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Abstract
Large Language Models (LLMs) demonstrate
strong performance across a variety of tasks, yet
adapting them efficiently to new domains remains
a challenge. Parameter-Efficient Fine-Tuning
(PEFT) mitigates this by introducing lightweight,
trainable modules while keeping most pre-trained
weights frozen. We introduce ABBA, a new PEFT
approach that models updates as a Hadamard
product of two independently learnable low-rank
matrices, fully decoupled from the pre-trained
weights. This reparameterization significantly en-
hances expressivity under fixed parameter bud-
gets. We provide a formal analysis of ABBA’s
expressive capacity and demonstrate that it con-
sistently outperforms existing PEFT methods on
arithmetic and commonsense reasoning bench-
marks across multiple models by a significant
margin. Our code is available at: https://
github.com/CERT-Lab/abba.

1. Introduction
Large Language Models (LLMs) have become the back-
bone of modern NLP systems (Achiam et al., 2023; Tou-
vron et al., 2023; Team et al., 2023; Yang et al., 2024; Team
et al., 2025), demonstrating strong generalization across a
wide range of tasks. However, adapting these models to
new tasks typically requires full fine-tuning (FT), which is
computationally and memory intensive. Parameter-Efficient
Fine-Tuning (PEFT) methods address this challenge by in-
troducing a small number of trainable parameters while
keeping the majority of model weights frozen (Hu et al.,
2021; Liu et al., 2024; Bałazy et al., 2024). Among PEFT
approaches, Low-Rank Adaptation (LoRA) (Hu et al., 2021)
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is the most widely adopted due to its simplicity and effective-
ness. It models the weight update ∆W as the product of two
low-rank matrices, providing a compact parameterization.
However, this formulation inherently constrains updates to
a low-dimensional subspace, limiting expressivity.

HiRA (Huang et al., 2025) addresses LoRA’s limited expres-
sivity by applying a Hadamard product between a low-rank
update and the frozen pre-trained weights W0, enabling
updates that can, in principle, attain full rank. However,
HiRA’s expressivity remains tightly coupled to W0, as the
learned adapters merely modulate the pre-trained weights
rather than generating the full update independently. For
example, if the target update equals diag(W0), HiRA must
learn adapters that approximate the identity matrix, an or-
thonormal structure that is challenging for low-rank modules
to represent accurately (Figure 4).

Figure 1. Left: Illustration of ABBA’s parameterization, where the
update is expressed as the Hadamard product of two learnable low-
rank matrices. Right: A toy experiment demonstrating ABBA’s
optimization behavior. We first train a 2-layer MLP to classify
the first 8 MNIST digits, then fine-tune it to recognize the last 2.
ABBA converges faster and achieves better final performance.

In this work, we introduce ABBA, a novel architecture
framework that reparameterizes the weight update as the
Hadamard product of two fully learnable low-rank matrices
(see Figure 1). Each component is independently formed
via a low-rank decomposition (B1A1 and B2A2), resulting
in a highly expressive update while maintaining parameter
counts. Unlike HiRA, ABBA is fully decoupled from the
pretrained weights W0, allowing both components to be
optimized without structural constraints. The name ABBA
reflects the four low-rank matrices in the architecture.

First, we analyze expressivity through a matrix reconstruc-
tion task, where Hadamard-structured updates consistently
outperform standard LoRA decompositions under the same
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Figure 2. Empirical Reconstruction Errors. We compare ABBA
and LoRA decompositions across various matrix types by measur-
ing reconstruction error E(r) under equal parameter budgets. For
each LoRA rank r, we set ABBA ranks to r1 = r2 = r/2 for a
fair comparison. ABBA consistently achieves significantly lower
reconstruction error than LoRA, across all matrix types.

parameter budget (Figure 2). This demonstrates that ABBA
can represent a broader update class than LoRA within iden-
tical constraints. Next, a toy MNIST experiment (Figure 1)
shows that ABBA converges significantly closer to the opti-
mum compared to LoRA/HiRA, indicating that its increased
expressivity is also practically accessible during learning.
We present an exact reformulation of the ABBA update
using Khatri–Rao matrix factorization, enabling efficient
implementation without approximation. Empirically, ABBA
consistently outperforms existing PEFT methods across a
broad range of tasks and models, within the same/lower
parameter budget. Our key contributions are:

• We propose ABBA, a novel PEFT architecture that mod-
els the weight update as the Hadamard product of two
independently learnable low-rank matrices. This formula-
tion enables highly expressive, high-rank updates while
preserving strict parameter efficiency.

• We provide theoretical and empirical analyses of ABBA’s
expressivity, showing that Hadamard-based decomposi-
tion consistently outperforms standard low-rank methods
in matrix reconstruction.

• We introduce an exact and efficient reformulation of
ABBA using Khatri–Rao factorization, enabling scalable
and practical implementation without compromising ex-
pressivity.

• Through extensive experiments on four models across
arithmetic and commonsense reasoning tasks, we demon-
strate that ABBA achieves state-of-the-art performance,
significantly outperforming existing PEFT methods under
equal or lower parameter budgets.

2. Methodology
2.1. Preliminaries

Full Fine-Tuning. Given a pre-trained weight matrix W0 ∈
Rm×n, full FT updates all parameters via W = W0 +∆W ,
introducing m × n trainable parameters per layer. This is
impractical due to the high memory and compute overhead.

LoRA (Hu et al., 2021). LoRA mitigates this by modeling
the update as a low-rank decomposition: ∆W = sBA,
where B ∈ Rm×r, A ∈ Rr×n, and s is a scaling factor. This
reduces the number of trainable parameters to r(m + n),
with r ≪ min(m,n). LoRA can represent any update
of rank at most r, but cannot express higher-rank updates.
Moreover, the projected gradient onto the weight space
is also low-rank. While effective for simpler tasks, this
limitation becomes significant in settings requiring high-
rank updates or gradients (Ponkshe et al., 2024).

HiRA (Hadamard High-Rank Adaptation) (Huang et al.,
2025). HiRA lifts LoRA’s rank limitation by modulating its
low-rank update with an element-wise (Hadamard) product
with the frozen pre-trained weight W0:

∆W = W0 ⊙ (BA), ⊙ is the Hadamard product. (1)

This leverages the property that the Hadamard product of
two matrices W1 and W2 with ranks r1 and r2 respectively
satisfies rank(W1⊙W2) ≤ r1 ·r2. Thus, HiRA can produce
updates of rank up to r0r, where r0 = rank(W0), poten-
tially addressing the low-rank limitation of LoRA. Addition-
ally, the gradient projected onto W is no longer low-rank.
However, higher rank does not necessarily imply greater
expressivity. Because HiRA’s update is element-wise tied
to W0, it is restricted to a subspace defined by the pre-
trained weights. This dependence can hinder generalization,
especially in out-of-domain scenarios. HiRA reduces recon-
struction error over LoRA only when the element-wise ratio
of the oracle update to W0 is itself low-rank (Section A.1).

2.2. Improving the Expressivity of HiRA

A natural way to overcome HiRA’s expressivity constraint
is to make the matrix Wh learnable:

∆W = Wh ⊙ (BA), Wh ∈ Rm×n is trainable. (2)

However, this reintroduces the full m× n parameter cost of
Wh, negating LoRA’s core efficiency advantage. Even if Wh

is fixed but not equal to W0, the additional memory required
to store it significantly increases the overhead. In contrast,
HiRA sets Wh = W0, which is already stored, thereby
preserving LoRA’s parameter and memory efficiency. This
raises a critical question: Can we achieve greater expressiv-
ity and high-rank learning while maintaining the parame-
ter and memory efficiency of LoRA?

