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Abstract

Conformal Prediction (CP) is a method of estimating risk or uncertainty when
using Machine Learning to help abide by common Risk Management regulations
often seen in fields like healthcare and finance. CP for regression can be chal-
lenging, especially when the output distribution is heteroscedastic, multimodal,
or skewed. Some of the issues can be addressed by estimating a distribution over
the output, but in reality, such approaches can be sensitive to estimation error
and yield unstable intervals. Here, we circumvent the challenges by converting
regression to a classification problem and then use CP for classification to obtain
CP sets for regression. To preserve the ordering of the continuous-output space,
we design a new loss function and present necessary modifications to the CP
classification techniques. Empirical results on many benchmarks shows that this
simple approach gives surprisingly good results on many practical problems.

1 Introduction

Quantifying and estimating the uncertainty of machine-learning models is an important task for
many problems, especially mission-critical ones requiring trustworthy and reliable predictions. Reg-
ulations surrounding the uncertainty or risk of using Machine Learning are prevalent in fields such
as healthcare and finance [Black, 2005]. Conformal Prediction (CP) [Vovk et al., 2005] has recently
gained popularity and has been used successfully in applications such as breast cancer detection
[Lambrou et al., 2009], stroke risk prediction [Lambrou et al., 2010], and drug discovery [Cortés-
Ciriano and Bender, 2020]. Under mild conditions, CP techniques aim to construct a prediction set
that, for given test inputs, is guaranteed to contain the true (unknown) output with high probability.
The set is built using a conformity score, which, roughly speaking, indicates the similarity between
a new test example and the training examples. The conformal set merely gathers examples that have
large conformity scores. Despite its popularity, CP for regression can be challenging, especially
when the output distribution is heteroscedastic, multimodal, or skewed [Lei and Wasserman, 2014].
The main challenge lies in the design of the conformity score. It is common to use a simple choice
for score functions such as distance to mean regressor, but such choices may ignore the subtle fea-
tures of the shape of the output distribution. For instance, this could lead to symmetric intervals or
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Figure 1: We show two examples where the output distribution is heteroskedastic (left) and bimodal
(right). In both cases, our method is able to change the interval (shaded gray region) adaptively
as the input values x are increased. Examples outside the gray regions (white dots) are deemed
different from those inside it (black dots).

ignoring the heteroscedasticity. In theory, it is better to estimate the (conditional) distribution over
the output, for example, by using kernel density estimation and directly using it to build a confidence
interval. However, such estimation approaches are also challenging, and estimates can be sensitive
to the choice of kernel and hyperparameters, which can yield unstable results. Angelopoulos et al.
[2020] We circumvent the challenges by exploiting the existing CP techniques for classification.
We proceed by first converting regression to a classification problem and then using CP techniques
for classification to obtain a conformal set. Regression-as-classification approaches are popular for
various applications in computer vision and have led to more accurate training than only-regression
training [Stewart et al., 2023, Zhang et al., 2016, Fu et al., 2018, Rothe et al., 2015, Van Den Oord
et al., 2016, Diaz and Marathe, 2019]. We leverage them to construct a distribution-based conformal
set that can flexibly capture the shape of the output distribution while preserving the simplicity and
efficiency of CP for classification. First, we discretize the output space into bins, treating each bin
as a distinct class. Second, to preserve the ordering of the continuous output space, we design an
alternative loss function that penalizes the density on bins far from the true output value but also fa-
cilitates variability by using an entropy regularization. The loss design is similar in spirit to Weigend
and Srivastava [1995], Diaz and Marathe [2019]. The resulting method can adapt to heteroscedastic-
ity, bimodality, or both in the label distribution. We verify this on synthetic and real datasets where
we achieve the shortest intervals compared to other CP baselines. See examples in Figure 1.

2 Background on Conformal Prediction

Given a new input xnew, CP techniques aim to construct a set that contains the true but unknown
output ynew with high probability. Assuming that a pair of input-output variables (x, y) has a joint
density p(x, y) and a conditional density p(y | x), oracle prediction sets (with joint and conditional
coverage) for the output y can be constructed as

{y ∈ R : p(x, y) ≥ τα} or {y ∈ R : p(y | x) ≥ τα,x}, (1)

where the thresholds τα and τα,x are selected to ensure that the corresponding sets have a probability
mass that meets or exceeds prescribed confidence level 1 − α ∈ (0, 1). As the ground-truth distri-
bution is unknown, we rely solely on estimating these uncertainty sets using the density estimators
p̂(x, y) and p̂(y | x). The latter can be inaccurate due to numerous sources of errors such as
model misspecification, small sample size, high optimization errors during training, and overfitting.
Without a stronger distribution assumption, the finite-sample guarantee is typically not upheld.

