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Abstract

Mobile health leverages personalized and contextually tailored interventions opti-
mized through bandit and reinforcement learning algorithms. In practice, however,
challenges such as participant heterogeneity, nonstationarity, and nonlinear relation-
ships hinder algorithm performance. We propose RoME, a Robust Mixed-Effects
contextual bandit algorithm that simultaneously addresses these challenges via
(1) modeling the differential reward with user- and time-specific random effects,
(2) network cohesion penalties, and (3) debiased machine learning for flexible
estimation of baseline rewards. We establish a high-probability regret bound that
depends solely on the dimension of the differential-reward model, enabling us to
achieve robust regret bounds even when the baseline reward is highly complex. We
demonstrate the superior performance of the RoME algorithm in a simulation and
two off-policy evaluation studies.

1 Introduction

Mobile health (mHealth) uses smart devices to deliver digital notification interventions to users. These
notifications nudge users toward healthier attitudes and behaviors. Because mHealth applications can
monitor and react to users and their environment, they offer the promise of personalized, contextually
tailored interventions. In practice, achieving this promise requires bandit or reinforcement learning
(RL) algorithms that can accurately learn mHealth intervention effects, including how they vary by
user, over time, and based on context. In this regard, contextual bandit algorithms are appealing due
to strong empirical performance in other settings, their ability to customize intervention decisions
based on changing contexts, and their simplicity and extensibility relative to full RL algorithms.

One unique aspect of mHealth (Greenewald et al., 2017) is the presence of a “do-nothing” action in
which the mHealth app does not intervene. As mHealth rewards typically involve human decision
making (e.g., whether the user chooses to exercise), the distribution of the the corresponding baseline
reward—the reward under the do-nothing action—typically evolves in a complex, nonstationary
fashion as time progresses and contexts change. In contrast, the treatment effects—the difference
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in the expected value of the reward relative to the do-nothing action—tend to be much more stable
and can be adequately modeled using classical stationary models, such as linear models (Robinson,
1988).

Greenewald et al. (2017) introduced an action-centered contextual bandit algorithm with sublinear
regret in this setting by replacing the observed reward, Rt, with a “pseudo-reward,” R̃t, where t
indexes the time points. Denoting the binary action as At ∈ {0, 1} with At = 0 corresponding to the
do-nothing action, the pseudo-reward for At can be written as

R̃t := (At − πt)Rt = πt(1− πt)Rt

(
At

πt
− 1−At

1− πt

)
, (1)

where πt is the (known) probability of treatment assignment from the Thompson-sampling algorithm.
We took an additional step to derive an equivalent expression (second equality), which reveals that
R̃t is proportional to an inverse-probability-weighted (IPW) estimator. Crucially, R̃t provides an
unbiased estimate of the treatment effect regardless of the nonstationarity of the baseline outcome.

Although Greenewald et al. (2017)’s analysis shows sublinear regret in nonstationary settings, our
simulations show that other methods can achieve lower regret over finite time horizons. The reasons
include its failure to address treatment effect heterogeneity, pool information across users, and model
the baseline outcome, which leads to highly variable pseudo-rewards and slow learning. We propose
to generalize their method to overcome these limitations by

1. imposing hierarchical structure in the treatment effect model with shared fixed effects and
random effects for users and time (i.e., a mixed-effects model),

2. efficiently pooling across users and time via nearest-neighbor regularization (NNR), and
3. denoising rewards with flexible supervised learning models via the debiased machine

learning (DML) framework of Chernozhukov et al. (2018).

We name the resulting method RoME to highlight that it is a Robust Mixed-Effects algorithm. The
primary contributions are (a) the RoME method, (b) a high-probability regret bound that relies
solely on the dimension of the differential-reward model, which is typically much smaller than that
of the complex baseline reward model, and (c) empirical comparisons demonstrating the superior
performance of RoME in simulation and two real-world mHealth studies.

2 Related Work

Related work in statistics considers the estimation of treatment effects with longitudinal data. Cho
et al. (2017) present a semiparametric random-effects method for estimating subject-specific static
treatment effects. Qian et al. (2020) discusses the statistical challenges of applying linear mixed-
effects models to mHealth data and shows that the resulting estimates may lack a causal interpretation.

In the bandit literature, several works address a growing pool of users. Ma et al. (2011) introduced
NNR in recommender systems using homophily principles—similar nodes are more likely to be
connected than dissimilar ones (McPherson et al., 2001). Cesa-Bianchi et al. (2013) adapted NNR
for bandit settings, improving regret. Subsequent improvements focused on scalability and algorithm
modifications for stronger regret bounds (Vaswani et al., 2017; Yang et al., 2020).

Other bandit approaches explicitly address the longitudinal setting in which treatment effects may
evolve over time. The intelligentpooling method of Tomkins et al. (2021) employs a Gaussian linear
mixed-effects model with both user- and time-specific random effects. Hu et al. (2021) provides
a related approach based on generalized linear mixed effects models. Unlike our approach, both
methods require the (generalized) linear conditional mean model to be correctly specified.

Aouali et al. (2023) and Lee et al. (2024) also propose bandit algorithms with mixed effects; method-
ologically, however, their use of mixed effects is dissimilar from that of the works above and our
own. Aouali et al. (2023) employs random effects to relate treatments within categories (e.g., movies
within a genre), and Lee et al. (2024) considers the case in which a single, discrete action leads to a
multivariate reward that is affected by a user-specific random effect. In contrast, the other approaches
listed above (and our own) do not assume any relationships among the actions, and they associate
each discrete action with a single scalar-valued reward in an iterative fashion.
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Other work develops semiparametric methods that lead to sublinear regret without requiring correct
specification of the conditional mean reward. Krishnamurthy et al. (2018) and Kim & Paik (2019)
propose improvements to the approach of Greenewald et al. (2017) that lead to stronger regret bounds.
Kim et al. (2021, 2023) develop a doubly robust approach for both linear and generalized linear
contextual bandits. However, in contrast to Tomkins et al. (2021), Hu et al. (2021), and our approach,
these semiparametric methods are not immediately applicable to longitudinal settings.

3 Setting

3.1 Problem Statement

Recognizing the connection between mHealth policy learning and contextual bandit methods, we
now consider a contextual multi-armed bandit environment with one control arm (the do-nothing
action) denoted by a = 0 and q non-baseline arms corresponding to different actions or treatments.
Individuals are indexed by i = 1, 2, . . . and decision points are indexed by t = 1, 2, . . .. For
each individual i at time t, the algorithm observes a context vector Si,t ∈ S, chooses an action
Ai,t ∈ [q] := {0, . . . , q}, and receives a reward Ri,t ∈ R. The differential reward describes the
difference in expected rewards between choosing a non-baseline arm and the control arm, defined as
∆i,t(s, a) := E [Ri,t|Si,t = s,Ai,t = a]− E [Ri,t|Si,t = s,Ai,t = 0].

We denote the observation history up to time t for individual i as Hi,t := (Si1, Ai1, Ri1, . . . , Sit).
Actions are selected according to stochastic policies, πi,t : Hi,t × S → P([q]). We use πi,t(a|s) to
denote the probability of action a ∈ [q] given current context s ∈ S for a fixed (implicit) history. As
in Greenewald et al. (2017), we assume that the probability of the control action is bounded:
Assumption 1. There exists 0 < πmin, πmax < 1 s.t πmin < πi,t(0|a), 1− πi,t(0|a) < πmax∀i, t, a.

As noted in Greenewald et al. (2017), this assignment probability controls the number of messages
that participants receive. It ensures that participants receive sufficient messages that they do not
disengage, but not so many that they are overwhelmed or fatigued. We now define

A∗ = argmax
a∈[q]

E [Ri,t|Si,t, Ai,t = a] , Ā∗ = argmax
a∈[q]\{0}

E [Ri,t|Si,t, Ai,t = a] ,

the optimal treatment arm (including control) and the alternative arm, respectively. Respecting the
restrictions in Assumption 1, we can now express the optimal policy, π∗

i,t, in two cases:

1. A∗ = 0: π∗
i,t(0|Si,t) = πmax and π∗

i,t(Ā
∗|Si,t) = 1− πmax.

2. A∗ > 0: π∗
i,t(A

∗|Si,t) = 1− πmin and π∗
i,t(0|Si,t) = πmin.

These cases represent the appropriate boundary condition given the optimal action; we maximize
the probability of the do-nothing action if A⋆ = 0 and minimize it if A⋆ ̸= 0, selecting the next-best
action with the highest possible probability. In Section 5.2, we define regret relative to this optimal
policy, π∗

i,t.

Lastly, we consider a study design that progresses in stages, where individuals enter the study
sequentially (Friedman et al., 2010), as illustrated in Figure 1. Staged recruitment serves two
purposes in our analysis: it increases the fidelity of the theoretical setting by mimicking real-world
recruitment strategies, and it allows us to estimate changes in the differential reward over time.
Concretely, we first observe individual i = 1 at time t = 1. Then we observe individuals i = (1, 2)
at times t = (2, 1). Subsequent stages k involve individuals i ≤ k, each having had k − i + 1
observations, respectively. DefineOk = {(i, t) : i ≤ k& t ≤ k+1− i} as the set of all observations
in stage k. A notation summary is presented in Appendix F.

3.2 Doubly Robust Differential Reward

Following Greenewald et al. (2017), we assume that the differential reward is linear:

∆i,t(s, a) = x(s, a)⊤θi,t, (2)

where x(s, a) ∈ Rp×1 is a feature vector depending on the context and action. We allow the baseline
reward, gt(s), to be a nonlinear and nonstationary function of context and time. Combined, these two
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Figure 1: Illustration of the staged recruitment scheme. At each recruitment stage (each time point),
a new participant is recruited and observed. At the same time, all participants who were recruited
prior to the current stage are also observed again. Observations are not collected from participants
who have yet to be recruited. For simplicity, we assume one participant is recruited at each stage.

assumptions imply a partially linear model for the conditional mean reward:

E [Ri,t|Si,t = s,Ai,t = a] = x(s, a)⊤θi,tδa>0 + gt(s), (3)
where δa>0 is an indicator of a non-baseline action. By incorporating both the linear predictor
x(s, a)⊤θi,tδa>0 and the nonlinear baseline gt(s), we can maintain interpretability of the action
effects while also allowing flexibility in specifying the observed rewards. The individual rewards are
then realized according to the model

Ri,t = x(s, a)⊤θi,tδa>0 + gt(s) + ϵi,t,

where we make the following standard assumption (Abeille & Lazaric, 2017) regarding ϵi,t :
Assumption 2. ϵi,t is conditionally mean zero (i.e., E[ϵi,t|Hi,t] = 0) and sub-Gaussian with variance
σ2: E[exp(ηϵi,t)|Hi,t] ≤ exp(η2σ2/2) for η > 0.

Assumption 2 ensures that large errors are sufficiently rare and that R̃t is proportional to an unbi-
ased estimate of ∆i,t(s, a). However, R̃t suffers from high variance, which leads to suboptimal
performance in practice. Our proposed algorithm RoME, however, relies on an improved estimator,
R̃f

i,t(s, ā), that is also unbiased but achieves lower variance by denoising the rewards according to a
working model, fi,t(s, a), for the conditional mean ri,t(s, a) := E [Ri,t|Si,t = s,Ai,t = a]:

R̃f
i,t(s, ā) := fi,t(s, ā)− fi,t(s, 0)︸ ︷︷ ︸

Model prediction

+
{Ri,t − fi,t(s,Ai,t)}
δAi,t=ā − πi,t(0|s)︸ ︷︷ ︸

Debiasing term

, (4)

where ā is a preselected non-baseline arm; i.e., we condition on Ai,t ∈ {0, ā}. The first component is
a model-based prediction of the differential reward, and the second component is a debiasing term
that uses IPW to correct for potential errors in the specification of f . This improved estimator is a
form of pseudo-outcome, a common technique in the causal inference literature (Bang & Robins,
2005; Kennedy, 2023; Nie & Wager, 2021). We refer to it as a Doubly Robust Differential Reward
because it produces an unbiased estimate of ∆i,t(s, a) as long as either πi,t or fi,t is correctly
specified (see proof in Appendix E.1); though, in practice, the benefit stems from (a) the robustness to
misspecification of f (because πi,t is known) and (b) the variance reduction introduced by denoising
the outcomes. Lemma 5 and Remark 2 in Appendix E.2 provide a proof and discussion of the variance
reduction. In the following, we abbreviate R̃f

i,t(s, a) as R̃f
i,t, with the context and action implied.

4 Algorithm Components

We now construct R̃f
i,t, introduce the weighted least-squares loss function used by RoME to estimate

parameters, and use nearest-neighbor regularization to pool information across users.
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4.1 Debiased Machine Learning

To construct R̃f
i,t, we fit a working model fi,t for the conditional mean reward via the DML framework,

which requires three main conditions: (a) Neyman orthogonality, which makes the pseudo-outcome
R̃f

i,t robust to misspecification of fi,t, (b) sufficiently fast convergence of the working conditional
mean model fi,t, and (c) independence of fi,t and the observed results. (a) is ensured by the structure
of the doubly robust differential reward. (b) requires us to introduce the following assumption, which
states that the mean squared error (MSE) of the working conditional mean is asymptotically smaller
than the inverse square root of the number of stages:
Assumption 3. The working model, fi,t, satisfies Ep(s,ā)

[
{ri,t(s, ā)− fi,t(s, ā)}2

]
=

oP (k
−1/2) and Ep(s)

[
{ri,t(s, 0)− fi,t(s, 0)}2

]
= oP (k

−1/2). Further, |fi,t| ≤ 2M .

Examples of supervised learning methods that converge at this rate (or faster) include parametric
models of fixed dimension, local mean smoothers with small dimension (Wasserman, 2006, Chapter
5), and random forests and feedforward neural networks under certain regularity conditions (Biau,
2012; Farrell et al., 2021). Assumption 3 guarantees that RoME achieves better asymptotic variance
than action-centered (AC) bandits Greenewald et al. (2017), resulting in the tighter regret bound in
Section 5.2. Because our differential reward in (4) is robust to misspecification of fi,t, our regret
bound can be adapted to settings in which Assumption 3 does not hold, provided fi,t converges to a
bounded function at the rate specified in Assumption 3; this setting would result in a weaker bound
of the same asymptotic order. The final requirement of independence, (c), can be accomplished via
sample-splitting techniques. Below, we present two such options.