Importantly, we note that full-rank updates are not always
necessary. Moreover, Wh itself does not need to be full-rank.
Since any m×n matrix has rank at most r0 = min(m,n), a
modulation matrix with rank above r0/r offers no additional
expressivity for the Hadamard product.
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2.3. ABBA: Highly Expressive and High Rank, Yet
Efficient

As discussed above, high-rank updates do not require Wh to
be full-rank. Leveraging this insight, we reparameterize Wh

as the Hadamard product of two independently learnable
low-rank matrices, resulting in the following formulation:

∆W = s(B1A1)⊙ (B2A2), (3)

where B1 ∈ Rm×r1 , A1 ∈ Rr1×n and B2 ∈
Rm×r2 , A2 ∈ Rr2×n, with r1, r2 ≪ min(m,n) and s
is a scaling factor for stability. This parameterization in-
troduces only (r1 + r2)(m + n) parameters, significantly
fewer than full FT, and achieves an effective rank up to r1r2.
To maximize expressivity under a fixed parameter budget,
we set r1 = r2, as further supported by empirical results in
Section F.2. This preserves HiRA’s ability to produce high-
rank updates while improving expressivity, since all four
matrices are independently learned. For fair comparison
with LoRA and other PEFT baselines, we match parameter
counts by setting r1 = r2 = r/2, so that ABBA and other
methods use equivalent parameter budgets.

Initialization of ABBA Adapters. HiRA fixes the mod-
ulation matrix as Wh = W0, directly tying the update to
the pretrained weights. In contrast, ABBA makes this ma-
trix fully learnable by reparameterizing it as Wh = B1A1.
We initialize the first adapter pair (B1, A1) using the top-r1
components from a truncated SVD of W0, and the second
pair (B2, A2) using the standard LoRA initialization: B2 as
zeros and A2 with Kaiming uniform sampling.

Ur1 ,Σr1 , V
⊤
r1 ← SVDr1(W0), (4)

B1 ← Ur1Σ
1/2
r1 , A1 ← Σ1/2

r1 V ⊤
r1 , (5)

B2 ← 0, A2 ← N (0, σ2). (6)

By the Eckart–Young–Mirsky (EYM) theorem (Eckart &
Young, 1936; Mirsky, 1960), the truncated SVD yields the
optimal rank-r1 approximation of W0. This hybrid initial-
ization anchors the update close to a meaningful low-rank
subspace, while enabling the second adapter pair to explore
task-specific directions during training. We validate the
effectiveness of this strategy empirically in Section F.1.

Making ABBA Memory-Efficient. While ABBA is
clearly parameter-efficient, analyzing its memory footprint
during training is more subtle. In LoRA, the update ∆W =
BA is applied as ∆Wx = B(Ax), allowing intermedi-
ate computations to remain low-rank. Only the activation
Ax ∈ Rr and the adapter weights need to be stored addition-
ally, avoiding the materialization of the full m× n matrix
BA. In contrast, ABBA’s update ∆W = (B1A1)⊙(B2A2)
poses a challenge. A naive implementation would require

constructing both B1A1 and B2A2, followed by their ele-
mentwise product, resulting in the storage of multiple full
m × n matrices. Moreover, unlike LoRA, the Hadamard
product does not distribute over matrix–vector multiplica-
tion, so computing B2(A2x) does not help incorporate the
other matrices.

Theorem 2.1 (Khatri–Rao Factorization (Slyusar)).
Let B1A1, B2A2 ∈ Rm×n . Then, (B1A1) ⊙
(B2A2) = (B1 ⊙r B2)︸ ︷︷ ︸

m×r1r2

(A⊤
1 ⊙r A

⊤
2 )

⊤︸ ︷︷ ︸
r1r2×n

, where

⊙r
1denotes the row-wise Khatri–Rao product.

Proof. See Appendix E.1.

To address this, we use Theorem 2.1 to rewrite ABBA in a
LoRA-like form: let Bkr = B1 ⊙r B2 and Akr = (A⊤

1 ⊙r

A⊤
2 )

⊤. The update becomes ∆Wx = Bkr(Akrx), avoiding
any full-rank construction. This enables ABBA to match
LoRA’s compute and memory efficiency, while offering
significantly higher expressivity, and remain more efficient
than variants like HiRA, as shown in Section 3.3.

Scaling Factor in the ABBA Update. Theorem 2.1 refor-
mulates the ABBA update as a Khatri–Rao product, giving it
a superficially LoRA-like structure. rsLoRA (Kalajdzievski,
2023) argues that stable LoRA training requires a scaling
factor αLoRA ∝ 1/

√
r. In ABBA, however, the Hadamard

structure enables an effective rank of r1r2, suggesting an
analogous scaling of 1/

√
r1r2. Yet, since the parameteriza-

tions lie on fundamentally different manifolds, the justifica-
tion used in rsLoRA does not directly apply. We formally
derive the appropriate scaling for ABBA in Theorem 2.2,
and support it with empirical evidence in Section F.2.

Theorem 2.2 (Effective Scaling for ABBA Up-
dates). To maintain training stability and match
the update magnitude of LoRA, the ABBA update
∆W = sABBA · (B1A1 ⊙ B2A2) should use the
scaling factor sABBA =

α2
LoRA√
r1r2

, where αLoRA is the
standard LoRA scaling coefficient and r1, r2 are the
ranks of the two ABBA adapter pairs.

Proof. See Appendix E.2.

3. Experiments
We evaluate ABBA on a range of models, specifically Llama-
3.2 1B (Dubey et al., 2024), Llama-3.2 3B (Dubey et al.,

1Given U, V ∈ Rm×n, the row-wise Khatri–Rao prod-
uct U ⊙r V ∈ Rm×n2

is defined by [U ⊙r V ]i :=
[Ui1Vi, Ui2Vi, . . . , UinVi] , where Vi is the i-th row of V .
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2024), Mistral-7B (Jiang et al., 2023), and Gemma-2 9B
(Team et al., 2024), to test its effectiveness across diverse
scales and architectures. We run experiments on multiple
benchmarks to capture varied trends. Appendix J details
our training configurations, and Appendix K lists dataset
specifics. For fair comparison with LoRA and other PEFT
methods, we match the number of trainable parameters in
ABBA by setting r1 = r2 = r/2.

Baselines. We compare ABBA against full fine-tuning,
LoRA (Hu et al., 2021), and several strong LoRA variants:
rsLoRA (Kalajdzievski, 2023), PiSSA (Meng et al., 2024),
DoRA (Liu et al., 2024), LoRA-Pro (Wang et al., 2024c),
and HiRA (Huang et al., 2025).

3.1. Commonsense Reasoning

We fine-tune LLaMA-3.2 models at 1B and 3B scales
(Dubey et al., 2024) on COMMONSENSE170K, a multi-task
dataset comprising eight commonsense reasoning bench-
marks (Hu et al., 2023). These include OBQA (Mihaylov
et al., 2018), ARC-Challenge and ARC-Easy (Clark et al.,
2018), WinoGrande (Sakaguchi et al., 2021), HellaSwag
(Zellers et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap
et al., 2019), and BoolQ (Clark et al., 2019). We evaluate
performance on each dataset independently to capture task-
specific generalization. We insert LoRA modules into the
key, query, and value projections, the attention output, and
all feedforward layers. Table 1 reports the results. ABBA
consistently outperforms all other PEFT methods across
both models, and in many cases surpasses full FT.