Conformal Prediction has arisen as a method for yielding sets that do hold finite-sample guarantees.
Given a partially observed instance (xnew, ynew) where ynew is unknown, Conformal Prediction
(CP) [Vovk et al., 2005] constructs a set of values that contains ynew with high probability without
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knowing the underlying data distribution. Under conformal prediction, this property is guaranteed
under the mild assumption that the data satisfies exchangeability. The set is called the conformal
set and is built using a conformity score, denoted by σ(x, y), which measures how appropriate an
output value is for a given input example. There are many ways to build the conformity score, but
they all involve splitting the data into a training setDtr and a calibration setDcal. Often, a prediction
model µtr(x) is built using the training set, and then a conformity score is obtained using this model
along with the calibration set (we will shortly give an example).
The conformal set merely gathers the points with larger conformity scores:

{z ∈ R : σ(xnew, z) ≥ Q1−α(Dcal)},

where Q1−α(Dcal) is the (1 − α)-quantile of the conformity scores on the calibration data. This
set provably contains ynew with probability larger than 1− α for any finite sample size and without
assumption on the ground-truth distribution.

There are many design choices for this conformity score. For example, one can choose a prediction
model µtr(x) as an estimate of the conditional expectation and measure conformity as the absolute
value of the residual, i.e., σ(x, y) = −|y − µtr(x)|. The corresponding conformal set is a single
interval centered around the prediction µtr(x) and of constant length Q1−α(Dcal) for any example
xnew, without taking into account its variability. However, in situations where the underlying data
distribution demonstrates skewness or heteroscedasticity, we may desire a more flexible conformity
score. In order to obtain more adaptive sets, [Lei and Wasserman, 2014] suggested estimating the
ground truth distribution using kernel density estimation. In this way, we can capture the shape
of the (conditional) distribution while enjoying guaranteed coverage by simply using them as con-
formity score functions. This, however, not only requires a good choice of kernel but also a good
bandwidth parameter selection that controls the regularity of the estimated density. Moreover, [Fong
and Holmes, 2021] learns a Bayesian model to learn this density but requires a well-specified prior
to work well in practice. Moreover, [Sesia and Romano, 2021] learn many quantile regressors and
form a histogram from the quantile regressors to estimate this density. However, their method is
susceptible to noise due to the formulation of the density estimate, which needs post hoc linear pro-
gramming to generate the interval to account for the lack of smoothness. Moreover, [Chernozhukov
et al., 2021a] learn a cumulative distributive function through regression techniques. However, their
method cannot account for bimodality since it can only output a single interval by design. We wish
to generate an approach to approximate this density function that is versatile in the distributions it
can represent and avoids the difficulties seen in prior methods. We turn to look at existing tools for
density estimation in the Classification Conformal Prediction that already work well.

Related Works Since their introduction, a lot of work has been done to improve the set of con-
formal predictions. As simple score function, distance to conditional mean ie σ(x, y) = |y − µ(x)|
where µ(x) is an estimate of E(y | x) was prominently used [Papadopoulos et al., 2002, Lei et al.,
2018, Guha et al., 2023]. Instead, [Romano et al., 2019] suggests estimating a conditional quantile
instead and a conformity score function based on the distance from a trained quantile regressor, i.e.
σ(x, y) = max(µα/2(x)− y, y−µ1−α/2(x)) where µα are the α-th quantile regressors. Within the
literature, our strategy is more closely related to the distribution-based methods [Lei et al., 2013].
Following a similar line of work [Chernozhukov et al., 2021b] argued that the conformal quantile
regression score function might be less adaptive since the distance of the quantile behaves similarly
to the distance of the mean estimate. Instead, they suggested estimating the cumulative (condi-
tional) distribution function and directly outputting {y : F (x, y) ∈ [α/2, 1 − α/2]}. An equally
interesting approach for distribution-based prediction sets is based on learning a Bayesian estimator,
which, however, may require a well-specified prior and can be computationally expensive [Fong
and Holmes, 2021]. Variants based on estimating the conditional density of the response using his-
togram regressors [Sesia and Romano, 2021] could detect a possible asymmetry of the ground-truth
distribution. However, our densities are estimated through classification techniques, whereas their
densities are learned through a histogram of many regressors. Furthermore, smoothness over the dis-
tribution is encoded in our loss function, whereas they use a post hoc subinterval finding algorithm
through linear programming to prevent many disjoint intervals.
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3 CP via Regression-as-Classification

