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ABSTRACT

Large vision–language models (VLMs) excel at multimodal understanding but
fall short when extended to embodied tasks, where instructions must be trans-
formed into low-level motor actions. We introduce SP-VLA, a dual-system
Vision–Language–Action framework that leverages Spatial Priors as a bridge
between linguistic instructions and embodiment-specific control. SP-VLA aligns
action learning with spatial priors through two stages: (i) spatial grounding pre-
training, which equips the VLM with transferable priors via scalable point, box, and
trajectory prediction from both web-scale and robot-specific data, and (ii) spatially
guided action post-training, which encourages the model to produce richer spatial
priors to guide action generation via spatial prompting. This design preserves spa-
tial grounding during policy learning and promotes consistent optimization across
spatial and action objectives. Empirically, SP-VLA achieves substantial improve-
ments over vanilla VLA, with performance increasing from 66.1→84.6 on Google
Robot and from 54.7→73.2 on WidowX, establishing new state-of-the-art results
on SimplerEnv. It also demonstrates stronger generalization to unseen objects and
paraphrased instructions, as well as robustness to long-horizon perturbations in real-
world settings. These results highlight scalable spatially guided training as a promis-
ing direction for robust, generalizable robot learning. We will release code, data,
and model checkpoints to support future research. See more visualization results at
the anonymous page: https://sp-vla-anonymous.vercel.app/.

1 INTRODUCTION

Large multimodal foundation models Li et al. (2024b); Chen et al. (2024); Bai et al. (2025b); Radford
et al. (2021); Zhai et al. (2023) have demonstrated remarkable generalization capabilities by learning
from web-scale vision–language data. However, a critical gap remains when transferring these
capabilities to the physical domain, because robots must not only understand what an instruction
means but also determine where and how to act in the 3D world. This gap is fundamental, as real-
world robotic tasks must align textual instruction with embodiment-specific motor actions. However,
textual instruction is sparse, whereas real-world actions demand continuous, embodied interactions.
Yet, such text-to-action pairs are inherently scarce in standard VLM training data.

Core spatial priors, such as object recognition, affordance grounding, visual trajectory reasoning,
and relative localization, provide transferable and generalizable knowledge for robotic manipulation.
Once these spatial priors are established, embodiment-specific learning can focus on concrete
control strategies (e.g., manipulator joints, end-effector trajectories, humanoid locomotion, or mobile
navigation). Such a division clarifies the role of spatial priors as general-purpose foundations while
leaving embodiment-specific details to downstream adaptation, thereby bridging the gap between
abstract linguistic instruction and grounded physical execution.

Prior work has approached this challenge through hierarchical robotic systems Huang et al. (2023;
2024a); Liu et al. (2024); Huang et al. (2024b); Qi et al. (2025); Cao et al. (2025); Yuan et al. (2024),
which explicitly encode spatial priors using foundation models Fang et al. (2023); Kirillov et al.
(2023); Oquab et al. (2023). However, these methods often rely on rule-based task decomposition
and manually designed planning heuristics. The rigid separation between symbolic task structures
and low-level motor control makes it difficult to scale automatically to complex and diverse tasks,
and particularly limits the potential for end-to-end policy learning. In contrast, recent data-driven
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Generalized short- and long-horizon action execution across 61 seen/unseen objects

could you find the light brown lion put the grapes on the basket
What is the closest object to 
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Figure 1: SP-VLA integrates spatial priors into the vision–language–action training pipeline. Given a
task instruction, the VLM planner produces latent plans through explicit spatial prompting, which
then effectively guides the action expert to generate control signals.

VLAs Kim et al. (2024); Brohan et al. (2023); Black et al. (2024); Shi et al. (2025); AI (2024); Lee
et al. (2025) leverage pretrained vision-language models and large-scale teleoperation datasets Col-
laboration et al. (2023); Khazatsky et al. (2024); Bu et al. (2025a); Wu et al. (2024) to directly learn
robot control. While these approaches remove the need for manual task heuristics, they tend to overfit
low-level motor patterns and thus fail to fully exploit spatial priors during execution. Our empirical
analysis in Figure 3 further confirms this limitation: naive fine-tuning VLM to VLA or joint training
with spatial data yield weak alignment between spatial perception and action-learning objectives,
which undermines spatial grounding during policy learning.

To address the fundamental gap between multimodal understanding and embodied control, we propose
SP-VLA, a dual-system vision–language–action framework that explicitly integrates spatial priors
into robot learning. Unlike prior approaches that either rely on rule-based task decomposition or
overfit to low-level motor patterns, SP-VLA strategically separates where and what to act from how
to act, ensuring reliable and generalizable manipulation. At its core, SP-VLA introduces a two-
stage training pipeline. In the first stage, spatial grounding pre-training, the VLM planner acquires
transferable spatial priors (point, box, trajectory) by unifying web-scale multimodal grounding data
with robot-specific datasets, thereby equipping the model with affordance grounding, localization,
and trajectory reasoning. In the second stage, spatially guided action post-training, the action expert
is conditioned on these spatial priors through lightweight spatial prompting, aligning optimization
between perception and control while preserving the VLM’s grounding capacity.

This spatially guided dual-system architecture offers three key benefits. First, it preserves spatial
grounding during policy learning, thereby avoiding the collapse observed in naive co-training. Second,
it aligns the optimization dynamics of multimodal perception and action objectives, resulting in more
stable and robust learning. Third, it enhances generalization to unseen objects, novel instructions, and
long-horizon tasks in real-world settings. Empirically, SP-VLA achieves state-of-the-art results on
SimplerEnv benchmarks, improves large-scale simulation tasks by over 6% on average, and reaches
92% success on real-world long-horizon manipulation under distribution shifts. These findings
highlight spatially guided training as a scalable and reliable paradigm for generalist robot learning.

This work makes the following contributions:
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• We observe that directly fine-tuning a VLM with an action expert as a VLA model leads to a
collapse of spatial priors, and that naı̈ve co-training with spatial data introduces gradient conflicts
between spatial grounding and action objectives. In contrast, simple spatial prompting effectively
mitigates these issues (see Section 3.1).

• We propose SP-VLA, a spatially guided training framework that explicitly aligns action optimiza-
tion with spatial grounding objectives, preserving perception while enabling robust control (see
Section 2.2).

• We present a comprehensive evaluation of SP-VLA, establishing leading performance on Sim-
plerEnv and LIBERO. In large-scale simulation and real-robot experiments, SP-VLA substantially
improves generalization to unseen objects, novel instructions, and out-of-distribution environments,
outperforming strong baselines such as π0 Black et al. (2024) and GR00T Bjorck et al. (2025) (see
Section 3.2, 3.3, 3.4, and 3.5).

2 METHODS

We propose SP-VLA, a dual-system, end-to-end vision–language–action (VLA) framework. It
integrates both a language expert and an action expert within a single model (Section 2.1). The
language expert establishes instruction-to-visual grounding through spatial pretraining and co-training,
while the action expert conditions on these learned spatial priors to generate embodiment-specific
motor commands (Section 2.2). This joint design promotes alignment between the optimization
dynamics of the spatial grounding objective and the action policy objective, enabling robust instruction
following across diverse and complex scenes.

2.1 MODEL ARCHITECTURE

Stage 2 | Spatially Guided Action Post-training

VLM - Planner

Stage 1 | Spatial Grounding Pre-training

Multimodal 
understanding

robot 
observation

Spatial Grounding
(box / point / trace)

multi-modal 
web data

[box]

[trace] 

VLM

real & sim 
robot data

Organize the table. Noisy Actions

Actions

DiT - Actor

Conditioned

State 

(opt)

Your task is to {instruction}. Figure 

out how to execute it, then locate 

the key object needed.

Sub-Task Planning

Collect snacks.

[point]

Give the box coordinates according 

to the instruction…

Your answer should be formatted as 

a list of tuples …

Based on the task description, 

predict the trajectory that the end 

effector should take…

Figure 2: Overview of SP-VLA. SP-VLA adopts a spatially guided two-stage training pipeline.
Stage 1 (spatial grounding pre-training): the VLM is trained on large-scale multisource multimodal
spatial grounding data to learn embodiment-agnostic spatial priors. Stage 2 (spatially guided action
post-training): the VLM Planner, functioning as a slow but reliable System 2 reasoner, generates
latent planning tokens via spatial prompting as the condition to the action expert (instantiated as a
DiT Actor) to execute as a fast System 1 embodiment-specific controller.

Dual-system, Dual-supervision. We propose a new a dual-system, end-to-end VLA framework,
which can foster alignment between the optimization dynamics of the spatial grounding objective and
the action policy objective. The framework builds on a dual-system architecture: System 2 (the VLM
planner) employs as a multimodal encoder to capture spatial and semantic priors, while System 1 (the
Action Expert) adopts a compact diffusion transformer (DiT) Peebles & Xie (2023) and a DINOv2
visual encoder Oquab et al. (2023) for embodiment-specific control.

Specifically, the VLM planner is aligned with a broad range of spatial grounding data, both real
and synthetic, covering tasks such as object detection, affordance recognition, and visual trajectory
planning. In parallel, the Action Expert is trained on robot demonstration data, enabling it to specialize
these priors into embodiment-specific motor commands. This dual-supervision strategy establishes a
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cohesive link between high-level semantic perception and low-level motion control, which is essential
for robust instruction following in both simulation and real-world settings.

To connect the VLM Planner with the action expert, we adopt a lightweight querying transformer (8.7
MB) conditioned on the latent spatial grounding embeddings produced by the VLM Planner. The
querying transformer stabilizes expert learning and inference by mapping variable-length input tokens
into a fixed set of learnable query tokens. It is implemented as a k-layer cross-attention module,
where the query tokens selectively attend to k intermediate layers of the VLM (e.g., k = 1 attends
only to the final layer).

Latent grounding via spatial prompting. To explicitly activate the spatial perception capability
learned during spatial grounding pre-training, we employ spatial prompting during post-action
training stage. For instance, in general object manipulation tasks, we append simple prompts such
as “Figure out how to execute it, then locate the key object needed” after the task instruction. The
extracted feature embeddings provide the planner with explicit spatial cues that facilitate more
reliable grounding. Motivated by prior studies Driess et al. (2025); Zhou et al. (2025b); Bjorck et al.
(2025) showing that direct gradient flow between action and VLM modules may distort multimodal
knowledge, we introduce a gradient decay factor within the querying transformer. This attenuates
the gradients propagated from the Action Expert back to the VLM (e.g., by a factor of 0.5), thereby
preserving the Planner’s semantic reasoning ability while still enabling effective joint optimization.