Table 1. Comparison of fine-tuning methods on LLaMA-3.2 1B
and 3B across commonsense reasoning datasets.

METHOD # PARAMS
ACCURACY (↑)

OBQA ARC-C ARC-E WINO HELLAS PIQA SIQA BOOLQ AVG.

FULL FT 1.24B 73.42 63.70 78.88 75.12 80.98 80.22 74.79 66.21 74.17
LORA 22.54M 71.83 59.13 74.32 73.87 74.96 78.13 73.75 65.96 71.49
RSLORA 22.54M 71.11 59.85 74.90 73.85 75.34 78.32 73.47 65.44 71.54
PISSA 22.54M 71.45 60.32 74.43 72.90 75.65 78.45 73.63 65.83 71.58
DORA 22.92M 71.99 60.98 77.65 73.42 76.33 78.81 73.79 65.91 72.36
LORA-PRO 22.54M 71.68 61.11 76.37 73.12 76.89 79.24 74.02 65.79 72.28
HIRA 22.54M 72.18 61.26 78.37 72.06 78.87 79.59 74.41 65.32 72.76
ABBAr=16 11.27M 71.86 63.05 78.33 73.95 80.93 80.63 75.33 65.96 73.76
ABBAr=32 22.54M 75.06 64.59 79.74 76.03 82.50 80.41 75.08 66.80 75.03

FULL FT 3.21B 81.88 75.29 88.52 85.02 91.92 85.64 80.45 70.43 82.39
LORA 48.63M 81.87 74.32 86.91 82.24 90.71 85.20 79.12 70.03 81.30
RSLORA 48.63M 81.72 74.18 86.71 82.02 90.45 85.05 78.92 69.81 81.11
PISSA 48.63M 81.79 74.61 87.23 82.68 90.88 85.42 79.44 70.12 81.52
DORA 49.40M 82.04 74.87 87.61 82.90 90.76 85.63 79.68 70.43 81.74
LORA-PRO 48.63M 81.74 75.32 87.24 83.42 90.90 85.81 79.35 71.28 81.88
HIRA 48.63M 81.58 76.38 88.76 83.95 91.67 85.61 79.91 72.69 82.56
ABBAr=16 24.32M 83.40 77.39 89.56 85.16 93.51 86.89 80.55 73.03 83.68
ABBAr=32 48.63M 85.04 79.10 89.61 85.24 92.37 86.83 80.96 73.52 84.08

3.2. Arithmetic Reasoning

We fine-tune Mistral-7B (Jiang et al., 2023) and Gemma-2
9B (Team et al., 2024) on a 50K-sample subset of Meta-

Figure 3. Comparison of training memory requirements. Results
are reported for all models used in our work, with sequence length
and batch size fixed at 256 and 1, respectively.

MathQA (Yu et al., 2024), and evaluate their performance on
GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al.,
2021). We insert LoRA adapters into all attention projec-
tions (query, key, value, and output) as well as both feedfor-
ward layers. We report results in Table 2. ABBA achieves
superior performance over all other PEFT approaches across
both models, and often outperforms full FT.

Table 2. Comparison of fine-tuning methods on Mistral-7B and
Gemma-2 9B across arithmetic reasoning benchmarks.

METHOD
MISTRAL-7B GEMMA-2 9B

# PARAMS GSM8K (↑) MATH (↑) # PARAMS GSM8K (↑) MATH (↑)

FULL FT 7.24B 63.87 17.65 9.24B 79.23 38.02
LORA 83.88M 61.94 15.98 108.04M 76.19 36.56
RSLORA 83.88M 62.15 16.24 108.04M 76.84 36.88
PISSA 83.88M 62.43 16.52 108.04M 77.12 37.04
DORA 85.26M 62.65 16.64 109.88M 77.58 37.04
LORA-PRO 83.88M 63.07 17.32 108.04M 78.26 37.53
HIRA 83.88M 63.15 17.44 108.04M 78.47 38.22

ABBAr=16 41.94M 64.97 18.06 54.02M 78.70 38.41
ABBAr=32 83.88M 66.26 18.08 108.04M 79.76 39.18

3.3. Training Memory Footprint

We report peak memory usage for various methods in Fig-
ure 3, measured with batch size 1 and context length 256.
ABBA reduces memory consumption by ≈ 3 − 3.5 times
compared to full FT. Compared to other PEFT methods,
ABBA offers similar memory efficiency to LoRA, and is
≈ 30−35% more efficient than the next-best method, HiRA.

4. Conclusion
ABBA introduces a simple yet effective extension to the
PEFT framework by expressing the weight update as a
Hadamard product of two independently learnable low-rank
matrices. This formulation retains the parameter efficiency
of LoRA-style methods while enabling significantly higher
expressivity. Our empirical results demonstrate that this ex-
pressivity translates to consistent performance gains across
a range of tasks and models. Through a mathematically
exact Khatri–Rao reformulation, ABBA matches LoRA’s
efficiency while representing high-rank updates entirely
through low-rank components, offering a more powerful
and efficient alternative to existing PEFT approaches.
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Appendix
A. Methodology Continued
A.1. Formalizing and Measuring Expressivity of ABBA

The expressivity of a matrix reparameterization can be evaluated by its ability to accurately reconstruct arbitrary target
matrices, relative to alternative parameterizations.

LoRA and HiRA. In LoRA, the weight update is modeled as a low-rank decomposition ∆W ≈ BA. For any matrix
M ∈ Rm×n, the reconstruction error of this approximation is defined as:

E(r) = ∥M −BA∥F , (7)

and is lower-bounded by the classical EYM theorem (Eckart & Young, 1936; Mirsky, 1960), which states that the optimal
rank-r approximation is given by the truncated SVD. Since a LoRA adapter of rank r can only represent updates with rank
at most r, EYM provides a theoretical minimum for E(r). LoRA achieves this bound exactly when the learned adapters
align with the top singular components of M ; otherwise, practical considerations such as suboptimal initialization may lead
to a performance gap.

A similar bound can be derived for HiRA when the modulation matrix W0 has all nonzero entries. In this case, the optimal
Hadamard-structured approximation can be obtained by element-wise dividing W by W0, followed by applying truncated
SVD to the resulting matrix. The expressivity advantage of HiRA over LoRA arises only if rank(∆W/W0) < rank(∆W ).
Otherwise, for a general update ∆W , HiRA has the same reconstruction error bound as LoRA, as characterized by the EYM
theorem.

Figure 4. Empirical Reconstruction Errors. We compare ABBA and LoRA decompositions across various matrix types by measuring
reconstruction error E(r) under equal parameter budgets. For each LoRA rank r, we set ABBA ranks to r1 = r2 = r/2 for a fair
comparison. ABBA consistently achieves significantly lower reconstruction error than LoRA, across all matrix types.

ABBA vs. LoRA: Reconstruction. Unlike SVD-based methods, ABBA does not admit a closed-form solution for its
low-rank factors (see Appendix C for understanding why). We thus evaluate its expressivity by comparing the reconstruction
error versus other methods. Given a target matrix M ∈ Rm×n, we define the reconstruction error for a method X ∈
{LoRA,ABBA} at rank r as:
EX,r = minMX,r

∥M −MX,r∥2F , where the LoRA approximation is the truncated SVD MSVD,r = UΣrV
⊤, and the

ABBA approximation is given by MABBA,r = (B1A1)⊙ (B2A2).