3.1 Classification Conformal Prediction

We aim to compute a conformity function that accurately predicts the appropriateness of a label
for a specific data point. Given that the distribution function across labels can adopt diverse forms,
such as being bimodal, heavy-tailed, or heteroscedastic, our approach must effectively factor in such
shapes while upholding its coverage precision. A frequently employed technique involves using the
conditional label density as a conformity function, leading to reliable results in the classification
context. Typically, practitioners perform conformal prediction for classification with probability
estimates from a Softmax neural network that covers K output logits using cross-entropy loss.

Let us denote the parametrized density

qθ(· | x) = softmax(fθ(x)), where softmax(v)j =
exp(vj)∑K

k=1 exp(vk),

as the outputted discrete probability distribution over the labels of the input x.

Traditionally, we can train our neural network by minimizing the cross-entropy loss on the train-
ing dataset, i.e., solving θ̂ = argmin

θ

∑n
i=1 KL(δyi

|| qθ(· | xi)). Let us assume that we have

trained and acquired a θ̂ that has minimized the traditional cross-entropy loss function on the train-
ing dataset. A natural conformity score is simply the probability of a label according to the learned
conditional distribution, i.e., σ(x, y) = qθ̂(y | x). This approach is both straightforward and effi-
cient. The neural network’s flexibility allows it to learn numerous label distributions with adaptivity
across examples without explicitly designing specific prior information or structure.

3.2 Regression to Classification Approach

Naturally, we strive to embody such practicality and effectiveness in regression settings. However,
the distribution of labels in the regression scenario is continuous, and learning a continuous distribu-
tion directly using a neural network is challenging [Rothfuss et al., 2019]. Often, Bayesian or kernel
density estimators are employed to estimate this distribution. Other techniques acquire knowledge
of this distribution by training numerous regressors and categorizing the regressors, for example,
Conformal Histogram Regression [Sesia and Romano, 2021].

However, these methods look different from the conformal prediction approaches for classifica-
tion. It would be desirable to be able to use similar methods for both classification and regression
conformal prediction. One method of unifying classification and regression problems outside the
conformal prediction literature is known as Regression-as-Classification. We simply turn a regres-
sion problem into a classification problem by binning the range space. Specifically, we generate K
bins with K equally spaced numbers covering the interval Y = [ymin, ymax], where ymin (or ymax)
is the minimum (or maximum) value of the labels observed in the training set. More explicitly, we
define our discretization of the label space as

Ŷ = {ŷ1, . . . , ŷK} where ŷk+1 = ŷk +
ŷK − ŷ1
K − 1

with ŷ1 = ymin and ŷK = ymax.

These values ŷ ∈ Ŷ form the midpoints for each bin of our discretization. Naturally, the kth bin
is all the labels in the range space Y closest to ŷk. Intuitively, we can treat each bin as a class.
Thus, we have turned a regression problem into a classification problem. This method is simple but
has yielded surprising results. Some work has suggested that this form of binning results in more
stable training [Stewart et al., 2023] and gives significantly better results for learning conditional
expectations. To unify classification and regression conformal prediction, a simple solution is to
employ the Classification Conformal Prediction model with discrete labels ỹi = argminŷ∈Ŷ |yi−ŷ|.
This will aid in training the neural network with modified labels through cross-entropy loss, resulting
in a discrete distribution of qθ(· | x), as outlined in the previous section.

To compute conformity scores for all labels, we employ linear interpolation from the discrete proba-
bility function qθ(· | x) to generate the continuous distribution q̄θ(· | x). Nevertheless, this approach
encounters a critical issue when employed for regression.
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3.3 Data Fitting

A critical problem with employing CrossEntropy loss in the classification conformal prediction con-
text is that any structural relationships between classes are disregarded. This is not surprising given
that in the classification context, no structure exists between classes, and each class is independent.
Therefore, the CrossEntropy loss does not need to differentiate between whether qθ allocates proba-
ble mass far away or close to the actual label. Instead, it only incentivizes the allocation of probable
mass on the correct label. However, within the regression setting, despite a multitude of labels, the
labels adhere to an ordinal structure. Thus, to enhance the accuracy of labeling, it is imperative to
devise a loss function that incentivizes the allocation of probabilistic mass not only to the correct
bin but also to the neighboring bins. Formally, given an input and output pair (x, y), our goal is to
determine a density estimate qθ(· | x) that assigns low (resp. high) probability to points that are far
(resp. close) to the true label y, i.e.,

qθ(ŷ | xi) high (resp. small) when the loss ℓ(ŷ, yi) is small (resp. high).