2.2 TRAINING RECIPE

To leverage spatial priors for stronger embodiment-specific control in diverse scenarios, SP-VLA
adopts a spatially guided two-stage training pipeline:

Stage 1: Spatial grounding pre-training. The objective of the first stage (see Figure 2) is to
establish a foundational alignment between generic visuo-linguistic understanding and the specific
spatial reasoning demands of robotics, thereby priming the model for the subsequent co-adaptation of
grounding and action objectives. To this end, we strategically combine large-scale internet vision-
language grounding corpora (e.g., RefCOCO Yu et al. (2016), LLaVA-OneVision Li et al. (2024a))
with targeted robot-specific datasets (e.g., RoboRefIt Lu et al. (2023), A0 Xu et al. (2025b), and
SP-VLA Data). This combination ensures that the VLM’s spatial priors are not only grounded in
broad visual concepts but are also directly relevant to robotic tasks such as bounding-box detection,
affordance recognition, and trajectory prediction. By reformatting all robotic data into a unified QA
structure consistent with web-scale pre-training, we enable the VLM to develop a spatially-aware
representation space under a standard supervised fine-tuning framework, which serves as a synergistic
foundation for joint optimization with the action policy.

Stage 2: Spatially guided action post-training. This stage focuses on learning embodiment-specific
control while maintaining and refining the spatial priors acquired in Stage 1. Beyond co-training
with spatial grounding data, where the VLM backbone is updated via next-token prediction on
image-prompt pairs, we further introduce spatial prompting for action data to enhance alignment
between semantic reasoning and motion generation. For action sequences, we augment the standard
task instruction with a spatial prompt that elicits the VLM’s internal reasoning about scene geometry;
for example, the instruction “store all toys into the toy box” is extended to “Identify all relevant toys
and their spatial relationships to the container.”

A natural question is whether to collect explicit and precise answers for these auxiliary prompts and
grounding tasks. While likely beneficial, we identify two major challenges: (i) the high-frequency
nature of action data can lead the VLM to overfit on next-token prediction of limited spatial grounding
content; and (ii) downstream tasks are diverse and require heterogeneous forms of spatial knowledge,
making it difficult to design a unified automatic annotation pipeline while ensuring quality control. To
address these issues, we adopt a lightweight latent spatial prompting strategy. Through experiments,
we observe that although no textual response is generated, this prompting effectively steers the visual
representation toward task-relevant spatial structures, which in turn conditions the Action Expert to
produce semantically grounded motions.
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3 EXPERIMENTS

We conduct comprehensive experiments to evaluate whether aligning the optimization dynamics of
multimodal grounding and action policy objectives enables robust robot manipulation. First, we
perform a preliminary study to explore the alignment between spatial grounding and action learning
during training (Section 3.1). Next, we assess performance on public simulated benchmarks to
establish competitive baselines (Section 3.2). We then evaluate large-scale instruction-following
pick-and-place in simulation and real-world to test generalization (Section 3.3 and Section 3.4 ).
Finally, we examine real-robot performance on both short-horizon and long-horizon tasks to validate
practical deployment capabilities (Section 3.5).

3.1 PRELIMINARY: PERCEPTION-ACTION CO-OPTIMIZATION

To systematically investigate whether spatial grounding capabilities influence the manipulation
performance of VLAs, we track the co-optimization of spatial perception and manipulation success
during training. Furthermore, inspired by Raghu et al. (2017); Fang et al. (2024), we quantify the
alignment between the two objectives using similarity between gradient matrices. We compare three
distinct training strategies using the OXE dataset for action data and a curated set of spatial grounding
datasets for multimodal co-training:

• Vanilla VLA: direct fine-tuning of a pre-trained VLM on manipulation data only.
• Vanilla Co-training VLA: joint optimization on both spatial grounding data and action data.
• Spatially Guided Co-training VLA (SP-VLA): incorporates spatially pretrained and spatial

prompting during pretraining and co-training with multimodal data.

Empirical experiment analysis. Figure 3 (a) and Figure 3 (b) illustrate the interaction between
manipulation success (WidowX) and perception performance (on RefCOCO-g) across training
steps. Vanilla VLA shows rapid spatial perception degradation, with RefCOCO-g performance
dropping to near-random levels by 20k steps, indicating that action-only optimization disrupts spatial
representations. Vanilla co-training partially preserves perception but exhibits unstable oscillations in
both metrics. Our Spatially Guided approach achieves the best balance: it maintains 70% of original
RefCOGO-g performance while reaching 60% WidowX success in just 20k steps.

These trends are further substantiated by the comprehensive benchmark results in Table 1. Compared
to the vanilla co-training baseline, our SP-VLA (Spatially Pretrained) achieves superior robotic
manipulation performance (84.6% VM / 75.9% VA on Google Robot and 73.2% on WidowX) while
simultaneously preserving stronger multimodal perception and spatial grounding capabilities across
all evaluated tasks.
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Figure 3: Ablation study on the effect of auxiliary spatial prompting during co-training. From left
to right: (a) perception performance (IoU@0.5 on RefCOCO-g); (b) manipulation performance
(Average Success Rate on WidowX); (c) shows the gradient similarity of the spatial grounding
and action policy objectives, when taking vanilla co-training or the proposed spatially prompting
co-training.
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Table 1: Study of VLA training strategies and their effects on multi-modal understanding, spatial
grounding, and robot manipulation performance.

Multi-modal Understanding Spatial Grounding Robotic Manipulation

Models MME MMVet TextVQA
OCR

POPE
Acc

COCO Caption
BLEU/ROUGE l

Refcoco-g
IoU0.5

Where2place
point-Acc

Refit-testB
Acc0.5

Google Robot
VM/VA

WidowX
VM

Vanilla VLA - - - - - - - - 66.1/63.5 54.7
Vanilla co-train 1106 19.2 20.5 78.0 10.4/15.1 47.1 21.4 66.7 70.2/66.5 61.1

+Spatially Guided 1374 23.0 28.4 84.6 13.0/13.7 68.1 25.5 72.5 78.8/70.0 67.4
+Spatially Pretrained 1411 23.3 28.6 86.2 13.0/13.4 71.2 25.5 74.3 84.6/75.9 73.2

Gradient dynamics analysis. We introduce Projection-Space Similarity (PSS) Raghu et al. (2017), a
method to quantify the alignment between the optimization dynamics of the multimodal grounding
objective and the action policy objective. The core idea is to compare the gradients induced by each
objective on a shared set of model parameters. Higher PSS values indicate better subspace alignment
between the two optimization processes, validating that action policy optimization coherently builds
upon spatial representations. Further methodological details are provided in Appendix Section B.

As shown in Figure 3(c), vanilla co-training of action data with spatial data yields a PSS of only 0.25,
indicating significant misalignment between the gradient subspaces. In contrast, our spatially guided
training approach increases the PSS to 0.42, demonstrating substantially improved optimization
consistency. This enhanced alignment correlates with better preservation of spatial perception
capabilities and faster convergence in manipulation tasks.

3.2 EXPERIMENTS ON PUBLIC BENCHMARK

We evaluate SP-VLA on the SimplerEnv simulation suite to assess its robustness to visual appearance
shifts in instruction-following tasks. SimplerEnv includes both WidowX and Google Robot platforms,
short-horizon atomic tasks, and controlled variations in lighting, color, surface texture, and camera
pose. We report results on three task sets: Google Robot-VM (visual matching under viewpoint
and lighting changes), Google Robot-VA (visual aggregation with varying textures and colors), and
WidowX-VM (cross-robot generalization). We further evaluate SP-VLA on the LIBERO simulation
suite, detailed in Appendix Section C.2

Baselines. We compare to state-of-the-art open VLA systems, including π0 Black et al. (2024),
GR00T Bjorck et al. (2025), OpenVLA Kim et al. (2024), CogACT Li et al. (2024c), and etc. We also
include a Vanilla VLA built on QwenVL-2.5-3B-Instruct with a DiT action expert. When
available, we use official reported numbers; otherwise, we reimplement and mark such entries with ∗.
We keep training data, observation spaces, and action type aligned with the most popular setups Li
et al. (2024c) to ensure a fair comparison.

Result Analysis. The main experimental results are presented in Table 2 and Table 3. Compared
with prior state-of-the-art models, it attains a 5.9% gain in Google Robot Visual Matching, a 5.3%
gain in Visual Aggregation, and a 9.8% gain on the WidowX benchmark. These results highlight the
strong competitiveness of SP-VLA within the community. Compared to the Vanilla VLA based on
QwenVL-2.5-3B-Instruct, SP-VLA achieves substantial improvements: a 14.6% increase in Google
Robot Visual Matching and a 12.4% increase in Visual Aggregation, along with a 17.0% improvement
on the WidowX benchmark. These results demonstrate the effectiveness of our spatially guided
pre-training and action post-training strategies.

3.3 EVALUATION IN SIMULATED LARGE-SCALE PICK-AND-PLACE

Simulation Setup. Existing benchmarks, such as SimplerEnv and LIBERO, are limited in both
scale and diversity, which restricts their capacity to evaluate instruction following manipulation in
cluttered and varied environments. To address these limitations, we construct a large-scale simulation
benchmark in Isaac-Sim by GenManip Gao et al. (2025), comprising 200 pick-and-place tasks, each
involving distinct manipulated objects. With the inclusion of background elements, the benchmark
encompasses more than 3,000 objects and containers. Each task was executed once through the
data generation pipeline to ensure its executability. Furthermore, for each of the 200 tasks, we
additionally collected 5 trajectories with identical object sets but randomized layouts, which were
used for post-training. Four evaluation tracks in-distribution, unseen objects, new backgrounds,
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Table 2: Result comparisons of robotic manipulation on SimplerEnv (Google-Robot) benchmark.
The underlined scores indicate the best results excluding SP-VLA. Numbers are officially reported;
otherwise, we reimplement and mark such entries with ∗.