Previous work (Ciaperoni et al., 2024) establishes a loose upper bound EABBA,r ≤ ELoRA,r, which holds trivially by setting
one ABBA factor to the rank-r SVD and the other to an all-ones matrix. Empirically, however, they observe a stronger
trend: EABBA,r ≲ ELoRA,2r, which suggests that ABBA can match or outperform a rank-2r SVD approximation using
only rank r. However, this behavior is not guaranteed for arbitrary matrices, as the quality of reconstruction depends on
the spectral properties and structure of the matrix. The only known theoretical comparison between the two is the bound:
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ELoRA,2r − EABBA,r ≤
∑r2

i=2r+1 σ
2
i , where σi are the singular values of M . While this bound offers some insight, it is

loose and does not guarantee a strict ordering between the reconstruction errors.

To better understand practical behavior, we empirically evaluate the reconstruction error of different parameterizations
across diverse matrix types. As shown in Figure 4, the ABBA-based Hadamard reparameterization consistently achieves
lower reconstruction error than standard LoRA, indicating greater expressivity. This aligns very well with prior work
leveraging Hadamard structures for efficient and expressive matrix representations (Nam et al., 2022), further validating our
formulation. Beyond these analyses, we also provide a probabilistic guarantee in Theorem A.1 demonstrating when ABBA
is likely to outperform LoRA in the presence of structured signals corrupted by noise.

Theorem A.1 (Probabilistic Advantage of ABBA over LoRA). Let M = Mtrue + σZ, where Mtrue ∈MHad lies
on the Hadamard-product manifold (space in which ABBA updates lie - see Defn. (E.1)), and Z ∈ Rm×n has entries
i.i.d with each distributed N (0, 1).

Let ϵ2bias := ∥Mtrue −MSVD,r∥2F and δ = exp
(
− ϵ2bias

8σ2

)
, then,

P
(
∥M −MABBA,r∥2F < ∥M −MSVD,r∥2F

)
≥ 1− δ. (8)

Proof. See Appendix E.3.

A.2. Stability of the ABBA Update

The scaling factor sABBA is critical in controlling the optimization dynamics of the ABBA update. It must be chosen carefully
to scale appropriately with the ranks r1 and r2 of the underlying low-rank factors. If set too low, learning stagnates; if too
high, training may diverge. While ABBA resembles LoRA in structure, its effective rank is r1r2, and the scaling behavior
must reflect this increased capacity. Inspired by the scaling analysis in rsLoRA (Kalajdzievski, 2023) and LoRA-GA (Wang
et al., 2024b), where stability is achieved under a complexity of O(1) with respect to rank, one might expect similar scaling
for ABBA. However, since ABBA and LoRA inhabit different parameter spaces, these arguments do not transfer directly.
To formalize this, we introduce the notion of rank-stability for ABBA in Definition A.2, which ensures that forward and
backward dynamics remain well-conditioned as r1 and r2 vary.

Definition A.2 (Rank Stability of ABBA Adapters (Kalajdzievski, 2023; Wang et al., 2024b)). An ABBA adapter of the
form sABBA(B1A1)⊙ (B2A2) is rank-stabilized if the following conditions hold:

1. If the 2nd moment of the input is Θr1,r2(1) in each entry with inputs being i.i.d, then the 2nd moment of the outputs of
the adapter is also Θr1,r2(1) in each entry.

2. If the 2nd moment of the loss gradient with respect to the adapter outputs is Θr1,r2(1) in each entry; then the 2nd

moment of the loss gradient of the input of the adapter is also Θr1,r2(1) in each entry.

Building on Definition A.2, we establish in Theorem A.3 that the ABBA update is indeed rank-stable.

Theorem A.3 (Rank-Stability of ABBA Initialization). Let sABBA be the scaling factor from Theorem 2.2, and let
the initialization follow Section 2.3. Then the ABBA update satisfies the forward and backward stability conditions
of Definition A.2, and is thus rank-stable.

Proof. See Appendix E.4.

B. Related Work
Parameter-Efficient Fine-Tuning (PEFT) and Low-Rank Adaptation (LoRA). PEFT methods adapt large pretrained
models to downstream tasks by training a small number of additional parameters while keeping the base model frozen.
Among these, LoRA (Hu et al., 2021) is widely adopted for its simplicity and effectiveness, modeling the update ∆W as a
low-rank product BA, thereby reducing trainable parameters significantly. Several extensions enhance LoRA along different
axes. QLoRA (Dettmers et al., 2024) and QA-LoRA (Xu et al., 2023) combines quantization with LoRA to reduce memory
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footprint; AdaLoRA (Zhang et al., 2023) allocates rank budgets dynamically across layers. LoRA-XS (Bałazy et al., 2024)
inserts a small trainable core between frozen adapters to improve compression, while LoRA-Pro (Wang et al., 2024c) and
LoRA-SB (Ponkshe et al., 2024) optimize adapters to better approximate full fine-tuning gradients. Other variants modify
structure or initialization. VeRA (Kopiczko et al., 2024) reuses frozen adapters across layers with task-specific scaling
vectors; DoRA (Liu et al., 2024) applies low-rank updates only to the direction of pretrained weights. PiSSA (Meng et al.,
2024) initializes adapters using top singular vectors, while rsLoRA (Kalajdzievski, 2023) proposes scale-aware initialization
to improve stability. Despite all these differences, these methods share a core principle: they represent ∆W using a low-rank
structure, enabling adaptation under tight compute and memory constraints.

LoRA-based methods have also been applied in other domains, such as federated fine-tuning (Wang et al., 2024d; Nam
et al., 2022; Singhal et al., 2025b;a).

Beyond Low-Rank: High-Rank and Structured Adaptation. While low-rank PEFT methods offer strong effi-
ciency–performance tradeoffs, they can underperform in tasks requiring high-rank updates. This limitation has driven
recent efforts to move beyond purely low-rank parameterizations. HiRA (Huang et al., 2025) achieves high-rank updates
by taking the Hadamard (elementwise) product of the pretrained matrix W0 with a low-rank adapter BA, leveraging the
fact that such a product can increase effective rank without increasing parameter count. MoRA (Jiang et al., 2024) instead
learns a full-rank update through input compression and activation decompression, while KronA (Edalati et al., 2022)
uses Kronecker products between adapters to boost representational capacity. ReLoRA (Lialin et al., 2023) uses multiple
low-rank updates to approximate a final higher-rank update. Other approaches explore elementwise structure for different
purposes: FLoRA (Wang et al., 2024d) modulates intermediate activations per task using Hadamard products, and PACE (Ni
et al., 2025) injects multiplicative noise during adaptation. These trends reflect a broader shift toward structured, high-rank
updates for improved expressivity.

Our proposed method, ABBA, follows this direction by learning two independent low-rank matrices whose Hadamard
product forms the update, enabling high-rank adaptation with full learnability and minimal overhead.

C. Why Does No Closed-Form Reconstruction Solution Exist for ABBA?
SVD admits a closed-form solution for low-rank approximation because both the Frobenius and spectral norms are unitarily
invariant. This allows the objective:

min
rank(X)≤k

∥M −X∥F

to decouple along singular directions, as guaranteed by the Eckart–Young–Mirsky theorem (Eckart & Young, 1936; Mirsky,
1960).