Option 1: The first option exploits the fact that outcomes across different users are independent.
Consequently, we can perform sample splitting as follows. Step 1: Randomly assign each user i to
one of J folds. Let Ij denote the set containing user indexes for the j-th fold and let I∁j denote its
complement. Step 2: For each fold, use a supervised learning algorithm to estimate the working
model for ri,t(s, a) denoted f̂

(j)
i,t (s, a) using I∁j . Step 3: Construct the pseudo-outcomes using (4).

Option 2: Because we do not expect an adversarial environment in mHealth, we may be willing to
assume that the errors, ϵi,t, are independent across time. In this case, we can adapt the procedure
given above by randomly assigning data to folds at the level of (i, t). In this case, Ij , contains the
(i, t) pairs assigned to fold j. This option is more powerful than option 1 in that it enables us to learn
heterogeneity across users in the nuisance function, fi,t, leading to greater variance reduction.

Lastly, we note two strategies that can reduce the computational demands of sample splitting. The
first is to employ estimators that satisfy a leave-one-out stability condition, such as bagged estimators
that use subsampling (Chen et al., 2022); these estimators eliminate the need to perform sample
splitting. The second is to fit fi,t in an online fashion.

4.2 Estimation via Weighted Least Squares

Having formed R̃f
i,t(s, ā), we now explain how to estimate the parameters, θi,t ∈ Rp, determining

the differential reward, ∆i,t(s, a). We assume that θi,t consists of three components:

Assumption 4. θi,t = θshared + θuser
i + θtime

t for all i, t.

The parameter θshared is a fixed effect shared across all i, t. In contrast, θuser
i and θtime

t are random
effects specific to a given user and time point, respectively. We place these parameters in a single
column vector, θ, as vec(θshared, θuser

1 , . . . , θuser
K , θtime

1 , . . . , θtime
K ), where K is the total number of

stages. We then form a corresponding feature vector, ϕi,t = ϕ(xi,t), where ϕ inserts xi,t into
the positions corresponding to θshared, θuser

i , and θtime
t with zeros in all other locations; i.e., letting

p := dim(xi,t), the feature vector ϕ(xi,t) ∈ R(2K+1)p is defined as follows:

ϕ(xi,t) = [x⊤
i,t, 0

⊤
(i−1)p, x

⊤
i,t, 0

⊤
(K−i+t−1)p, x

⊤
i,t, 0

⊤
(K−t)p]

⊤. (5)

We could then estimate θi,t via a weighted least squares (WLS) regression that minimizes the
following objective function:

ℓWLS(θ) =

n∑
i=1

K−i+1∑
t=1

σ̃2
i,t

(
R̃f

i,t − ϕ⊤
i,tθ
)2
, (6)
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where σ̃2
i,t = πi,t(0|Si,t) · (1 − πi,t(0|Si,t)). However, ℓWLS(θ) is over-parameterized and does

not take advantage of available network information. The next section modifies ℓWLS(θ) by adding
regularization, producing the final loss function used in RoME.

4.3 Nearest-Neighbor Regularization

We assume access to network information relating neighboring users and time points. These networks
are defined by graphs Guser = (Vuser, Euser) and Gtime = (Vtime, Etime), where V denotes vertices
and E, edges. In practice, these networks can be formed via known clusters (e.g., shared schools,
companies, geographic locations) or similar covariates. In the case of Gtime, a reasonable choice is
to construct a graph of neighboring sequential time points; i.e., t = 1 ↔ t = 2 ↔ t = 3 . . . . We
assume the following bounds on the random effects:

Assumption 5. There exists Duser, Dtime, Buser, Btime, Bshared ∈ R+ such that ∥θuser
i −θuser

j ∥22 ≤ Duser,
∥θtime

i − θtime
j ∥22 ≤ Dtime, ∥θuser

i ∥ ≤ Buser, and ∥θtime
i ∥ ≤ Btime and ∥θshared∥ ≤ Bshared for all i, j.

The assumption 5 suggests that we may be able to improve our estimates of θ by regularizing
neighboring values of θuser

i and θtime
i toward each other. This can be accomplished by using an L2

Laplacian penalty. We illustrate the idea using Guser; the application to Gtime is similar.

First, we form the incidence matrix, Q ∈ RK×K , with the entry Qv,e corresponding to the v-th vertex
(user) and the e-th edge. Denote the vertices of e as vi and vj with i > j. Qv,e is then equal to 1 if
v = vi, -1 if v = vj , and 0 otherwise. The Laplacian matrix is then defined as L = QQ⊤. Similar
to Yang et al. (2020), we can then form a network cohesion penalty across users as follows:

tr(Θ⊤
userLuserΘuser) =

∑
(i,j)∈Euser

∥θuser
i − θuser

j ∥22,

where Θuser := (θuser
1 , . . . , θuser

K )⊤ ∈ RK×p and Luser is the Laplacian matrix for users. The penalty
is small when θuser

i and θuser
j are close for connected users. We employ a shared regularization

hyperparameter λ, for Guser and Gtime, and include a standard L2 penalty on θ with hyperparameter
γ. The full penalization matrix V0 ∈ R(2K+1)p×(2K+1)p is

V0 = diag(γIp, λL
user
⊗ + γIKp, λL

time
⊗ + γIKp), (7)

where Luser
⊗ := Luser ⊗ Ip , the Kronecker product of Luser with Ip. We then adapt ℓWLS(θ) to include

a corresponding penalty term:

ℓ(θ) =

n∑
i=1

K−i+1∑
t=1

σ̃2
i,t

(
R̃f

i,t − ϕ⊤
i,tθ
)2

+ θ⊤V0θ. (8)

In Section 5, we show that (8) leads to a Thompson sampling algorithm for action selection.

5 Thompson Sampling Algorithm

We now describe the Thompson sampling procedure and provide a high-probability regret bound.

5.1 Algorithm Description

The minimizer of the weighted regularized least squares loss in (8) can be expressed as θ̂ = V −1b,
where

V = V0 +

n∑
i=1

K−i+1∑
t=1

σ̃2
i,tϕi,tϕ

⊤
i,t, b =

n∑
i=1

K−i+1∑
t=1

R̃f
i,tσ̃

2
i,tϕi,t.

In analogy to Bayesian linear regression, the penalized and weighted Gram matrix, V , plays the role
of a (scaled) posterior precision matrix under a multivariate Gaussian prior for θ. This motivates
an algorithm in which we randomly perturb the point estimate, θ̂, scaling by an inverse square-root
matrix, V −1/2, times a mean-zero random deviate, η. The perturbed estimate, θ̃, can be written as
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θ̃ = θ̂ + β(δ)V −1/2η, where letting W > 0 be the max number of neighbors a time point or user
has, β(δ) is defined as

β(δ) = v

[
2 log

(
det(V )1/2

det(V0)1/2δ/2

)]1/2
+B, (9)

B =
√
γBshared +

√
λWK(

√
Duser +

√
Dtime) +

√
γWK(Buser +Btime). (10)

The value v is defined in Corollary 4 and can be set to a sufficiently large constant. The hyperparameter
δ determines the probability with which the regret bound holds. The random deviate, η, is drawn
from a distribution, DTS , satisfying the technical conditions given in Definition 1 in Appendix D.
In practice, we recommend setting DTS to a multivariate Gaussian distribution or t-distribution to
simplify calculations. Given θ̃, we then compute Āi,t = argmaxa∈[q]\{0} ϕ

⊤
i,tθ̃ and randomly select

Ai,t = 0 with probability

πi,t(0|Āi,t) := max
[
πmin,min

{
πmax,Pr(ϕ

⊤
i,tθ̃ > 0)

}]
, (11)

or Ai,t = Āi,t with probability 1− πi,t(0|Āi,t). The action selection is summarized in Algorithm 1.

Algorithm 1 Action selection
input V , b, πmin, πmax, ϕi,t, β(δ)
θ̂ = V −1b
Sample η ∼ DTS

θ̃ = θ̂ + β(δ)V −1/2η, with β(δ) given in (9)
Āi,t = argmaxa∈[q]\{0} ϕ

⊤
i,tθ̃

Calculate πi,t(0|Āi,t) according to (11)
With probability πi,t(0|Āi,t), play action 0; otherwise, play action Āi,t

Having detailed the action selection algorithm, we now summarize RoME in Algorithm 2. The
algorithm includes an outer loop that iterates through the stages from k = 1 to k = K. Within each
stage, we handle users sequentially, iteratively selecting actions according to Algorithm 1, observing
rewards, and updating V and b accordingly.

Algorithm 2 RoME
Initialize V0 according to (7)
V ← V0

b← 0
for k = 1, . . . ,K do

for (i, t) = (1, k), (2, k − 1), . . . , (k, 1) do
Choose an arm according to Algorithm 1 using V and b
Observe rewards, Ri,t

Construct pseudo-rewards, R̃f(m)

i,t , as explained in Section 4.1
Set ϕ = ϕ(xi,t) as described in (5)
Update weighted Gram matrix: V ← V + σ̃2

i,tϕi,tϕ
⊤
i,t

Update feature-outcome products: b← b+ σ̃2
i,tR̃

f
i,tϕi,t

end for
end for

5.2 Regret bound

We first define regret, RegretK , in terms of the following average across stages:

K∑
k=1

1

k

∑
(i,t)∈Ok\Ok−1

{
π⋆
i,t(Ā

∗
i,t|Si,t) · x(Si,t, Ā

∗
i,t)

⊤θ∗i,t − πi,t(Āi,t|Si,t) · x(Si,t, Āi,t)
⊤θ∗i,t

}
.
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The inner sum calculates regret (the difference between the expected reward of the optimal action and
the chosen action) weighted by the probability of the action, following Greenewald et al. (2017), for
all individuals at stage k. We then average these values to account for the growing number of pairs
(i, t) as the stages progress. The cumulative regret is the sum of these averaged values over all stages.

The rewards associated with the baseline action are excluded since ∆i,t(Si,t, 0) = 0. RegretK is a
form of pseudo-regret because the randomness attributed to {ϵi,t}Kt=1 has been eliminated (Audibert
et al., 2003). Before presenting the regret bound, we introduce one more assumption:

Assumption 6. ∥x(s, a)∥ ≤ 1 for all s and a. Also, there exists a known value M ∈ R+ bounding
both ∥θi,t∥ and |gt(s)| for all i, t, and s. Further, |fi,t| ≤ 2M .

Theorem 1. Under Assumptions 1–6, with probability at least 1− δ, RegretK satisfies

O

([
βK(δ′) + γK(δ′)

{
1 +

4

p

}]
· log(K)

√
cKp

)
where δ′ = δ/4K and min{π(0|s), 1 − π(0|s)} > 1/c. The exact regret bound is given and both
βK and γK are defined in Appendix E.

Theorem 1’s proof is in Appendix E. It resembles Abeille & Lazaric (2017), albeit with adjustments to
address (a) the nonlinear baseline and (b) the increasing pool of users and time points. The nonlinear
baseline requires deriving the new sub-Gaussian variance factor for the centered pseudo-reward and
adapting classic contextual bandit theory (Abbasi-Yadkori et al., 2011) to our weighted least squares
setting. The increasing pool of users and time points requires modifying the Abeille & Lazaric (2017)
proof with a careful use of stages and the Cauchy–Schwarz inequality to decouple the weighted
feature norms from inverse stage scaling, which allows us to apply standard techniques to the sum of
norms and bound the sum of inverse stages by the harmonic number.

DML is particularly advantageous for βK(δ′) and γK(δ′), which rely on the convergence rate of
the model f towards the true mean differential reward r, as discussed further in Appendix E.2.
Another interesting aspect of the regret bound is its dependence solely on the dimension, p, of the
differential-reward model, rather than the dimension of the baseline reward. This characteristic allows
us to achieve strong regret bounds even in cases where the baseline reward is highly complex.

6 Experiments

This section presents results from applying RoME in a simulated mHealth study with staggered
recruitment and an off-policy comparison study for cardiac rehabilitation mHealth interventions. The
simulations were implemented using Python and the results were generated using individual compute
nodes with two 3.0 GHz Intel Xeon Gold 6154 processors and 180 GB of RAM. Case studies were
implemented using R 4.2.2 and results were generated on a cluster composed of individual compute
nodes with 2.10 GHz Intel Xeon Gold 6230 processors and 192 GB of RAM.

6.1 Competitor Comparison Simulation

In this section, we compare RoME to four competing methods in simulation. We implemented RoME
using Option 2 with a bagged ensemble of stochastic gradient trees (Gouk et al., 2019; Mastelini
et al., 2021) trained online via the River library (Montiel et al., 2021). We programmed the linear
algebra operations using SuiteSparse (Davis & Hu, 2011) to take advantage of the sparse nature of
the Laplacian matrices and ϕi,t from Algorithm 2.

Our competing baselines are (a) Standard: Standard Thompson sampling for linear contextual bandits,
(b) AC: the Action-Centered contextual bandit algorithm (Greenewald et al., 2017), (c) IntelPooling:
The intelligentpooling method of Tomkins et al. (2021) fixing the variance parameters close to their
true values, and (d) Neural-Linear: a method that uses a pre-trained neural network to transform the
feature space for the baseline reward (similar to the Neural Linear method of Riquelme et al. (2018)).

We compare these methods under three settings: Homogeneous Users, Heterogeneous Users, and
Nonlinear. The first two involve a linear baseline model and time-homogeneous parameters, with the
second setting having distinct user parameters. The third setting, designed to mirror the challenges of
mHealth studies, includes a nonlinear baseline and both user- and time-specific parameters. For each
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setting, we simulate 200 stages following the staged recruitment regime depicted in Figure 1, and we
repeat the full 200-stage simulation 50 times. Appendix A.1 provides details on the setup and a link
to our implementation.

Figure 2: Cumulative regret in the (a) Homogeneous Users, (b) Heterogeneous Users, and (c)
Nonlinear settings. RoME performs competitively in the first setting (the simplest), and it substantially
outperforms the next-best method (IntelPooling) in the others.

