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Abstract

The matrix recovery (completion) problem, a central problem in data science,
involves recovering a matrix A from a relatively small random set of entries. While
such a task is generally impossible, it has been shown that one can recover A
exactly in polynomial time, with high probability, under three basic and necessary
assumptions: (1) the rank of A is very small compared to its dimensions (low
rank), (2) A has delocalized singular vectors (incoherence), and (3) the sample
size is sufficiently large. Various algorithms address this task, including convex
optimization by Candes, Recht, and Tao (2009), alternating projection by Hardt and
Wooters (2014), and low-rank approximation with gradient descent by Keshavan,
Montanari, and Oh (2009, 2010). In applications, Candes and Plan (2009) noted
that it is more realistic to assume noisy observations. In such cases, the above
approaches provide approximate recovery with small root mean square error, which
is difficult to convert into exact recovery. Recently, results by Abbe et al. (2017)
and Bhardwaj et al. (2023) on approximation in the infinity norm showed that
one can recover A even in the noisy case, provided A has bounded precision.
However, beyond the three basic assumptions, they either required that the condition
number of A be small (Abbe and Fan, 2017) or that the gaps between consecutive
singular values be large (Bhardwaj et al., 2023). These additional assumptions
conflict, with one requiring singular values to be close together and the other
suggesting they should be far apart. It is thus natural to conjecture that neither is
necessary. In this paper, we demonstrate that this is indeed the case. We propose
a simple algorithm for exact recovery of noisy data, relying solely on the three
basic assumptions. The core step of the algorithm is a straightforward truncated
singular value decomposition, which is highly efficient. To analyze the algorithm,
we prove a new infinity norm version of the classical Davis-Kahan perturbation
theorem, improving an earlier result in (Bhardwaj et al., 2023). Our proof employs
a combinatorial contour integration argument and is entirely distinct from all
previous approaches.

1 Introduction

1.1 Problem description

A large matrix A ∈ Rm×n is hidden, except for a few revealed entries in a set Ω ⊂ [m]× [n]. We
call Ω the set of observations or samples. The matrix AΩ, defined by

(AΩ)ij = Aij for (i, j) ∈ Ω, and 0 otherwise, (1)
is called the observed or sample matrix. The task is to recover A, given AΩ. This is the matrix
recovery (or matrix completion) problem, a central problem in data science that has received significant
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attention in recent years, motivated by a number of real-world applications. Examples include building
recommendation systems, notably the Netflix challenge [1]; reconstructing a low-dimensional surface
based on partial distance measurements from a sparse network of sensors [2, 3]; repairing missing
pixels in images [4]; and system identification in control [5]. See the surveys by Li et al. [6] and
Davenport and Romberg [7] for additional applications.

Researchers have proposed two models: (a) Ω is sampled uniformly among subsets with the same
size, or (b) Ω has independently chosen entries, each with the same probability p, called the sampling
density, which can be known or hidden. The models are interchangeable in mathematical analysis
through a simple conditioning trick [4]. Most papers use (b), and we will do so in our paper. Very
recently, researchers have also explored models where the sample entries are correlated [8–11]; these
are beyond the scope of this paper.

In this paper, we focus on exact recovery (to find all entries exactly). For this problem to make sense,
it is important to assume that A has a fixed precision, namely all entries of A are integer multiples
of a positive constant ε. (Otherwise, it is impossible even to write down an entry exactly, let alone
compute it.) In most practical contexts, ε does not depend on the size of the matrix. For instance, in
the Netflix problem, all entries are half-integers, so ε = 1/2. If all entries have two decimal places,
then ε = 0.01.

It has been pointed out by Candes and Plan [12] that in practice, data is often perturbed by noise, so
we can only observe a partially hidden and noisy version of A. The main goal of this paper is to find
an exact recovery for A from such a noisy sample.

1.2 Basic notation and assumptions

Throughout this paper, A is an m × n matrix, with N := max{m,n}. Consider the SVD of
A = UΣV T =

∑r
i=1 σiuiv

T
i , where r := rankA, and the singular values are ordered: σ1 ≥ σ2 ≥

· · · ≥ σr. We write As =
∑s

i=1 σiuiv
T
i for the best rank-s approximation of A. An important

parameter that appears in many papers in this area is the condition number of A: κ = κ(A) := σ1/σr.

The coherence parameter is given by µ0 = µ0(A) = max{µ(U), µ(V )}, where

µ(U) := max
i∈[m]

m

r
∥eTi U∥2 =

m∥U∥22,∞
r

, (2)

and analogously for µ(V ). The 2-to-∞ norm of a matrix M is given by ∥M∥2,∞ := sup{∥Mu∥∞ :
∥u∥2 = 1}. It should be noted that ∥M∥2,∞ is simply the largest L2 norm among the rows of M .

