue nor green is
19%, not 25% as the assistant incorrectly calculated. The assistant’s mistake was in the formula used for
calculating the percentage of students who like neither color. The assistant incorrectly attempted to subtract
the sum of individual preferences minus the overlap from 100%, which does not align with the principle of
inclusion-exclusion correctly applied in this context. Given the significant error in the calculation that led to
an incorrect final answer, the response’s correctness is compromised. However, the assistant did correctly
identify the need to use the principle of inclusion-exclusion, which shows an understanding of the correct
approach, albeit misapplied. Rating: [[3]]
Turn 2 Question: If we select a student liked green, what’s the probability that he or she would dislike both
colors?
Turn 2 Answer: If a student is selected who likes green, the probability that he or she would dislike both
colors is 1 - the probability that they like both colors. We know that 22% of students like both colors. So, the
probability that a student who likes green dislikes both colors is:

1− 22% = 78%

Therefore, the probability that a student who likes green would dislike both colors is 78%.
Turn 2 Judgment: The assistant’s response to the second question contains a fundamental misunderstanding
of the scenario presented. According to the reference answer, if a student likes green, the probability that they
would dislike both colors is 0%. This is logically consistent because liking green precludes the possibility of
disliking both green and blue simultaneously. The assistant’s answer, suggesting a 78% probability that a
student who likes green would dislike both colors, is incorrect. The correct answer should acknowledge that
once a student is known to like green, they cannot be in the category of disliking both colors, making the
probability 0%. Rating: [[1]]

Table 14: Case studies on MT-Bench. The answers are generated by OpenChat-3.5-7B SOLAR.
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OpenChat-3.5-7B InternLM; Math; ID 113;
Turn 1 Question: In a survey conducted at a local high school, preferences for a new school color were
measured: 58% of students liked the color blue, 45% preferred green, and 22% liked both colors. If we
randomly pick a student from the school, what’s the probability that they would like neither blue nor green?
Turn 1 Answer: To find the probability that a student likes neither blue nor green, we need to subtract the
probability that they like at least one of the colors from 1. Let A be the event that a student likes blue, and B
be the event that a student likes green. We are given that P (A) = 0.58, P (B) = 0.45, and P (A∩B) = 0.22.
First, we need to find the probability that a student likes at least one of the colors. We can use the formula
for the probability of the union of two events:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

P (A ∪B) = 0.58 + 0.45− 0.22 = 0.75

Now, to find the probability that a student likes neither blue nor green, we subtract the probability that they
like at least one of the colors from 1:

P (neither) = 1− P (atleastonecolor)

P (neither) = 1− 0.75 = 0.25

So, the probability that a randomly picked student would like neither blue nor green is 0.25 or 25%.
Turn 1 Judgment: The assistant’s answer contains a mathematical error in calculating the probability that
a student likes at least one of the colors. The assistant incorrectly calculates the probability of a student
liking at least one of the colors (blue or green) as 0.75 (or 75%), which leads to an incorrect final answer for
the probability of a student liking neither color as 0.25 (or 25%). The correct calculation, as shown in the
reference answer, should be as follows:
- The probability of liking blue (P(Blue)) = 58% or 0.58
- The probability of preferring green (P(Green)) = 45% or 0.45
- The probability of liking both colors (P(Both)) = 22% or 0.22
Using the principle of inclusion-exclusion:

At least one of the colors = P (Blue) + P (Green)− P (Both) = 0.58 + 0.45− 0.22 = 0.81

This means 81% of students like at least one of the colors, and thus:

Neither color = 1− At least one of the colors = 1− 0.81 = 0.19

Therefore, the correct probability that a randomly picked student would like neither blue nor green is 0.19 or
19%, not 25% as the assistant’s answer suggests. The assistant’s mistake lies in the incorrect calculation
of the union of the two events, which led to an inaccurate conclusion. This error significantly impacts the
correctness of the response. Given the importance of accuracy in probability calculations and the impact of
this error on the final answer, the assistant’s response is rated lower for its correctness. However, the assistant
did correctly apply the principle of inclusion-exclusion and provided a clear explanation of the steps, which
is helpful for understanding the process. Rating: [[4]]
Turn 2 Question: If we select a student liked green, what’s the probability that he or she would dislike both
colors?
Turn 2 Answer: The question seems to be asking for the probability that a student who likes green would
dislike both colors, which is not possible because the student already likes green. The student cannot dislike
both colors while also liking one of them.
Turn 2 Judgment: The assistant’s response to the second question is correct and aligns with the reference
answer. It correctly identifies the logical inconsistency in the question: if a student likes green, they cannot
simultaneously dislike both green and another color. The assistant succinctly explains why the probability
that a student who likes green would dislike both colors is 0%, which is the same conclusion reached in
the reference answer. This explanation is clear, logically sound, and directly addresses the user’s question,
demonstrating an understanding of basic probability principles and the specific scenario presented. Rating:
[[10]]