Figure 2 displays the average cumulative regret for each method. RoME and IntelPooling have
similar performance in the Homogeneous Users setting, but RoME excels in the Heterogeneous Users
and Nonlinear settings, with significantly lower cumulative regret by stage 200. This is expected as
RoME can utilize network information and model nonlinear baselines in these settings. However, in
the Homogeneous Users setting, where no network information is available and a linear baseline is
used, RoME does not outperform IntelPooling.

Appendices A.2–A.5 offer more results, including additional method comparisons, a rectangular data
array simulation, hyperparameter sensitivity analyses, and pairwise statistical comparisons. The latter
show that RoME outperformed each competitor in at least 48 of 50 repetitions in the Nonlinear setting,
indicating even higher statistical confidence than Figure 2 suggests. RoME substantially outperforms
the competing algorithms in the additional comparisons and is several orders of magnitude faster than
would be required in a standard mHealth study, producing over 20,000 decisions in as little as 45
seconds (see Table 2 in Appendix A.2).

6.2 Valentine Study Analysis Results

In this section, we compare RoME to the above algorithms via off-policy evaluation using data
from the Valentine Study (Jeganathan et al., 2022), a prospective, randomized-controlled, remotely
administered trial designed to evaluate an mHealth intervention to supplement cardiac rehabilitation
for low- and moderate-risk patients. In the analyzed dataset, participants were randomized to receive
or not receive contextually tailored notifications promoting low-level physical activity and exercise
throughout the day. The left of Figure 3 shows the estimated improvement in the average reward
over the original constant randomization, averaged over stages (K = 120) and participants (N=108).
We see that RoME achieved the highest average reward; its average performance (across bootstrap
replications) is higher than the 75th percentile of all other methods.

To further analyze the improvement of RoME relative to the other methods, we test whether the
proposed algorithm significantly improves cumulative rewards using paired t-tests with one-sided
alternative hypotheses. The null hypothesis (H0) for these tests is that the two algorithms being
compared achieve the same average reward. The alternative hypothesis (H1) is that the algorithm
listed in the column achieves higher average rewards than the algorithm listed in the row. The right of
Figure 3 displays the p-values obtained from these pairwise t-tests. The dark shade of the last column
indicates that the proposed RoME algorithm achieves significantly higher rewards than the other five
competing algorithms (p ≤ 0.01 for all pairwise comparisons). The results imply that RoME would
have achieved a 3.5% increase in step count relative to the constant randomization policy that was
actually implemented in this study. This effect translates to an increase of 140 steps per day, given
a baseline of 1,000 steps per hour and four one-hour measurement windows. See Appendix B for
additional implementation details.
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Figure 3: (left) Boxplot of unbiased estimates of the average per-trial reward for all five competing
algorithms, relative to the reward obtained under the pre-specified Valentine randomization policy
across 100 bootstrap samples. Within each box, the asterisk (∗) indicates the mean value, while the
mid-bar represents the median. (right) Heatmap of p-values from the pairwise paired t-tests.

We performed an additional off-policy comparison using data from the Intern Health Study (IHS)
(NeCamp et al., 2020), as shown in Figure 11 in Appendix C.2. The results further demonstrate the
competitive performance of the RoME algorithm, with the AC algorithm also showing comparable
performance in this dataset. Further details on the analysis can be found in Appendix C.

7 Discussion

This paper introduces RoME, a robust mixed-effects contextual bandit algorithm for mHealth studies.
RoME adapts DML and network cohesion penalties to dynamic settings, enabling researchers to
efficiently pool information across users and over time. In addition to the methodological contribution,
we also prove a high-probability regret bound in a challenging asymptotic regime that involves a
growing pool of users and time points. Our implementation of RoME is several orders of magnitude
faster than would be required in practice and could easily be adapted for use in future mHealth
studies.

We see several promising directions for improving RoME in future work. One such direction might
consider data-adaptive strategies for setting the hyperparameters or constructing a network in settings
where the network is not known a priori. Another interesting direction is to address the long-term
impacts of mHealth treatments, such as accumulating treatment fatigue. Future work could also
consider computational improvements that would enable large-scale deployment of RoME, which
would be especially relevant in nonclinical settings.
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A Additional Details for Simulation Study

This appendix provides details regarding the setup of our simulation study, additional results not
presented in the main paper, and results from additional simulations employing different competitors
and/or simulation designs. We summarize the differences between the competing algorithms in Table
1.

User-
specific
Parameters

Time-
specific
parameters

Pools
Across
Users

Enforces
User
Network
Cohesion

Enforces
Time
Network
Cohesion

Allows
Nonlinear
Baseline

Nonlinear
Baseline
Model

RoME
√ √ √ √ √ √ √

RoME-BLM
√ √ √ √ √ √

×
RoME-SU ×

√ √
N/A

√ √ √

NNR-Linear
√

×
√ √

N/A × ×
IntelPooling

√ √ √ √
× × ×

Neural-Linear
√

× × N/A N/A
√ √

Standard
√

× × N/A N/A × ×
AC

√
× × N/A N/A

√
×

Table 1: This table compares the methods tested in the simulation study based on the design
components listed in the columns, with

√
indicating that the method includes the component listed

in the column, × indicating that it does not, and N/A indicating that the component is not applicable.
This table can be used to investigate the effect of certain model components on cumulative regret;
for example, comparing RoME and RoME-BLM helps us understand the impact of modeling the
nonlinear baseline—the only column that differs between these two methods.

A.1 Setup Details

The code for the simulation study is fully containerized and publicly available at https://github.
com/eastonhuch/RoME. The simulation study involves a generative model of the following form
for user i at time t:

Rit = g(Sit) + x(Sit, Ait)
⊤ θit + ϵit, ϵit ∼ N (0, 1)

Here Sit = (s1, s2) ∈ R2 is a context vector, with both dimensions iid∼ U(−1, 1). We set x(s, a) =
a (1, s1, s2). For simplicity, we set g to a time-homogeneous function. The specific nature of the
function varies across the following three settings mentioned in Section 6.1:

• Homogeneous Users: Standard contextual bandit assumptions with a linear baseline and no
user- or time-specific parameters. The linear baseline is g(Sit) = 2− 2s1 + 3s2, and the
causal parameter is θit = (1, 0.5,−4) such that the optimal action varies across the context
space.

• Heterogeneous Users: Same as the above but each user’s causal parameter has iid N (0, 1)
noise added to it.

• Nonlinear: The general setting discussed in the paper with a nonlinear baseline, user-specific
parameters, and time-specific parameters. The base causal parameter and user-specific
parameters are the same as in the previous two settings. The nonlinear baseline and time-
specific parameter are shown in Figure 4.

We assume that the data are observed via a staged recruitment scheme, as illustrated in Figure 1.
For computational convenience, we update parameters and select actions in batches. If, for instance,
we observe twenty users at a given stage, we update our estimates of the relevant causal parameters
and select actions for all twenty users simultaneously. This strategy offers a slight computational
advantage with limited implications in terms of statistical performance.

For simplicity, we assume that the nearest-neighbor network is known and set the relevant hyperpa-
rameters accordingly. We took care to set the hyperparameters such that RoME performs a similar
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amount of shrinkage compared to other methods, especially IntelPooling, which effectively uses a
separate penalty matrix for users and time. To accomplish this, we used the same penalty matrices for
RoME and IntelPooling, effectively generalizing the scalar γ penalty discussed in the main paper.
For the purposes of calculating the constant B given in Algorithm 2, we used a separate value of γ
for both users and time and set them equal to the maximum eigenvalue of the corresponding penalty
matrix. We use 5 neighbors within the DML methods and set the other hyperparameters as follows:
λ = 1, and δ = 0.01, and vk = 1 (i.e., vk is constant).

For the Neural-Linear method, we generate a 200× 200 array of baseline rewards to train the neural
network prior to running the bandit algorithm. Consequently, the results shown in the paper for
Neural-Linear are better than would be observed in practice because we allowed the Neural-Linear
method to leverage data that we did not make available to the other methods. This setup offers the
computational benefit of not needing to update the neural network within bandit replications, which
substantially reduces the necessary computation time.

Aside from the input features used, the Neural-Linear method has the same implementation as the
Standard method. The Neural-Linear method uses the output from the last hidden layer of a neural
network to model the baseline reward. However, we use the original features (the state vectors) to
model the advantage function because the true advantage function is, in fact, linear in these features.

Our neural networks consisted of four hidden layers with 10, 20, 20, and 10 nodes, respectively. The
first two employ the ReLU activation function (Nair & Hinton, 2010) while the latter two employ the
hyperbolic tangent. We chose to use the hyperbolic tangent for the last two layers because Snoek
et al. (2015) found that smooth activation functions such as the hyperbolic tangent were advantageous
in their neural bandit algorithm. The loss function was the mean squared error between the neural
networks’ output and the baseline reward on a simulated data set. We trained our networks using the
Adam optimizer (Kingma & Ba, 2014) with batch sizes of 200 for between 20 and 50 epochs. We
simulated a separate validation data set to check that our model had converged and was generating
accurate predictions.

Figure 5 compares the true baseline reward function in the nonlinear setting (left) to that estimated by
the neural network (right). We see that the neural network produced an accurate approximation of the
baseline reward, which helps explain the good performance of the Neural-Linear method relative to
other baseline approaches, such as Standard.

We include the Neural-Linear method primarily to demonstrate that correctly modeling the baseline
is not sufficient to ensure good performance. In the mHealth, algorithms should also be able to (1)
efficiently pool data across users and time and (2) leverage network information. The Neural-Linear
method satisfies neither of these criteria. Note that a neural network could be used to model the
baseline rewards as part of our algorithm. Future work could consider allowing the differential rewards

Figure 4: (left) The baseline reward function g(Sit) used in the simulation study. The proposed
method allows this function to be a nonlinear function of the context vectors. The baseline was
generated using a combination of recursive partitioning and by summing scaled, shifted, and rotated
Gaussian densities. (right) The time-specific parameters used in the simulation study. These parame-
ters cause the advantage function to vary over time. We set them such that the advantage function
changes quickly at the beginning of the study then stabilizes.
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themselves to also be complex nonlinear functions, which could be accomplished by combining our
method with Neural-Linear. We leave the details to future work.

A.2 Additional Method Comparisons

Our results in the main paper indicate that RoME outperforms existing methods, especially in the
complex longitudinal setting that we are targeting. These positive results beg the question: What
aspects of RoME contribute most to its superior performance?

In this section, we describe an additional simulation study designed to answer this question. In it,
we compare RoME (as implemented in the main paper) to three additional comparison methods:
RoME-BLM, RoME-SU, and NNR-Linear. Each comparison isolates particular aspects of our
algorithm to understand its contribution to RoME’s performance.

RoME-BLM is a version of RoME that employs Bagged Linear Models as the baseline supervised
learning algorithm. Unlike the method implemented in the main paper (which uses bagged stochastic
gradient trees), this baseline model is misspecified in the nonlinear setting; i.e., it cannot accurately
model the nonlinear baseline reward function. Consequently, this comparison will allow us to gauge
the impact of the supervised learning method used in our method. In particular, it should allow us to
validate whether the algorithm is robust to baseline misspecification as the theory suggests.

RoME-SU is a Single-User version of our algorithm. Rather than having a separate θi for each user,
this method estimates a single advantage function that is shared across all users. It does, however,
employ DML, time effects, and nearest-neighbor regularization (for the time effects). Consequently,
this comparison will help us understand the impact of the user-specific parameters in our simulation.

NNR-Linear is similar to the existing network-cohesion bandit algorithms described in the main
paper. It includes a distinct θi for each user and regularizes them toward each other using a Laplacian
penalty. It does not, however, use DML or time effects. As a result, this comparison isolates the
impact of these two factors and should provide evidence that RoME is more broadly applicable than
existing network-cohesion bandit algorithms.

Figure 6 displays the cumulative regret as a function of the stage for these methods across the three
settings used in the main paper. We see that all methods perform similarly in panel (a), the setting
with homogeneous users. However, in panel (b) we see that the regret achieved by RoME-SU begins
to resemble a straight upward-sloping line because it cannot appropriately model the user-specific
advantage functions.

In panel (c), we observe a much wider spread of performance, with RoME and RoME-BLM per-
forming similarly and substantially outperforming the other methods. The fact that RoME and
RoME-BLM perform similarly indicates that our algorithm is, in fact, robust to misspecification as ex-
pected. The comparison to NNR-Linear reveals that the DML and time effects—the new components
of our method compared to existing network-cohesion bandit algorithms—do contribute meaningfully
to RoME’s superior performance. We found in additional simulations studies not reported here that
the gap between NNR-Linear and our method widens as the magnitude of the time effects increases.

Figure 5: (left) The baseline reward function g(Sit) used in the simulation study compared to (right)
the estimated baseline reward from our neural network in the nonlinear setting.
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Figure 6: Cumulative regret in the (a) Homogeneous Users, (b) Heterogeneous Users, and (c)
Nonlinear settings for the additional comparison methods. The fact that RoME outperforms RoME-
SU demonstrates the importance of the user-specific parameters. The fact that RoME outperforms
NNR-Linear shows that previous network cohesion approaches do not adequately address the (1)
nonlinear nature of the baseline reward and (2) presence of time effects. The comparable performance
of RoME-BLM to RoME highlights how our algorithm is robust to misspecification of the baseline
reward model.

Homogeneous Users Heterogeneous Users Nonlinear

RoME 345.2 373.4 362.2
RoME-BLM 45.6 49.4 52.2
RoME-SU 355.6 375.5 366.2
NNR-Linear 29.8 31.9 31.6
IntelPooling 46.3 43.9 46.8
Neural-Linear 0.7 0.7 0.9
Standard 0.2 0.2 0.3
AC 0.1 0.1 0.3

Table 2: Average computation time across all methods and settings in the main simulation.