We use C to denote a positive constant, whose value depends on the context. When C depends on a
set of parameters a1, a2, . . . , ak, we write C(a1, a2, . . . , ak).

In most existing works on matrix recovery, researchers make the following three assumptions

• Low-rank: One assumes that r := rankA is much smaller than min{m,n}. Many papers
assume r is bounded (r = O(1)), while m,n → ∞.

• Incoherence: One requires that the rows and columns of A are sufficiently “spread out”,
so the information does not concentrate in a small set of entries, which could be easily
overlooked by random sampling. In technical terms, one needs µ0 to be small.

• Sufficient sampling size/density: The sampling density (or the size of Ω) is sufficiently large.
To ensure all rows and columns are sampled, one needs |Ω| ≥ CN logN . We will typically
work in the regime |Ω| = N logO(1) N , which is optimal up to a logarithmic term.

These assumptions have been shown to be necessary; see [13, 4, 7], and have been used in most
papers on exact recovery. We will refer to them as the basic assumptions.

In the noisy setting, we observe entries from A+ Z, a noisy version of A, where Z represents the
noise matrix. Most studies assume that Z has independent entries with mean 0, but not necessarily
from the same distributions. In many papers directly related to our work, it was assumed that Z has
bounded entries with probability 1. We will do the same here but note that we can replace this with
weaker conditions, such as the entries of Z having light tails (via a standard truncation trick). We let
AΩ,Z := (A+ Z)Ω denote the noisy observed matrix.
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1.3 A brief summary of existing results and our contributions

There is a vast literature on matrix completion. The problem of exact recovery in the pure (noiseless)
case, under the three basic assumptions, was first solved by Candès and Recht [13], Candès and
Tao [4], Recht [14], using nuclear norm minimization (NNM), which seeks to find the matrix with
the smallest nuclear norm that satisfies the observed samples via semidefinite programming (SDP).
Their idea is based on convexifying the intuitive but NP-hard approach of minimizing the rank given
the observations. However, the best-known solvers for the SDP run in time O(|Ω|2N2), which is
O(N4 log2 N) in the best case [6], and the calculation may be sensitive to noise [4]. Therefore, it is
reasonable to seek faster and more noise-robust algorithms, potentially sacrificing some generality.

In Hardt and Wootters [15], Hardt [16], the authors offered another intuitive but NP-hard approach:
minimize ∥XΩ−AΩ∥F subject to rankA = r, and proposed an approximate solution with alternating
projections, which switches between optimizing the column and row spaces, given the other. In
Keshavan et al. [17, 18], the authors proposed taking a low-rank approximation of AΩ via SVD, then
using it as an initial value for a GD-based algorithm to approximate A. In both approaches, it is
important that the condition number κ be small. See [19, Section A] in the supplementary appendix
for a more detailed discussion of the role of κ in these results. See also [20–23].

Recovery with noisy data, while more practical, as pointed out by Candes and Plan [12] in their
influential survey, is clearly a harder problem. The authors of the methods discussed above all
extended their studies to this case, achieving approximate solutions with guarantees in the Frobenius
norm. However, it seems very difficult to turn these approximations into exact recovery.

Recently, there has been progress in achieving exact recovery in the noisy case by Abbe and Fan [24]
and Bhardwaj et al. [25], with simple and fast algorithms. The basic idea is to show that a properly
chosen low-rank approximation of the observed (noisy) matrix, under an appropriate assumption,
approximates the ground truth matrix A in the infinity norm, with an error less than ε/2, where ε is
the discretization unit of the entries of A. Once this is achieved, a simple rounding off recovers A
exactly (see the last few paragraphs of Subsection 1.1). The heart of the matter is the analysis of the
algorithms, which requires new mathematical ideas, as proving approximation in the infinity norm is
significantly more challenging than a similar task under the Frobenius or spectral norm.

In what follows, we denote by AΩ,Z the matrix obtained from the observed entries of A+ Z. This is
the input of the recovery algorithm. Beyond the three basic assumptions (see Subsection 1.2), these
new works require an extra spectral assumption that either the condition number is small [24] or the
gaps between consecutive singular values are large [25].

