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Abstract

Membership inference attacks are a key measure to evaluate privacy leakage in1

machine learning (ML) models, which aim to distinguish training members from2

non-members by exploiting differential behavior of the models on member and non-3

member inputs. We propose a new framework to train privacy-preserving models4

that induces similar behavior on member and non-member inputs to mitigate5

practical membership inference attacks. Our framework, called SELENA, has6

two major components. The first component and the core of our defense, called7

Split-AI, is a novel ensemble architecture for training. We prove that our Split-8

AI architecture defends against a large family of membership inference attacks,9

however, it is susceptible to new adaptive attacks. Therefore, we use a second10

component in our framework called Self-Distillation to protect against such stronger11

attacks, which (self-)distills the training dataset through our Split-AI ensemble and12

has no reliance on external public datasets. We perform extensive experiments on13

major benchmark datasets and the results show that our approach achieves a better14

trade-off between membership privacy and utility compared to previous defenses.15

1 Introduction16

Recent work has shown that ML models are prone to memorizing sensitive information of training17

data incurring serious privacy risks [23, 2, 3, 6, 20, 24, 7]. In this work, we focus on membership18

inference attack (MIA), which tries to identify whether a target sample was used to train the target ML19

model or not based on model behavior[23]. MIAs pose a severe privacy threat by revealing private20

information about training data. For example, knowing the victim’s presence in the hospital health21

analytic training set reveals that the victim was once a patient in the hospital.22

There are two main categories of membership inference defenses: provable privacy guaranteed23

by DP and empirical membership privacy defenses. The first category uses differential privacy24

mechanisms [1, 15, 28], which provide a provable privacy guarantee for all inputs. While provable25

privacy with high utility is more desirable, it has been a challenge to use provable privacy techniques26

guaranteed by DP like DP-SGD [1] to achieve high accuracy in many machine learning tasks. This27

motivates the second category of membership inference defenses, where privacy is empirically28

evaluated through practical MIAs to preserve high utility. However, none of the existing defenses in29

this category [16, 10, 22] are able to provide sufficient MIA protection and high utility simultaneously30

in the absence of public datasets [25, 5].31

In this paper, we introduce a new defense, called SELENA,1 to protect against black-box MIAs while32

also offering a high utility, which falls in the category of empirical membership privacy defenses.33

1SELf ENsemble Architecture.
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Our framework consists of two core components: Split-AI2 and Self-Distillation. Our first component34

Split-AI trains multiple models (called sub-models) with random subsets from the training set, and35

applies adaptive inference to enable the model to have similar behavior on members and non-members:36

for any queried sample, no matter whether it is in training set, our defense only use sub-models37

which are not trained with it to get outputs; this ensures membership privacy for a large family of38

MIAs which we demonstrate through a formal analysis. Our second component Self-Distillation39

(self)-distills the exact same training sets by using the outputs from Split-AI as soft labels to train40

a new model, which solves the potential advanced attacks threat against Split-AI and computation41

overhead in inference.42

2 Our defense43
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Figure 1: Our end-to-end defense framework with the Split-AI and Self-Distillation components.

Figure 1 gives an overview of our defense, where we denote Split-AI as FθI and protected model44

from Self-Distillation as FθII .
3 We next detail Split-AI and Self-Distillation separately.45

First component Split-AI. MIAs aim to distinguish members and non-members of the private46

training data of a model. These attacks use the fact that the trained model has a different behavior,47

such as accuracy [21], confidence [29, 26, 25] and robustness [5, 13], on member and non-member48

data. MIAs leverage these differences to obtain an attack advantage that is better than a random guess49

even in the black-box setting. Our Split-AI design is based on the following intuition: if a training50

sample is not used to train a sub-model, that sub-model will have similar behavior on that training51

sample and non-members.52

Split-AI’s training. Specifically, for each data point x in the training set, we randomly generate L53

non-model indices from {1, 2, ..., K} to denote the L non-models that are not trained with x and54

record the identification numbers of these L non-model indices (denoted as Idnon(x)4). We then55

generate the dataset partition based on these non-model indices. For each subset Di, we will only use56

those training samples which do not include i in their non-model indices. We then train K sub-models57

Fi, one for each subset Di, which have the same architecture and hyper-parameter settings.58

Split-AI’s inference. We now describe the adaptive inference based ensemble strategy for members59

and non-members. For each queried sample x, the ensemble will check whether there is an exact60

match of x in the training set:61

• If so, which indicates that x is a member, the defender will average the prediction vectors on62

x from L models which are not trained with x as the output, i.e., 1
L

∑
i∈Idnon(x)Fi(x);63

• If not, the defender will randomly use non-member indices of a member sample x′64

and average the prediction vectors on x from L models of Idnon(x′) as the output, i.e.,65
1
L