Table 2 displays the average computation time for each method across all three settings. Each run of
the simulation produces 200 ∗ 201/2 = 20, 100 decisions. RoME and RoME-SU require the longest
computation time at about six minutes. RoME-BLM requires only 45–53 seconds, indicating that
the computational bottleneck for RoME is the ML model fitting. The required computation time for
IntelPooling is similar to RoME-BLM at 43–47 seconds. NNR-Linear requires 29–32 seconds, and
the remaining methods run in less than one second. Because most clinical mHealth studies require
fewer than 1,000 decisions per day, the speed of RoME is orders of magnitude faster than is required
in practice. However, large-scale commercial deployment of RoME may require computational
adjustments and approximations.

A.3 Pairwise Comparisons

Table 3 shows pairwise comparisons between methods across the three settings. The individual cells
indicate the percentage of repetitions (out of 50) in which the method listed in the row outperformed
the method listed in the column. The asterisks indicate p-values below 0.05 from paired two-sided t-
tests on the differences in final regret. The Avg column indicates the average pairwise win percentage.

RoME and RoME-BLM perform well across all three settings and the difference between them is
statistically indistinguishable. These methods perform about equally well compared to IntelPooling
and NNR-Linear in the first setting, but they perform better in the other two. In the Nonlinear setting
in particular, RoME and RoME-BLM substantially outperform all other methods, and the pairwise
differences are statistically significant at the 5% level.
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Homogeneous Users

1 2 3 4 5 6 7 8 Avg

1. RoME - 58% 48% 52% 30%* 100%* 100%* 100%* 70%
2. RoME-BLM 42% - 40%* 36%* 22%* 100%* 100%* 100%* 63%
3. RoME-SU 52% 60%* - 46% 34%* 100%* 100%* 100%* 70%
4. NNR-Linear 48% 64%* 54% - 32%* 100%* 100%* 100%* 71%
5. IntelPooling 70%* 78%* 66%* 68%* - 100%* 100%* 100%* 83%
6. Neural-Linear 0%* 0%* 0%* 0%* 0%* - 100%* 100%* 29%
7. Standard 0%* 0%* 0%* 0%* 0%* 0%* - 100%* 14%
8. AC 0%* 0%* 0%* 0%* 0%* 0%* 0%* - 0%

Heterogeneous Users

1 2 3 4 5 6 7 8 Avg

1. RoME - 46% 82%* 54% 100%* 100%* 100%* 100%* 83%
2. RoME-BLM 54% - 70%* 48% 100%* 100%* 100%* 100%* 82%
3. RoME-SU 18%* 30%* - 18%* 92%* 100%* 100%* 100%* 65%
4. NNR-Linear 46% 52% 82%* - 100%* 100%* 100%* 100%* 83%
5. IntelPooling 0%* 0%* 8%* 0%* - 90%* 100%* 100%* 43%
6. Neural-Linear 0%* 0%* 0%* 0%* 10%* - 98%* 100%* 30%
7. Standard 0%* 0%* 0%* 0%* 0%* 2%* - 100%* 15%
8. AC 0%* 0%* 0%* 0%* 0%* 0%* 0%* - 0%

Nonlinear

1 2 3 4 5 6 7 8 Avg

1. RoME - 56% 100%* 96%* 98%* 100%* 100%* 100%* 93%
2. RoME-BLM 44% - 94%* 98%* 100%* 100%* 100%* 100%* 91%
3. RoME-SU 0%* 6%* - 38% 78%* 100%* 100%* 100%* 60%
4. NNR-Linear 4%* 2%* 62% - 82%* 100%* 100%* 100%* 64%
5. IntelPooling 2%* 0%* 22%* 18%* - 100%* 100%* 100%* 49%
6. Neural-Linear 0%* 0%* 0%* 0%* 0%* - 98%* 100%* 28%
7. Standard 0%* 0%* 0%* 0%* 0%* 2%* - 100%* 15%
8. AC 0%* 0%* 0%* 0%* 0%* 0%* 0%* - 0%

Table 3: Pairwise comparisons between methods in the three settings of the main simulation. Each
cell indicates the percent of repetitions (out of 50) in which the method listed in the row outperformed
the method listed in the column in term of final regret. Asterisks indicate p-values below 0.05 from
paired two-sided t-tests on the differences in final regret. RoME and RoME-BLM perform well in all
three settings, and their final regret is statistically indistinguishable. They substantially outperform
all other methods in the Nonlinear setting.
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A.4 Simulation with Rectangular Data Array

The main simulation involves simulating data from a triangular data array. At the 200-th (final) stage,
the algorithm has observed 200 rewards for user 1, 199 rewards for user 2, and so on.

In this section, we simulate actions and rewards under a rectangular array with 100 users and 100
time points. Although we still follow the staged recruitment regime depicted in Figure 1, at stage 100
we stop sampling actions and rewards for user 1; at stage 101 we stop sampling for user 2; and so on
until we have sampled 100 time points for all 100 users. Aside from the shape of the data array, the
setup is the same for this simulation as for the main simulation.

Figure 7: Cumulative regret in the (a) Homogeneous Users, (b) Heterogeneous Users, and (c)
Nonlinear settings using a rectangular array of data in which we observe 100 time points for 100
users in a stagewise fashion as depicted in Figure 1. Similar to Figure 2, RoME is competitive in the
first setting and substantially outperforms the competitors in the other settings.

Figure 8: Cumulative regret in the (a) Homogeneous Users, (b) Heterogeneous Users, and (c)
Nonlinear settings using a rectangular array of data in which we observe 100 time points for 100
users in a stagewise fashion as depicted in Figure 1. We observe the same performance ordering as in
Figure 6, but here the relative differences are even larger.

The cumulative regret for these methods as a function of time—not stage—is shown in Figure 7.
Qualitatively, the results are nearly identical to those from the main simulation (compare to Figure 2).
The differences in final regret are even larger in this simulation than they were in the main simulation,
presumably because this study exhibits greater variation in time effects due to the balance across
time.

Figure 8 displays comparisons similar to those shown in Figure 6 but for the rectangular simulation.
We again see that the results are qualitatively similar to the main simulation. The methods perform
similarly in the Homogeneous Users setting. RoME-SU performs poorly in the Heterogeneous Users
setting, but the other methods perform similarly. Finally, RoME and RoME-BLM substantially
outperform the other methods in the nonlinear setting. Again, the differences in performance are even
larger in this simulation than in the main simulation.

Table 4 displays results from pairwise method comparisons, similar to those shown in Table 3.
Again, the results are qualitatively similar to but slightly more exaggerated than those from the main
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Homogeneous Users

1 2 3 4 5 6 7 8 Avg

1. RoME - 56% 44% 42% 38% 100%* 100%* 100%* 69%
2. RoME-BLM 44% - 44% 40%* 32%* 100%* 100%* 100%* 66%
3. RoME-SU 56% 56% - 44% 36% 100%* 100%* 100%* 70%
4. NNR-Linear 58% 60%* 56% - 52% 100%* 100%* 100%* 75%
5. IntelPooling 62% 68%* 64% 48% - 100%* 100%* 100%* 77%
6. Neural-Linear 0%* 0%* 0%* 0%* 0%* - 100%* 100%* 29%
7. Standard 0%* 0%* 0%* 0%* 0%* 0%* - 100%* 14%
8. AC 0%* 0%* 0%* 0%* 0%* 0%* 0%* - 0%

Heterogeneous Users

1 2 3 4 5 6 7 8 Avg

1. RoME - 60% 100%* 42% 100%* 100%* 100%* 100%* 86%
2. RoME-BLM 40% - 100%* 34% 100%* 100%* 100%* 100%* 82%
3. RoME-SU 0%* 0%* - 2%* 92%* 100%* 100%* 100%* 56%
4. NNR-Linear 58% 66% 98%* - 100%* 100%* 100%* 100%* 89%
5. IntelPooling 0%* 0%* 8%* 0%* - 98%* 100%* 100%* 44%
6. Neural-Linear 0%* 0%* 0%* 0%* 2%* - 100%* 100%* 29%
7. Standard 0%* 0%* 0%* 0%* 0%* 0%* - 100%* 14%
8. AC 0%* 0%* 0%* 0%* 0%* 0%* 0%* - 0%

Nonlinear

1 2 3 4 5 6 7 8 Avg

1. RoME - 64%* 100%* 100%* 100%* 100%* 100%* 100%* 95%
2. RoME-BLM 36%* - 100%* 100%* 100%* 100%* 100%* 100%* 91%
3. RoME-SU 0%* 0%* - 28%* 74%* 100%* 100%* 100%* 57%
4. NNR-Linear 0%* 0%* 72%* - 86%* 100%* 100%* 100%* 65%
5. IntelPooling 0%* 0%* 26%* 14%* - 98%* 100%* 100%* 48%
6. Neural-Linear 0%* 0%* 0%* 0%* 2%* - 100%* 100%* 29%
7. Standard 0%* 0%* 0%* 0%* 0%* 0%* - 100%* 14%
8. AC 0%* 0%* 0%* 0%* 0%* 0%* 0%* - 0%

Table 4: Pairwise comparisons between methods in the three settings of the simulation with a
rectangular array of data. As in Table 3, each cell indicates the percent of repetitions (out of 50) in
which the method listed in the row outperformed the method listed in the column in term of final
regret. Asterisks indicate p-values below 0.05 from paired two-sided t-tests on the differences in final
regret. The qualitative results are similar to those of Table 3. RoME and RoME-BLM perform well
across all three settings and substantially outperform all other methods in the Nonlinear setting.
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simulation. In particular, in this simulation study, RoME and RoME-BLM outperform all other
methods in 100% of repetitions in the nonlinear setting.

A.5 Hyperparameter Sensitivity

In the simulation study, we chose hyperparameters for the fairest comparison possible, employing the
same regularization parameters across methods. To assess robustness, we performed eight sensitivity
analyses that alter hyperparameters for our methods while fixing those of the other methods; this
approach gives the competing algorithms an advantage. Under these alternative hyperparameters,
RoME and RoME-BLM still dramatically outperform the other methods in the Nonlinear Setting.
We provide detailed results below.

Three analyses led to no meaningful changes to Figure 2 or Table 3. These involved rescaling (1) γ,
(2) λ, and (3) and the bounds B,D by a factor of 10. The remaining simulations resulted in minor
performance differences, especially in the Heterogeneous setting. In the following, we summarize
these five analyses.

• Adding (low and medium) noise to the network: NNR-Linear slightly outperforms our
methods in the Heterogeneous Setting, winning 50-60% of simulations (compared to 40-
42% without noise) because NNR-Linear has access to a higher quality network.

• Increasing to 10 neighbors: RoME, RoME-BLM perform much better than RoME-SU
(the Single-User ablation) in the Heterogeneous Setting, presumably because this change
enforced stronger network cohesion among highly similar users.

• Rescaling σ by 10: NNR-Linear outperforms our methods in the Heterogeneous setting.
NNR-Linear and IntelPooling outperform RoME-SU (but not RoME) in the Nonlinear
Setting. Both occur because NNR-Linear and IntelPooling use the true value of σ.

• Setting δ to 0.05: NNR-Linear outperforms RoME-SU in the Nonlinear Setting, likely
because this change led to insufficient exploration.

The results for the medium-noise sensitivity analysis are displayed in Table 5. Results for the
remaining sensitivity analyses are available with our code.

B Additional Details for Valentine Study

Personalizing treatment delivery in mobile health is a common application for online learning
algorithms. We focus here on the Valentine study, a prospective, randomized-controlled, remotely
administered trial designed to evaluate an mHealth intervention to supplement cardiac rehabilitation
for low- and moderate-risk patients (Jeganathan et al., 2022; Golbus et al., 2023). We aim to use
smartwatch data (Apple Watch and Fitbit) obtained from the Valentine study to learn the optimal
timing of notification delivery given the users’ current context.

B.1 Data from the Valentine Study

Prior to the start of the trial, baseline data was collected from each of the participants (e.g., age,
gender, baseline activity level, and health information). During the study, participants are randomized
to either receive a notification (At = 1) or not (At = 0) at each of 4 daily time points (morning,
lunchtime, mid-afternoon, evening), with probability 0.25. Contextual information was collected
frequently (e.g., number of messages sent in prior week, step count variability in prior week, and
pre-decision point step-counts).

Since the goal of the Valentine study is to increase participants’ activity levels, we define the reward,
Rt, as the step count for the 60 minutes following a decision point (log-transformed to eliminate
skew). Our application also uses a subset of the baseline and contextual data; this subset contains the
variables with the strongest association with the reward. Table 6 shows the features available to the
bandit in the Valentine study data set.

For baseline variables, we use the participant’s device model (Z1, Fitbit coded as 1), the participant’s
step count variability in the prior week (Z2), and a measure of the participant’s pre-trial activity level
based on an intake survey (Z3, with larger values corresponding to higher activity levels).
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Homogeneous Users

1 2 3 4 5 6 7 8 Avg

1. RoME - 48% 54% 52% 52% 100%* 100%* 100%* 72%
2. RoME-BLM 52% - 58% 44% 50% 100%* 100%* 100%* 72%
3. RoME-SU 46% 42% - 38% 46% 100%* 100%* 100%* 67%
4. NNR-Linear 48% 56% 62% - 56% 100%* 100%* 100%* 75%
5. IntelPooling 48% 50% 54% 44% - 100%* 100%* 100%* 71%
6. Neural-Linear 0%* 0%* 0%* 0%* 0%* - 100%* 100%* 29%
7. Standard 0%* 0%* 0%* 0%* 0%* 0%* - 100%* 14%
8. AC 0%* 0%* 0%* 0%* 0%* 0%* 0%* - 0%

Heterogeneous Users

1 2 3 4 5 6 7 8 Avg

1. RoME - 50% 74%* 48% 100%* 100%* 100%* 100%* 82%
2. RoME-BLM 50% - 82%* 40% 96%* 100%* 100%* 100%* 81%
3. RoME-SU 26%* 18%* - 18%* 92%* 100%* 100%* 100%* 65%
4. NNR-Linear 52% 60% 82%* - 100%* 100%* 100%* 100%* 85%
5. IntelPooling 0%* 4%* 8%* 0%* - 94%* 100%* 100%* 44%
6. Neural-Linear 0%* 0%* 0%* 0%* 6%* - 96%* 100%* 29%
7. Standard 0%* 0%* 0%* 0%* 0%* 4%* - 100%* 15%
8. AC 0%* 0%* 0%* 0%* 0%* 0%* 0%* - 0%

Nonlinear

1 2 3 4 5 6 7 8 Avg

1. RoME - 68%* 100%* 100%* 100%* 100%* 100%* 100%* 95%
2. RoME-BLM 32%* - 98%* 98%* 100%* 100%* 100%* 100%* 90%
3. RoME-SU 0%* 2%* - 44% 74%* 100%* 100%* 100%* 60%
4. NNR-Linear 0%* 2%* 56% - 84%* 100%* 100%* 100%* 63%
5. IntelPooling 0%* 0%* 26%* 16%* - 98%* 100%* 100%* 49%
6. Neural-Linear 0%* 0%* 0%* 0%* 2%* - 100%* 100%* 29%
7. Standard 0%* 0%* 0%* 0%* 0%* 0%* - 100%* 14%
8. AC 0%* 0%* 0%* 0%* 0%* 0%* 0%* - 0%

Table 5: Pairwise comparisons between methods in a sensitivity analysis in which we add noise to the
network. As in Table 3, each cell indicates the percent of repetitions (out of 50) in which the method
listed in the row outperformed the method listed in the column in term of final regret. Asterisks
indicate p-values below 0.05 from paired two-sided t-tests on the differences in final regret.