Table 15: Case studies on MT-Bench. The answers are generated by OpenChat-3.5-7B InternLM.
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OpenChat-3.5-7B Mixtral; Math; ID 113;
Turn 1 Question: In a survey conducted at a local high school, preferences for a new school color were
measured: 58% of students liked the color blue, 45% preferred green, and 22% liked both colors. If we
randomly pick a student from the school, what’s the probability that they would like neither blue nor green?
Turn 1 Answer: The probability that a student likes blue is 58%, and the probability that they like green
is 45%. Since 22% of students like both colors, we can subtract this from the total percentage to find the
percentage of students who like either blue or green but not both.

58% + 45%− 22% = 71%

So, 71% of students like either blue or green, which means 100% - 71% = 29% of students like neither color.
Therefore, the probability that a randomly picked student would like neither blue nor green is 29% . The
answer is: 29
Turn 1 Judgment: The assistant’s answer contains a critical mathematical error in calculating the probability
of students liking neither blue nor green. The correct approach, as outlined in the reference answer, involves
using the principle of inclusion-exclusion to accurately account for the overlap between students who like
both colors. Correct Calculation:
- The correct calculation to find the percentage of students who like at least one of the colors (blue or green)
is to add the percentages of students who like each color and then subtract the percentage of students who
like both (to correct for double counting), which is 58% + 45%− 22% = 81%.
- Therefore, to find the percentage of students who like neither color, we subtract the percentage of students
who like at least one of the colors from 100%, resulting in 100%− 81% = 19%.
The assistant incorrectly calculated the percentage of students who like either blue or green but not both
as 71%, leading to the incorrect conclusion that 29% of students like neither color. The correct probability
that a randomly picked student would like neither blue nor green is 19%, not 29%. Given the significant
mathematical error and the resulting incorrect conclusion, the assistant’s answer is not helpful for someone
trying to understand how to correctly apply the principle of inclusion-exclusion in probability. Rating: [[2]]
Turn 2 Question: If we select a student liked green, what’s the probability that he or she would dislike both
colors?
Turn 2 Answer: If a student is selected who likes green, the probability that they dislike both colors is equal
to the percentage of students who like both colors. In this case, 22% of students like both colors, so the
probability that a student who likes green would dislike both colors is 22% .The answer is: 22
Turn 2 Judgment: The assistant’s response to the second question contains a significant error. The correct
answer, as outlined in the reference answer, is that the probability of a student who likes green disliking
both colors is 0%. This is because the premise of the question already establishes that the student likes
green, making it impossible for them to dislike both green and blue simultaneously. The assistant’s answer
incorrectly states that the probability is 22%, which seems to be a misunderstanding of the question’s premise.
The correct approach should have recognized the logical contradiction in the question: a student who likes
green cannot at the same time dislike both green and another color. Therefore, the probability of a student
who likes green also disliking both colors is 0%. Given this significant mistake and misunderstanding of the
question’s premise, the response is incorrect and misleading. Rating: [[1]]

Table 16: Case studies on MT-Bench. The answers are generated by OpenChat-3.5-7B Mixtral.
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OpenChat-3.5-7B Qwen; Math; ID 113;
Turn 1 Question: In a survey conducted at a local high school, preferences for a new school color were
measured: 58% of students liked the color blue, 45% preferred green, and 22% liked both colors. If we
randomly pick a student from the school, what’s the probability that they would like neither blue nor green?
Turn 1 Answer: To find the probability that a student likes neither blue nor green, we can use the formula
for the probability of the union of two events:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

In this case, A represents the event that a student likes blue, and B represents the event that a student likes
green. We are given that P (A) = 0.58, P (B) = 0.45, and P (A ∩ B) = 0.22. First, we need to find the
probability of the event that a student likes either blue or green, which is represented by P (A ∪B):

P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.58 + 0.45− 0.22 = 0.75

Now, we need to find the probability of the event that a student likes neither blue nor green, which is
represented by P (A′ ∩B′):