Google
Robot Models Co-Train Pick

Coke Can
Move
Near

Open/Close
Drawer

Open Top Drawer
and Place Apple Avg

Visual
Matching

RT-1 Brohan et al. (2022) ✗ 85.7 44.2 73.0 6.5 52.4
RT-1-X Collaboration et al. (2023) ✗ 56.7 31.7 59.7 21.3 42.4
RT-2-X Brohan et al. (2023) ✓ 78.7 77.9 25.0 3.7 46.3
OpenVLA Kim et al. (2024) ✗ 18.0 56.3 63.0 0.0 34.3
CogACT Li et al. (2024c) ✗ 91.3 85.0 71.8 50.9 74.8
SpatialVLA Qu et al. (2025) ✗ 86.0 77.9 57.4 - 75.1
π0 Black et al. (2024) ✗ 72.7 65.3 38.3 - 58.8
π0-FAST Pertsch et al. (2025) ✗ 75.3 67.5 42.9 - 61.9
GR00T N1.5∗ Bjorck et al. (2025) ✗ 51.7 54.0 27.8 7.4 35.2
Magma Yang et al. (2025a) ✓ 83.7 65.4 56.0 6.4 52.9

Vanilla VLA ✗ 90.0 69.8 52.5 52.2 66.1
Vanilla Co-training VLA ✓ 91.3 75.1 55.0 59.4 70.2
SP-VLA ✓ 97.3 98.0 65.3 77.8 84.6

Variant
Aggregation

RT-1 Brohan et al. (2022) ✗ 89.8 50.0 32.3 2.6 43.7
RT-1-X Collaboration et al. (2023) ✗ 49.0 32.3 29.4 10.1 30.2
RT-2-X Brohan et al. (2023) ✓ 82.3 79.2 35.3 20.6 54.4
OpenVLA Kim et al. (2024) ✗ 60.8 67.7 28.8 0.0 39.3
CogACT Li et al. (2024c) ✗ 89.6 80.8 28.3 46.6 61.3
SpatialVLA Qu et al. (2025) ✗ 88.0 82.5 41.8 - 70.7
π0 Black et al. (2024) ✗ 75.2 63.7 25.6 - 54.8
π0-FAST Pertsch et al. (2025) ✗ 77.6 68.2 31.3 - 59.0
GR00T N1.5 Bjorck et al. (2025) ✗ 69.3 68.7 35.8 4.0 44.5
Magma Yang et al. (2025a) ✓ 68.8 65.7 53.4 18.5 51.6

Vanilla VLA ✗ 92.3 80.3 50.1 31.4 63.5
Vanilla Co-training VLA ✓ 82.6 73.5 62.4 47.5 66.5
SP-VLA ✓ 95.6 74.5 68.0 65.3 75.9

Table 3: Result comparisons of robotic manipulation on SimplerEnv (WidowX) benchmark. The
underlined scores indicate the best results, excluding our results.

WidowX
Robot Models Co-Train Put Spoon

on Towel
Put Carrot
on Plate

Stack Green Block
on Yellow Block

Put Eggplant
in Yellow Basket Avg

Visual
Matching

RT-1-X Brohan et al. (2022) ✗ 0.0 4.2 0.0 0.0 1.1
Octo-Base Octo Model Team et al. (2024) ✗ 15.8 12.5 0.0 41.7 17.5
Octo-Small Octo Model Team et al. (2024) ✗ 41.7 8.2 0.0 56.7 26.7
OpenVLA Kim et al. (2024) ✗ 4.2 0.0 0.0 12.5 4.2
CogACT Li et al. (2024c) ✗ 71.7 50.8 15.0 67.5 51.3
SpatialVLA Qu et al. (2025) ✗ 16.7 25.0 29.2 100.0 42.7
π0 Black et al. (2024) ✗ 29.1 0.0 16.6 62.5 27.1
π0-FAST Pertsch et al. (2025) ✗ 29.1 21.9 10.8 66.6 48.3
GR00T N1.5 Bjorck et al. (2025) ✗ 75.3 54.3 57.0 61.3 61.9
Magma Yang et al. (2025a) ✓ 37.5 31.0 12.7 60.5 35.8

Vanilla VLA ✗ 56.6 63.3 27.0 71.8 54.7
Vanilla Co-trainig VLA ✓ 70.3 68.4 20.5 85.2 61.1
SP-VLA ✓ 80.2 79.2 35.4 98.0 73.2

and unseen instructions were established to assess the model’s multidimensional generalization in
pick-and-place tasks. Additional details about the evaluation are provided in Appendix Section E.2.
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Figure 4: Success rate (%) across different generalization settings on 200 simulated instruction-
following pick-and-place tasks.
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Results. Since both baseline methods, π0 Black et al. (2024) and GR00T N1.5 Bjorck et al. (2025),
underwent extensive pretraining on large corpora of action data, we ensured a fair comparison by
post-training our model on a large-scale dataset of 244K pick-and-place demonstrations simulations
generated in Isaac-Sim following stage 2 paradigm. As illustrated in Figure 4, SP-VLA consistently
achieves state-of-the-art performance across all four evaluation tracks. Our approach outperforms
both π0 and GR00T N1.5, highlighting its robust generalization in vision and language, as well as its
effectiveness in multi-task learning under spatial guidance.

3.4 EVALUATION IN REAL-WORLD CLUTTERED-SCENE PICK-AND-PLACE

We use the Franka Research 3 robot to evaluate the generalization performance of our model and
baselines on the real-world pick-and-place tasks. The robot is instructed to sort specified objects
into designated containers based on natural language commands. We collect 1K pick-and-place
trajectories involving 23 objects and 5 containers, which are used for post-training. Unlike the
200 simulated tasks, the post-training leverages both large-scale simulation data and real-world
trajectories. Details of the real-world robot setup and additional experimental configurations are
provided in Appendix Section E.3.

Table 4: Comparison of results on real-world generalization of pick-and-place tasks. Success rates
(%) are reported. Abbreviations: In dist.: in-distribution; New inst.: new instance; Similar dist.:
similar distractors; New bg.: new backgrounds; Unseen obj. pos.: unseen object position; Unseen obj.
orient.: unseen object orientation; By attr.: by attribute; By spatial: by spatial relation.

Models In dist. Unseen object Unseen obj.
pos.

Unseen obj.
orient.

Unseen instruction Avg.
New inst. Similar dist. New bg. By attr. By spatial

π0 Black et al. (2024) 45 32 25 27 18 32 37 31 31
GR00T N1.5 Bjorck et al. (2025) 78 46 40 47 20 40 59 53 48
SP-VLA 92 62 49 63 52 72 73 61 65

As shown in Table 4, beyond evaluating model performance across multiple tasks in the in-distribution
setting, we further assess generalization along four challenging dimensions: unseen objects, unseen
object poses and orientations, and novel instructions. SP-VLA outperforms all baselines across
real-world test settings. Even under highly challenging conditions, such as interference from visually
similar distractors, novel object instances, and paraphrased instructions, SP-VLA achieves strong
results through spatial pretraining and spatially guided post-training. These findings demonstrate
the model’s robust visual and linguistic generalization in pick-and-place tasks. Furthermore, in
evaluations involving unseen object poses and orientations, our approach significantly surpasses the
baselines π0 and GR00T N1.5, benefiting from the diverse grasp positions and trajectories introduced
by co-training on large-scale simulation data.

3.5 EVALUATION IN LONG-HORIZON MANIPULATION

GR00T N1.5𝝅𝟎 SP-VLA

29

52

59

In distribution

16

41

54

Physical interference

26

45

57

Task replanning
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57
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Sorting desk items into drawers Make sandwiches Desktop Sorting

Figure 5: Demonstration and results of long-horizon instruction-following manipulation tasks.

A key strength of our dual-system framework is its ability to leverage the high-level planner System
2 to decompose complex, reasoning-heavy tasks into sequences of atomic actions, which are then ro-
bustly executed by the low-level controller System 1. To evaluate this capability, we design tasks such
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as desktop sorting, drawer organization, sandwich making, requiring multi-step planning, progress
monitoring, and dynamic adaptation. We collect 22 hours of teleoperated demonstrations, segment
trajectories into subtasks, and train SP-VLA jointly on task decomposition, subtask identification and
action prediction. Performance is evaluated under three settings: In-distribution, physical interference
and task replanning. Results in Figure 5 show that SP-VLA consistently surpasses GR00T N1.5
and π0, reliably grounding high-level goals into executable steps, adapting to disturbances, and
dynamically revising plans with minimal degradation, demonstrating strong resilience in dynamic,
real-world environments. Additional details on the long-horizon task setup and evaluation settings
are provided in Appendix Section E.4.

4 RELATED WORK

Hierarchical robot system. Bridging high-level instructions with low-level actions is a central chal-
lenge in embodied AI, often addressed by introducing intermediate representations (IRs) ranging from
symbolic structures to learned embeddings Xie et al. (2019). Inspired by Chain-of-Thought reasoning,
many works train vision-language-action (VLA) models to first output textual plans, improving
interpretability and long-horizon performance Zawalski et al. (2024). Beyond text, IRs have taken the
form of perceptual cues (e.g., bounding boxes Griffin (2023), grasp points Ten Pas & Platt (2017),
or dense features Laskin et al. (2020); Nair et al. (2022)), persistent 3D scene graphs for grounding
plans Rana et al. (2023), and action-centric affordances specifying end-effector poses Nasiriany
et al. (2024). Recent work further generates spatial localizers directly usable by controllers Huang
et al. (2025a); Gu et al. (2023); Li et al. (2025c), or leverages large foundation models that unify
planning with affordance prediction Team et al. (2025); Luo et al. (2025). Specialized models such
as RoboRefer Zhou et al. (2025a) target fine-grained spatial grounding with reinforcement learning.
LLaRA Li et al. (2024d) similarly adapts VLMs to robotic control via instruction-style data. In
contrast, our method unifies these directions by modeling latent spatial guidance jointly with action
learning, enabling end-to-end optimization from real-world feedback.