In contrast, ABBA solves the problem:

min
B1,B2,A1,A2

∥M − (B1A1)⊙ (B2A2)∥2F , subject to rank(BℓAℓ) ≤ r,

which is a non-convex, quartic optimization problem in the latent factors. The Hadamard product breaks orthogonal
invariance; unlike the SVD, the two low-rank matrices B1A1 and B2A2 cannot be simultaneously diagonalized, and singular
directions no longer decouple.

Using Theorem 2.1, one could, in principle, apply an SVD-like decomposition to B1 ⊙r B2 and A⊤
1 ⊙r A

⊤
2 . However, the

rows of these matrices lie on a Segre variety Sr1,r22, meaning they reside in a highly constrained non-linear manifold. In
general, such constraints prevent the existence of an exact closed-form solution unless every row lies in a rank-one Rr1×r2

subspace.

As a result, no analogue of truncated SVD exists for this formulation, and optimization must proceed via iterative methods
such as gradient descent.

D. Why Does LoRA-Style Initialization of Both Adapter Pairs Fail?
A naive LoRA-style initialization, where B1 and B2 are initialized to zero while A1 and A2 follow Kaiming uniform
initialization, results in training failure due to gradients becoming identically zero. To analyze this, we compute the gradients

2The Segre variety Sr1,r2 ⊂ Rr1r2 is the set of all rank-one tensors expressible as outer products u⊗ v, with u ∈ Rr1 , v ∈ Rr2 .
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of the loss with respect to each adapter component and show that they are exactly zero under this initialization, ultimately
preventing any learning.

Notice that, for some input, x, the output, y, is of the form

y = Wx+∆Wx

= Wx+ sABBA ((B1A1)⊙ (B2A2))x

L = f(y)

To get the final closed form gradients, we compute the gradients element-wise. We can therefore have, for some matrix
Z ∈ {A1, A2, B1, B2},

∂L
∂Zpq

=
∑
i,j

∂L
∂∆Wij

∂∆Wij

∂Zpq

=
∑
i,j

∂L
∂∆Wij

∂
(
sABBA ((B1A1)⊙ (B2A2))ij

)
∂Zpq

= sABBA

∑
i,j

Gij ·
∂ ((B1A1)⊙ (B2A2))ij

∂Zpq
(9)

For Z = A1. We need to compute

∂L
∂A1,pq

= sABBA

∑
i,j

Gij ·
∂ ((B1A1)⊙ (B2A2))ij

∂A1,pq

= sABBA

∑
i,j

Gij ·
∂ ((B1A1)ij(B2A2)ij)

∂A1,pq

= sABBA

∑
i,j

Gij(B2A2)ij
∂ ((B1A1)ij)

∂A1,pq

= sABBA

∑
i,j

Gij(B2A2)ij

(∑
l

∂ (B1,ilA1,lj)

∂A1,pq

)

Notice that ∂(B1,ilA1,lj)
∂A1,pq

= 0 when l ̸= p and j ̸= q else = B1,ip. This means we can rewrite the above summation as

∂L
∂A1,pq

= sABBA

∑
i

Giq(B2A2)iqB1,ip

= sABBA

∑
i

(G⊙ (B2A2))iqB1,ip

Notice that the above equation is nothing but a inner product of the pth row of B⊤
1 and qth column of (G⊙ (B2A2)). We

can therefore write the following

∂L
∂A1

= sABBAB
⊤
1 (G⊙ (B2A2)) (10)

For Z = B1. Following the same analysis as we did for A1, we have the following for B1.

∂L
∂B1,pq

= sABBA

∑
i,j

Gij(B2A2)ij

(∑
l

∂ (B1,ilA1,lj)

∂B1,pq

)
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Again notice that ∂(B1,ilA1,lj)
∂B1,pq

= 0 when i ̸= p and l ̸= q else = A1,qj . This means we can rewrite the above summation as

∂L
∂B1,pq

= sABBA

∑
j

Gpj(B2A2)pjA1,qj

= sABBA

∑
j

(G⊙ (B2A2))pjA1,qj

Notice that the above equation is nothing but a inner product of the pth row of (G⊙ (B2A2)) and qth column of A⊤
1 . We can

therefore write the following

∂L
∂B1

= sABBA(G⊙ (B2A2))A
⊤
1 (11)

It is also easy to see that our formulation is symmetric in Ai’s and Bi’s implying we also have

For Z = B2. Following Eqn. (11)

∂L
∂B2

= sABBA(G⊙ (B1A1))A
⊤
2 (12)

For Z = A2. Following Eqn. (10),

∂L
∂A2

= sABBAB
⊤
2 (G⊙ (B1A1)) (13)

It is clear that initializing both B1 and B2 to zero causes all gradients to become zero, thereby preventing any learning and
leading to complete training failure.

E. Proofs
In this section, we provide the proofs for the assertions from the main text.

E.1. Proof of Theorem 2.1: Khatri–Rao Factorization

Theorem (Khatri–Rao Factorization (Slyusar)). Let B1A1, B2A2 ∈ Rm×n . Then, (B1A1) ⊙ (B2A2) =
(B1 ⊙r B2)︸ ︷︷ ︸

m×r1r2

(A⊤
1 ⊙r A

⊤
2 )

⊤︸ ︷︷ ︸
r1r2×n

, where ⊙r denotes the row-wise Khatri–Rao product.

Proof. We prove the equality by comparing the (i, j)-th elements of the left-hand side (LHS) and the right-hand side (RHS).
Starting with the LHS, we have:

[(B1A1)⊙ (B2A2)]ij = (B1A1)ij · (B2A2)ij

=

(
r1∑
k=1

B1,ikA1,kj

)
·

(
r2∑
l=1

B2,ilA2,lj

)

=

r1∑
k=1

r2∑
l=1

B1,ikA1,kjB2,ilA2,lj .

Next, we analyze the RHS. Observe that (B1 ⊙r B2) is an m× (r1r2) matrix, and (A⊤
1 ⊙r A

⊤
2 ) is an n× (r1r2) matrix.

The matrix product on the RHS is:

[
(B1 ⊙r B2)(A

⊤
1 ⊙r A

⊤
2 )

⊤]
ij
=

r1r2∑
f=1

[B1 ⊙r B2]if ·
[
A⊤

1 ⊙r A
⊤
2

]
jf

.
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To evaluate this sum, we define indices k :=
⌊
f−1
r2

⌋
+ 1 and l := (f − 1) mod r2 + 1, so that f ranges over all (k, l) pairs

with k ∈ [1, r1] and l ∈ [1, r2]. Then:

[B1 ⊙r B2]if = B1,ikB2,il,[
A⊤

1 ⊙r A
⊤
2

]
jf

= A1,kjA2,lj .

Substituting back into the sum:
r1r2∑
f=1

[B1 ⊙r B2]if ·
[
A⊤

1 ⊙r A
⊤
2

]
jf

=

r1∑
k=1

r2∑
l=1

B1,ikB2,ilA1,kjA2,lj .

This expression matches exactly with the earlier expansion of the LHS. Hence, the two sides are equal, completing the
proof.

Given two matrices U, V ∈ Rm×n, we define the row-wise Hadamard product, denoted by U ⊙r V . Let Ui and Vi denote
the i-th rows of U and V , respectively. The row-wise Hadamard product is computed as:

[U ⊙r V ]i := [Ui1 · Vi, Ui2 · Vi, . . . , Uin · Vi],

where each element of row Ui scales the entire corresponding row Vi.