P (A′ ∩B′) = 1− P (A ∪B) = 1− 0.75 = 0.25

Therefore, the probability that a randomly picked student would like neither blue nor green is 0.25 or 25%.
Turn 1 Judgment: The assistant’s answer contains a mathematical error in calculating the probability of a
student liking either blue or green. The assistant incorrectly calculates the sum of the probabilities as 0.75
(or 75%) instead of correctly calculating it as 81%, as shown in the reference answer. This error leads to
an incorrect final answer for the probability of a student liking neither blue nor green. Correct Calculation
based on the reference answer:
- The correct calculation for the probability of a student liking at least one of the colors (blue or green) is
58% + 45% - 22% = 81%.
- Therefore, the correct probability of a student liking neither color is 100% - 81% = 19%.
The assistant’s answer incorrectly concludes that the probability is 25%, whereas the correct probability, as per
the reference answer and the correct calculation, is 19%. Despite the assistant’s method being fundamentally
sound and the explanation clear, the mathematical mistake significantly impacts the correctness of the
final answer. The assistant’s approach correctly applies the principle of inclusion-exclusion but fails in the
execution of basic arithmetic. Given the importance of accuracy in mathematical problems and the impact of
this error on the final answer, the assistant’s response must be rated lower. However, the explanation and
approach were correctly aligned with the principle of inclusion-exclusion, which is a positive aspect of the
response. Rating: [[4]]
Turn 2 Question: If we select a student liked green, what’s the probability that he or she would dislike both
colors?
Turn 2 Answer: If a student is selected who likes green, we want to find the probability that they dislike
both colors. Since the student likes green, they cannot dislike both colors. Therefore, the probability that a
student who likes green would dislike both colors is 0.
Turn 2 Judgment: The assistant’s response to the second question is correct and aligns with the reference
answer. It accurately explains that if a student is already known to like green, it is impossible for them to
dislike both green and blue simultaneously. Therefore, the probability that a student who likes green would
dislike both colors is indeed 0%. This explanation is clear, concise, and directly addresses the user’s question
without unnecessary complexity. The assistant’s answer is helpful in clarifying the logical impossibility
of the scenario proposed by the user, thus preventing any confusion about the nature of probability in this
context. Rating: [[10]]

Table 17: Case studies on MT-Bench. The answers are generated by OpenChat-3.5-7B Qwen.
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FUSECHAT-7B; Math; ID 113;
Turn 1 Question: In a survey conducted at a local high school, preferences for a new school color were
measured: 58% of students liked the color blue, 45% preferred green, and 22% liked both colors. If we
randomly pick a student from the school, what’s the probability that they would like neither blue nor green?
Turn 1 Answer: To find the probability that a student likes neither blue nor green, we can use the formula:

P (neither) = 1− P (blue)− P (green) + P (both)

where P(blue) is the probability that a student likes blue, P(green) is the probability that a student likes
green, and P(both) is the probability that a student likes both colors. We are given that P (blue) = 58%,
P (green) = 45%, and P (both) = 22%. Plugging these values into the formula, we get:

P (neither) = 1− 0.58− 0.45 + 0.22

P (neither) = 1− 0.85 + 0.22

P (neither) = 0.15

So, the probability that a randomly picked student would like neither blue nor green is 15%.
Turn 1 Judgment: The assistant’s answer uses the principle of inclusion-exclusion correctly but makes a
calculation error in the final step. According to the assistant’s formula:

P (neither) = 1− P (blue)− P (green) + P (both)

The values given are: - P (blue) = 58% = 0.58 - P (green) = 45% = 0.45 - P (both) = 22% = 0.22
Plugging these into the formula, the assistant calculates:

P (neither) = 1− 0.58− 0.45 + 0.22

However, the assistant incorrectly calculates the final result as 0.15 (or 15%). The correct calculation should
be:

P (neither) = 1− 0.58− 0.45 + 0.22 = 1− 1.03 + 0.22 = 1− 0.81 = 0.19

Therefore, the correct probability that a randomly picked student would like neither blue nor green is 19%,
not 15%. The reference answer correctly calculates this probability as 19% using the principle of inclusion-
exclusion and correctly accounts for the overlap between students who like both colors. The assistant’s
approach is fundamentally correct but falters at the arithmetic stage, leading to an incorrect final answer.
Given the mistake in calculation, the assistant’s answer is not entirely correct, but since the method used was
appropriate, it shows a good understanding of the principle involved. Therefore, the assistant’s response,
while flawed in execution, is still somewhat helpful for understanding how to approach the problem. Rating:
[[6]]
Turn 2 Question: If we select a student liked green, what’s the probability that he or she would dislike both
colors?
Turn 2 Answer: If a student is selected who likes green, we want to find the probability that they dislike
both colors. Since the student likes green, they cannot dislike both colors. Therefore, the probability that a
student who likes green would dislike both colors is 0%.
Turn 2 Judgment: The assistant’s answer to the second question is correct and aligns with the reference
answer. It accurately explains that if a student likes green, the probability of them disliking both colors
(blue and green) is 0%. This is because the premise of the question already establishes that the student likes
green, making it impossible for them to dislike both colors simultaneously. The explanation is clear, concise,
and logically sound, effectively addressing the user’s query without any errors or unnecessary complexity.
Rating: [[10]]

Table 18: Case studies on MT-Bench. The answers are generated by FUSECHAT-7B.
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