Embodied reasoning and planning in VLA. Several recent VLA approaches leverage large-scale
multimodal co-training to improve generalization. RT-2 Brohan et al. (2023), ChatVLA Zhou
et al. (2025c), and GR-2/3 Cheang et al. (2024; 2025) combine internet vision–language data with
robot trajectories, while InstructVLA Yang et al. (2025b) and π0.5 Intelligence et al. (2025) further
incorporate instructional signals, sometimes with spatial annotations such as bounding boxes, to
enhance language–action alignment. Parallel efforts explore explicit reasoning: ECOT Zawalski et al.
(2024) generates textual plans, RT-H Belkhale et al. (2024) introduces action language for hierarchical
control, InstructVLA Yang et al. (2025b) jointly optimizes reasoning and action, OneTwoVLA Lin
et al. (2025) alternates between “thinking” and execution, RAD Clark et al. (2025) distills reasoning
from human videos, and graph-based IRs Huang et al. (2025b) support spatial reasoning. Beyond
textual reasoning, recent works have incorporated visual foresight and structural planning: CoT-
VLA Zhao et al. (2025) generates future video frames as a visual chain-of-thought, Chain-of-
Action Zhang et al. (2025) and LBP Liu et al. (2025) apply backward goal-based planning, while
ATM Wen et al. (2023) extracts control signals from unlabeled videos via point-trajectory prediction
and LLARVA Niu et al. (2024) leverages visual-trace representations to align vision and action.
While these methods expand semantics and interpretability, they often treat multimodal data as
generic supervision, overlook explicit spatial grounding, and rely on costly generative reasoning.
In contrast, our approach strategically emphasizes spatial grounding data and introduces a spatially
guided co-training scheme with gradient alignment, coupled with a lightweight post-training phase
that unlocks intrinsic reasoning in VLMs without requiring explicit outputs.

Generalist robot policy. Recent progress in general-purpose robotics follows three main paradigms.
Monolithic VLA models directly map multimodal inputs to tokenized actions with a single net-
work Brohan et al. (2023); Kim et al. (2024); Lee et al. (2025). Unified architectures decouple
high-level cognition from low-level control, enabling modularity and interpretability Black et al.
(2024); Li et al. (2024c; 2025a); Zheng et al. (2024); Intelligence et al. (2025); Song et al. (2025);
Zhou et al. (2025b); Yang et al. (2025b); Shukor et al. (2025); Cheang et al. (2025). World models
instead learn predictive environment dynamics to plan in latent space, offering strong foresight but at
higher computational cost Ye et al. (2025); Bjorck et al. (2025); Li et al. (2025b); Cen et al. (2025);
Liao et al. (2025); Tian et al. (2024); Bu et al. (2025b); Wang et al. (2025); Lv et al. (2025). Similar to
ours, Magma Yang et al. (2025a) also adopts spatial pre-training, though it does not explicitly leverage

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

spatial prompting to guide action generation. Our approach extends unified VLA architectures with a
dual-system design that boosts adaptability for real-world tasks.

5 DISCUSSION AND CONCLUSION

In this work, we presented SP-VLA, a unified vision-language-action framework that leverages
spatial grounding priors to bridge high-level multimodal reasoning with low-level robotic execution.
By combining large-scale multimodal pre-training with spatially guided post-training, our model
effectively transfers perceptual and reasoning skills into embodied control, achieving strong general-
ization to unseen objects, instructions, and environments. Extensive evaluations across simulation
and real-world settings demonstrate that SP-VLA surpasses existing VLA models and specialized
systems in instruction following, long-horizon manipulation, and multimodal grounding, highlighting
spatial reasoning as a unifying substrate for scalable and reliable generalist robots.
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A USAGE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used large language models (LLMs) solely to aid and polish
the writing. Specifically, we applied LLMs for grammatical correction, syntax refinement, and
improvement of readability, while strictly preserving the scientific content and LATEX formatting.

Two prompts were employed during this process:

1. Comprehensive Rewriting:
“Assume the role of a meticulous proofreader with a strong background in Computer Vision
for Robotics. Your task is to scrutinize an academic manuscript, focusing specifically on
correcting grammatical errors and refining syntax to meet the highest standards of academic
writing. Pay close attention to subject-verb agreement, tense consistency, and the proper
use of academic tone and vocabulary. Rectify any instances of passive voice where an active
voice would be more direct and impactful. Examine complex sentences to ensure clarity
and coherence, breaking down overly complicated structures if necessary. Employ the rules
of APA for punctuation, especially in using commas, semicolons, and colons, to enhance
the readability of the text. Your goal is to produce a polished, error-free document that
communicates ideas clearly, concisely, and effectively, without detracting from the scholarly
content and contributions of the work. Remain the LATEX format.”

2. Grammar-only Correction:
“Please just correct the English grammar and some inappropriate words in the writing.
Remain all LATEX formats.”

The LLMs were not involved in research ideation, experimental design, data analysis, or interpretation
of results. The scientific contributions of this paper are entirely the work of the authors.

B PROJECTION-SPACE SIMILARITY (PSS)

Setup. To quantify the alignment between the optimization directions of spatial grounding and
robot manipulation tasks, we analyze the similarity of their loss gradients with respect to the shared
parameters. Let θ ∈ Rd×n denote the shared parameters of the model (i.e., the VLM backbone). We
fix two probing mini-batches: a batch of grounding data Bspat and a batch of action data Bact. We
then compute the gradients of the respective losses with respect to θ for each batch, resulting in the
following gradient matrices:

Gspat = ∇θLspat(Bspat; θ) ∈ Rd×n, Gact = ∇θLact(Bact; θ) ∈ Rd×n. (1)

Projection-space similarity (PSS). To capture structural alignment between the spatial grounding
objective and the action manipulation objective, we compare the subspaces spanned by Gspat and
Gact via Singular Value Decomposition (SVD). Let Pspat and Pact be the orthogonal projectors onto
range(Gspat) and range(Gact), respectively. Using the Moore–Penrose pseudoinverse (·)+,

Pspat = Gspat G
+
spat, Pact = Gact G

+
act. (2)

Denote rspat = rank(Gspat) and ract = rank(Gact). The projection-space similarity is define as:

PSS (Gspat, Gact) =
tr(Pspat Pact)

min(rspat, ract)
∈ [0, 1], (3)

which equals the mean of squared cosines of the principal angles between the two subspaces. A value
of 1 indicates identical subspaces.

Protocol. Given the billion-scale parameters of the VLM backbone, computing gradients for the
entire model would be computationally prohibitive. Therefore, we restrict our analysis to a single
layer: the q projection in the self-attention module of the final layer of the Qwen language model,
whose parameter θ ∈ Rd is a 2048× 2048 weight matrix. We focus on this particular layer because it
lies at the interface between the language model backbone and the action expert, making it the most
informative point for capturing the interaction between the two components.

During training, we periodically compute PSS using the fixed probing evaluation sets (batch size =
64 for each type of data). A higher PSS indicates that the action policy optimization is well-aligned
with the features learned through multimodal grounding.
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C ADDITIONAL EXPERIMENTS

C.1 FURTHER STUDY FOR SPATIAL PROMPTING

To address the question of whether spatial priors merely accelerate convergence or are essential
for final performance capability, we extended the training horizon of all models to 100k steps. As
hypothesized, standard baselines might require longer training to fully saturate; however, our extended
analysis demonstrates that the performance gap remains significant even after convergence.
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Figure 6: Extended training curves up to 100k steps on WidowX and Google Robot tasks. Even with
prolonged training, baselines saturate at a significantly lower performance level compared to our
method (SP-VLA), confirming that spatial grounding improves the policy’s upper bound rather than
just convergence speed.

Figure 6 illustrates the training dynamics across 100k steps for both WidowX and Google Robot
environments. While the Vanilla VLA and Vanilla Co-training baselines continue to show marginal
improvements early on, they ultimately converge to substantially lower plateaus compared to our
method. These results conclusively show that explicitly injecting spatial priors does not simply act as
a warm-up for faster learning; it fundamentally alters the optimization landscape, allowing the policy
to generalize to a higher performance ceiling that standard multimodal co-training fails to reach.

C.2 LIBERO BENCHMARK

LIBERO. LIBERO is a language-conditioned manipulation suite built on a Franka arm with diverse
scenes and expert demonstrations. We evaluate four task sets: LIBERO-Spatial (same objects,
different spatial layouts), LIBERO-Object (fixed layout, different objects), LIBERO-Goal (fixed
objects and layout, different goals), and LIBERO-Long (also known as LIBERO-10; longer tasks that
span multiple objects, layouts, and operations).

Table 5: Result comparisons of robotic manipulation on LIBERO (Franka) benchmark.

Models Spatial Objects Goal Long Avg

OpenVLA Kim et al. (2024) 84.7 88.4 79.2 53.7 76.5
SpatialVLA Qu et al. (2025) 88.2 89.9 78.6 55.5 78.1
CoT-VLA Zhao et al. (2025) 87.5 91.6 87.6 69.0 83.9
GR00T N1 Bjorck et al. (2025) 94.4 97.6 93.0 90.6 93.9
π0 Black et al. (2024) 96.8 98.8 95.8 85.2 94.2
π0-FAST Pertsch et al. (2025) 96.4 96.8 88.6 60.2 85.5
π0.5-KI Driess et al. (2025) 98.0 97.8 95.6 85.8 94.3

Vanilla VLA 98.8 98.0 81.4 88.0 91.6
SP-VLA 98.0 99.0 93.8 92.6 95.9

Experimental setups. Following Kim et al. (2025), we filter out failed demonstrations and pause
frames. During training, the policy takes as input both wrist-mounted and third-person camera views.
We fine-tune the model on each suite independently using 8 A100 GPUs with a batch size of 128 and
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an action chunk size of 8. Training runs for roughly 30K steps, lasting about 20 hours. Each suite is
evaluated with 500 trials.

Result analysis. The primary experimental results on the LIBERO benchmark are presented in
Table 5. Compared to previous strong baselines, such as GR00T N1 and π0, the SP-VLA framework
achieves notable improvements, particularly on the spatial and long-horizon tracks, with success rates
of 98.0% and 92.6%, respectively. These results demonstrate the efficacy of our proposed method
in managing complex, multi-step manipulation tasks. Specifically, for object placement, SP-VLA
attains a 99.0% SR, which highlights its robust object grounding capability.

D ABLATION STUDIES

As described in Section 3, SP-VLA achieves significant performance improvements on the SimplerEnv
benchmark. In this section, we conduct ablation studies to examine the contribution of each critical
component. Specifically, we investigate: (1) the impact of different pretrained models used in the
first-stage pre-training; (2) the ratio of multimodal data during the second-stage post-training; (3)
whether incorporating spatial prompts into task instructions brings improvement.