Feature Description Interaction Baseline

Phase II 1 if in Phase II, 0 o.w.
√ √

Phase III 1 if in Phase II, 0 o.w.
√ √

Steps in prior 30 minutes log transformed
√ √

Pre-trial average daily steps log transformed ×
√

Device 1 if Fitbit, 0 o.w. ×
√

Prior week step count variability SD of the rewards in the previous week ×
√

Table 6: List of features available to the bandit in the Valentine study. The features available to model
the action interaction (effect of sending an anti-sedentary message) and to model the baseline (reward
under no action) are denoted via a “

√
” in the corresponding column, otherwise ×.
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Df Sum Sq Mean Sq F value Pr(>F)

ParticipantIdentifier 107 264 2.464 8.09 <2e-16 ***
Week 25 17 0.683 2.24 4e-04 ***
Residuals 2265 690 0.305

Table 7: ANOVA analysis of the pseudo-outcomes in the Valentine study. The small p-values
constitute strong evidence that the treatment effects differ by participant and over time.

At every decision point, before selecting an action, the learner sees two state variables: the partici-
pant’s previous 30-minute step count (S1, log-transformed) and the participant’s phase of cardiac
rehabilitation (S2, dummy coded). The cardiac rehabilitation phase is defined based on a participant’s
time in the study: month 1 represents Phase I, month 2-4 represents Phase II, and month 5-6 represents
Phase III.

B.2 Justification of Assumption 4

The motivation for Assumption 4 arises from an exploratory analysis we performed using data from
the Valentine study. We constructed the pseudo-reward for each observation as suggested by Equation
(4) and then conducted an ANOVA test. The results show clear heterogeneity between individuals
and across time, motivating the adoption of user- and time-specific random effects. The results of the
ANOVA test are displayed in Table 7. Figure 9 shows the shape of the heterogeneity in the treatment
effects over time.

Figure 9: The time heterogeneity in the pseudo-outcomes. We calculated the pseudo-outcomes using
4, then averaged them across participants and plotted them over time. This exploratory analysis shows
evidence that the causal effects vary substantially over time.

B.3 Evaluation

The Valentine study collected the sensor-based features at 4 decision points per day for each study
participant. The reward for each message was defined to be log(0.5+ x), where x is the step count of
the participant in the 60 minutes following the notification. As noted in the introduction, the baseline
reward, i.e. the step count of a subject when no message is sent, not only depends on the state in a
complex way but is likely dependent on a large number of time-varying observed variables. Both of
these characteristics (complex, time-varying baseline reward function) suggest using our proposed
approach.

We generated 100 bootstrap samples and ran our contextual bandit on them, considering the binary
action of whether or not to send a message at a given decision point based on the contextual variables
S1 and S2. Each user is considered independently and with a cohesion network, for maximum
personalization and independence of results. To guarantee that messages have a positive probability
of being sent, we only sample the observations with notification randomization probability between
0.01 and 0.99. In the case of the algorithm utilizing NNR, we chose four baseline characteristics
(gender, age, device, and baseline average daily steps) to establish a measure of “distance” between
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users. For this analysis, the value of k representing the number of nearest neighbors was set to 5.
To utilize bootstrap sampling, we train the Neural-Linear method’s neural network using out-of-bag
samples. The neural network architecture comprises a single hidden layer with two hidden nodes.
The input contains both the baseline characteristics and the contextual variables and the activation
function applied here is the softplus function, defined as softplus(x) = log(1 + exp (x)).

We performed an offline evaluation of the contextual bandit algorithms using an inverse propensity
score (IPS) version of the method from Li et al. (2010), where the sequence of states, actions, and
rewards in the data are used to form a near-unbiased estimate of the average expected reward achieved
by each algorithm, averaging over all users.

Figure 10: (left) Unbiased estimates of the average per-trial reward for all three ablation algorithms,
relative to the reward obtained under the pre-specified Valentine Study randomization policy across
20 multiple-imputed data sets. And (right) p-values from the pairwise paired t-tests.

B.4 An ablation study

We further investigate the primary contributors to the algorithm’s performance, we conducted a
parallel ablation study using real-world data analysis. In this study, we compared RoME (as detailed
in the main paper) with two additional methods for reference: RoME-SU and NNR-Linear. Each
comparison focuses on specific elements of our algorithm to discern their impact on RoME’s overall
performance.

The differences between these methods are illustrated in Figure. 10. In this particular dataset, NNR
plays a more significant role in driving the overall superior performance of our algorithm.

B.5 Inverse Propensity Score (IPS) offline evaluation

In the implemented Valentine study, the treatment was randomized with a constant probability
pt = 0.25 at each time t. To conduct off-policy evaluation using our proposed algorithm and the
competing variations of the TS algorithm, we outline the IPS estimator for an unbiased estimate of
the per-trial expected reward based on what has been studied in Li et al. (2010).

Given the logged data D = {st = st, At = at, Rt = rt}Tt=1 collected under the policy p = {pt}Tt=1,
and the treatment policy being evaluated π = {πt}Tt=1, the objective of this offline estimator is to
reweight the observed reward sequence {Rt}Tt=1 to assign varying importance to actions based on
the propensities of both the original and new policies in selecting them.
Lemma 1 (Unbiasedness of the IPS estimator). Assuming the positivity assumption in logging, which
states that for any given s and a, if pt(a|s) > 0, then we also have πt(a|s) > 0, we can obtain an
unbiased per-trial expected reward using the following IPS estimator:

R̂IPS =
1

T

T∑
t=1

πt(at|st)
pt(at|st)

rt (12)

As mentioned in the previous section, we restrict our sampling to observations with notification
randomization probabilities ranging from 0.01 to 0.99. This selection criterion ensures the satisfaction
of the positivity assumption. The proof essentially follows from definition, we have:
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Proof.

E[RIPS] = Ep

[
1

T

T∑
t=1

πt(at|st)
pt(at|st)

Rt(at, st)

]

=
1

T

T∑
t=1

πt(at|st)
pt(at|st)

Rt(at, st)× pt(at|st)

=
1

T

T∑
t=1

πt(at|st)Rt(at, st)

= Eπ

[
1

T

T∑
t=1

Rt(at, st)

]

To address the instability issue caused by reweighting in some cases, we use a Self-Normalized
Inverse Propensity Score (SNIPS) estimator. This estimator scales the results by the empirical mean
of the importance weights, and still maintains the property of unbiasedness.

R̂SNIPS =
R̂IPS

1
T

∑T
t=1

πt(at|st)
pt(at|st)

=

∑T
t=1

πt(at|st)
pt(at|st) rt∑T

t=1
πt(at|st)
pt(at|st)

(13)

C Additional Details for the Intern Health Study (IHS)

To further enhance the competitive performance of our proposed RoME algorithm, we performed
an additional comparative analysis using a real-world data set from the Intern Health Study (IHS)
(NeCamp et al., 2020). This micro-randomized trial investigated the use of mHealth interventions
aimed at improving the behavior and mental health of individuals in stressful work environments.
The estimates obtained represent the improvement in average reward relative to the original constant
randomization, averaging across stages (K = 30) and participants (N = 1553). The available IHS
data consist of 20 multiple-imputed data sets. We apply the algorithms to each imputed data set
and perform a comparative analysis of the competing algorithms. The results presented in Figure
11 shows our proposed RoME algorithm achieved significantly higher rewards than the other three
competing ones and demonstrated performance comparable to the AC algorithm. These findings
further support the advantages of our proposed algorithm.

C.1 Data from the IHS

Prior to the start of the trial, baseline data was collected on each of the participants (e.g., institution,
specialty, gender, baseline activity level, and health information). During the study, participants are
randomized to either receive a notification (At = 1) or not (At = 0) every day, with probability 3/8.
Contextual information was collected frequently (e.g., step count in prior five days, and current day
in study).

We define the reward, Rt, as the step count on the following day (cubic root). Our application also
uses a subset of the baseline and contextual data; this subset contains the variables with the strongest
association to the reward. Table 8 shows the features available to the bandit in the IHS data set.

At every decision point, before selecting an action, the learner sees two state variables: the partici-
pant’s previous 5-day average daily step count (S1, cubic root) and the participant’s day in the study
(S2, an integer from 1 to 30).

C.2 Evaluation

We run our contextual bandit on the IHS data, considering the binary action of whether or not
to send a message at a given decision point based on the contextual variables S1 and S2. Each
user is considered independently and with a cohesion network, for maximum personalization and
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Feature Description Interaction Baseline

Day in study an integer from 1 to 30
√ √

Average daily steps in prior five days cubic root
√ √

Average daily sleep in prior five
days

cubic root ×
√

Average daily mood in prior five
days

a Likert scale from 1− 10 ×
√

Pre-intern average daily steps cubic root ×
√

Pre-intern average daily sleep cubic root ×
√

Pre-intern average daily mood a Likert scale from 1− 10 ×
√

Sex Gender ×
√

Week category The theme of messages in a spe-
cific week (mood, sleep, activity,
or none)

×
√

PHQ score PHQ total score ×
√

Early family environment higher score indicates higher
level of adverse experience

×
√

Personal history of depression ×
√

Neuroticism (Emotional experience) higher score indicates higher
level of neuroticism

×
√

Table 8: List of features available to the bandit in the IHS. The features available to model the action
interaction (effect of sending a mobile prompt) and to model the baseline (reward under no action)
are denoted via a “

√
” in the corresponding column, otherwise ×.

independence of results. To guarantee that messages have a positive probability of being sent, we only
sample the observations with notification randomization probability between 0.01 and 0.99. For the
algorithm employing NNR, we defined participants in the same institution as their own “neighbors".
This definition enables the flexibility for the value of k, representing the number of nearest neighbors,
to vary for each participant based on their specific institutional context. Furthermore, in our study
setting, we assume that individuals from the same institution enter the study simultaneously as a
group. Due to the limited access to prior data, we are unable to build the neural linear models as in
the Valentine Study.

We utilized 20 multiple-imputed data sets and performed an offline evaluation of the contextual
bandit algorithms on each data set. The result is presented below in Figure 11. Similar to Section
B.4, here we also compared RoME (as detailed in the main paper) with RoME-SU and NNR-Linear.
The differences between these methods are illustrated in Figure. 12. In this specific dataset, both
NNR and DML exhibit comparable performance individually, but their combined effect significantly
enhances the overall performance of the algorithm.

D Additional Details for Algorithm 1

This appendix briefly discusses two details of Algorithm 1. The first is efficient computation of V −1.
Because V is a fairly large matrix, a full matrix inversion is expensive. Fortunately, however, we can
dramatically reduce the necessary computational requirements because each additional (i, t) involves
a rank-one perturbation to V . Consequently, we can apply the Sherman–Morrison formula to speed
up computations. We leveraged this trick in our implementation of RoME for the simulation study by
using efficient rank-one updates available in the SuiteSparse library (Davis & Hu, 2011).

The second detail is the requirements for the distribution, DTS :
Definition 1. DTS is a multivariate distribution on Rd absolutely continuous with respect to Lebesgue
measure which satisfies: 1. (anti-concentration) that there exists a strictly positive probability p such
that for any u ∈ Rd with ∥u∥ = 1, P(u⊤η ≥ 1) ≥ p; and 2. (concentration) there exists c, c′ positive
constants such that ∀δ ∈ (0, 1), P (∥η∥ ≤

√
cd log(c′d/δ)) ≥ 1− δ.

While a Gaussian prior satisfies Definition 1, this approach allows us to move beyond Bayesian
posteriors to generic randomized policies. As discussed in the main paper, we recommend setting
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Figure 11: (left) Unbiased estimates of the average per-trial reward for all four competing algorithms,
relative to the reward obtained under the pre-specified Intern Health Study randomization policy
across 20 multiple-imputed data sets. And (right) p-values from the pairwise paired t-tests. The dark
shade in the last column indicates that the proposed RoME algorithm achieved significantly higher
rewards than the other three competing algorithms while demonstrating comparable performance to
the AC algorithm.

Figure 12: (left) Unbiased estimates of the average per-trial reward for all three ablation algorithms,
relative to the reward obtained under the pre-specified Intern Health Study randomization policy
across 20 multiple-imputed data sets. And (right) p-values from the pairwise paired t-tests.

DTS to a multivariate Gaussian distribution or multivariate t-distribution. These choices simplify
computations because the probability computation in (11) simplifies to an evaluation of the CDF
of either (a) a univariate Gaussian or (b) a univariate t-distribution. The mean and variance of
the corresponding univariate distribution can easily be worked out using the moments of a linear
combination of random variables.

E Regret Bound

E.1 Double Robustness of Pseudo-Reward

Going forward, we use the notation ∆f
i,t(s, ā) := fi,t(s, ā)− fi,t(s, 0) to denote the prediction of

the differential reward.

Lemma 2. If either pi,t = πi,t or fi,t = ri,t, then

E
[
R̃f

i,t|s, ā
]
= ∆i,t(s, ā).

That is, the pseudo-reward is an unbiased estimator of the true differential reward.