∑
i∈Idnon(x′)Fi(x).66

2Split Adaptive Inference Ensemble.
3PATE[17, 18] also trains multiple sub-models to provide privacy but with a public dataset, difference detailed

in Appendix A.
4Idnon(x) records L sub-model indices which are not trained with x.
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We formally prove that Split-AI strategy can reduce the accuracy of direct single-query MIAs (typical67

been used in most previous MI defenses [16, 10, 25], see Appendix B.1 for more details) to a random68

guess (See Theorem 2 in Appendix C). The intuitive explanation for this proof is that for each data69

point, the distribution of output of this algorithm on this given point x is independent of the presence70

of x in the training set. This is because, we will not use models that are trained with x to answer71

queries, even if x is in the training set.72

Limitations of Split-AI. While our Split-AI strategy is resilient to direct single-query MIAs, an73

adversary can leverage more advanced attacks including indirect attacks [14] an replay attacks. For74

indirect attacks, attacker can make a single indirect query by adding a small noise to the target sample.75

Split-AI will recognize noisy training samples as non-members and may end up using sub-models76

trained with the target sample, thus leaking membership information. For replay attacks: Split-AI has77

one possible output for member sample, while there are multiple possible outputs for non-members.78

Furthermore, Split-AI imposes a computational overhead in the inference phase as Split-AI needs to79

perform inference on L models for each queried sample.80

Second component: Self-Distillation. To overcome these limitations, we leverage distillation [9].81

To be more specific, here we term our second component as Self-Distillation because we use features82

in the exact same training set as Split-AI along with the prediction vectors from Split-AI as soft labels83

to train a new model using conventional training. The new protected model benefits from distillation84

to largely preserve Split-AI’s defense ability against direct single-query attack (See Theorem 5 and85

Corollary 6 in Appendix C) while maintaining a good classification accuracy. For queried samples,86

the defender now just need to do the inference on the new protected model FθII distilled from the87

Split-AI.88

Self-Distillation overcomes the privacy limitations of Split-AI and mitigates advanced MIAs. The89

defender controls the Self-Distillation component and ensures that Self-Distillation only queries90

each exact training sample once. The attacker only has black-box access to the protected output91

model of Self-Distillation, but cannot access the Split-AI model. Hence, the attacker cannot exploit92

the soft labels computation of Split-AI as discussed before. Hence, the final protected model from93

Self-Distillation effectively mitigates the replay and multi-query indirect attacks. Self-Distillation94

also solves the computational overhead limitation of the Split-AI at inference time: the defender now95

only needs to make inference on a single Self-Distilled model.96

3 Evaluations97

Experimental setup. We follow the setting in previous work [16] that the attacker knows half98

members and non-members, i.e., the number of members and non-members used to train and evaluate99

the attack model are the same and the random guess baseline attack accuracy is 50%. We use100

three benchmark datasets and target models which are widely used in prior works on MI attacks and101

defenses [23, 16, 10]: Purchase100 [19], Texas100 [27] and CIFAR100 [12]. We use K = 25, L = 10102

for all three datasets. Additional experimental details are in Appendix D. We systematically evaluate103

our end-to-end defense framework by direct single-query attacks, indirect label-only attacks (see104

Appendix B.1 for more details), and adaptive attacks (explained in next paragraph) and make a105

comparison with previous MI defenses: MemGuard [10] and adversarial regularization [16].106

Adaptive attacks. The systematic evaluation of existing defenses by Song et al. [25] emphasizes that107

the defender should consider adaptive attackers with knowledge of the defense to rigorously evaluate108

the performance of the defenses. Here we consider the attacker to construct a shadow Split-AI using109

the known training samples to provide additional information (More details in Appendix B.2).110

Results. Table 1 summarizes the classification accuracy and best attack accuracy for each attack type,111

including comparison with previous defenses [16, 10]. We also includes undefended models as a112

baseline. We use acctrain and acctest to denote the model classification accuracy on training set and113

test set. We use accdsq, acclo, accada, and accbest to denote accuracy for direct single-query attacks,114

label-only attacks, adaptive attacks and best attack accuracy among all attacks respectively.115

Comparison with MemGuard. While the test accuracy of our defense is a little lower (at most 3.9%)116

than MemGuard (MemGuard has the same test accuracy as the undefended model), the MIA accuracy117

against MemGuard is much higher than our defense. Compared to a random guess, which achieves118

50% attack accuracy, the best attacks on MemGuard can achieve 14.7% ∼ 19.9% advantage over a119