These assumptions are strong, and it is unclear how often they hold in practice. Figure 1.3 below is
based on the Yale face database, a well-known and frequently used dataset; see Wainwright’s book
[26]. The data matrix in R165×77760 is created by flattening 165 greyscale 243× 320 facial images
into row vectors in R77760 and centering them by subtracting the average row. The singular values
decay quickly, resulting in a rather large condition number; κ ≈ 10.45 for the first 30 singular values.
Consequently, the gaps between singular values are generally large, but there are still exceptions (for
example, at index 15).

Figure 1: The Yale face database spectrum and spectral gaps
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From a mathematical viewpoint, we observe a curious phenomenon: these two extra assumptions are
seemingly contradictory. The first (small condition number) indicates that the singular values should
be close to each other, while the second requires them to be apart. It is thus natural to conjecture that
neither of these conditions is necessary.

In this paper, we prove this conjecture. We show that a properly chosen low-rank approximation
of AΩ,Z approximates A (with the required precision) in the infinity norm, using only the three
basic assumptions. This not only provides a mathematically satisfying answer but also significantly
expands the range of applications (regarding real datasets).

Our analysis of the algorithm is based on novel mathematical developments and is entirely distinct
from previous approaches. It combines the contour integral method introduced in Tran and Vu [27]
with a novel bound on random matrix powers, in a fairly nontrivial manner. This approach is robust,
and we believe in its potential for future applications.

2 New results: a unifying exact recovery method

2.1 Formal setting and algorithm

To state the algorithm and our main result, let us restate the setting for clarity.

Setting 2.1 (Matrix completion with noise). Consider the gound truth matrix A, the observed set Ω,
and noise matrix Z. We assume: (1) ∥A∥∞ ≤ KA for a known parameter KA; (2) we know an upper
bound rmax ≥ r, without needing to know r; and (3) the noise Z has independent entries satisfying
E [Zij ] = 0 and E

[
|Zij |l

]
≤ Kl

Z for all l ∈ N for a known parameter KZ , without necessarily
having the same distribution or variance. The parameters r, rmax, KA, KZ can depend on m and n.

Algorithm 2.2 (Approximate-and-Round 2). Input: the m × n sample matrix AΩ,Z and the dis-
cretization unit ε of A’s entries.

1. Empirical rescaling: Let p̂ := (mn)−1|Ω| and Â := p̂−1AΩ,Z .

2. Low-rank approximation: Compute the truncated SVD Ârmax
=
∑

i≤rmax
σ̂iûiv̂

T
i .

Take the largest index s ≤ rmax − 1 such that σ̂s − σ̂s+1 ≥ 20(KA +KZ)
√

rmax(m+n)
p̂ .

If no such s exists, take s = rmax. Let Âs :=
∑

i≤s σ̂iûiv̂
T
i ,

3. Rounding off: Round each entry of Âs to the nearest multiple of ε. Return Âs.

Compared to the algorithm Approximate-and-Round used in [25], a minor difference is that we use
an estimate p̂ of p, which is highly accurate with high probability. Another innovation is a different
threshold for the truncated SVD step that does not require knowledge of the parameter µ0. From a
complexity viewpoint, our algorithm is efficient, consisting of a truncated SVD on a matrix with |Ω|
non-zero entries, and a rounding step, requiring only O(|Ω|r +mn) = O((pr + 1)mn) FLOPs.

Our main theorem below provides sufficient conditions for exact recovery with this algorithm.

Theorem 2.3. There is a universal constant C > 0 such that the following holds. Suppose rmax ≤
log2 N . Under the model 2.1, assume that the signal is sufficiently large,

∥A∥ = σ1 ≥ 100rK

√
rmaxN

p
,

for K := KA +KZ; and the sampling is sufficiently dense,

p ≥ C

(
1

m
+

1

n

)
max

{
log4 N,

r3K2

ε2

(
1 +

µ2
0

log2 N

)}
log6 N. (3)

Then with probability 1−O(N−1), the low-rank approximation step of Approximate-and-Round 2
recovers every entry of A within an absolute error ε/3. Consequently, if all entries are multiples
integer of ε, the rounding-off step recovers A exactly.
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As promised, our result unifies [24] and [25], removing both the condition number and the gap
assumptions. Furthermore, our result also implies a RMSE recovery with the same error margin with
no constraint on the condition number, an improvement over [17, 18, 15].

2.2 Analysis of the result

We begin with a small experiment to showcase the performance of the algorith. Each of the 13
datapoints corresponds to a pair (m,n) that is either (2l, 2l−1) or (2l, 2l) for l = 10, 11, . . . , 16.