Proof. Recall that
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R̃f
i,t =

Rit − fi,t(s,Ai,t)

δAi,t=ā − πi,t(0|s)
+ ∆f

i,t(s, ā)

Case I: π’s are correctly specified

Then

E
[

Rit

δAi,t=ā − πi,t(0|s)

∣∣∣∣s, ā] = ri,t(s, ā)− ri,t(s, 0)

= ∆i,t(s, ā)

and

E
[

fi,t(s,Ai,t)

δAi,t=ā − πi,t(0|s)

∣∣∣∣s, ā] = fi,t(s, ā)− fi,t(s, 0)

= ∆f
i,t(s, ā)

so that

E
[
Rit − fi,t(s,Ai,t)

δAi,t=ā − πi,t(0|s)
+ ∆f

i,t(s, ā)

∣∣∣∣s, ā] = ∆i,t(s, ā)−∆f
i,t(s, ā) + ∆f

i,t(s, ā)

= ∆i,t(s, ā)

Case II: f correctly specified

E
[

Rit

δAi,t=ā − πi,t(0|s)

∣∣∣∣s, ā] = 1− pi,t(0|s)
1− πi,t(0|s)

ri,t(s, ā)−
pi,t(0|s)
πi,t(0|s)

ri,t(s, 0)

and

E
[

fi,t(s,Ai,t)

δAi,t=ā − πi,t(0|s)

∣∣∣∣s, ā] = 1− pi,t(0|s)
1− πi,t(0|s)

fi,t(s, ā)−
pi,t(0|s)
πi,t(0|s)

fi,t(s, 0̄)

=
1− pi,t(0|s)
1− πi,t(0|s)

ri,t(s, ā)−
pi,t(0|s)
πi,t(0|s)

ri,t(s, 0̄)

and

E
[
∆f

i,t(s, ā)

∣∣∣∣s, ā] = ∆i,t(s, ā)

E
[
Rit − fi,t(s, Āi,t)

δAi,t=ā − πi,t(0|s)
+ ∆f

i,t(s, ā)

∣∣∣∣s, ā] = ∆i,t(s, ā)

E.2 Preliminaries

Lemma 3. Let X be a mean-zero sub-Gaussian random variable with variance factor v2 and Y be a
bounded random variable such that |Y | ≤ B for some 0 ≤ B <∞. Then XY is sub-Gaussian with
variance factor v2B2.

Proof. Recall that X being mean-zero sub-Gaussian means that

P (|X| ≥ t) ≤ 2 exp

(
− t2

2v2

)
.

Now note that

|XY | ≤ |X|B
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so that if |XY | > t, then |X|B > t. Thus by monotonicity

P (|XY | ≥ t) ≤ P (|X|B ≥ t)

= P

(
|X| ≥ t

B

)
≤ 2 exp

(
− t2

2B2v2

)
as desired.

Lemma 4. If X,Y are sub-Gaussian with variance factors v2x, v2y , respectively, then αX + βY is
sub-Gaussian with variance factor α2v2x + β2v2y∀α, β ∈ R.

Proof. Recall the equivalent definition of sub-Gaussianity that X,Y are sub-Gaussian iff for some
b, a > 0 and all λ > 0

E exp (λ(X − EX)) ≤ exp(λ2v2x/2)

E exp (λ(Y − EY )) ≤ exp(λ2v2y/2)

Then

E exp (λ(αX + βY − αEX − βEY )) ≤
√

E exp (2αλ(X − EX))
√
E exp (2βλ(Y − EY ))

≤
√

exp(2α2λ2v2x)
√

exp(2β2λ2v2y)

= exp((α2v2x + β2v2y)λ
2)

The following Lemma gives the sub-Gaussianity and variance of the difference between the pseudo-
reward and its expectation. We see that in the variance, all terms except those involving the inverse
propensity weighted noise variance vanish as fi,t becomes a better estimate of ri,t. Note that means
and variances may be implicitly conditioned on the history.
Lemma 5. If πi,t is correctly specified and σ̃2

i,t ≥ 1
c , the difference between the pseudo-reward and

its expectation (taken wrt the action and noise) is mean zero sub-Gaussian with variance

Var
(
R̃f

i,t(s, ā)
)
=

(ri,t(s, ā)− fi,t(s, ā))
2πi,t(0|s) + Var(ϵi,t)

1− πi,t(0|s)

+
(ri,t(s, 0)− fi,t(s, 0))

2[1− πi,t(0|s)] + Var(ϵi,t)
πi,t(0|s)

− 2(ri,t(s, ā)− fi,t(s, ā))(ri,t(s, 0)− fi,t(s, 0))

Proof. We need to show that it is sub-Gaussian and upper bound its variance. We write the difference
as

R̃f
i,t(s, ā)− E[R̃f

i,t|s, ā] = R̃f
i,t(s, ā)−∆i,t(s, ā)

=
Rit − fi,t(s,Ai,t)

δAi,t=ā − πi,t(0|s)
+ ∆f

i,t(s, ā)−∆i,t(s, ā)

=
ri,t(s,Ai,t)− fi,t(s,Ai,t) + ϵi,t

δAi,t=ā − πi,t(0|s)
+ ∆f

i,t(s, ā)−∆i,t(s, ā)

Note that |ri,t(s,Ai,t)| ≤ max (|ri,t(s, ā)|, |ri,t(s, 0)|) and |fi,t(s,Ai,t)| ≤
max (|fi,t(s, ā)|, |fi,t(s, 0)|). Thus since

∣∣∣ 1
δAi,t=ā−πi,t(0|s)

∣∣∣ is upper bounded by c > 0, we

have that ri,t(s,Ai,t)−fi,t(s,Ai,t)
δAi,t=ā−πi,t(0|s) is bounded and thus (not necessarily mean zero) sub-Gaussian. Since

ϵi,t is sub-Gaussian, its denominator is bounded, and the remaining terms are deterministic, the entire
difference between the pseudo-reward and its mean is sub-Gaussian. Now

29



Var(R̃f
i,t(s, ā)− E[R̃f

i,t|s, ā]) = Var
(
R̃f

i,t(s, ā)
)

= E
[
R̃f

i,t(s, ā)
2
]
−∆i,t(s, ā)

2 (14)

since E[R̃f
i,t|s, ā] is not random. Now we expand the first term on the rhs.

E
[
R̃f

i,t(s, ā)
2
]
= E

[(
ri,t(s,Ai,t)− fi,t(s,Ai,t) + ϵi,t

δAi,t=ā − πi,t(0|s)
+ ∆f

i,t(s, ā)

)2
]

= E

[(
ri,t(s,Ai,t)− fi,t(s,Ai,t) + ϵi,t

δAi,t=ā − πi,t(0|s)

)2
]

+ 2E
[
ri,t(s,Ai,t)− fi,t(s,Ai,t) + ϵi,t

δAi,t=ā − πi,t(0|s)

]
∆f

i,t(s, ā) + ∆f
i,t(s, ā)

2

= E

[(
ri,t(s,Ai,t)− fi,t(s,Ai,t) + ϵi,t

δAi,t=ā − πi,t(0|s)

)2
]

+ 2(∆i,t(s, ā)−∆f
i,t(s, ā))∆

f
i,t(s, ā) + ∆f

i,t(s, ā)
2 (15)

For the first term on the rhs of Eqn. 15,

E

[(
ri,t(s,Ai,t)− fi,t(s,Ai,t) + ϵi,t

δAi,t=ā − πi,t(0|s)

)2
]

= E

[(
ri,t(s,Ai,t)− fi,t(s,Ai,t)

δAi,t=ā − πi,t(0|s)

)2
]
+ E

[(
ϵi,t

δAi,t=ā − πi,t(0|s)

)2
]

=
(ri,t(s, ā)− fi,t(s, ā))

2 + E[ϵ2i,t]
1− πi,t(0|s)

+
(ri,t(s, 0)− fi,t(s, 0))

2 + E[ϵ2i,t]
πi,t(0|s)

so that plugging this into Eqn. 15, we have

E
[
R̃f

i,t(s, ā)
2
]
=

(ri,t(s, ā)− fi,t(s, ā))
2 + E[ϵ2i,t]

1− πi,t(0|s)
+

(ri,t(s, 0)− fi,t(s, 0))
2 + E[ϵ2i,t]

πi,t(0|s)
+ 2(∆i,t(s, ā)−∆f

i,t(s, ā))∆
f
i,t(s, ā) + ∆f

i,t(s, ā)
2

and plugging this into Eqn. 14 we obtain the variance.

Var
(
R̃f

i,t(s, ā)
)
=

(ri,t(s, ā)− fi,t(s, ā))
2 + Var(ϵi,t)

1− πi,t(0|s)
+

(ri,t(s, 0)− fi,t(s, 0))
2 + Var(ϵi,t)

πi,t(0|s)
+ 2(∆i,t(s, ā)−∆f

i,t(s, ā))∆
f
i,t(s, ā) + ∆f

i,t(s, ā)
2 −∆i,t(s, ā)

2 (16)

Note that

2(∆i,t(s, ā)−∆f
i,t(s, ā))∆

f
i,t(s, ā) + ∆f

i,t(s, ā)
2 −∆i,t(s, ā)

2

= 2(∆i,t(s, ā)−∆f
i,t(s, ā))∆

f
i,t(s, ā)− (∆i,t(s, ā)−∆f

i,t(s, ā))(∆i,t(s, ā) + ∆f
i,t(s, ā))

= (∆i,t(s, ā)−∆f
i,t(s, ā))(∆

f
i,t(s, ā)−∆i,t(s, ā))

= −(∆i,t(s, ā)−∆f
i,t(s, ā))

2

and plugging this into Eqn. 16,

Var
(
R̃f

i,t(s, ā)
)
=

(ri,t(s, ā)− fi,t(s, ā))
2 + Var(ϵi,t)

1− πi,t(0|s)
+

(ri,t(s, 0)− fi,t(s, 0))
2 + Var(ϵi,t)

πi,t(0|s)
− (∆i,t(s, ā)−∆f

i,t(s, ā))
2
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as desired. Now note that(
∆i,t(s, ā)−∆f

i,t(s, ā)
)2

= (ri,t(s, ā)− ri,t(s, 0)− (fi,t(s, ā)− fi,t(s, 0)))
2

= (ri,t(s, ā)− fi,t(s, ā)− (ri,t(s, 0)− fi,t(s, 0)))
2

= (ri,t(s, ā)− fi,t(s, ā))
2 + (ri,t(s, 0)− fi,t(s, 0))

2

− 2(ri,t(s, ā)− fi,t(s, ā))(ri,t(s, 0)− fi,t(s, 0))

so that

Var
(
R̃f

i,t(s, ā)
)
=

(ri,t(s, ā)− fi,t(s, ā))
2πi,t(0|s) + Var(ϵi,t)

1− πi,t(0|s)

+
(ri,t(s, 0)− fi,t(s, 0))

2[1− πi,t(0|s)] + Var(ϵi,t)
πi,t(0|s)

− 2(ri,t(s, ā)− fi,t(s, ā))(ri,t(s, 0)− fi,t(s, 0))

Corollary 1.

Ep(s,ā)

[
Var
(
R̃f

i,t(s, ā)
)]
≤

Ep(s,ā)

[
(ri,t(s, ā)− fi,t(s, ā))

2
]
πi,t(0|s) + Var(ϵi,t)

1− πi,t(0|s)

+
Ep(s,ā)

[
(ri,t(s, 0)− fi,t(s, 0))

2
]
[1− πi,t(0|s)] + Var(ϵi,t)

πi,t(0|s)

+ 2
√
Ep(s,ā) [(ri,t(s, ā)− fi,t(s, ā))2]

√
Ep(s) [(ri,t(s, 0)− fi,t(s, 0))2]

Proof. It follows immediately by taking expectations and applying Cauchy Schwartz.

Corollary 2. (ri,t(·, 0)− fi,t(·, 0))2 = oP (k
−1/2) and (ri,t(·, ā)− fi,t(·, ā))2 = oP (k

−1/2)

Proof. Note that

P
(
(ri,t(·, 0)− fi,t(·, 0))2k1/2 > C

)
≤

Ep(Hk−1)Ep(s)

[
(ri,t(s, 0)− fi,t(s, 0))

2
]
k1/2

C

=
Ep(Hk−1)oP (k

−1/2)k1/2

C
Assumption 3

=
Ep(Hk−1)oP (1)

C
≤ δ for sufficiently large k

so that (ri,t(·, 0)− fi,t(·, 0))2 = oP (k
−1/2). In the second to last line we used that since ri,t, fi,t are

bounded, Ep(s)

[
(ri,t(s, 0)− fi,t(s, 0))

2
]

is bounded. For bounded random variables, convergence
in probability implies convergence in mean. A similar result holds when using ā instead of 0.

Corollary 3.

Var
(
R̃f

i,t(s, ā)
)
≤ oP (k

−1/2)πi,t(0|s) + Var(ϵi,t)
1− πi,t(0|s)

+
oP (k

−1/2)[1− πi,t(0|s)] + Var(ϵi,t) + Var(ϵi,t)
πi,t(0|s)

+ 2oP (k
−1/2)

Proof. This follows immediately from the previous two Corollaries.

Corollary 4. For all δ > 0, there exists C > 0 s.t. w.p. at least 1− δ,

Var
(
R̃f

i,t(s, ā)
)
≤ Ck−1/2πi,t(0|s) + Var(ϵi,t)

1− πi,t(0|s)
+

Ck−1/2[1− πi,t(0|s)] + Var(ϵi,t)
πi,t(0|s)

+ 2Ck−1/2

≡ v2k
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Proof. By the definition of oP , if (fi,t − ri,t)
2 = oP (k

−1/2) for any A > 0, δ > 0, there exists K
s.t. if K > k, then w.p. at least 1− δ,

(fi,t − ri,t)
2 ≤ Ak−1/2.

Then for all k ∈ N, since f, r are bounded

(fi,t − ri,t)
2 ≤ 16B2I(k ≤ K) + I(k > K)Ak−1/2.

Now choose

C ≡ max
(
A, 16B2K1/2

)
.