3



Table 1: Comparison of membership privacy and accuracy on training/test set of undefended model,
previous defenses and SELENA on three different datasets. AdvReg refers to adversarial regular-
ization. The last column is the highest attack accuracy for each row, i.e. for a specific defense on
one dataset, the highest attack accuracy that MIAs can achieve. The last column gives an overview
of comparison: the lower the best attack accuracy, lower the membership inference threat. For each
dataset, the defense which has the lowest corresponding attack accuracy is bold in the column of best
direct single-query attack, best label-only and best attack.

dataset defense acctrain acctest accdsq acclo accada accbest

Purchase100

None 99.98% 83.2% 67.3% 65.8% N/A 67.3%
MemGuard 99.98% 83.2% 58.7% 65.8% N/A 65.8%

AdvReg 91.9% 78.5% 57.3% 57.4% N/A 57.4%
SELENA 82.7% 79.3% 53.3% 53.2% 54.3% 54.3%

Texas100

None 79.3% 52.3% 66.0% 64.7% N/A 66.0%
MemGuard 79.3% 52.3% 63.0% 64.7% N/A 64.7%

AdvReg 55.8% 45.6% 60.5% 56.6% N/A 60.5%
SELENA 58.8% 52.6% 54.8% 55.1% 54.9% 55.1%

CIFAR100

None 99.98% 77.0% 74.8% 69.9% N/A 74.8%
MemGuard 99.98% 77.0% 68.7% 69.9% N/A 69.9%

AdvReg 86.9% 71.5% 58.6% 59.0% N/A 59.0%
SELENA 78.1% 74.6% 55.1% 54.0% 58.3% 58.3%

random guess, which is a factor of 2.4 ∼ 3.7 higher than our defense. In general, MemGuard does120

not have any defense against MIAs that do not rely on confidence information: attacker can use121

label-only attacks as adaptive attacks since MemGuard only obfuscates confidence.122

Comparison with adversarial regularization. Our defense achieves higher classification accuracy123

and lower MIA accuracy compared with adversarial regularization. The classification accuracy of124

our defense is higher than adversarial regularization across all three datasets, and as high as 7.0%125

for the Texas100 dataset. For MIAs, our defenses achieves significantly lower attack accuracy than126

adversarial regularization. MIA attacks against adversarial regularization is higher than our defense127

across all three datasets, and its advantage over random guess is at most a factor of 2.1 than our128

defense (on Texas100). Besides, adversarial regularization is much harder to tune.129

We also include a comparison of our defense with early stopping [25] and DP-SGD [1] in Appendix E.130

In addition, we also highlight the following two points from Table 1:131

Our SELENA effectively induces similar behaviors including generalization, confidence, robustness132

for member and non-member samples and therefore the MIA attack accuracy is largely reduced. Let us133

take the generalization gap g as an example: the generalization gap in undefended models/MemGuard134

is 16.78% on Purchase100, 27.0% on Texas100, 22.98% on CIFAR100; the generalization gap in135

adversarial regularization is 13.4% on Purchase100, 10.2% on Texas100 and 15.4% on CIFAR100. In136

contrast, the generalization gap in our defense is 3.4% on Purchase100, 6.2% on Texas100 and 3.5%137

on CIFAR100: Our mechanism reduces the total generalization gap by a factor of up to 6.6 compared138

to undefended models/MemGuard, and a factor of up to 4.4 compared to adversarial regularization.139

The additional estimation of soft labels provided by shadow Split-AI (using the entirety of the140

attacker’s knowledge) provides additional information to the attacker, which enhances the accuracy141

of our adaptive attacks: attack has more advantage over random guess than direct single-query attack142

and label-only attacks. However, even considering the strong adaptive attacks, SELENA still achieves143

lower attack accuracy in comparison to previous defenses.144

Computation overhead in SELENA. One cost that our framework needs to pay is the use of145

additional computing resources in the training process as we train multiple sub-models for Split-AI146

in the training phase. However, our SELENA does not incur additional computation overhead in147

inference compared to undefended model. Here we argue that the cost of computing resources in148

the training phase is acceptable as the improvement in GPU technology are making the computing149

resources cheap while the privacy threat remains severe. We note that if multiple GPUs are available,150

our approach can easily benefit from parallelization by training the K sub-models in parallel.151
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Appendix233

A Comparison With PATE234

PATE [17, 18] is a framework composed of teacher-student distillation and leverages public data to achieve a235

better privacy-utility trade-off for differential privacy. PATE uses a disjoint training set partition for sub-models236

in the teacher component. To get the private label of the public dataset to train the student model, PATE applies237

noisy count among sub-models.238

There are three major differences between our work and PATE: (1). PATE requires a public dataset to provide239

the provable end-to-end privacy guarantee, which is not possible in certain practical scenarios such as healthcare.240