Consider the following example:

U =

[
1 2
3 4

]
, V =

[
3 4
5 6

]
.

Applying the row-wise Hadamard product U ⊙r V , we compute:

[U ⊙r V ]1 := [1 · V1, 2 · V1] =
[
3 4 6 8

]
,

[U ⊙r V ]2 := [3 · V2, 4 · V2] =
[
15 18 20 24

]
.

Combining both rows, we obtain the final result:

U ⊙r V =

[
3 4 6 8
15 18 20 24

]
.

E.2. Proof of Theorem 2.2: Effective Scaling for ABBA Update

Theorem (Effective Scaling for ABBA Updates). To maintain training stability and match the update magnitude
of LoRA, the ABBA update ∆W = sABBA · (B1A1 ⊙B2A2) should use the scaling factor sABBA =

α2
LoRA√
r1r2

, where
αLoRA is the standard LoRA scaling coefficient and r1, r2 are the ranks of the two ABBA adapter pairs.

Proof. We assume that each entry in the low-rank matrices Bi and Ai is independently drawn from a zero-mean distribution
with variance σ2. Therefore,

E[B2
i,jk] = σ2, E[A2

i,kj ] = σ2.

We now compute the variance of a single element of the matrix product BiAi. For the first adapter pair:

E
[
[B1A1]

2
ij

]
= E

( r1∑
k=1

B1,ikA1,kj

)2


=

r1∑
k=1

E[B2
1,ik] · E[A2

1,kj ]

= r1σ
4.
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Similarly, for the second adapter pair:
E
[
[B2A2]

2
ij

]
= r2σ

4.

The ABBA update is defined as:
∆Wij = sABBA · (B1A1 ⊙B2A2)ij ,

and the variance of this update becomes:

E[∆W 2
ij ] = s2ABBA · E

[
(B1A1)

2
ij

]
· E
[
(B2A2)

2
ij

]
= s2ABBA · r1r2 · σ8

=
(
sABBA ·

√
r1r2 · σ4

)2
.

To ensure stable training, we require this variance to match a desired target τ2. Assuming σ = 1, this simplifies to:

τ = sABBA ·
√
r1r2 ⇒ sABBA =

τ
√
r1r2

.

Next, we determine the appropriate value of τ by aligning the effective scale of the ABBA update with that of two
independently scaled LoRA-style adapters. LoRA typically applies a scaling factor of αLoRA√

r
to each low-rank adapter. Thus,

composing two such adapters yields:(
αLoRA√

r1
B1A1

)
⊙
(
αLoRA√

r2
B2A2

)
=

α2
LoRA√
r1r2

(B1A1 ⊙B2A2)

=
τ

√
r1r2

(B1A1 ⊙B2A2),

which implies τ = α2
LoRA. Substituting this into the earlier expression for sABBA, we obtain:

sABBA =
α2

LoRA√
r1r2

.

This completes the proof.

E.3. Proof of Theorem A.1: Probabilistic Advantage of ABBA over LoRA

Definition E.1 (Hadamard Product Manifold). We define the Hadamard product manifoldMHad ⊂ Rm×n as the set of all
such matrices:MHad := {(B1A1)⊙ (B2A2)} ≡ {(B1 ⊙r B2)(A1 ⊙r A2)} .

Theorem (Probabilistic Advantage of ABBA over LoRA). Let M = Mtrue + σZ, where Mtrue ∈ MHad lies on
the Hadamard-product manifold (space in which ABBA updates lie), and Z ∈ Rm×n has entries i.i.d with each
distributed N (0, 1). Let ϵ2bias := ∥Mtrue −MSVD,r∥2F . and δ = exp

(
− ϵ2bias

8σ2

)
, then,

P
(
∥M −MABBA,r∥2F < ∥M −MSVD,r∥2F

)
≥ 1− δ (14)

Proof. Since Mtrue lies on the Hadamard manifold, we have MABBA,r = Mtrue. Therefore, the reconstruction error using
our ABBA formulation can be written as:

∥M −MABBA,r∥2F = ∥M −Mtrue∥2F = ∥σZ∥2F = σ2∥Z∥2F .

Similarly, the reconstruction error for the SVD-based approximation is:

∥M −MSVD,r∥2F = ∥Mtrue + σZ −MSVD,r∥2F
= ∥Mtrue −MSVD,r∥2F + σ2∥Z∥2F + 2σ⟨Z,Mtrue −MSVD,r⟩
= ϵ2bias + σ2∥Z∥2F + 2σ⟨Z,Mtrue −MSVD,r⟩,
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where we define ϵ2bias := ∥Mtrue −MSVD,r∥2F .

We now compute the difference between the two reconstruction errors:

∆ := ∥M −MSVD,r∥2F − ∥M −MABBA,r∥2F
= ϵ2bias + 2σ⟨Z,Mtrue −MSVD,r⟩.

Since the entries of Z are i.i.d. and distributed as N (0, 1), the inner product ⟨Z,Mtrue −MSVD,r⟩ is normally distributed
with mean 0 and variance ∥Mtrue −MSVD,r∥2F = ϵ2bias. Hence, ∆ ∼ N

(
ϵ2bias, 4σ

2ϵ2bias
)
.

We are interested in the probability that ABBA achieves a lower reconstruction error than SVD, i.e., P[∆ > 0]. Applying
the Chernoff tail bound:

P[∆ ≤ 0] = P
[
⟨Z,Mtrue −MSVD,r⟩ < −

ϵ2bias
2σ

]
≤ exp

−1

2
·

(
ϵ2bias

2σ ·
√
ϵ2bias

)2


= exp

(
−ϵ2bias

8σ2

)
=⇒ P[∆ > 0] ≥ 1− δ

thus completing the proof.

E.4. Proof of Theorem A.3: Rank-Stability of ABBA Initialization

Theorem (Rank-Stability of ABBA Initialization). Let sABBA be the scaling factor from Theorem 2.2, and let the
initialization follow Section 2.3. Then the ABBA update satisfies the forward and backward stability conditions of
Definition A.2, and is thus rank-stable.

Proof. We follow a similar analysis to that presented in LoRA-GA (Wang et al., 2024a).

Forward 2nd moment (ABBA adapter). For any input x ∈ Rdin with i.i.d. entries, the output of the ABBA adapter is
given by:

yi = sABBA

din∑
j=1

M1,ijM2,ij · xj ∀i ∈ {1, 2, . . . , dout}. (15)

The second moment can then be expressed as:

E[y2i ] = s2ABBA · E


 din∑

j=1

M1,ijM2,ijxj

2
 .

Gradient computation. We next compute the gradients with respect to the input:

(∇x)j =

dout∑
i=1

∂L

∂yi

∂yi
∂xj

=

dout∑
i=1

∂yi
∂xj
· (∇)yi

.

From Equation (15), we have:

∂yi
∂xj

= sABBA ·M1,ijM2,ij .

Substituting, we obtain:

(∇x)j = sABBA

dout∑
i=1

M1,ijM2,ij · (∇)yi
.
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Backward 2nd moment. We now compute the second moment of the gradient:

E[(∇x)
2
j ] = s2ABBA · E

( dout∑
i=1

M1,ijM2,ij · (∇y)i

)2
 .

Given our initialization, the entries of M1 and M2 are i.i.d., and thus:

E[y2i ] = s2ABBA ·
din∑
j=1

E[M2
1,ij ] · E[M2

2,ij ] · E[x2
j ].