Hence, a natural desideratum for learning the probability density function qθ is that their product
ℓ(y, ŷ)q(ŷ | x) is small in expectation. We propose to find a distribution qθ minimizing the loss

Eŷ∼q(·|x)[ℓ(y, ŷ)] =

K∑
k=1

ℓ(y, ŷk)q(ŷk | x)

Minimizing this loss in the space of all possible distributions q(· |x) is equivalent to minimizing
the original loss ℓ(y, ·), where the minimizing distribution is a Dirac delta δŷ⋆

at the minimizer ŷ⋆
of ℓ(y, ·). Therefore, we expect an unregularized version of this loss to share similarities with the
typical empirical risk minimization on ℓ(y, ·). However, a key difference is that when minimizing in
a restricted family of distributions (for example, those representable by a neural network with a fixed
architecture), the distributional output can represent multi-modal or heavy-tailed label distributions.
Minimizing the original loss ℓ(y, ·), one would always be confined to a point estimate.

3.4 Entropic Regularization

Although the proposed loss function better encodes the connection between bins, it tends towards
outputting Dirac distributions, as outlined in the previous paragraph. Overconfidence in our neural
network is a commonly reported problem in the literature [Wei et al., 2022]. Nevertheless, smooth-
ness has been a traditional requirement in density learning. As such, we rely on a classical entropy-
regularization technique for learning density estimators [Wainwright and Jordan, 2008]. Given the
set of density estimators that match the training label distribution well and put high probability mass
on the best bins, we prefer the probability distribution that maximizes the entropy since this intu-
itively takes fewer assumptions on the data distribution structure. Our choice is based on selecting
density estimators that effectively match the distribution of the training labels and assign a higher
probability to the best bins. Formally, we can calculate the entropy of our probability distribution
by using the Shannon entropy H of the produced probability distribution q(· |x) as a penalty term
as follows:

H(qθ(· |x)) =
K∑

k=1

qθ(ŷk|x) log qθ(ŷk|x).

Summary We learn a distribution by minimizing the following expected loss over a given training
data Dtr = {(x1, y1), . . . , (xntr

, yntr
)} of size ntr:

L(θ) =
ntr∑
i=1

K∑
k=1

ℓ(yi, ŷk) qθ(ŷk |xi)− τH(qθ(· |xi)), (2)

In particular, we choose ℓ(yi, ŷk) as ℓ(yi, ŷk) = |yi − ŷk|p where p > 0 is a hyperparameter. This
selection functions as a natural distance metric that meets all required objectives. As a result, we
can employ a technique similar to the aforementioned Classification Conformal Prediction methods.
Initially, we train a Softmax neural network fθ with K logits, grounded on the loss function Equa-
tion (2) on the training dataset. To calculate conformity scores for the calibration set, we utilize the
linearly interpolated σ(x, y) = q̄θ(y | x) for a specific data point (x, y).
Complete details of this procedure are outlined in Algorithm 1.
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Algorithm 1 Regression to Classication Conformal Prediction (R2CCP).

1: Input:
• Dataset Dn = {(x1, y1), . . . , (xn, yn)} and new input xn+1

• Desired confidence level α ∈ (0, 1)

2: Hyperparameters: temperature τ > 0, p > 0, number of bins K > 1
3: Discretize the output space [ymin, ymax] into K equidistant bins with midpoints {ŷ1, . . . , ŷK}
4: Randomly split the dataset Dn in training Dtr and calibration Dcal

5: Find a distribution qθ̂(· |x) by (approximately) optimizing on the training set Dtr

θ̂ ∈ arg min
θ∈Rd

ntr∑
i=1

K∑
k=1

|yi − ŷk|pqθ(ŷk | xi)− τH(qθ(· |xi))

where qθ(ŷk|x) = softmax(fθ(x))k for a model (e.g., neural net) fθ : Rd → RK .
6: S ←

{
q̄θ̂(y | x) for (x, y) ∈ Dcal

}
# q̄θ̂(· |x) is linear interpolation of softmax probabilities.