Our defense does not need public datasets and provides a strong empirical defense against MIAs. (2). We apply241

a novel adaptive inference strategy to defend against MIAs: for each training sample, we only use prediction of242

sub-models in Split-AI that are not trained with it as these sub-models will not leak membership information243

for it. PATE does not use adaptive inference and relies on majority voting over all sub-models. (3). We use244

overlapping subsets to train sub-models. This allows our approach to obtain high accuracy for each sub-model245

with sufficient subset size. PATE faces the limitation of each sub-model being trained with much reduced subset246

size due to disjoint subsets.247

In addition, PATE incurs a 0.7% ∼ 6.7% drop in test accuracy [18], while the test accuracy drop in our defense248

is no more than 3.9%.249
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B Membership inference attacks250

MIAs can utilize the prediction vector as a feature using a neural-network-based model, called NN-based attacks,251

or can compute a range of custom metrics (such as correctness, confidence, entropy) over the prediction vector252

to infer membership, called metric-based attacks. These attacks can be mounted either by knowing a subset253

of the training set [16] or by knowing a dataset from the same distribution of the training set and constructing254

shadow models [23].255

Let us denoteDtr as the training set for the target model, i.e., members andDte as the test set, i.e., non-members.256

DA
tr and DA

te are, respectively, the sets of members and non-members that the attacker knows. I(x, y, F (x)) is257

the binary membership inference classifier which codes members as 1, and non-members as 0. The literature258

typically measures MIA efficacy as the attack accuracy:259 ∑
(x,y)∈Dtr\DA

tr
I(x, y, F (x)) +

∑
(x,y)∈Dte\DA

te
(1− I(x, y, F (x)))

|Dtr\DA
tr|+ |Dte\DA

te|

In most previous attacks [23, 16, 30, 25], the number of members and non-members used to train and evaluate260

the attack model are the same. With this approach, the prior probability of a sample being either a member or a261

non-member is 50% (corresponding to a random guess).262

Next, we summarize existing black-box MIAs in the following two categories: direct attacks and indirect263

attacks, as well as explain adaptive attacks against our SELENA defense.264

B.1 Existing membership inference attacks265

Direct single-query attacks: Most existing MIAs directly query the target sample and utilize the resulting266

prediction vector. Since ML models typically have only one output for each queried sample, just a single267

query is sufficient. This category of MIAs includes NN-based attack [23, 16], correctness-based attack [30],268

confidence-based attack [29, 26, 25], entropy-based attack [23, 25], modified entropy-based attack [25]. We269

consider all these attacks across three datasets and report the best direct single-query attack accuracy in Table 1.270

Indirect multi-query attacks (label-only attacks): Long et al. [14] stated that indirect attacks can make271

queries that are related to target sample x to extract additional membership information as a training sample272

influences the model prediction both on itself and other samples in its neighborhood. These indirect attacks273

usually make multiple queries for a single target sample [14, 13, 5]. For example, multi-query label-only attacks274

leverage the predicted label of the queried data as features, and are thus immune to defenses that only obfuscate275

prediction confidences, e.g., MemGuard [10]. The key idea in label-only attacks is that the model should be276

more likely to correctly classify the samples around the training data than the samples around test data, i.e.,277

members are more likely to exhibit high robustness than non-members [13, 5]. Simply obfuscating a model’s278

confidence scores can not hide label information to defend against such label-only attacks. This category of279

MIAs includes boundary estimation attacks [13, 5] and data augmentation attacks [5]. We consider boundary280

estimation attacks for all three datasets and data augmentation attacks on CIFAR100 as only CIFAR100 uses281

data augmentation during the training process.282

B.2 Adaptive attacks283

The systematic evaluation of existing defenses by Song et al. [25] emphasizes the importance of placing the284

attacker in the last step of the arms race between attacks and defenses: the defender should consider adaptive285

attackers with knowledge of the defense to rigorously evaluate the performance of the defenses. Therefore,286

here we consider attacks that are tailored to our defense. As our defense leverages soft labels from the Split-AI287

ensemble to train a new model FθII in Self-Distillation, we need to analyze whether and how an attacker can288

also leverage the information about soft labels.289

We first note that an attacker is unable to directly interact with our Split-AI ensemble to directly estimate soft290

labels, since the prediction API executes queries on the model produced by the Self-Distillation component.291