To compute E[M2
1,ij ] and E[M2

2,ij ], we use the fact that the entries of Ai and Bi are i.i.d., yielding:

E[M2
l,ij ] =

rl∑
k=1

E[B2
l,ik] · E[A2

l,kj ] = rl · E[B2
l,11] · E[A2

l,11].

Combining terms, we obtain:

E[y2i ] = s2ABBA · din · r1r2 · E[B2
1,11] · E[A2

1,11] · E[B2
2,11] · E[A2

2,11] · E[x2
j ],

E[(∇x)
2
j ] = s2ABBA · dout · r1r2 · E[B2

1,11] · E[A2
1,11] · E[B2

2,11] · E[A2
2,11] · E[(∇y)

2
i ].

Stability under initialization. To simplify our analysis, we assume that instead of setting B1 = 0, its entries are drawn
i.i.d. from a distribution D with variance σ2

B1
. Given that sABBA ∝ 1√

r1r2
, we find:

Forward 2nd moment: Assuming E[x2
j ] = Θr1,r2(1), we have:

E[y2i ] = Or1,r2(1) · σ2
B1

.

Backward 2nd moment: Assuming E[(∇y)
2
i ] = Θr1,r2(1), we similarly obtain:

E[(∇x)
2
j ] = Or1,r2(1) · σ2

B1
.

Conclusion. Following Definition A.2, these results imply that ABBA adapters are rank-stabilized. Moreover, even in the
original case where B1 = 0, we observe that as σB1

→ 0, both variances converge to Θr1,r2(0), still satisfying the criteria
for rank stability. Therefore, we conclude that ABBA adapters remain rank-stabilized under the given initialization and
scaling.

F. Analysis
F.1. Initialization Strategies for ABBA

Initialization of the adapter matrices B1, A1 and B2, A2 is crucial to ABBA’s performance. A naive LoRA-style initialization,
where B1, B2 are set to zero and A1, A2 use Kaiming uniform, leads to training failure due to zeroed-out gradients (see
Appendix D). To address this, we explore several initialization strategies that combine truncated SVD-based approximations
with standard schemes, summarized in Table 3. Inspired by PiSSA (Meng et al., 2024), one approach is to approximate
the base weight W0 at initialization. This can be done by initializing one adapter pair using the truncated SVD of W0, and
the other with scaled constant values (e.g., ones) to prevent gradient explosion. Another strategy initializes both adapter
pairs using the top-r/2 components from the truncated SVD of

√
W0. A variation of this approach assigns the top-r/2

components to one adapter pair and the next-r/2 to the other, introducing greater representational diversity and yielding
slightly improved results. We also consider a hybrid strategy, where one adapter pair approximates W0 via truncated SVD,
and the other follows LoRA-style initialization (Kaiming for A, zeros for B). This configuration performs best and closely
resembles the initialization used in HiRA. Our final method adopts this approach: B1, A1 are initialized using the truncated
SVD of W0, while B2, A2 follow LoRA-style initialization.
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Table 3. Comparison of different initialization strategies for ABBA (Mistral-7B).
Initialization Method GSM8K MATH

B1, A1 ← top-r/2 from Trunc. SVD(W0), B2, A2 ← Ones (scaled) 57.39 10.88
Both adapters: top-r/2 from Trunc. SVD(

√
W0) 64.53 16.57

First adapter: top-r/2, second: next-r/2 from Trunc. SVD(
√
W0) 64.86 17.05

Second adapter: top-r/2, first: next-r/2 from Trunc. SVD(
√
W0) 64.79 17.16

B2, A2 ← top-r/2 from Trunc. SVD(W0), B1, A1 ← LoRA Init (Zeros, Kaiming) 66.19 18.06
Ours: B1, A1 ← top-r/2 from Trunc. SVD(W0), B2, A2 ← LoRA Init (Zeros, Kaiming) 66.26 18.08

F.2. Choosing Important Hyperparameters

Selecting α. We established the relationship between ABBA and LoRA scaling in Theorem 2.2 by comparing their
respective factors, sABBA and αLoRA. To empirically validate this, we sweep over a range of αLoRA values and corresponding
ABBA scaling factors, (sABBA = α2

LoRA/
√
r1r2), for Llama-3.2 3B, in Table 4. Consistent with our theory, ABBA achieves

optimal performance within the typical LoRA scaling range of 16−32. Additional evidence is provided in Table 8 (Appendix
G).

Table 4. Performance comparison across different scaling factor values sABBA for Llama-3.2 3B.

sABBA (αLORA ) ACCURACY (↑)

BOOLQ PIQA SIQA HELLAS. WINOG. ARC-E ARC-C OBQA AVG.

1 (4) 70.92 85.74 79.84 92.07 84.45 88.38 75.83 82.20 82.43
4 (8) 71.19 86.83 80.65 92.60 85.95 88.47 76.11 82.20 82.97

8 (8
√
2) 72.35 86.62 81.63 92.82 85.01 89.10 77.05 83.00 83.45

16 (16) 72.88 86.45 80.75 93.18 86.97 89.98 78.33 83.80 84.04

32 (16
√
2) 73.82 85.91 80.55 93.29 85.87 89.64 78.41 84.60 84.01

64 (32) 73.52 86.93 80.96 92.73 85.24 89.61 79.10 85.04 84.08

128 (32
√
2) 71.83 84.77 78.96 90.52 84.92 87.12 74.57 82.40 81.88

256 (64) 67.71 79.43 77.38 81.25 78.69 79.96 66.47 80.00 76.36

Selecting r1, r2. An important choice is allocating the total rank budget r = r1 + r2 between the two low-rank projections.
A balanced setting, r1 = r2 = r/2, is expected to perform best since it maximizes the effective rank r1r2, increasing
expressivity. We empirically evaluate various {r1, r2} combinations under a fixed total rank on Mistral-7B in Table 5. The
symmetric configuration achieves the best accuracy, consistent with our hypothesis.

F.3. Placement of ABBA in Transformers

Figure 5 examines the effect of fine-tuning individual transformer components, namely Query, Key, Value, Output, Up,
Gate, and Down projections. The results show the following: Query/Key contribute the least, followed by Value/Up, while
Gate/Output/Down are the most impactful. This reflects their functional roles: Query/Key support attention scoring, whereas
the others play a more direct role in transforming and retaining learned representations.

Training Time. We benchmark training time across multiple settings in Table 10 (Appendix I). ABBA has comparable
training time to LoRA, with only a ≈ 2 − 3% overhead, primarily due to the additional computation introduced by the
Hadamard product. We clarify that the initialization itself is highly efficient, as we compute the truncated SVD using
torch.svd lowrank. This computation takes less than one second for the entire model, even for the largest LLMs used

Table 5. Different (r1, r2) pairs under fixed total rank r1 + r2 = 32.

r1 r2 GSM8K MATH

4 28 64.43 17.01
8 24 63.91 17.20

12 20 64.29 18.22
16 16 66.26 18.08
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Figure 5. Impact of selectively fine-tuning individual transformer components—Key, Query, Value, Output, Up, Gate, and Down
projections—with ABBA (Mistral-7B). Left: GSM8K. Right: MATH.

in our experiments.