D.1 IMPACT OF SPATIAL GROUNDING PRE-TRAINING

We first analyze the impact of different pre-training data configurations in the first-stage pre-training.
Our model is evaluated under three settings: 1) Using the official QwenVL-2.5-3B-Instruct
weights without additional spatial pre-training; 2) Pretraining with general multimodal grounding
data (e.g., LLaVA-OneVision and RefCOCO); 3) Pretraining with SP-VLA robotic grounding data.
The proportions of each data type used are provided in the Appendix Section G.

Table 6: Performance comparison under different pretraining data settings.

Robotic Grounding (pre-training) Robotic Manipulation

Pretraining Data Where2place
Acc

Refit-testB
IoU@0.5

A0 Maniskill
L2 Dist.

Google Robot
VM/VA

WidowX
VM

No Additional Pretraining 0 69.0 - 66.1/63.5 54.9
+ General Grounding Data 30.7 74.9 - 72.6/70.3 65.2
+ Robotic Grounding Data 60.5 83.4 3.6 84.3/75.9 73.1

Result analysis. We assessed the pre-training Vision-Language Model (VLM) using the Grounding
dataset for grounding performance, Where2Place Yuan et al. (2024) for point prediction, RoboRefit Lu
et al. (2023) for bounding box prediction, and A0 ManiSkill Xu et al. (2025b) for trajectory pre-
diction. As shown in the upper section of Table 6, the base model QwenVL-2.5-3B-Instruct
demonstrates the ability to detect bounding boxes for operation-related objects, but struggles to
accurately point objects or predict trajectories. Despite these limitations, a Vanilla VLA built upon
this model still achieves competitive performance in SimmerEnv compared to π0 (e.g., 54.9 vs. 48.3).
By pretraining the VLM with open-source multimodal grounding data (e.g., RefCOCO), we observe
improved object recognition capabilities, specifically an increase in Box IoU@0.5 from 69.0 to
74.9. This enhancement leads to a significant performance gain on the WidowX benchmark (54.9 →
65.2), demonstrating that visual grounding pretraining effectively improves downstream manipulation
accuracy.

Furthermore, incorporating robotic grounding data such as SP-VLA equips the VLM with the ability
to interpret point, box, and trajectory keypoints for object interaction. These advancements contribute
to the state-of-the-art performance of SP-VLA on SimmerEnv, including a 12.4% improvement on
the WidowX benchmark.

D.2 THE IMPACT OF COTRAIN LOSS WEIGHT

In this section, we examine the influence of cotraining strategies during the post-training stage. We
find that while cotraining significantly affects model performance, the ratio between robotic loss and
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multimodal loss plays a crucial role. We ablate different loss mixing ratios introduced in post-training
and summarize the results in Table 7.

Table 7: Performance comparison under different pretraining data settings. ∗Input image resized to
224×224 to align with prior work Black et al. (2024); Kim et al. (2024; 2025).

Loss weight ratio
(grounding vs. action)

Spatial grounding Robotic Manipulation
Where2place

Point-Acc
Refit-testB
IoU@0.5

A0 Maniskill
MAE Dist.

Google Robot
VM/VA

WidowX
VM

1:1 50.3 80.2 3.5 52.4/42.4 47.2
1:5 48.3 80.0 4.0 63.8/52.5 58.3
1:10 42.3 80.4 5.5 80.7/76.0 71.7
1:15 38.5 75.8 5.6 80.7/70.2 71.8
1:20 31.3 74.1 6.0 78.3/65.2 68.3

Results analysis. The results indicate that cotraining ratios such as 1:1 or 1:5 can further enhance the
VLM’s robotic grounding capability, but lead to a considerable decline in manipulation performance
(e.g., 73.2 → 47.2). However, when the cotraining ratio is increased to 1:15 or 1:20, the manipulation
performance also declines. This indicates that the relationship between multimodal cotraining and
manipulation is not a simple trade-off. The optimal ratio is observed to be 1:10. We hypothesize
that this ratio corresponds approximately to the proportion between the action chunk length and the
average next-token prediction length in the multimodal data.

D.3 BACKBONE-AGNOSTIC GENERALIZATION AND TRAINING METHOD CONTRIBUTION

To assess whether the effectiveness of our proposed training framework depends on the capacity
of the underlying VLM backbone, we conducted two complementary evaluations. First, we rebuilt
SP-VLA using Florence-2 Xiao et al. (2024), a considerably weaker VLM compared to Qwen2.5-VL
or the GR00T backbone, and compared it against GR00T N1.5 and a Vanilla Co-training baseline.
Second, to isolate the contribution of our spatial grounding training stage from backbone capacity,
we performed controlled ablations where all models share the identical Qwen2.5-VL-3B backbone.

Table 8: Comparison across different VLM backbones (Florence-2 vs. Qwen2.5-VL-3B) and training
methods.

Backbone Model Put Spoon
on Towel

Put Carrot
on Plate

Stack Green
on Yellow

Put Eggplant
in Basket Average

Eagle-2.5 GR00T N1.5 75.3 54.3 57.0 61.3 61.9

Florence-2 Vanilla Co-training VLA 75.2 31.3 3.1 75.0 46.1
SP-VLA 79.6 70.5 28.3 93.0 67.9

Qwen2.5-VL-3B
Vanilla VLA 56.6 63.3 27.0 71.8 54.7
Vanilla Co-training VLA 70.3 68.4 20.5 85.2 61.1
SP-VLA 80.2 79.2 35.4 98.0 73.2

Result analysis. Across both settings, as shown in Table 8, the evidence consistently shows that the
benefits of SP-VLA do not stem from backbone capacity. With a much weaker Florence-2 backbone,
SP-VLA still surpasses GR00T N1.5 (67.9% vs. 61.9%), while the Vanilla Co-training baseline
collapses on difficult tasks (e.g., 3.1% for Block Stacking). Under controlled conditions with identical
Qwen2.5-VL-3B backbones, A clear improvement trajectory is observed: Vanilla VLA achieves
54.7, Vanilla Co-training reaches 61.1, and SP-VLA further improves to 73.2. This progression
confirms that the performance gains arise from our spatial grounding training stage rather than from
the backbone capacity.
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D.4 SCALING LAWS OF SPATIAL PRIORS

Finally, we investigated the scaling behavior of spatial priors by varying the Spatial Grounding
Pre-training data volume from 0M to 3M pairs, followed by standard Post-training on OXE.

Table 9: Ablation on the scaling of Spatial Grounding Pre-training data volume.

Pre-training Scale Google Robot VM Google Robot VA WidowX VM Average
0 M 66.1 63.5 54.7 61.4
0.5 M 66.1 61.2 55.6 61.0
1.0 M 68.9 65.5 55.8 63.4
2.0 M 72.8 72.9 67.3 71.0
3.0 M 84.6 75.9 73.2 77.9

Result analysis. Our experimental results, shown in Table 9, reveal a nonlinear relationship between
spatial data scale and model performance. Performance gains remain modest when spatial grounding
data is below 1.0M pairs. However, once the data scale surpasses 2.0M pairs, we observe dramatically
increasing returns. At 3.0M pairs, the model achieves substantial improvement, with average
performance rising from 61.4 to 77.9—a remarkable 26.9% relative gain. This suggests that a critical
mass of spatial grounding data is required to unlock the VLM’s full manipulation potential.

D.5 ABLATION STUDY ON SPATIAL PROMPT FORMULATIONS

In our default implementation, SP-VLA employs a single unified spatial prompt across all tasks:
“Figure out how to execute it, then locate the key object needed.” This design encourages the model to
attend to spatial features without strictly enforcing a specific output format (e.g., bounding boxes or
points) during the action prediction phase.

To investigate whether the specific phrasing or the imposition of explicit spatial constraints influences
manipulation performance, we conducted an ablation study comparing our unified prompt against the
following four variants:

• Unified Prompting (Default): ”Figure out how to execute it, then locate the key object
needed.”

• Random Padding: Uses a non-semantic sequence to test if gains are due to sequence length
alone: ”xxx, xxx, xxx, xxx, xxx, xxx”.

• Box Prompting: Appends a specific constraint demanding bounding box coordinates:
”Figure out how to execute it, then locate the key object needed. Give the box coordinates
according to the instruction”.

• Point Prompting: Appends a specific constraint demanding a list of tuples for points:
”Figure out how to execute it, then locate the key object needed. Your answer should be
formatted as a list of tuples”.

• Trace Prompting: Appends a constraint demanding a trajectory prediction: ”Figure out
how to execute it, then locate the key object needed. Based on the task description predict
the trajectory that the end effector should take”.

Table 10: Ablation analysis of different spatial prompt formulations on SimplerEnv, comparing the
default Unified Prompt against non-semantic and explicit formatting constraints.

Prompt Type Google Robot VM Google Robot VA WidowX VM Average
Random Padding 64.2 60.8 50.6 58.5
Unified Prompting (Ours) 84.6 75.9 73.2 77.9
Box Prompting 80.9 73.0 75.8 76.6
Point Prompting 80.8 70.7 73.3 74.9
Trace Prompting 79.6 70.9 71.2 73.9
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Unseen Instruction

Transfer the item with the red 

lid on the barrel.

New Background

Move the bottle to the top of 

the first aid kit.

Unseen Object

Move the flower to the top of 

the bowl.

In-distribution

Move the yellow bottle to the 

top of the board.

Figure 7: Evaluation settings for generalizable pick-and-place in large-scale simulation.

Result analysis. The results in Table 10 provide two key insights:

1. Semantic content matters: The Random Padding baseline significantly underperforms the
Unified Prompting (58.5% vs. 77.9%). This confirms that the performance gains in SP-VLA
stem from the model explicitly attending to spatial semantics, rather than merely from the
computational overhead of processing extra tokens.

2. Unified prompting is sufficient: Our default Unified Prompting achieves the highest average
success rate (77.9%), outperforming variants that enforce strict output constraints like Box
(76.6%), Point (74.9%), or Trace (73.9%). This suggests that while spatial awareness is
critical, rigidly forcing the VLM to format its internal reasoning into specific coordinates
during action inference is unnecessary and may even slightly constrain the policy’s flexibility.

Therefore, our unified prompt serves as an optimal, task-agnostic instruction that robustly activates
spatial attention across diverse manipulation tasks.