Second, we expect that when the model provider finishes training the protected model FθII with soft labels292

obtained from Split-AI ensemble, it can safely delete the sub-models and soft labels of the training set to avoid293

inadvertently leaking information about the soft labels.294

However, an attacker can still aim to indirectly estimate soft labels. As we assume that the attacker knows295

partial membership of the exact training set in evaluating membership privacy risks (specifically, half of the296

whole training set) and attacker cannot have access to the defender’s non-member model indices Idnon(x) for297

training set, the attacker will generate new non-member model indices Idnon(x)′ for these known member298

samples to train a new shadow Split-AI ensemble and use the shadow Split-AI to estimate soft labels of the299

target samples. The attacker can then use such soft labels as an additional feature to learn the difference in target300

model’s behavior on members and non-members, and launch MIAs on FθII . The shadow Split-AI discussed in301
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our paper is stronger than original shadow models [23] since it is trained with exact knowledge of the partial302

training dataset.303

We design four adaptive attacks including two NN-based attacks and two metric-based attacks to leverage the304

estimated soft labels to attack our defense. To clarify, FθII denotes the protected target model which answers the305

attacker’s queries and F ′θI denotes the shadow Split-AI ensemble constructed by attacker.306

MIAs based on NN and soft labels: The first NN-based attack concatenates the soft labels obtained from F ′θI ,307

the predicted confidence from FθII and the one-hot encoded class labels as features to train a neural network308

attack model (denoted as INN1). The second attack utilizes the difference between the estimated soft labels309

from F ′θI and outputs from FθII , and uses this difference as an input to the NN architecture used by Nasr et310

al. [16] (denoted as INN2).311

MIAs based on distance between soft labels and predicted confidence: Similar to previous metric-based312

attacks [25], an attacker may try to distinguish between members and non-members by leveraging the distance313

between estimated soft labels from F ′θI , and the prediction confidence vectors from FθII . We have:314

Idist(FθII(x), F ′θI(x), y) = 1{Dist(FθII(x), F ′θI(x)) ≤ τ(y)}
or, Idist(FθII(x), F ′θI(x), y) = 1{Dist(FθII(x), F ′θI(x)) ≥ τ(y)}

where we apply both class-dependent threshold τy and class-independent threshold τ and we will report the315

highest MIA accuracy. In this work we consider L2 distance IL2-dist and cross-entropy loss ICE-dist (since the316

cross-entropy loss function is used for training our defense models).317

C Proof for Split-AI against Direct, Single-Query Membership Inference318

Attack319

Notation. In this section, we use x← X to denote that x is sampled from a distributionX . We use Supp(X)320

to denote the support set of a random variable X . By TV (X,X ′) we denote the total variation distance between321

X and X ′, that is TV (X,X ′) = supS⊂Supp(X)∪Supp(X′) Pr[X ∈ S]− Pr[X ′ ∈ S]. We present our Split-AI322

algorithm in Algorithm 1.323

Definition 1 (Direct, Single-Query Membership Inference). The single-query membership inference game is324

defined between an attacker A and a learner C and is parameterized by a number n which is the number of325

training examples.326

1. The attacker selects a dataset X = {x1, . . . , x2n} and sends it to the learner.327

2. Learner selects a uniformly random Boolean vector b = b1, . . . , b2n such that the Hamming weight of328

b is exactly n.329

3. Learner constructs a dataset S = {xi; ∀i ∈ [2n], bi = 1} and learns a model FθI using S as training330

set.331

4. Learner selects a random i ∈ [2n] and sends (xi, FθI (xi)) to the adversary332

5. Adversary outputs a bit b′i.333

The advantage of A in breaking the security game above is SQMI(A,C, n) = E[1 − |bi − b′i|] where the334

expectation is taken over the randomness of the adversary and learner.335

Remark 1. We can define a variant of the security game of Definition 1 for a fixed dataset X . That is, instead of336

X being chosen by adversary, we define the game for a given X . We use SQMI(A,C,X) to denote the success337

of adversary in the security game with the dataset fixed to X .338

Theorem 2. Consider a learner CST that uses Algorithm 1. For any direct, single-query membership inference339

adversary A we have340

SQMI(A,CST , n) = 50%

Proof. We show that for any adversary’s choice of i ∈ [2n] in step 4 of the security game, the view of adversary341

in two cases when bi = 0 and when bi = 1 are statistically identical. Note that the only information that the342

adversary receives is ri = FθI (xi). We show that the distribution of two random variables ri | bi = 0 and343

ri | bi = 1 are identical. Let Ui be a random variable corresponding to the subset of trained models that do not344

contain xi in their training set (in particular |Ui| = L if bi = 1 and |Ui| = K when bi = 0). Also, let U denote345

a random variable corresponding to a subset of L models that do not contain a random xk in their training data346

where k is selected from {j ∈ [2n]; bj = 1} uniformly at random.347
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Algorithm 1 Split-AI Model FθI
Initialize:
K: total number of sub-models F1, F2, ..., FK
L: for each training sample, the number of sub-models which are not trained with it.
(Xtrain, Ytrain): training data and labels
Training Phase:
Randomly generate the L identification numbers of sub-models for each training sample Idnon(x).