The matrix A ∈ Rm×n is randomly generated by A0 = XY T , where X ∈ Rm×r and Y ∈ Rn×r,
with iid N(0, 1) entries, then A := 3

4A0/∥A0∥∞. The noise matrix Z is generated with Z0 ∈ Rm×n

having iid N(0, 1/4) entries, then set Zij = sgn((Z0)ij)max{1/4, |(Z0)ij |}. This normalization
makes KA +KZ = 3/4 + 1/4 = 1. For the sampling, we fix p = 0.1 in all datapoints.

In Figure 2, the plots show N = m+ n on the horizontal axis, on a log scale, and the RMSE and
infinity norm errors on the vertical axes. Both decline rapidly with N . In the last datapoint, where
m = n = 216 ≈ 6000, one can recover every entry of A to within an absolute error of 0.1.

Figure 2: The RMSE and Infinity norm error of our method

Next, let us discuss the optimality of our result from a theoretical view.
Remark 2.4 (A high-level explanation for the thresholding rule). Note that the observed matrix,
rescaled by p−1, is a perturbed version of the original matrix, since

E
[
p−1AΩ,Z

]
= p−1(E [AΩ] +E [Z]) = A.

Therefore, one can write p−1AΩ,Z = Ã = A + E, where E is a random matrix of mean 0 and
independent entries. One can view E as a type of "noise" that includes both Z and the noise
caused by the random sampling. Since it is a well-known fact in random matrix theory that ∥Z∥ =

O(KZ

√
N/p) (see [28, 29] for proofs), we simply want to cut off the singular values of Ã at a level

above ∥E∥, as the well-documented BBP phenomenon [30–35] shows that the part of A below that is
fully absorbed by E and becomes indistinguishable from noise. Under the assumptions we make, the
signal extracted from the spectrum of Ã above this threshold is a good approximation of A. We use
the same argument in Remark 2.5 to show the necessity of the lower bound on σ1.

In our theorem, we use only the three basic assumptions of Section 1.2, plus that ∥A∥ = σ1 is large
enough. This last assumption seems new, but it is not. It is often hidden in previous papers, and is
guaranteed by the fact that A has low rank. Indeed

σ2
1 = ∥A∥2 ≥ 1

r
∥A∥2F .

Consider the representative case when ∥A∥2F = Θ(mn). Then σ1 ≥ r−1/2∥A∥F ≥ c
√

mn
r . By the

density condition (3) and the condition rmax ≤ log2 N , we have

p ≥ r3rmaxK
2N log4 N

mn
=⇒ σ1 ≥ c

√
mn

r
≫ (log2 N)rK

√
rmaxN

p
,
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so the assumption on σ1 in our theorem is automatically satisfied.
Remark 2.5 (Necessity of the signal assumption). From the engineering perspective, it is intuitive
that σ1 should be large enough in order for any kind of recovery to be possible. In the opposite
case when the intensity of the noise Z dominates the signal A, then the data is “too corrupted”
and all interersting information are lost. Rigorously, the well-documented BBP phenomenon in
random matrices [30–35] states that, if ∥Z∥ ≥ c∥A∥ = cσ1, for a specific constant c, then A+ Z is
indistinguishable from a fully random matrix, leaving no chance to recover A even if A+ Z is fully
observed. Since it is also a well-known fact in random matrix theory that ∥Z∥ = O(KZ

√
N/p) (see

[28, 29] for proofs), the condition in Theorem 2.3 is simply σ1 ≥ Cr∥Z∥, which is optimal when
r = O(1).
Remark 2.6 (Optimality of the density bound). The condition (3) looks complicated, but in the base
case where r = O(1), KA +KZ = O(1), and uniformly random singular vectors, so that we have
µ0 = O(logN), it reduces to

p ≥ Cmax
{
log4 N, ε−2

} (
m−1 + n−1

)
log6 N, (4)

which is equivalent to |Ω| ≥ CN log6 N max{log4 N, ε−2} in the uniform sampling model. The
power of N is optimal to the theoretical limit (see Section 1.2). The power of logN can be further
reduced but the details are tedious, and the improvement is not really important from the pratical
view point. For recovery with precision ε, this bound grows with ε−2, which is comparable to or
better than all previous works (see [19, Section A]).

Remark 2.7 (Relaxing the bound on rmax). The condition rmax ≤ log2 N in Theorem 2.3 can be
avoided, at the cost having a more complicated sampling density bound, which connects p and r

p ≥ C

(
1

m
+

1

n

)
max

{
log10 N,

r4rmaxµ
2
0K

2

ε2 , r3K2

ε2

(
1 +

µ2
0

log2 N

)(
1 + r3 logN

N

)
log6 N

}
. (5)

The proofs of Theorem 2.3 and Eq. (5) will be in the supplementary appendix, [19, Section B] .
This shows that our result does not require any extra condition besides the mandatory large signal
assumption.