E EXPERIMENTS SETUP

E.1 EVALUATION IN SIMPLERENV

Experiment Setup. As described in Section 2.2, we post-train SP-VLA on a subset of Open-
X Embodiment (OXE) (including fractal rt 1 and bridge v1), with co-training on spatial
grounding data (Figure 1). The VLM takes the primary observation image, task instruction, and an
auxiliary spatial prompt as input, while the action expert predicts actions with an action chunk size
of 16. For multimodal data, the model follows an SFT-style question-answering format. Training
is performed on 16 NVIDIA A100 GPUs for 50k steps (∼2.5 epochs), with batch sizes of 16 for
robot action data and 4 for multimodal data, optimized with a summed loss over both data types. All
evaluations are conducted within SimplerEnv using its official evaluation protocol.

E.2 EVALUATION IN SIMULATED LARGE-SCALE PICK-AND-PLACE

Evaluation settings. As illustrated in Figure 7, our evaluation consists of four distinct tracks: (1)
In-distribution, which evaluates the model’s pick-and-place capability on identical object instances
under varied layouts corresponding to post-training scenarios; (2) Unseen object, where in each
of the 200 scenes the graspable target object is replaced with one not encountered during training,
thereby testing the model’s generalization to novel object instances; (3) New background, in which
the table and background textures of the in-distribution scenes are altered to assess visual robustness;
(4) Unseen instruction, where the original template instruction “Move obj1 to the top of container1”
is reformulated using GPT-4o-mini, using prompt as shown in the box below,, introducing variations
in object attributes and grammatical structures to evaluate the model’s capacity to generalize to novel
linguistic commands. In these tasks, the graspable target object is randomly placed within a 20× 35
cm region in front of the robot base, while the container is randomly positioned within a 40 × 70
cm area. Nine additional background objects are scattered across the tabletop at random. A data
generation pipeline constructs each testing layout, ensuring that every configuration remains solvable
for successful grasping and placement. Each track includes 200 distinct scenes, with a maximum of
600 steps permitted per trial. A trial is deemed successful if the object is placed atop the designated
container within the step limit.
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Experiment setup. The observation space consists of two RGB images: one captured from a fixed
third-person viewpoint and the other from a first-person camera mounted on the Franka end-effector.
Both images are resized to 224× 224 before being input to the model. For comparison, the baseline
methods additionally incorporate a 7-dimensional representation of the Franka joint states. The VLA
model outputs an 8-dimensional continuous action vector, where 7-dimensions correspond to the
incremental deltas of each joint and one dimension encodes the binary signal for gripper control.
Each action vector has a temporal chunk size of 16 and, after temporal ensembling, is applied to the
Franka robot in the simulation environment.

Prompt Description: Attribute-based Instruction Rewriting

Task Overview. The task is to optimize an existing instruction for a robot model to enhance attribute-specific grounding.

Input:
• Pick obj description: Object description obtained from simulation (e.g., red apple).
• Container description: Container description obtained from simulation.
• Raw Instruction: Original instruction (e.g., Move obj1 to the top of container).
• Rewrite guideline: Focus on materials, color, or shape.

Rules:

1. There are many items on the desktop. Ensure the rewritten instruction is specific enough to unambiguously identify the target object and container.

2. If the attributes mentioned in the original instruction (such as shape, color, or material) are not sufficient to uniquely identify the object, add extra features
(e.g., relative position, size, or additional visual properties) to remove ambiguity.

3. Do not mention the object’s common name (e.g., do not say “apple” or “cup”).

4. The rewritten instruction must sound natural and fluent while preserving the original meaning.

Output:
• Provide 5 examples of optimized instructions in JSON format (a list of strings).
• Keep all examples simple, clear, and easy to understand.

Example:

input: Place the apple to the top of plate.
output: [
"Put the red sphere on top of the round white plate.",
"Stack the small red object onto the large white plate.",
"Set the red fruit on the circular plate.",
"Position the shiny red sphere on top of the white ceramic plate.",
"Move the red object closest to the center onto the round plate."

]

E.3 REAL-WORLD PICK-AND-PLACE MANIPULATION SETUP

Evaluation settings. To evaluate generalization, we divide all available object and container assets
into disjoint seen and unseen sets, as illustrated in Figure 8. The training phase uses only the seen
set, while testing incorporates both sets to assess the model’s ability to handle novel objects. We
examine real-world pick-and-place generalization across several conditions: in-distribution, unseen
object, unseen object position, unseen object orientation, and unseen instruction. Among these,
the unseen instruction and unseen object settings (depicted in Figure 9) introduce complementary
reasoning challenges. The unseen instruction setting involves two key reasoning types, namely spatial
reasoning and attribute identification, whereas the unseen object setting encompasses three categories,
including new object instances, similar distractors, and new backgrounds. (1) Spatial reasoning,
where the robot must act based on relative spatial relationships (e.g., “Place the object closest to the
robot base into the brown box”); (2) Attribute identification, which requires grounding instructions
in specific visual attributes such as color or shape (e.g., “Move the green fruit into the white fruit
plate”); (3) New object instances, where novel objects not encountered during training must be
manipulated (e.g., “Put the small chips into the brown fruit plate”); (4) Similar distractors, which
probe the model’s ability to disambiguate between nearly identical objects (e.g., distinguishing a
blue Oreo from other cookies); (5) New backgrounds, where the robot must adapt to altered visual
contexts while grounding instructions (e.g., “Move the pear onto the pink fruit plate”). Together,
these variations establish a comprehensive and challenging benchmark that evaluates instruction
following across perception, reasoning, and generalization. In contrast, the unseen object position
and unseen object orientation settings involve seen objects whose grasping or placing positions, as
well as orientations, are shifted during testing, such that they differ from the regions or rotational
angles encountered during training.
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23 Seen Objects 6 Unseen Containers27 Unseen Objects 5 Seen Containers

Figure 8: Overview of objects and containers used in instruction-following pick-and-place.

For each model, we conduct a total of 300 rollout evaluations. Each trial may correspond to one
or more testing settings, and we ensure that each setting is evaluated at least 50 times. Each trial
allows up to three consecutive attempts. For each trial, three containers are chosen and placed at fixed
tabletop locations within a 60 × 90 cm workspace, and a larger collection of objects is randomly
scattered between them. This configuration ensures that the robot must rely on precise perception
and instruction grounding, rather than memorized placements, to correctly execute the instructed
pick-and-place actions. We report the success rate (SR), defined as the fraction of trials in which the
specified object is successfully placed into the designated container. A higher SR indicates better
performance. To ensure fair comparisons across models, we fix the positions of the objects and
containers for each task during testing.

Experimental setup. We collected six hours of teleoperated demonstration data with seen objects and
containers to serve as post-training real-world data. The two RGB views were resized to 224×224 and
used as model inputs. For comparison, the baseline methods additionally incorporate a 6-dimensional
representation of the end-effector’s position and orientation. The VLA model outputs a 7-dimensional
continuous action vector: six dimensions correspond to the incremental deltas of the end-effector’s
position and orientation, and one dimension encodes the binary signal for gripper control. Each
action vector is organized into a temporal chunk of size 16, which, after temporal ensembling, is
applied during execution.
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Unseen object

Unseen instruction

Spatial reasoning: Put the object closest to the robot base into the brown box.

1 2 3 4

Attribute Identification: Move the green fruit in the white fruit plate.

1 2 3 4

New object instance: Put the small chips into the brown fruit plate.

1 2 3 4

Similar distractor: Put the blue original Oreo into the purple fruit plate.

1 2 3 4

New background: Move the pear in the top of the pink fruit plate.

1 2 3 4

Figure 9: Evaluation settings showcases for real-world generalization pick-and-place.

E.4 REAL-WORLD LONG-HORIZON MANIPULATION SETUP

Evaluation settings. We evaluate model performance under three distinct settings: in-distribution,
physical interference and task replanning:

• Physical interference. External disturbances are introduced during task execution. For example,
during the sorting items into drawers task, the drawer is manually closed after the robot opens it,
or the target object is displaced during grasping. This evaluates the model’s ability to perceive
environmental changes and adapt accordingly.

• Task replanning. New instructions are issued mid-execution. For instance, after placing an object
in the drawer but before closing it, the robot is told: “Also put the cow toy into the top drawer.”
This tests the model’s ability to incorporate new subgoals and dynamically adjust its plan.

The tasks illustrated in Figure 10 include:

• Desktop sorting. The Franka robot is tasked with sorting objects into containers based on high-
level semantic categories, aiming to ensure that all items on the desktop are eventually placed
into the correct containers. Both objects and containers are scattered within a 60×90 cm region in
front of the robot base. The setup includes five seen containers and five object categories: fruits,
toys, vegetables, bottles, and snacks. Each evaluation instance requires sorting objects from one
to three categories into their designated containers, with each trial comprising three sequential
pick-and-place actions. For every method, evaluations are conducted more than 30 times across
the three settings, ensuring that each individual setting is tested at least 10 times. A success is
recorded upon the completion of each individual pick-and-place operation, and we report the final
overall success rate accordingly.
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• Sorting items into drawers. The Franka robot is required to (i) open a designated drawer (either
lower or upper), (ii) place the target objects into it, and (iii) close the drawer. This task demands
precise temporal reasoning and articulated manipulation. The objects are placed within a 35×35
cm area located to the front-right of the robot base. As in the previous setting, the number of trials
remains the same; however, here we report stepwise execution success, where a step is deemed
valid only if all preceding steps have been successfully completed.

• Making sandwiches. The Franka robot is instructed to assemble sandwiches following a pre-
defined meal recipe. Ingredients and plates are placed within a 50×70 cm region in front of the
robot base. We define five types of sandwich recipes as the seen set: [ bread–lettuce–bread ],
[ bread–lettuce–meat–bread ], [ bread–meat–lettuce–meat–bread ], [ bread–meat–meat–bread ], and
[ bread–meat–bread ]. We report success rates on both the seen set and an unseen set involving
real-time environment interaction, using the same success definition as in the drawer sorting task.

• Math calculation. The Franka robot is prompted to solve a math problem and press the color-
coded button (red, yellow, or blue) that corresponds to the correct answer based on arithmetic
reasoning. The buttons are randomly placed within a 40×40 cm area in front of the robot base.