for i = 1 to K do
Construct subset (Xi

train, Y
i
train) for model Fi based on the recorded Idnons for models:

{(x, y): (x, y) ∈ (Xtrain, Ytrain), i not in Idnon(x)}
for number of the training epochs do

Update Fi by descending its stochastic gradients over l(Fi(Xi
train), Y

i
train).

end for
end for
Inference Phase: FθI(x)
Given x
if x in Xtrain then

FθI(x) =
1

L

∑
i∈Idnon(x)

Fi(x)

else
Randomly select x′ in the training set,

FθI(x) =
1

L

∑
i∈Idnon(x′)

Fi(x)

end if

We first note that U | bi = 0 and Ui | bi = 1 are identically distributed random variables. Specif-348

ically, they are both an ensemble of L models trained on a uniformly random subset of a dataset T ⊂349

{x1, . . . , xi−1, xi+1, . . . , x2n} where |T | = n− 1.350

Now, lets calculate the distribution of response when bi = 1 and when bi = 0. For bi = 1 we have351

(ri | bi = 1) ≡ (
1

L
·
∑
F∈Ui

F (xi) | bi = 1)

For bi = 0 we have352

(ri | bi = 0) ≡ (
1

L
·
∑
F∈U

F (xi) | bi = 0)

Now since Ui | bi = 1 and U | bi = 0 are distributed identically, the summation of the query points are also353

identically distributed. Therefore, ri | bi = 0 and ri | bi = 1 are identically distributed. Note that it is crucial354

that the adversary only queries the point xi as otherwise we had to take the summation over U | bi = 1 and355

U | bi = 0 which are not identically distributed (the case of bi = 1 could have xi in the training set of the L356

models).357

Since we prove that ri | bi = 1 and ri | bi = 0 are identical, the adversary cannot distinguish them and the358

success probability of the adversary is exactly 0.5. The intuitive explanation for this proof is that for each data359

point, the distribution of output of this algorithm on a given point x is independent of the presence of x in the360

training set, as we will not use models that are trained with x to answer queries, even if x is in the training set.361

362

Remark 3 (A stronger security game and theorem). Note that there is a worst-case variant of Definition 1363

where in step 4, instead of the challenger, the adversary select i ∈ [2n]. This is a stronger security game as the364

adversary can select the worst example in the dataset. However, Theorem 2 remain unchanged in this game.365

This is because the proof applies to any i ∈ [2n] and does not require i to be chosen at random. As we will see366

below, we have another theorem (Theorem 5) that considers the privacy of end-to-end SELENA for which the367

guarantee only holds for the weaker definition.368
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Definition 2 (stable distillation). A distillation algorithm Q : Ms ×AUX→Mo is a potentially randomized369

algorithm with access to a source model ms ∈ Ms ⊆ Y X and some auxiliary information and returns an370

output model mo ∈Mo ⊂ Y X . We define the notion of stability for a distillation algorithm on a point x ∈ X ,371

and joint distributionM on Ms ×AUX as follows:372

stablity(Q,M, x) = 1− TV (Q(M)[x],M[x]).

Moreover, we say the algorithm Q has (α, β)-stability on a distributionM and a dataset X iff

Pr
x←X

[stability(Q,M, x) ≤ 1− α] ≤ β

373

Example. If the distillation algorithm Q ensures that for a specific point x and for all ms ∈ Ms we have374

Q(ms)[x] = ms[x], then Q has stability 1 on point x for all distributionsM defined on Ms.375

Remark 4. The distillation algorithm Q could also depend on an additional dataset that is correlated with ms376

as the auxiliary information. For instance, in our self-distillation algorithm, the distillation is done through377

the same training set that was used to train ms. In this case, we are interested in the joint distributionM that378

consist of a model ms as first element and a dataset D as the second element, so that ms is a model trained on379

dataset D.380

Now we state a corollary of our Theorem 2 about the privacy of the distilled models from the output of the381

Split-AI operation.382

Notation. For a learner C and a dataset X , we useMC,X to denote a distribution of models that is obtained383

from the following process: First select a random subset S of size |X|/2 and then train a model m on that subset384

using learner C and output (m,S). For a learner C and a distillation model Q, we use QoC to denote a learner385

that first uses C to train a model and then uses distillation algorithm Q to distill that model and then returns the386

distilled model.387

Theorem 5. Let C be an arbitrary learner. Assume for a set of samples X the distillation algorithm Q has388

(α, β)-stability on distributionMC,X and dataset X . Then, for any adversary A we have389

SQMI(A,QoC,X) ≤ SQMI(A,C,X) + α+ β.