Remark 1. In the limit as k →∞

σ̃2
i,tVar

(
R̃f

i,t(s, ā)
)
≤ πi,t(0|s)Var(ϵi,t) + (1− πi,t(0|s))Var(ϵi,t)

= Var(ϵi,t)

In the next remark, we show what the variance would be if we did not use DML and estimate
fi,t ≈ ri,t, but used only the inverse propensity weighted observed reward as the pseudo-reward. This
was done in Greenewald et al. (2017). In this case, there are terms dependent on the mean reward that
do not vanish as the number of stages goes to infinity.
Remark 2. If we instead used as our pseudo-reward the inverse propensity weighted observed reward

R̃i,t(s, ā) =
Rit

δAi,t=ā − πi,t(0|s)
this would be unbiased with variance

v2k ≡
ri,t(s, ā)

2 + Var(ϵi,t)
1− πi,t(0|s)

+
ri,t(s, 0)

2 + Var(ϵi,t)
πi,t(0|s)

−∆i,t(s, ā)
2

Proof. The unbiasedness is clear from our proof of Lemma 2. For the variance,

Var
(

Rit

δAi,t=ā − πi,t(0|s)

)
= E

[
(ri,t(s, ā) + ϵi,t)

2

1− πi,t(0|s)
+

(ri,t(s, 0) + ϵi,t)
2

πi,t(0|s)

]
−∆i,t(s, ā)

2

=
ri,t(s, ā)

2 + Var(ϵi,t)
1− πi,t(0|s)

+
ri,t(s, 0)

2 + Var(ϵi,t)
πi,t(0|s)

−∆i,t(s, ā)
2

Here we collect some important results. We first adapt an important concentration inequality for
regularized least-squares estimates. Our proof follows the same basic strategy as Abbasi-Yadkori
et al. (2011), but with modifications due to (a) the use of weighted least squares (b) the use of
pseudo-rewards to estimate differential rewards (c) replacing the scaled diagonal regularization with
Laplacian regularization.

Lemma 6 (Adapted from Theorem 2 in Abbasi-Yadkori et al. (2011)). Let θ̂k be the stage k
regularized least squares (RLS) estimate from Algorithm 1 and θ∗ the ground truth where we assume
∥θ∗∥ ≤ S. For any δ > 0, w.p. at least 1− δ the estimates {θk}∞k=0 satisfies for any {xk}∞k=0,

|x⊤
k (θ̂k − θ∗)| ≤ ∥xk∥V −1

k

(
vk

√
2 log

(
det(Vk)1/2 det(V0)−1/2

δ

)
+ ∥θ∗∥V0

)
, (17)

where v2k is the variance factor for the difference between the pseudo-reward and its mean at stage k.
In particular, setting xk = Vk(θ̂k − θ∗) implies

∥θ̂k − θ∗∥Vk
≤ vk

√
2 log

(
det(Vk)1/2 det(V0)−1/2

δ

)
+ ∥θ∗∥V0

holds w.p. at least 1− δ for all k ≥ 1.
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Proof. Let mi,t = σ̃i,tϕ(xi,t) and ρi,t = σ̃i,t[R̃
f
i,t(s, ā)− E[R̃f

i,t|s, ā]]. Further let

ξk ≡
∑

(i,t)∈Ok−1

σ̃2
i,t[R̃

f
i,t(s, ā)− E[R̃f

i,t|s, ā]]ϕ(xi,t)

=
∑

(i,t)∈Ok−1

σ̃i,t[R̃
f
i,t(s, ā)− E[R̃f

i,t|s, ā]]mi,t

=
∑

(i,t)∈Ok−1

mi,tρi,t

Then noting that Vk =
∑

(i,t)∈Ok−1
mi,tm

⊤
i,t + V0 and bk =

∑
(i,t)∈Ok−1

σ2
i,tR̃

f
i,tϕi,tand letting Wk

be the diagonal matrix of weights σ̃2
i,t, we have

θ̂k = V −1
k bk

= V −1
k (ξk +Φ⊤

k WkE[Rfk
k |ā, s])

= V −1
k ξk + V −1

k Φ⊤
k Wk∆k by Lemma 2

= V −1
k ξk + V −1

k Φ⊤
k WkΦkθ

∗

= V −1
k ξk + V −1

k (Φ⊤
k WkΦk + V0)θ

∗ − V −1
k V0θ

∗

= V −1
k ξk + θ∗ − V −1

k V0θ
∗
k

and thus
θ̂k − θ∗ = V −1

k (ξk − V0θ
∗)

which gives

|x⊤
k θ̂k − x⊤

k θ
∗| ≤ ∥xk∥V −1

k
(∥ξk∥V −1

k
+ ∥V0θ

∗∥V −1
k

)

Now since ξk is sub-Gaussian with variance factor v2k, by Theorem 1 in Abbasi-Yadkori et al. (2011),
w.p. 1− δ,

∥ξk∥2V −1
k

≤ 2v2k log

(
det(Vk)

1/2det(V0)
−1/2

δ

)
Further note that since V0 ⪯ Vk, then V −1

k ⪯ V −1
0 . Thus

∥V0θ
∗∥2

V −1
k

= θ∗⊤V ⊤
0 V −1

k V0θ
∗

≤ θ∗⊤V ⊤
0 V −1

0 V0θ
∗

= θ∗⊤V0θ
∗.

Finally, setting xk = Vk(θ̂k − θ∗) implies

∥θ̂k − θ∗∥2Vk
= (θ̂k − θ∗)⊤Vk(θ̂k − θ∗)

= |x⊤
k θ̂k − x⊤

k θ
∗|

≤ ∥xk∥V −1
k

vk

√
2 log

(
det(V −1

k )1/2det(V0)−1/2

δ

)
+
√

θ∗⊤V0θ∗


= ∥Vk(θ̂k − θ∗)∥V −1

k

vk

√
2 log

(
det(V −1

k )1/2det(V0)−1/2

δ

)
+
√
θ∗⊤V0θ∗


= ∥θ̂k − θ∗∥Vk

vk

√
2 log

(
det(V −1

k )1/2det(V0)−1/2

δ

)
+
√

θ∗⊤V0θ∗


and dividing both sides by ∥θ̂k − θ∗∥Vk

implies

∥θ̂k − θ∗∥Vk
≤ vk

√
2 log

(
det(Vk)1/2 det(V0)−1/2

δ

)
+
√
θ∗⊤V0θ∗

33



In the above inequality, we will need to bound ∥θ∗∥V0 in order to obtain useful confidence sets.
Lemma 7.

∥θ∗∥V0 ≤
√
γBshared +

√
λWK(

√
Duser +

√
Dtime) +

√
γWK(Buser +Btime).

Proof. Recall that
V0 = diag(γIp, λL

user
⊗ + γIKp, λL

time
⊗ + γIKp), (18)

Then

θ∗⊤V0θ
∗ = γ∥θshared∥2 + λtr

(
Θ⊤

userL
userΘuser

)
+ γtr

(
Θ⊤

userIKp
Θuser

)
+ λtr

(
Θ⊤

timeL
timeΘtime

)
+ γtr

(
Θ⊤

timeIKp
Θtime

)
= γ∥θshared∥2 + λ

∑
(i,j)∈Euser

∥θuser
i − θuser

j ∥22 + λ
∑

(i,j)∈Etime

∥θtime
i − θtime

j ∥22

+ γ∥Θuser∥2F + γ∥Θtime∥2F
≤ γB2

shared + λWK(Duser +Dtime) + γWK(B2
user +B2

time) by Assumption 5

where we assume that each user and time have at most m neighbors. Now using
√
a+ b ≤

√
a+
√
b

for a, b > 0 we have√
θ∗⊤V0θ∗ ≤

√
γBshared +

√
λWK(

√
Duser +

√
Dtime) +

√
γWK(Buser +Btime).

We will also want to bound the log determinant terms. The next two Lemmas show us how to do so.
Lemma 8.

det(VK+1) ≤

(
3K(K+1)

8 + γ(2K + 1)p+ 2λMKp

(2K + 1)p

)(2K+1)p

Proof. By AM-GM inequality,

det(VK+1) = det

 ∑
(i,t)∈OK

σ̃2
i,tϕ(xi,t)ϕ(xi,t)

⊤ + V0


≤

 tr
(∑

(i,t)∈OK
σ̃2
i,tϕ(xi,t)ϕ(xi,t)

⊤ + V0

)
(2K + 1)p

(2K+1)p

Now

tr

 ∑
(i,t)∈OK

σ̃2
i,tϕ(xi,t)ϕ(xi,t)

⊤

 ≤ ∑
(i,t)∈OK

σ̃2
i,t∥ϕ(xi,t)∥22

≤ 3

4

K(K + 1)

2
.

Recall that V0 = diag(γIp, λL
user
⊗ + γIKp, λL

time
⊗ + γIKp), so that

tr(V0) = γ
(
tr(Ip) + tr(IKp

) + tr(IKp
)
)
+ λ

(
tr(Luser

⊗ ) + tr(Ltime
⊗ )

)
= γ(2K + 1)p+ λ

(
tr(Luser)tr(Ip) + tr(Ltime)tr(Ip)

)
= γ(2K + 1)p+ λp(tr(Luser) + tr(Ltime))

≤ γ(2K + 1)p+ 2λWKp

and thus

det(VK+1) ≤

(
3K(K+1)

8 + γ(2K + 1)p+ 2λMKp

(2K + 1)p

)(2K+1)p
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Lemma 9.

log
det(VK)

det(V0)
≤ (2K + 1)p log

(
3K(K + 1)

γ8(2K + 1)p
+ 1 +

2λMK

γ(2K + 1)

)

Proof. Note that

det(V0) ≥ γ(2K+1)p,

so that

det(VK)

det(V0)
≤

(
3K(K+1)

8 + γ(2K + 1)p+ 2λMKp

γ(2K + 1)p

)(2K+1)p

Taking the log, we have

log
det(VK)

det(V0)
≤ log

(
3K(K+1)

8 + γ(2K + 1)p+ 2λMKp

γ(2K + 1)p

)(2K+1)p

≤ (2K + 1)p log

(
3K(K + 1)

γ8(2K + 1)p
+ 1 +

2λMK

γ(2K + 1)

)

Corollary 5. If Assumption 3, then for any δ > 0, there exists C > 0 s.t. w.p. at least 1 − δ the
estimates {θ̂k}∞k=0 in Algorithm 2 satisfies for any {xk}∞k=0,

|x⊤
k (θ̂k − θ∗)| ≤ ∥xk∥V −1

k

((
C

k1/2
+ σ2c2

)√
2 log

(
det(Vk)1/2 det(V0)−1/2

δ/2

)
+ ∥θ∗∥V0

)
,

(19)

In particular, setting xk = Vk−1(θ̂k−1 − θ∗) implies

∥θ̂k − θ∗∥Vk
≤
(

C

k1/2
+ σ2c2

)√
2 log

(
det(Vk)1/2 det(V0)−1/2

δ/2

)
+ ∥θ∗∥V0

holds w.p. at least 1− δ for all k ≥ 1.

Proof. Use Corollary 3 and Lemma 6, each with δ/2. Then w.p. at least 1− δ the result holds.

We next state a slightly modified form of a standard result of RLS (Lemma 11 in Abbasi-Yadkori
et al. (2011)) that helps to guarantee that the prediction error is cumulatively small. This bounds the
sum of quadratic forms where the matrix is the inverse Gram matrix and the arguments are the feature
vectors. We use such terms to construct a martingale in the regret bound so that we can bound such
terms and the martingale.

Proposition 1. Let λ ≥ 1 and γ ≥ 1. For any arbitrary sequence (xi,t)(i,t)∈Ok
, let

Vk+1 ≡
∑

(i,t)∈Ok

σ̃2
i,tϕ(xi,t)ϕ(xi,t)

⊤ + V0,

be the regularized Gram matrix. Then

K∑
k=1

∑
(i,t)∈Ok\Ok−1

∥ϕ(xi,t)∥2V −1
k

≤ 2c log

(
det(VK+1)

det(V0)

)
.

where c is a constant such that 0 < 1
c < σ̃2

i,t∀i, t ∈ N.
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Proof. By Lemma 11 in Abbasi-Yadkori et al. (2011), we have
K∑

k=1

∑
(i,t)∈Ok\Ok−1

σ̃2
i,t∥ϕ(xi,t)∥2V −1

k

≤ 2 log

(
det(VK+1)

det(V0)

)
.

The lower bound on the weights implies
K∑

k=1

∑
(i,t)∈Ok\Ok−1

∥ϕ(xi,t)∥2V −1
k

≤ 2c log

(
det(VK+1)

det(V0)

)
as desired.

Finally, we state Azuma’s concentration inequality which describes concentration of super-martingales
with bounded differences and is useful in controlling the regret due to the randomization of Thompson
sampling.
Proposition 2 (Azuma’s concentration inequality). If a super-martingale (Yt)t≥0 corresponding to a
filtration Ft satisfies |Yt − Yt−1| < ct some constant ct for all t = 1, . . . , T then for any α > 0:

P (YT − Y0 ≥ α) ≤ exp

(
− α2

2
∑T

t=1 c
2
t

)
.