In Section 3, we give a proof sketch for Theorem 2.3, asserting the correctness of our algorithm,
Approximate-and-Round 2. The proof will boil down to obtaining a sharp bound in the infinity
norm for the perturbation of the low-rank approximations, for which we introduce Theorem 7. By
reframing the problem from a matrix perturbation perspective, we can view Theorem 7 as an infinity
norm version of the classical Davis-Kahan-Wedin theorem.

We next explain the main ideas behind its proof, which combine the contour integral technique of
Tran and Vu [27] (with necessary adjustments) and a novel semi-isotropic bound on powers of a
random matrix. The (rather complex) detailed proofs will appear in the supplementary appendix, [19,
Section C] .

3 Main ideas of the proof

3.1 The matrix perturbation perspective and the rise of the extra assumptions

Consider Ãs −As. Let ρ := p̂/p and Ã = p−1AΩ,Z = ρ−1Â, we can write

Âs −A = ρ−1Ãs −A = (ρ−1 − 1)A+ ρ−1(As −A) + ρ−1(Ãs −As).

We show that the three error terms on the right-hand side are small in the infinity norm. The first is
easy, since ρ is close to 1 (by a Chernoff bound, see e.g. Hoeffding [36]). For the second, we have

∥A−As∥∞ =
∥∥∥ ∑
i≥s+1

σiuiv
T
i

∥∥∥
∞

≤ σs+1∥U∥2,∞∥V ∥2,∞ ≤ rσs+1µ0√
mn

,

which will be small by the way we choose s and the incoherence property. Most of the heavy lifting
goes to bounding the third term, ∥Ãs −As∥∞.

Observe that E[AΩ] = pA and E [ZΩ] = 0, so that E[Ã] = p−1E [AΩ + ZΩ] = A. Therefore,
E := Ã−A is a random matrix with mean 0. This opens a way to use tools and ideas from random
matrix theory in the analysis.
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The approaches in [24, 25] both arrive at a bound on ∥Ãs −As∥∞, but at the cost of their respective
extra assumptions. We give a brief overview of their methods.

Suppose s = r = 1 for simplicity, one can write

Ã1 −A1 = σ̃1ũ1ṽ
T
1 − σ1u1v

T
1 = (σ̃1 − σ1)u1v

T
1 + σ1

(
ũT
1 ṽ

T
1 − u1v

T
1

)
= (∆σ1)u1v

T
1 + σ1(∆u1)v

T
1 + σ1u1(∆v1)

T + σ1(∆u1)(∆v1)
T ,

where we set ∆σ1 := σ̃1 − σ1 and analogously for other ∆-notations.

By Weyl’s inequality, |∆σ1| ≤ ∥E∥, so the first term is bounded by ∥u1∥∞∥v1∥∞∥E∥ in the infinity
norm. The main challenge is to bound the middle two terms, which dominate the last one. By
symmetry, let us focus on σ1(∆u1)v

T
1 . We have

∥σ1(∆u1)v
T
1 ∥∞ = σ1∥∆u1∥∞∥v1∥∞.

If σ1 is large enough compared to ∥E∥, [25] showed that the error ∆u1 is sufficiently “spread out”,
namely, ∥∆u1∥∞ ≤ C∥∆u1∥∥u1∥∞. To bound ∥∆u1∥, the classic Davis-Kahan-Wedin theorem
[37, 38] gives ∥∆u1∥ ≤ C∥E∥/σ1, so the final bound on this term looks like

∥σ1(∆u1)v
T
1 ∥∞ ≤ C∥u1∥∞∥v1∥∞∥E∥.

Putting everything together, one obtains the desired (optimal) bound

∥Ã1 −A1∥∞ ≤ C∥u1∥∞∥v1∥∞∥E∥ ≤ Cµ0√
mn

∥E∥. (6)

When extending this argument to rank s > 1, [24] and [25] used two different approaches. In [24],
the authors wrote

Ãs −As = Us(∆Σs)V
T
s + (∆Us)ΣsV

T
s + UsΣs(∆Vs)

T + (∆Us)Σs(∆Vs)
T .

Again, one needs to bound ∥(∆Us)ΣsV
T
s ∥∞. The problem here is that ∥Σs∥ is still σ1 (instead of

σs), which eventually leads to the appearnce of the condition number κ = σ1/σr in the final bound.
Furthermore, the algorithm in [24] requires knowledge of the rank r of A. This is often not the
case in practice. However, Keshavan et al. [17] showed that one can estimate r precisely with high
probability, given that κ = O(1). Thus, the assumption that the condition number is small is needed
here for two different reasons: to compute the rank and to improve the quality of the bound; see also
[19, Section A].