Proof. Consider an adversary A that given a response QoC[xi] on query xi ∈ X outputs a bit b′i =390

A(QoC(xi)). Let E be an event defined on X such that E(x) = 1 iff391

stability(Q,MC,X , x) ≥ 1− α.

For a point xi such that E(xi) = 1 we have392

Pr
[
A(QoC[xi]) = bi

]
≤ Pr

[
QoC[xi] 6= C[xi]

]
+ Pr

[
A(C[xi]) = bi | C(xi) = QoC[xi]

]
· Pr

[
QoC[xi] = C[xi]

]
≤ α+ Pr

[
A(C[xi]) = bi

]
Therefore, we have393

Pr
xi←X

[
A(QoC[xi]) = bi

]
≤ Pr
xi←X

[
A(QoC[xi]) = bi] | E(xi)

]
· Pr
xi←X

[E(xi)] + Pr
xi←X

[Ē(xi)]

≤ Pr
xi←X

[
A(QoC[xi]) = bi | E(xi)

]
· Pr
xi←X

[E(xi)] + β

≤
(

Pr
xi←X

[
A(C[xi]) = bi | E[xi]

]
+ α

)
· Pr
xi←X

[E(xi)] + β

≤ Pr
xi←X

[
A(C[xi]) = bi]

]
+ α+ β

= SQMI(A,C,X) + α+ β.

394

Now we are ready to state a corollary of Theorems 5 and 2 for the full pipeline of Split-AI followed by395

Self-Distillation. The following Corollary directly follows from Theorems 5 and 2.396
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Corollary 6. Let CST be a learner that uses the Split-AI algorithm 1. Also, let QSD be a distiller that uses397

self-distillation algorithm. If QSD is (α, β)-stable for a dataset X and distributionMCST ,X , then, for any398

adversary A we have399

SQMI(A,QSDoCST , X) ≤ 0.5 + α+ β.

Remark 7 (How private is SELENA against multi-query attacks?). The above theoretical analysis of SELENA400

is only valid for single-query direct attacks. But one might wonder if we can show a similar theory for privacy of401

SELENA against multi-query attacks. Unfortunately, we cannot prove a result as general as Corollary 6 for402

multi-query attacks. In fact, there exist some datasets that SELENA cannot obtain provable privacy for. For403

instance, imagine a dataset that contains two points (x, 0) and (x′, 1) in the dataset such that x and x′ are404

almost the same points, i.e. x ≈ x′, yet they are labeled differently in the training set (x is labeled as 0 and x′405

as 1). In this scenario, we can observe that the adversary can obtain information about membership of x and406

x′, when querying both points. In particular, if only one of x and x′ are selected as members, then we expect407

the result of query on x and x′ to be the same and equal to the label of the one that is selected as a member.408

However, we argue that this lack of privacy for certain datasets will not manifest in the real world examples as409

such high correlation does not appear in real-world datasets. Our empirical analysis of SELENA is consistent410

with this claim. We defer the theoretical analysis of SELENA for multi-query attacks on datasets that satisfy411

certain assumptions to future work.412

D Experimental setup413

Here we introduce the datasets, the model architectures, and the hyper-parameter settings in more detail.414

D.1 Dataset415

We use three benchmark datasets widely used in prior works on MIAs:416

CIFAR100 [12]: This is a benchmark dataset used to evaluate image classification algorithms. CIFAR100 is417

composed of 32× 32 color images in 100 classes, with 600 images per class. For each class label, 500 images418

are used as training samples, and remaining 100 images are used as test samples.419

Purchase100 [19]: This dataset is based on Kaggle’s Acquire Valued Shopper Challenge, which contains420

shopping records of several thousand individuals. We obtained a prepossessed and simplified version provided421

by Shokri et al. [23]. This dataset is composed of 197,324 data samples with 600 binary features. Each feature422

corresponds to a product and represents whether the individual has purchased it or not. This dataset is clustered423

into 100 classes corresponding to purchase styles.424

Texas100 [27]: This dataset is based on the Hospital Discharge Data public use files with information about425

inpatients stays in several health facilities released by the Texas Department of State Health Services from 2006426

to 2009. Each data record contains external causes of injury, the diagnosis, the procedures the patient underwent427

and some generic information. We obtain a prepossessed and simplified version of this dataset provided by428

Shokri et al. [23], which is composed of 67,330 data samples with 6,170 binary features. This dataset is used to429

classify 100 most frequent used procedures.430

D.2 Target Models431

For CIFAR100, we use ResNet-18 [8], which is a benchmark machine learning model widely used in computer432

vision tasks. We adopt the cross-entropy loss function and use Stochastic Gradient Descent (SGD) to learn the433

model parameters. We train the model for 200 epochs with batch size of 256, initializing learning rate 0.1 with434

weight decay 0.0005 and Nesterov momentum of 0.9 and divide the learning rate by 5 at epoch 60, 120, 160.5435