E.3 Proof of Theorem 1

We first decompose the regret bound
K∑

k=1

1

k

∑
(i,t)∈Ok\Ok−1

[
π⋆
i,tx(Si,t, a

∗
i,t)

⊤θ∗i,t − πi,tx(Si,t, Ai,t)
⊤θ∗i,t

]
=

K∑
k=1

1

k

∑
(i,t)∈Ok\Ok−1

[
(π⋆

i,t − πi,t)x(Si,t, Ai,t)
⊤θ∗i,t

+ π⋆
i,t

{
x(Si,t, a

∗
i,t)

⊤θ∗i,t − x(Si,t, Ai,t)
⊤θ∗i,t

} ]
≤

K∑
k=1

1

k

∑
(i,t)∈Ok\Ok−1

[
(π⋆

i,t − πi,t)x(Si,t, Ai,t)
⊤θ∗i,t

]
+

K∑
k=1

1

k

∑
(i,t)∈Ok\Ok−1

[
x(Si,t, a

∗
i,t)

⊤θ∗i,t − x(Si,t, Ai,t)
⊤θ∗i,t

]

For the first term,
∑K

k=1
1
k

∑
(i,t)∈Ok\Ok−1

[
(π⋆

i,t − πi,t)x(Si,t, Ai,t)
⊤θ∗i,t

]
, one can apply a nearly

identical proof to that of Greenewald et al. (2017). For the second term we need a novel strategy,
and thus focus on that term. The proof follows closely from Abeille & Lazaric (2017) with several
adjustments. Assumption 6 implies that we only need to consider the unit ball X = {∥x∥ ≤ 1}. Then
the second term of the regret can be decomposed into
K∑

k=1

1

k

∑
(i,t)∈Ok\Ok−1

(
(ϕ(x⋆

i,t))
⊤θ⋆ − ϕ(xi,t)

⊤θ̃k

)
︸ ︷︷ ︸

RTS(K)

+

K∑
k=1

1

k

∑
(i,t)∈Ok\Ok−1

(
ϕ(xi,t)

⊤θ̃k − ϕ(xi,t)
⊤θ⋆

)
︸ ︷︷ ︸

RRLS(K)

where ϕ(x⋆
i,t) is the context vector under the optimal action and θ⋆ is the true parameter value. The

first term is the regret due to the random deviations caused by sampling θ̃k and whether it provides
sufficient useful information about the true parameter θ⋆k. The second term is the concentration of the
sampled term around the true linear model for the advantage function.
Definition 2. We define the filtration Fk as the information accumulated up to stage k be-
fore the sampling procedure, that is, Fk = (F1, σ(x1, r2, x2, . . . , xk−1, rk−1)), and filtration
Fx

k as the information accumulated up to stage k and including the sampled context, that is,
Ft = (F1, σ(x1, r2, x2, . . . , xk−1, rk−1, xk)).
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Bounding RRLS(T ). We decompose the second term into the variation of the point estimate and
the variation of the random sample around the point estimate:

K∑
k=1

1

k

∑
(i,t)∈Ok\Ok−1

(
ϕ(xi,t)

⊤θ̃k − ϕ(xi,t)
⊤θ̂k

)
+

K∑
k=1

1

k

∑
(i,t)∈Ok\Ok−1

(
ϕ(xi,t)

⊤θ̂k − ϕ(xi,t)
⊤θ⋆k

)
The first term describes the deviation of the TS linear predictor from the RLS one, while the second
term describes the deviation of the RLS linear predictor from the true linear predictor. The first
term is controlled by the construction of the sampling distribution DTS , while the second term is
controlled by the RLS estimate being a minimizer of the regularized cumulative squared error in (8).
In particular, the first term will be small when the TS estimate concentrates around the RLS one, while
the second will be small when the RLS estimate concentrates around the true parameter vector. The
next proposition gives a lower bound on the probability that, for all stages, both the RLS parameter
vector concentrates around the true parameter vector and the TS parameter vector concentrates around
the RLS one.

Recall that

βk(δ) = vk

[
2 log

(
det(Vk)

1/2

det(V0)1/2δ/2

)]1/2
+B

where B =
√
γBshared+

√
λMK(

√
Duser+

√
Dtime)+

√
γMK(Buser+Btime). This is, from Lemma

6 and Corollary 7, an upper bound on a 1− δ confidence set on the RLS estimator.

Proposition 3. Let Êk denote the event that θ̂k concentrates around the true parameter for all l ≤ k,

i.e., Êk = {∀l ≤ k, ∥θ̂l − θ⋆l ∥Vl
≤ βl(δ

′)}. Let γk(δ) ≡ βk(δ
′)
√

cd log c′d
δ Let Ẽk denote the event

that θ̃l concentrates around the estimated parameter for all l ≤ k, i.e., Ẽk = {∀l ≤ k, ∥θ̃l − θ̂l∥Vl
≤

γl(δ
′)}. Let Ek = Êk ∩ Ẽk. Then P (Ek) ≥ 1− δ/2.

Proof. Let δ′ = δ/4K, then Lemma 6 and a union bound give us

P (ÊK) = P (∩Kk=1{∥θ̂k − θ⋆∥Vk
≤ βk(δ

′)})

= 1−
K∑

k=1

P (∥θ̂k − θ⋆∥Vk
> βk(δ

′))

= 1−
K∑

k=1

δ′ = 1− δ′K = 1− δ/4.

Applying the TS sampling distribution and θ̃k = θ̂k + βk(δ
′)V

−1/2
k ηk where ηt is drawn i.i.d. from

DTS we have

P

(
∥θ̃k − θ̂k∥Vk

≤ βk(δ
′)

√
cd log

(
c′d

δ′

))
= P

(
∥ηk∥ ≤

√
cd log

(
c′d

δ′

))
≥ 1− δ′.

by Definition 1. A union-bound argument yields the conclusion.

We can then bound RRLS(K) by leveraging Lemma 6 and decomposing the error via

RRLS(K) ≤
K∑

k=1

1[EK ]

k

 ∑
(i,t)∈Ok\Ok−1

|ϕ(xi,t)
⊤(θ̃k − θ̂k)|


+

K∑
k=1

1[EK ]

k

 ∑
(i,t)∈Ok\Ok−1

|ϕ(xi,t)
⊤(θ̂k − θ∗)|


By definition of the event EK , we have

|ϕ(xi,t)
⊤(θ̃k−θ̂k)|1[Ek] ≤ ∥ϕ(xi,t)∥V −1

k
γk(δ

′), |ϕ(xi,t)
⊤(θ̂k−θ⋆)|1[Ek] ≤ ∥ϕ(xi,t)∥V −1

k
βk(δ

′)
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so from Proposition 1, we have
K∑

k=1

1[EK ]

k

 ∑
(i,t)∈Ok\Ok−1

|ϕ(xi,t)
⊤(θ̃k − θ̂k)|


≤ γK(δ′)

K∑
k=1

 ∑
(i,t)∈Ok\Ok−1

1

k
∥ϕ(xi,t)∥V −1

k


≤ γK(δ′)

√√√√ K∑
k=1

∑
(i,t)∈Ok\Ok−1

1

k2

√√√√ K∑
k=1

∑
(i,t)∈Ok\Ok−1

∥ϕ(xi,t)∥2V −1
k

≤ γK(δ′)

√√√√ K∑
k=1

1

k

√√√√ K∑
k=1

∑
(i,t)∈Ok\Ok−1

∥ϕ(xi,t)∥2V −1
k

≤ γK(δ′)
√
HK

√ ∑
(i,t)∈Ok

∥ϕ(xi,t)∥2V −1
k

≤ γK(δ′)
√
HK

√
2c log

(
det(VK+1)

det(V0)

)
.

Using a similar derivation for the βk(δ
′) case, we obtain

RRLS(K) ≤ (βK(δ′) + γK(δ′))

√√√√ K∑
k=1

∑
(i,t)∈Ok\Ok−1

1

k2

√
2c log

(
det (VK+1)

det (V0)

)

≤ (βK(δ′) + γK(δ′))

√√√√ K∑
k=1

1

k

√
2c log

(
det (VK+1)

det (V0)

)

≤ (βK(δ′) + γK(δ′))
√

HK

√
2c

[
(2K + 1)p log

(
3K(K + 1)

γ8(2K + 1)p
+ 1 +

2λMK

γ(2K + 1)

)]
with probability at least 1 − δ/2 by Proposition 3, where HK is the harmonic number. Note that
HK ∼ log(K) for large K.

Bounding RTS(T ). Leveraging Abeille & Lazaric (2017), Definition 1 lets us bound RTS(K)
under the event Ek. Let ϕ(x⋆

i,t)(θ) = argmaxxi,t∈X θ⊤ϕ(xi,t). Then

RTS(K) ≤
K∑

k=1

1

k
RTS

k 1[Ek] ≤
4γK(δ′)

d

K∑
k=1

1

k

∑
(i,t)∈Ok\Ok−1

E
[
∥ϕ(x⋆

i,t)(θ̃)∥V −1
k
|Fk

]
(20)

We re-write the sum in (20) as:
K∑

k=1

1

k

∑
(i,t)∈Ok\Ok−1

∥ϕ(xi,t)∥V −1
k

+

K∑
k=1

1

k

∑
(i,t)∈Ok\Ok−1

(
E
[
∥ϕ(x⋆

i,t)(θ̃)∥V −1
k
|Fk

]
− ∥ϕ(xi,t)∥V −1

k

)
︸ ︷︷ ︸

RTS
2

The first term is bounded by Proposition 1:
K∑

k=1

1

k

∑
(i,t)∈Ok\Ok−1

∥ϕ(xi,t)∥V −1
k
≤

√
2cHK log

(
det(VK+1)

det(V0)

)
The second term is a martingale by construction and so we can apply Azuma’s inequality. Under
Assumption 6, so since Vk ≤ 1

λI we have

E
[
∥ϕ(xi,t)

⋆(θ̃)∥V −1
k
|Ft

]
− ∥ϕ(xi,t)∥V −1

k
≤ 2√

λ
, a.s.
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This provides the upper-bound

RTS(K) ≤ 4γK(δ′)

d

(√
8K

λ
log

(
4

δ

)
+

√
2cHK(2K + 1)p log

(
3K(K + 1)

γ8(2K + 1)p
+ 1 +

2λMK

γ(2K + 1)

))
.

Overall bound. Putting together the two bounds under a union bound argument yields the upper
bound in Theorem 1; specifically, we have(

βK(δ′) + γK(δ′)

[
1 +

4

d

])√
2cHK(2K + 1)p log

(
3K(K + 1)

γ8(2K + 1)p
+ 1 +

2λMK

γ(2K + 1)

)

+
4γK(δ′)

p

√
8K

λ
log

(
4

δ

)

F Notation Guide

For convenience, we summarize below some key notation used in the main paper.

• a = 0: control action

• q: number of non-baseline treatment arms

• i = 1, 2, . . .: index for individuals (later in the paper, we consider N individuals)

• t = 1, 2, . . .: index for decision points (later in the paper, we consider T decision points)

• Si,t ∈ S: context vector observed for individual i at decision point t

• Ai,t ∈ {0, . . . , q}: action chosen for individual i at decision point t

• Ri,t ∈ R: reward observed for individual i at decision point t

• ri,t(s, a) := E [Ri,t|Si,t = s,Ai,t = a]: conditional model for the observed reward given
the state and context

• x(s, a) ∈ Rp×1: feature vector containing the state and action

• θi,t ∈ Rp: vector of parameters that may depend on the individual i and decision point t.
Later θi,t is written as θi,t = θ + θuseri + θtime

t , where θuseri is the individual-specific but
time-invariant term and θtime

t is a shared time-specific term

• δa>0: indicator function that takes the value 1 if a > 0 and 0 otherwise

• gt(s): baseline reward function that is observed when individuals are randomized to receive
no treatment

• ∆i,t(s, a) := ri,t(s, a)− ri,t(s, 0): linear differential reward for any action a > 0 and state
s

• Hi,t: history up to decision point t for individual i

• πi,t(a|s): probability of action a ∈ [K] given current context s ∈ S for a fixed (implicit)
history

• āi,t ∈ [K]: potential non-baseline arm that may be chosen if the baseline arm is not chosen

• fi,t(s, a): working model for the true conditional mean ri,t(s, a)

• R̃f
i,t(s, ā): pseudo-reward given state Si,t = s and potential arm ā, which has the same

expectation as the differential reward, ∆i,t(si,t, āi,t); this term is written as R̃f
i,t in some

points in the main paper, with the state and action implied

• ∆f
i,t(s, ā) := fi,t(s, ā)− fi,t(s, 0): doubly robust estimator for the differential reward

• Im(t) ⊆ {1, ..., t}: the m-th fold, of M total folds, as assigned up to time t. I∁m(t) denotes
its complement

• λ: parameter for ridge penalization, used in λ||θ||22
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• σ̃2
i,t = πi,t(0|si,t) · (1− πi,t(0|si,t)): weights used in the penalized regression estimation,

which are inversely proportional to var(R̃f
i,t)

•
{
d(i, j) := ||θi − θj ||22

}
i̸=j

: L2-distances for network construction

• G = (V,E): graph with nodes V and edges E; each node corresponds to an individual,
V := [N ], and (i, j) ∈ E for the smallest M << N distances

• Q: incidence matrix where the element Qv,e corresponds to the v-th vertex (individual) and
e-th edge

• L: Laplacian
• M : max number of neighbors per participant and time step
• Ok = {(i, t) : i ≤ k & t ≤ k+1− i}: the set of observed time points across all individuals

at stage k of the sequential requirement setting
• Guser: nearest-neighbor graph characterizing proximity in the user domain
• Gtime: nearest-neighbor graph characterizing proximity in the time domain item Θk =

vec[
(
θ, θuser

1 , . . . , θuser
k , θtime

1 , . . . , θtime
k

)
] ∈ Rp(2k+1): the set of all parameters, including the

individual-specific time-invariant parameters and the shared time-specific parameters, at
stage k of the sequential recruitment setting

• Duser, Dtime, Buser, Btime, M : terms for bound on parameters and mean estimate
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paper’s contributions and scope?
Answer: [Yes]
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tion, while the introduction delves deeper into background details and highlights the key
components of our proposed algorithm.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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Answer: [Yes]
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Guidelines:
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they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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the model (e.g., with an open-source dataset or instructions for how to construct
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discussing options for this split. Additionally, we clearly listed all of the hyperparameters
involved in forming objective functions and provided guidance on how to make suitable
choices for them.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Section 6.2, the experiment results include hypothesis testing, and we have
clearly indicated the p-values in the Figure legend to denote statistical significance.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
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error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: At the start of Section 6, we offer a paragraph outlining the computer resources
required to reproduce the experiments.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The author has obtained permission to access both the Valentine study and the
Intern Health Study dataset. It’s important to note that the experiments conducted in this
paper are purely numerical simulations and offline evaluation of existing data, which do not
involve any human research subjects or participants.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper is driven by the current challenges in mobile health policy learning,
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result, we emphasize the societal impacts, focusing on how the algorithm has the potential
to improve public health.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: We have cited the associated papers that produced the code package and dataset
in Section 6.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The Appendix includes a link to our GitHub repository that contains the code
to reproduce our simulation study.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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