[25] circumvented this issue by considering

Ãs −As =
∑
i≤s

(σ̃iũiṽ
T
i − σiuiv

T
i ) =

∑
i≤s

∆(σiuiv
T
i ),

then bounding each term ∆(σiuiv
T
i ) separately. Again, this boils down to bounding ∥σi(∆ui)v

T
i ∥∞.

For this, they use a (stronger) variant of Davis-Kahan theorem proved in O’Rourke et al. [39] (see
[19, Section B]). As a trade-off, this approach requries the assumption that the singular values σi are
well-separated for the (stronger) Davis-Kahan bound to hold.

Our new method, which is entirely different, allows us to avoid both assumptions. Let us first establish
the quantitative statement:
Theorem 3.1. Consider a deterministic matrix A ∈ Rm×n. and a random matrix E ∈ Rm×n with
independent entries satisfying E [Eij ] = 0 and E

[
|Eij |l

]
≤ p1−lKl for some K > 0 and 0 < p < 1.

Let Ã = A+ E. Let s ∈ [r] be an index satisfying

δs := σs − σs+1 ≥ 40rK
√

N/p,

There are constant C, C1 such that, if p ≥ C(m−1 + n−1) logN (where N = max{m,n}), then

∥Ãs −As∥∞ ≤ C1(µ0 + logN) log2 N√
mn

rσs

(
K
√
N

σs
√
p

+
rK

√
logN

δs
√
p

+
r2µ0K logN

pδs
√
mn

)
. (7)

From Eq. (7), one can verify, with a routine computation, that the sampling density condition (3),
with a sufficiently large constant C, implies ∥Ãs −As∥∞ ≤ ε/3, which proves Theorem 2.3. For a
detailed proof of Theorem 2.3, see [19, Section B].

7



3.2 Our new approach: contour integrals and bounds on random matrix powers

Let us now elaborate on our new approach used to prove Theorem 3.1.

We begin with the contour integral argument, adopted from the technique by P. Tran and Vu [27].
Instead of analyzing Ãs −As directly, we turn to their symmetrized versions. Denote

Bsym =

[
0 B
BT 0

]
for any matrix B, we have Ãsym = Asym + Esym. Note that the symmetrization preserves the spectral
norm and transforms the singular value decomposition into the eigendecomposition

Asym = WΛWT =
∑
|i|∈[r]

σiwiw
T
i ,

where for each i ∈ [r],

wi =
1√
2

[
ui

vi

]
, w−i =

1√
2

[
ui

−vi

]
, σ−i = −σi.

The first key idea here is to compare Ãsym and Asym via their Stieltjes transforms. Let z be a complex
variable, we have the expansion (we pretend that convergence is not an issue for now)

z(zI − Ãsym)
−1 − z(zI −Asym)

−1 =

∞∑
γ=1

z
[
(zI −Asym)

−1Esym

]γ
(zI −Asym)

−1.

If we integrate both sides over a contour Γs which encloses only the eigenvalues {σi : |i| ∈ [s]}, we
obtain, by Cauchy’s integration theorem (and some light calculation),

(Ãs −As)sym =

∞∑
γ=1

∮
Γs

zdz
2πi

[
(zI −Asym)

−1Esym

]γ
(zI −Asym)

−1.

Using the formula (zI−Asym)
−1 =

∑
|i|∈[r](z(z−σi))

−1wiw
T
i +z−1I , we can expand the right-hand

side (via some calculations) to obtain

(Ãs −As)sym =

∞∑
γ=1

∑
∗,∗,...,∗

C(∗, ∗, . . . , ∗)E∗
symw∗w

T
∗ E

∗
symw∗w

T
∗ . . . w∗w

T
∗ E

∗
symw∗w

T
∗ E

∗
sym,

where the asterisks stand for integer variables, i.e. w∗ can be any wi, E∗
sym can be any positive power

of Esym, and C is a scalar coefficient of the form

C(∗, ∗, . . . , ∗) =
∮
Γs

zdz
2πi

1

z∗(z − σ∗)(z − σ∗) . . . (z − σ∗)
.

There are conditions on these variables, but we will overlook them for now. At this point, one can
bound |Ãs −As| by bounding the terms above and applying the triangle inequality. These bounds
are fairly technical and require some delicate combinatorial and analytical consideration. This is
essentially the approach introduced in [40].

Since we aim for the infinity norm, which is much harder to deal with than the spectral norm, we
need to significantly modify the above argument.