For Purchase100 and Texas100, we follow previous work [16] to use a 4-layer fully connected neural network436

with layer sizes [1024, 512, 256, 100] and Tanh as the activation function. We use the cross-entropy loss function437

and Adam [11] optimizer to train the model on Purchase100 for 30 epochs and on Texas100 for 20 epochs with438

learning rate of 0.001. The batch size is 512 for Purchase100 and 128 for Texas100.439

E Comparison with other defenses440

E.1 Comparison with early stoppoing441

During the training process, the model may learn too much information in the training samples thus the difference442

between its behavior on members and non-members becomes larger and larger, and the model becomes more443

5https://github.com/weiaicunzai/pytorch-cifar100
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Figure 2: Detailed comparison of SELENA with early stopping. From left to right are results for
Purchase100, Texas100 and CIFAR100. The solid curves are the test accuracy and MIA accuracy with
corresponding training epochs. ER denotes early stopping. The dashed lines are the test accuracy and
MIA accuracy of SELENA, which is shown in Table 1. Our defense achieves a better privacy-utility
trade-off than all epochs in the conventional training.

vulnerable to membership inference attacks. Therefore, early stopping, which is a general technique to prevent444

model overfitting by stopping model training before the whole training process ends, can mitigate MIA accuracy445

with a sacrifice of model utility. Song et al. [25] find that adversarial regularization is not better than early446

stopping [4] when evaluated by a suite of attacks including both NN-based attacks and metric-based attacks.447

Therefore, we further compare our defense with early stopping.448

Specifically, we will compare the model performance of an undefended model in each epoch during the training449

process and our final protected model FθII . For early stopping, we only consider direct single-query attack (due450

to their strong performance on undefended models). Figure 2 shows a detailed comparison between our defense451

FθII and early stopping. The dashed lines are the classification accuracy on test set and the best MIA accuracy452

of our defense, which is already reported in Table 1. The solid lines correspond to classification accuracy on test453

set and MIA accuracy using the undefended model as a function of the training epochs. As we can see from454

Figure 2, our defense significantly outperforms early stopping.455

Comparison at similar attack accuracy. The undefended model will only have same level of MIA accuracy456

as the dashed line of our defense at the very beginning of the training process. However the test accuracy of the457

undefended model at that point is far lower than that of our defense. For example, approximately, for Texas100,458

when MIA accuracy against the conventional trained model is 55.1%, the test accuracy of the undefended model459

is 39.2%, which is 13.4% lower than that of our defense (52.6%). For other two dataset, when the MIA accuracy460

against the undefended model achieves similar attack accuracy as our defense, the test accuracy is 8.0% lower461

on Purchase100 and 11.0% lower on CIFAR100 compared to our defense.462

Comparison at similar classification accuracy. When the undefended model achieves the same classification463

accuracy on the test set as our defense, the MIA accuracy against the undefended model is significantly higher464

than our defense. For example, when the test accuracy of the conventional model reaches 74.6% on CIFAR100465

(similar to our defense), the attack accuracy is 63.6%, compared to the best attack accuracy of 58.3% for466

our defense (which is 5.3% lower). We can see similar results on other datasets: when the test accuracy of467

undefended models achieves similar classification accuracy as our defense on Purchase100 and Texas100, the468

attack accuracy is 58.1% on Purchase100 and 66.0% on Texas100, which is 3.8% and 10.9% higher than our469

defense separately.470

E.2 Comparison with DP-SGD471

We use the canonical implementation of DP-SGD and its associated analysis from the TensorFlow Privacy472

library6. We varied the parameter noise_multiplier in the range of [1, 3] on Purchase100 and [1, 2] on473

Texas100 with a step size 0.2. We set the privacy budget ε = 4 and report the best classification accuracy for474

these two datasets.475

The test accuracy on Purchase100 is 56.0% and the corresponding best direct single-query MIA accuracy is476

52.8%. The test accuracy on Texas100 is 39.1%, and the corresponding best direct single-query MIA accuracy is477

53.8%. Note that though DP-SGD provides a differential privacy guarantee and the best direct single-query MIA478

accuracy is 0.5% ∼ 1% lower than that against our SELENA, DP-SGD suffers from a significant loss in utility:479

compared to the undefended model DP-SGD incurs 13.2% ∼ 27.5% drop in classification accuracy, while our480

defense incurs no more than 3.9% drop in test accuracy.481

6https://github.com/tensorflow/privacy
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