• Goods purchase. The ARX LIFT2 dual-arm robot is tasked with identifying and placing into a
basket the object bearing the correct price tag, given a numerical cue ranging from 1 to 9. We
report the success rate of correctly placing the item corresponding to the queried price into the
basket.

Experimental setup. We collected 22 hours of teleoperated demonstrations (400–500 per task)
for long-horizon training, segmenting trajectories into subtasks with atomic actions. We introduce
zero-action vectors padding after each subtask segment. This allows the model to stop upon subtask
completion and then be prompted to predict the transition to the next subtask. Unlike prior VLA
models relying on external planners, SP-VLA jointly trains on multimodal inputs, task decomposition,
subtask identification, numerical reasoning, and action supervision, for unified planning and action
prediction.

E.5 REAL-WORLD ROBOT SETUP

Realsense D435
(Third-view)

Franka FR3 Arm 

Realsense D435
(Wrist-view)

Robotiq grippers

Desk

Spacemouse controller

Figure 11: The real-world Franka setup.

Realsense D455
(Mid-View)

Realsense D405
(Right Wrist-View)

Realsense D405
(Left Wrist-View)

ARX LIFT2

Figure 12: The Real-world ARX LIFT2 setup.

As illustrated in Figure 11, we utilize a Franka Research 3 robot equipped with a Robotiq-2F-
85 gripper to evaluate real-world tasks, including short-range pick-and-place, long-horizon object
sorting, opening and closing a drawer, and making sandwiches. In our experimental setup, two
RealSense D435 cameras capture RGB images for visual input: one is positioned at a rear-side,
third-person perspective, and the other is mounted on the Franka’s end-effector. Furthermore, as
shown in Figure 12, we conduct pick-and-place experiments in shopping scenarios using the dual-arm
ARX LIFT2 platform. Each arm is equipped with a RealSense D405, while a RealSense D455 is
mounted on the head to capture RGB imagery from a frontal viewpoint. All model inferences are
executed on a workstation powered by an NVIDIA RTX 4080 GPU with 16 GB of VRAM.
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Mathematical Reasoning: Do arithmetic exercise / Purchase goods (2 steps)

Sub-task prediction and execution: Make a classic sandwich (3-5 steps).

Put a piece of lettuce on 
the plate.

Put a piece of bun on the 
plate.

Stop.
Put a piece of bun on the 

plate.

Multi-category Sorting: Sort snacks, toys, and fruits into respective bins. (7 steps)

Put all the snacks into the white basket.

Put all the fruits into the wooden basket.

Start.

Stop.

Put all the toys into the 
brown basket.

Put all the toys into the 
brown basket.

-9 x 7 =· -72 · -63 · -54 Press the blue botton.
Pick the object that costs 

$4.
Put the object to the basket

Task Replanning: Sort the brush into a closed drawer, then sort another hippo toy on sudden human request. (4-5 steps)

Collect the brush to the 
upper drawer. 

Open the upper drawer. Close the upper drawer.
Clear the hippo toy to the 

upper drawer.

Human: Wait, also clear the hippo toy into the drawer.

1 2 3 4

1 2 3 4

5 6 7 8

1 2 3 4

1 2 1 2

Figure 10: Showcases and results for long-horizon and reasoning manipulation.
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F CASE STUDY

To complement the quantitative results presented in previous sections, we provide qualitative case
studies across simulation and real-world benchmarks to illustrate the versatility, robustness, and
reasoning capabilities of SP-VLA in diverse manipulation scenarios. For video visualizations, please
refer to the videos provided in the appendix and on our our website.

F.1 CASE STUDY FOR PUBLIC BENCHMARKS

F.1.1 CASE STUDY FOR SIMPLERENV

Pick Coke Can

Move Near

Put Spoon on Towel

Stack Green Block on Yellow Block

Open/Close Drawer

Put Eggplant in Yellow Basket

Put Carrot on Plate

Open Top Drawer and Place Apple

Figure 13: Evaluation showcases for SimplerEnv.
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Figure 13 presents representative examples from the SimplerEnv benchmark, illustrating SP-VLA’s
performance across its canonical manipulation tasks. Each sequence shows the progression from
initial scene perception and language instruction interpretation to successful task execution. These
qualitative examples underscore the model’s ability to ground natural language commands into
actionable behaviors even in visually varied environments.

F.1.2 CASE STUDY FOR LIBERO

Put the black bowl in the bottom drawer of the cabinet and close it.

Open the middle drawer of the cabinet.

Push the plate to the front of the stove.

Pick up the black bowl between the plate and the ramekin and place it on the plate.

Figure 14: Evaluation showcases for LIBERO benchmark.

Figure 14 presents representative examples from the LIBERO benchmark. These cases collectively
demonstrate SP-VLA’s ability to interpret language instructions, adapt to spatial and semantic
variations, and execute long-horizon plans with robust generalization.
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F.2 CASE STUDY FOR SIMULATED LARGE-SCALE PICK-AND-PLACE MANIPULATION

Figure 15: Showcases for simulated large-scale pick-and-place manipulation.

Beyond small-scale benchmarks, Figure 15 illustrates task executions in our large-scale simulated
pick-and-place benchmark, which involves over 200 tasks and thousands of objects. These examples
show that SP-VLA effectively parses instructions and manipulates previously unseen objects, while
maintaining strong spatial grounding and generalization capabilities in cluttered, visually complex
scenes.

F.3 CASE STUDY FOR REAL-WORLD PICK-AND-PLACE MANIPULATION

Figure 16: Showcases for real-world large-scale pick-and-place manipulation.
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Novel Pose

Without co-training

With co-training

Without co-training

With co-training

Novel Container

Figure 17: Showcases for real-world large scale pick-and-place manipulation w/wo co-training.

We further evaluate our framework in real-world cluttered tabletop environments. As shown in
Figure 16, SP-VLA accurately interprets natural language instructions and completes single-step pick-
and-place tasks involving numerous objects and containers under in-distribution, new background,
unseen object, and unseen instruction conditions. Figure 17 further compares performance with and
without co-training on VLM data, and shows that co-training substantially enhances robustness and
generalization to novel objects and spatial configurations encountered during deployment.
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F.4 CASE STUDY FOR REAL-WORLD LONG-HORIZON MANIPULATION

We also evaluate SP-VLA on a range of long-horizon, reasoning-intensive tasks in real-world
environments. Figures 18 to 22 collectively illustrate the model’s reasoning and decision-making
processes across diverse scenarios, including multi-step manipulation, numerical reasoning, object
sorting, goods purchasing, and spatially constrained organization. These results demonstrate that
SP-VLA effectively integrates perception, reasoning, and action planning, enabling robust execution
of complex long-horizon tasks in dynamic real-world settings.

Figure 18: Showcases for making a sandwich.

Figure 19: Showcases for math calculation.
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Figure 20: Showcases for sorting objects.

Figure 21: Showcases for purchasing goods.
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Figure 22: Showcases for sorting to drawer.
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F.5 FAILURE CASE STUDY

Move the water bottle to the top of 

the microwave oven. Locate the target object
√

Grasp the target object

×
Locate the target container

√

Move the headphones to the top of 

the trough. Grasp by the right grasp pose Transfer to the container

×
Locate the target container

√×

Move the bowl to the top of the 

book. Grasp by the right grasp pose Transfer to the container Locate the target container
×√ √

Move the bonsai tree model to the 

top of the decorative bowl. Locate the target object
√

Grasp the target object

×
Locate the target container

√

Figure 23: Failure case study.

To better understand the limitations of SP-VLA, we analyze representative failure cases during
real-world instruction-following pick-and-place tasks. As shown in Figure 23. In some cases, the
robot executes an incorrect grasp or misidentifies the target container, leading to task failure. These
errors highlight challenges in robust perception and action grounding under cluttered environments.
While some failures may stem from sensor limitations, integrating additional modalities, such as
depth sensing and proprioceptive feedback, could improve performance. We leave this as future work
to further enhance the reliability of instruction-conditioned manipulation in complex settings.

G DATA

This section introduces the datasets used in SP-VLA, covering pre-training, mid-training, and post-
training stages. For VLM pre-training, we construct large-scale spatial grounding datasets with
point, box, and trajectory annotations to enhance spatial perception and vision-language alignment.
Mid-training employs synthetic manipulation data to bridge pre-training knowledge and robotic
execution. Post-training uses both simulated and real-world instruction-following data, including
large-scale tabletop tasks and real-robot demonstrations for long-horizon manipulation.

G.1 SPATIAL GROUNDING DATA FOR PRE-TRAINING

The multimodal training dataset for our model comprises over 3M data, categorized into four distinct
types: General Question Answering (General QA), Bounding Box Question Answering (Box QA),
Trajectory Question Answering (Trajectory QA), and Point Question Answering (Point QA), as
shown in Figure 24 and detailed in Table 11. Notably, more than 2.3M of these data are dedicated to
spatial reasoning datasets. These categories ensure robust multimodal understanding while supporting
adaptation to embodied tasks in tabletop robotic scenarios. Below, we describe each category:
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• General QA. Sourced from LLaVA-OneVision Li et al. (2024a) and InternVL3 Chen et al. (2024);
Zhu et al. (2025), this category is sampled to cover diverse multimodal tasks, including image
captioning, visual question answering (VQA), optical character recognition (OCR), knowledge
grounding, and creative writing.

• Bounding Box QA. We curate a diverse collection of multimodal grounding datasets, including
RefCOCO Yu et al. (2016); Mao et al. (2016), ASv2 Wang et al. (2024), and COCO-ReM Singh
et al. (2024), sourced from InternVL3 Chen et al. (2024); Zhu et al. (2025). Additionally, we
incorporate the SP-VLA Manipulation dataset, generated via scalable synthetic data generation
as Appendix Section G.3, and the RoboRefIt dataset Lu et al. (2023), a specialized dataset for
robotics grounding.

• Trajectory QA. This category integrates the A0 ManiSkill subset Xu et al. (2025a), the trajectory
point subset from the SP-VLA Manipulation Dataset, and the MolmoAct dataset Lee et al. (2025)
to enable precise end-effector trajectory prediction. The A0 ManiSkill subset provides high-
quality, object-centric trajectory data, where small objects move in coordination with the robotic
arm’s gripper. These trajectories can be approximated as end-effector movements for tabletop
manipulation tasks.