Let us consider, for example, the 11-(upper left corner) entry of the matrix in question. We have

(Ãs −As)11 =

∞∑
γ=1

∑
∗,...,∗

C(∗, ∗, . . . , ∗)
(
eTm+1E

∗
symw∗

)(
wT

∗ E
∗
symw∗w

T
∗ . . . wT

∗ E
∗
symw∗

)(
wT

∗ E
∗
syme1

)
,

where e1, e2, . . . are standard basis vectors in RN . The upper left entry of a matrix M is eT1 Me1, but
notice that we use em+1 on the left due to the symmetrization.

To bound ∥Ãs −As∥∞, we need a strong bound on eTj E
a
symwi, for all indices j. To this end, we prove

a new semi-isotropic bound for powers of Esym, which is a key technical contribution of this paper.
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These bounds take advantage of the fact that E has independent entries. The exact bounds are a bit
technical, but for the simple case when µ0 = O(1), they take the form

|eTj Ea
symwi| ≤

C logN
√

µ0+logN
m ∥E∥a for 1 ≤ j ≤ m,

C logN
√

µ0+logN
n ∥E∥a for m+ 1 ≤ j ≤ N.

By setting a = 0, one can also see that these bounds are optimal, up to logN factors. Plugging these
bounds into the expansion, one can eventually obtain the bound of Theorem 3.1, by modifying the
steps from [27] in a proper manner. This is, in itself, a challenging task, and we provide the full
detailed proof in the supplementary appendix [19, Section C] .

Note that there have been similar isotropic-style bounds for powers of random matrices, notably
by Mao et al. [41] and Fan et al. [42]. They both cover a wide range of cases, but were designed
optimally for the use cases in their respective papers. In the supplementary document [19, Section B],
we will briefly explain that they are not strong enough in our use case.

Besides the bound on the perturbation of low-rank approximations, we obtain similar bounds for the
perturbation of singular vectors, in both the infinity and 2-to-∞ norms. For instance, we can show

∥ŨsŨ
T
s − UsU

T
s ∥∞ ≤ C log2 N(µ0 + logN)

m

(
∥E∥
σs

+
r∥UTEV ∥

δs

)
∥ŨsŨ

T
s − UsU

T
s ∥2,∞ ≤ C logN

√
(µ0 + logN)

m

(
∥E∥
σs

+
r∥UTEV ∥

δs

)
under the assumptions of Theorem 3.1. We will use these bounds in a future paper.

3.3 Summary and roadmap for the rest of the paper

We started with the famous and influential matrix completion problem (Section 1.1, its three basic
assumptions. Next, we discussed the the noisy setting, which is more realistic (Section 1.2, and
focused on recent results concerning exact recovery [24, 25] (Section 1.3). These results require extra
assumptions on the spectrum of the ground matrix. On one hand, these assumptions are rather strong
and thus significantly limit the application of these results on real data sets. On the other hand, they,
quite intriguingly, seem to contradict each other from the mathematical view point. This leads to the
conjecture that neither is needed.

We next introduced our own result, which provides an efficient algorithm without requiring the above
mentioned assumptions (Section 2), showing that the conjecture is correct. This algorithm obtains
exact recovery under only three basic assumptions, and is the first such algorithm for noisy data. In
the (easier) noiseless case, the only algorithm using only three basic assumptions is that of Candes et
al. [13, 4, 14], which is based on convex optimization. Compared to this algorithm, our is simpler
and faster, as it uses only on round of low rank approximation. (Low rank approximation is known
to be an efficient operator, used very often in practice.) Thus, our result makes a contribution in the
noiseless case as well.

Our main theorem is Theorem 2.3, which guarantees the correctness of our algorithm. This, in
essence, is a matrix perturbation bound, and can be seen as an infinity norm variant of the classical
Davis-Kahan theorem.

In Section 3, we sketch the proof of Theorem 2.3. We started with the sketch of the arguments of
[24, 25], and showed why their extra assumptions are required. Next, we describe our new approach
(Section 3.2), which combines the contour integration method intorduced in [27] with novel semi-
isotropic bounds for random matrix powers. This approach avoids the use of the extra assumptions in
earlier papers. Over all, this has led to a highly non-trivial, but robust and powerful, machinery to
obtain matrix perburtation bounds in the infinity norm. We believe that this method will have many
other applications.

The supplementary appendix [19], separate from the main body, will contain four sections.