Efficient Inference. At deployment time, ABBA supports efficient inference by pre-computing the update and merging it
into the base weights as W ′ = W0 + (B1A1) ⊙ (B2A2). This allows models to switch tasks quickly by subtracting the
update to restore W0, then applying a new ABBA adapter. Since the update is fused ahead of inference, this incurs no
runtime overhead or latency.

Table 6. Standard ABBA (2 pairs) versus a chained extension using 4 pairs.

CONFIGURATION GSM8K MATH

ABBA (2 PAIRS) 66.26 18.08
CHAINED ABBA (4 PAIRS) 64.84 17.74

A natural extension of ABBA is decomposing the update into a composition of k multiple adapter pairs: ∆W = B1A1 ⊙
B2A2 · · · ⊙ BkAk, where each adapter pair has rank r/k, with r denoting the total rank budget. This factorized form
increases the expressive capacity and the effective rank of the update. However, this introduces additional optimization
challenges and may reduce training stability. We evaluate a variant of ABBA using a chain of four adapter pairs and compare
it to the standard two-pair setup. As shown in Table 6, the chained version performs slightly worse, likely due to suboptimal
scaling or training instability. We leave further investigation of multi-stage compositions to future work.

Table 7. Varying Rank

Rank Accuracy (↑)
GSM8K MATH

16 64.97 18.06
32 66.26 18.08
64 65.05 17.98
128 65.73 17.96

G. Selecting α

In Theorem 2.2, we established the scaling relationship between ABBA and LoRA by comparing their respective factors,
αABBA and αLoRA. To validate this empirically, we perform a sweep over different αLoRA values and compute the corre-
sponding ABBA scaling factors using sABBA = α2

LoRA/
√
r1r2, reporting results for Mistral-7B in Table 8. In line with our

theoretical analysis and prior results in Table 4, ABBA performs best when αLoRA lies in the typical range of 16–32.
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Table 8. Performance comparison across different scaling factor values sABBA for Mistral-7B.

sABBA (αLoRA) Accuracy (↑)
GSM8K MATH

1 (4) 62.17 17.10
4 (8) 64.06 17.60

8 (8
√
2) 64.43 18.14

16 (16) 66.10 18.16
32 (16

√
2) 66.26 18.08

64 (32) 65.81 17.68
128 (32

√
2) 65.20 16.82

256 (64) 64.79 15.08

H. Varying Rank
We evaluate ABBA on Mistral-7B while varying the total rank budget r, with r1 = r2 = r/2 and results shown in Table
9. Performance improves substantially from r = 16 to r = 32, with the best results achieved at r = 32, after which gains
begin to saturate. This aligns with our hypothesis: at r = 32, ABBA’s effective rank reaches r1 × r2 = 16 × 16 = 256,
which is significantly higher than the effective rank of 64 at r = 16. The increased expressivity enables ABBA to better
capture task-specific patterns. However, increasing the rank beyond 32, or an effective rank beyond 256, yields diminishing
returns and may lead to overfitting, mirroring trends observed in using very high-ranked LoRA as well.

Table 9. Performance comparison of ABBA on Mistral-7B across varying total rank values r.

Rank Accuracy (↑)
GSM8K MATH

16 64.97 18.06
32 66.26 18.08
64 65.05 17.98
128 65.73 17.96

I. Training Time
Following the discussion in Section F.3, we report training times across all models and tasks in Table 10. ABBA incurs only
a negligible overhead of approximately 2− 3% compared to LoRA, primarily due to the extra computation resulting from
the Hadamard product.

Table 10. Training time comparison between ABBA and LoRA across multiple model and task settings.

Model Training Time

LoRA ABBA

Llama-3.2 1B (Commonsense) 2:42:17 2:46:18
Llama-3.2 3B (Commonsense) 6:05:43 6:11:26

Mistral-7B (Arithmetic) 1:15:55 1:18:22
Gemma-2 9B (Arithmetic) 1:45:33 1:49:45

J. Experimental Details
We implement all models using PyTorch (Paszke et al., 2019) and HuggingFace Transformers (Wolf et al., 2020). All
experiments run on a single NVIDIA A6000 GPU (48 GB). To reduce memory usage, we initialize base models in
torch.bfloat16 precision. We train each configuration with the AdamW optimizer (Loshchilov & Hutter, 2019) and
report the mean performance over three random seeds.

We configure Llama-3.2 1B, Llama-3.2 3B, Mistral-7B, and Gemma-2 9B using the hyperparameters shown in Table 11. We
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conduct a sweep over learning rates and scaling factors to identify optimal settings for each model-task pair. ABBA generally
performs better with slightly higher learning rates compared to LoRA, and we recommend initiating hyperparameter sweeps
in that range.

While we adopt most settings from prior work (Hu et al., 2023), we perform a targeted learning rate sweep to optimize
performance. For baseline comparisons, we replicate the experimental setups from the original PiSSA (Meng et al., 2024),
rsLoRA (Kalajdzievski, 2023), DoRA (Liu et al., 2024), LoRA-Pro (Wang et al., 2024c), and HiRA (Huang et al., 2025)
papers to ensure fair and consistent evaluation.

Table 11. Hyperparameter settings for training Llama-3.2 1B and 3B on COMMONSENSE170K, and Mistral-7B and Gemma-2 9B on
MetaMathQA.

Llama-3.2 1B / 3B Mistral-7B / Gemma-2 9B

Optimizer AdamW AdamW
Batch size 6 1
Max. Seq. Len 256 512
Grad Acc. Steps 24 32
Epochs 2 1
Dropout 0.05 0
Learning Rate 1× 10−3 1× 10−3

LR Scheduler Linear Cosine
Warmup Ratio 0.02 0.02

K. Dataset Details
COMMONSENSE170K is a unified benchmark that aggregates eight commonsense reasoning datasets into a single multi-
task setting (Hu et al., 2023). Each instance is a multiple-choice question, and models are prompted to select the correct
answer without providing explanations. We adopt the prompt format introduced by the paper (Hu et al., 2023). Below, we
briefly describe the constituent datasets:

• OBQA (Mihaylov et al., 2018): Open-book QA requiring retrieval and multi-hop reasoning over external knowledge.

• ARC Challenge (ARC-c) (Clark et al., 2018): Difficult grade-school science questions designed to test advanced
reasoning beyond surface heuristics.

• ARC Easy (ARC-e) (Clark et al., 2018): Simpler science questions assessing core factual and conceptual understanding.

• WinoGrande (Sakaguchi et al., 2021): Pronoun resolution tasks requiring commonsense inference to resolve ambiguity.

• HellaSwag (Zellers et al., 2019): Next-sentence prediction under a constrained completion setting, testing grounded
understanding of everyday scenarios.

• PIQA (Bisk et al., 2020): Physical reasoning tasks where models select the most sensible solution to a practical
problem.

• SIQA (Sap et al., 2019): Social reasoning benchmark involving questions about intent, social dynamics, and conse-
quences of human actions.

• BoolQ (Clark et al., 2019): Binary (yes/no) questions drawn from natural queries, requiring contextual understanding
of short passages.

MetaMathQA (Yu et al., 2024) reformulates existing mathematical problems into alternative phrasings that preserve their
original semantics, offering diverse surface forms without introducing new information. We evaluate models fine-tuned
on this dataset using two benchmarks: GSM8K (Cobbe et al., 2021), which targets step-by-step reasoning in elementary
arithmetic word problems, and MATH (Hendrycks et al., 2021), which features high-difficulty problems drawn from math
competitions. We evaluate solely based on the correctness of the final numeric answer.
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