• Point QA. For precise point localization, we integrate multiple datasets, including the Pixmo-
Points dataset Deitke et al. (2024), the RoboPoint dataset Yuan et al. (2024), the RefSpatial
dataset Zhou et al. (2025a), and a point subset extracted from the SP-VLA Manipulation Dataset,
each subjected to tailored preprocessing. Specifically, the Pixmo-Points dataset is filtered to
exclude images with resolutions exceeding 1024 pixels and restricted to a maximum of 10 points
per image. Additionally, we prioritize the extraction of object reference and region reference data
from the RoboPoint and RefSpatial datasets to enhance grounding accuracy.

All point coordinates are converted to absolute coordinates to align with the Qwen2.5-VL Bai et al.
(2025a) SmartResize prediction framework Bai et al. (2025b). Predicted coordinates are formatted in
JSON and XML to support robust learning and adaptive processing of spatial instructions for diverse
robotic tasks.

Q: Provide a scene 
graph caption of the 
given image.

A: In the image, three 
<ref> women </ref>  
<box> [[67, ……

General VQA Data

Q: How many types of 
animals are 
represented in this 
picture?

A: 2

Q: Could you find the light brown lion.

A: {"response": "sure, I have found 
the light brown lion now.", “subtask": 
“Pick up the light brown 
lion<box>[[304, 275, 346, 
356]]</box> in the table."}

Q: Put the lettuce on the plate.

A: {"response": "Sure, I'm placing the 
lettuce on the plate now.", 
“subtask": "Place the green 
lettuce<box>[[365, 278, 483, 
381]]</box> on the table."}

Spatial Grounidng Data

Pre-training 
Data
3,032K

Trajectory-QAPoint-QABOX-QAVQA

Figure 24: Overview of the pre-training data for the vision-language model. The data comprises two
main parts: general VQA data to maintain the model’s general multimodal capabilities, and spatial
VQA data focusing on robotic-related grounding and spatial perception in a VQA format.

G.2 SYNTHETIC DATA FOR ACTION POST-PRE-TRAINING

To bridge the gap between VLM and VLA, we introduce a Post-Pre-Training phase, where large-scale
simulated data is used to pre-train the VLA after VLM pre-training. This stage initializes the action
head and facilitates the learning of action representations. Post-Pre-Training requires maintaining
diversity both at the instruction and object levels. We leverage GenManip as our data synthesis
pipeline to construct a large-scale pick-and-place dataset which comprises 244K closed-loop samples.
Specifically, we adopt the same object set and positional distributions as in SP-VLA-Interface Data,
and process them through our scalable data pipeline. Each synthesized sample is rigorously validated
to ensure correctness and consistency. To further enhance visual diversity, we introduce controlled
randomization in lighting conditions and texture mappings.
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Table 11: Pre-training multimodal datasets categorized by subtype (VQA, BBox-QA, Trajectory-QA,
Point-QA), with scenario type and annotation method.

Subtype Dataset Samples Scenario Annotation

VQA

AOKVQA 33k Web manual
ShareGPT4V 182k Web automatic
InternVL3 Proprietary Dataset 225k Web automatic, manual
COCOTextV2 16k Web manual
VQAv2 82k Web manual
TallyQA COCO 99k Web manual

BBox-QA

SP-VLA Manipulation Data (Bbox) 431k synthetic,real automatic,manual
RoboRefit 36k real manual
ASv2 128k Web manual
COCO-ReM 117k Web manual
RefCOCO 167k Web manual

Trajectory-QA
SP-VLA Manipulation Data (Traj) 78K real manual
A0 (ManiSkill) 35k synthetic automatic
MolmoAct (Traj) 571k synthetic automatic

Point-QA

SP-VLA Manipulation Data (Point) 114k real manual
RefSpatial 200k synthetic automatic
RoboPoint 422k synthetic automatic
PixMo-Points 96k synthetic manual

Total – 3.032 M – automatic, manual

Grasp Generation

Motion Planning
cuRobo  |  MPLib

Isaac Sim

Physics Rollout14716 Objects 80+ Lights 1676 Textures200+ Tables

Meta Data

Layout
Initial State

<2D Trace> <2D Box><2D Point>

Object Pose
Joint State

Joint Action
Gripper Action

Gripper State

Planning Data

Layout generation Physics Simulation

Visual Rendering for VLM and VLA data synthesis

Task Generation

Simulation Assets

Help me pick up and open the 
plastic bottle.

Synthetic Spatial Grounding QA

{"response": "Sure thing.", “subtask": 
“Pick up the white bottle <box> [8, 176, 106, 
294]] </box> and open it."}

Question:

Answer:

Synthetic Demonstration

244K Episodes with 
GT annotations

Isaac Sim

Visual Rendering

Grasp Point

RGB

2D Box

2D Trace

Depth

Large-scale Simulation for generalizable pick-place: Put <Obj1> to the <Relation> of <Obj2>

The day is late, help me light the 
lantern now.

{"response": "Sure, lighting the 
lantern now.", “subtask": “Ignite the lantern 
<box> [[398, 150, 426, 240]] </box>"}

Question:

Answer: random 
camera

Figure 25: Simulation data synthesis pipeline. The pipeline generates diverse robotic manipulation
data from a large asset library, converts intermediate representations into VQA data, and separates
physics from rendering to reduce wasted failures and improve efficiency.

G.3 SCALABLE SYNTHETIC DATA ENGINE FOR INSTRUCTION-FOLLOWING

To support large-scale end-to-end data generation for VLM pre-training, we build a highly scalable,
flexible, and fully automated simulation pipeline on top of GenManip Gao et al. (2025) and Isaac
Sim Makoviychuk et al. (2021).

Automatic task synthesis for generalizable pick-and-place. We develop a scalable simulation
pipeline (shown in Figure 25) that generates diverse manipulation trajectories from randomized object
layouts and lighting conditions. By leveraging privileged simulation signals, including object poses,
object meshes, and robot arm state, the system rapidly generates scene layouts via a scene graph solver
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and computes candidate grasps based on object meshes Liang et al. (2019). Each candidate trajectory
is then executed once in physics for closed-loop verification, after which a scene-graph validator
checks whether the task goals are achieved. Only trajectories that both execute successfully and pass
validation are accepted, ensuring that all collected data are physically feasible and task-complete.

Synthesis of VLM data and VLA data for Spatial Grounding. For higher efficiency, robot
planning and rendering are fully decoupled in our framework. The planner records structured
scene and trajectory data, including joint states, object positions, and action information, which are
later replayed by the renderer under randomized lighting, materials, and viewpoints. To align the
simulation with the real world, we calibrate all cameras using ArUco markers, ensuring that their
intrinsic and extrinsic parameters match those of real-world cameras, thus maintaining consistent
viewpoint geometry. In addition to high-resolution images, the renderer produces rich intermediate
outputs, such as object bounding boxes and 2D end-effector trajectories. These signals provide dense
supervision for action learning and facilitate the creation of auxiliary datasets for tasks such as spatial
grounding, affordance reasoning, and trajectory prediction. Our asset library includes 14K annotated
objects, 211 tables, 1.6K textures, and 87 dome lights, offering data with high visual and physical
diversity—critical for developing generalizable models.

H POST-PROCESSING OF TELEOPERATED DATA

H.1 REAL TELEOPERATED DATA PROCESSED FOR EVALUATING LONG-HORIZON AND
INTERACTIVE TASKS

Data annotation. To gather diverse tabletop task data, we placed a single-arm Franka robot on a
lightweight mobile platform akin to DROID Khazatsky et al. (2024), enabling the robot to be easily
transported and data to be captured across various scenes. We collected both short-horizon and
long-horizon task data, with short-horizon tasks primarily involving pick-and-place operations, and
long-horizon tasks including sandwich preparation, item sorting, and placing objects into drawers.
For the long-horizon tasks, manual annotations were required to mark transitions between subtasks,
and we preserved the action sequence annotations throughout the data collection process. After data
collection, we segmented the data by marking specific time points. For example, the long-horizon
task “make a classic sandwich” was decomposed into subtasks such as “place the bun on the plate,”
“put the meat in the sink,” and “put the bun back on the plate.” This decomposition allows the policy
to first learn individual skill components in isolation before combining them into more complex
behaviors.

Construction of long-horizon tasks. To enhance system efficiency and reduce the computational
overhead caused by meaningless reasoning in the Visual Language Model (VLM), we adopt an
agent-based approach to organize the VLM and VLA modules. VLM is triggered only when a human
command is received or when the robotic arm stops moving. While VLA handles short-horizon
tasks, VLM performs high-level semantic planning, enabling the system to support more complex
long-horizon tasks.The data generation pipeline follows the structure outlined below.

Keyframe extraction and data augmentation. We begin by extracting keyframes from the collected
data, including the first frame, last frame, and manually annotated task-switching frames. Given
the limited amount of data, we extend the keyframes both forward and backward to maximize data
utilization. For the forward extension, we identify moments of gripper changes near the keyframe
and extract a portion (M%) of data from the segment between the gripper change moment and
the keyframe, enhancing data diversity. Similarly, for the backward extension, we extract the next
segment (N%) of data after the keyframe. For data balance, M is set to 60% and N to 40%, considering
the data bias introduced by manual breakpoints.

Scene layout extraction and action adjustment. Once the data is augmented, we extract scene
layout information, categorizing actions into three types: actions that have already occurred, actions
that are yet to occur, and potential actions. For actions that are yet to happen, we adjust them by
adding or removing actions. New actions are extracted from a potential action library, resulting in a
new task list.

Synthetic user instruction generation and response handling. By combining this updated task
list with the original instructions, we generate synthetic user instructions using GPT-4o-mini or a
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simple to-do list concatenation method. These instructions are further rewritten using GPT-4o-mini
to handle vague or incorrect instructions and generate appropriate robot responses.

Reasoning data generation and scene analysis. Based on the actions that have occurred, actions
that will occur, and the basic scene information, we generate reasoning data through templates or
GPT-4o-mini. This reasoning data includes descriptions of the scene layout and action instruction
analysis, which contributes to the large model’s predictive content.

Consolidation and formatting for model prediction. Finally, we consolidate human instructions,
robot responses, reasoning content, and next actions, and format them for the large model’s predicted
output. This ensures the system has a clear execution plan and can handle complex, long-horizon
tasks.
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