In [19, Section A] , we dive deeper into the technical bounds of other matrix completion papers,
including [24, 25] and the RMSE recovery papers, pointing out the strong assumptions they use
(which mostly requiring the condition number of the ground matrix to be small), and demonstrate

9



that we do not need those assumptions. Another point of interest is the sample size needed to recover
A with precision ε (or within a RMSE ε), which should grow with 1/ε. We demonstrate that our
growth factor, which is 1/ε2, is on par with the best of these results.

Consider the simple setting where KZ = O(1), µ0 = O(logN) and r = O(log2 N). Table 1
summarizes the advantages we have over the main methods discussed in this paper.

Method Entry-wise
recovery?

Time Complexity Extra assumption
to achieve optimal
sampling bound

Convex
Optimization

Candes
and Plan

No O(|Ω|2(m+ n)2) Not optimal

Low-rank approx.
with grad. descent
cleaning up

Keshavan
et al.

No O(|Ω|r +mn+
Lr(m+ n)),
if one chooses L
iterations for the
clearning step

Condition number
is small

Single-step
low-rank approx.
with singular value
thresholding

Abbe
and Fan

Yes O(|Ω|r +mn) Condition number
is small

Bhardwaj
et al.

Yes O(|Ω|r +mn) Every singular
value gap is large

Our method Yes O(|Ω|r +mn) None

Table 1: Comparison of methods for noisy matrix completion

In [19, Section B] , we introduce our main technical machinery behind the proof of Theorem 3.1. We
will fully shift the context to matrix perturbation, and introduce new notation to be used throughout
the ensuing discussion and proofs. We will have one main theorem for the contour integral method
[19, Theorem B.2] , another for the semi-isotropic bounds [19, Theorem B.4] , and a corollary of
their combination [19, Theorem B.6] . We then use this theorem to prove Theorem 3.1, then prove
Theorem 2.3 with Theorem 3.1.

In [19, Section C] , we provide the full proofs of the main technical theorems. To assist the readers,
these proofs come with their own sketches. In particular, the proof sketch of [19, Theorem B.2] will
be a more detailed version of the sketch in Section 3.2. All details will be presented, barring some
cumbersome technical lemmas.

Finally, in [19, Section D] , we prove the technical lemmas. The details are heavy, but we hope that
the revealed intution earlier will significantly help the readers follow the proofs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In Section 1, we claim that (1) exact recovery in the finite precision sense is
achieved via truncated SVD with an appropriate truncation point, combined with a rounding
step, and that (2) this method works with only the three basic assumptions present in all
previous works on exact matrix completion, plus one mild “strong signal” assumption, and
that (3) the strong sinal assumption is necessary for noisy data. To justify the first two claims
are resolved in the subsequent sections, we provide Algorithm 2.2 in Section 2 and assert
its correctness with Theorem 2.3, which uses only the aforementioned assumptions. We
prove Theorem 2.3 by shifting to the matrix perturbation perspective, using Theorem 3.1 to
complete the proof (with details in Section B of the supplementary appendix). The third
claim is justified in Remark 2.5 in Section 2.2.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Remark 2.6, we briefly mention that the power of the logN factor in our
sample size assumption (to guarantee that the algorithm works) in Theorem 3.1 can be
improved if one can refine the semi-isotropic bounds in Theorem B.4 in the supplementary
appendix . In Section 1.3, we also make it clear that exact recovery for noiseless data, in the
true sense, has been achieved by Candes, Recht and Tao with the nuclear norm minimization
(NNM) method, with only the three basic assumptions. We emphasize that our method is
both simpler and faster than NNM, that it is robust for noisy data, and that it requires fewer
assumptions than previous fast methods for exact recovery.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The full proofs are in the supplementary appendix, with every theorem and
lemma fully proven, or cited from another paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Regarding Figure 1.3, we have described the necessary steps to reproduce the
graphs of the singular values and their gaps.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We feel that the description of the steps to reproduce Figure 1.3 has been clear
enough, and the experiment itself is fairly short and non-essential to the results of the paper,
so we do not feel the need to publish the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: The paper does not include experiments that require training and testing of
Machine Learning models.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments that require training and testing of
statistical hypotheses.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper does not include experiments that require comparing performances
of different algorithms, and thus does not need to specify the hardwares used. In fact,
the experiments to produce Figure 1.3 can be run on any modern computer than can run
Anaconda and Python 3.9.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and made sure that our paper follows the guidelines in the
NeuRIPS Code of Ethics.
Guidelines:
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper concerns a purely technical problem and its solution, with real-life
applications in technologies that socially and politically neutral.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We have no data or models that are of high risks for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The Yale face dataset used in producing Figure 1.3 has been properly used and
cited, as has the textbook in which it was mentioned.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We have no released assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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