7: Qα(Dcal)← quantile(S, α)
8: return Conformal Set Γ(α)(xn+1) = {z ∈ R | q̄θ̂(z | xn+1) ≥ Qα(Dcal)}

4 Experiments

We investigate the empirical behavior of our R2CCP (Regression-to-Classification Conformal Predic-
tion) method, which we have explained in detail in Algorithm 1. We have three sets of experiments.
The first one is described in Section 4.1 and presents empirical evidence of the algorithm’s ability to
produce narrower intervals by utilizing label density characteristics, including heteroscedasticity, bi-
modality, or a combination. Section 4.2 demonstrates the effectiveness of our algorithm on synthetic
and real data by comparing it with various benchmarks from the Conformal Prediction literature in
terms of length and coverage. Section 4.3 evaluates the effect of different loss functions on the final
learned densities and their impact on the intervals produced.

4.1 Specific Characteristics of Label Distribution

Heteroscedascity We generate a toy dataset where the input is one-dimensional. It contains sam-
ples from the following distribution: y ∼ N (0, |x|). The label distribution is heteroscedastic, mean-
ing the variance of the labels changes as the input changes. In traditional Conformal Prediction
literature, many existing algorithms fail to capture heteroscedasticity, resulting in wide intervals for
inputs x where the label distribution of y has low variance. However, our learned algorithm can
directly learn this relation and adjust the outputted probability distribution accordingly. Thus, we
see that the lengths of the intervals will increase as the variance of the label distribution increases,
which is desirable. We see this relation in Figure 1a. Moreover, we also use the dataset generated
from [Lei and Wasserman, 2014] as discussed in Appendix A. This dataset exhibits heteroskedascity
and bimodality as X passes −0.5. We see that our learned method can adjust intervals accordingly
to maintain coverage and length for all X . We plot this in Figure 1b. We plot how the intervals
(grey) change as the data distribution (black) changes. As the variance of the labels increases as x
increases, the produced intervals adaptively get wider, taking advantage of the heteroscedasticity.

Bimodality We showcase our algorithm’s capability to address labels with a bimodal distribution.
Our bimodal dataset is generated by repeatedly (1) sampling two sets of random features that are
close geometrically and (2) giving one set of features a label of 1 plus some Gaussian noise and giv-
ing the other a label of −1 plus some Gaussian noise. Therefore, our dataset is comprised of many
similar data points with bimodally distributed labels. This bimodal distribution is particularly hard
for many existing CP algorithms to solve since it requires outputting two disjoint conformal sets to
achieve low length. CQR, for instance, cannot deal with this circumstance and will generate a con-
formal set that covers the entire range space. However, our method is flexible enough to assign a low
probability to labels between −1 and 1, and our resulting conformal set will not include these inter-
mediate labels. We see this in Figure 3d. In Figure 3d, our outputted probability distribution has two
modes around labels −1 and 1 and assigns a low probability value to the valley between the modes.
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DATASET BIMODAL LOGNORM CONCRETE MEPS-19 MEPS-20 MEPS-21 BIO COMMUNITY

CQR 2.14(0.01) 1.58(0.03) 0.39(0.01) 1.87(0.05) 2.00(0.07) 1.99(0.03) 1.34(0.01) 1.44(0.03)

KDE 0.35(0.01) 1.40(0.04) 1.54(0.03) 2.16(0.02) 2.51(0.05) 2.39(0.03) 2.27(0.00) 2.23(0.09)
LASSO 2.14(0.00) 3.30(0.06) 2.74(0.03) 4.64(0.06) 4.79(0.04) 4.92(0.04) 3.89(0.00) 3.26(0.05)
CB 2.16(0.00) 1.45(0.01) 0.96(0.01) 4.47(0.02) 4.50(0.02) 4.51(0.01) 2.09(0.00) 1.80(0.00)
CHR 2.14(0.00) 1.52(0.05) 0.47(0.02) 2.60(0.08) 2.53(0.03) 2.75(0.03) 1.59(0.01) 1.49(0.05)

R2CCP (OURS) 0.46(0.01) 1.96(0.03) 0.38(0.01) 1.60(0.01) 1.70(0.03) 1.72(0.03) 1.11(0.01) 1.47(0.03)

DATASET DIABETES SOLAR PARKINSONS STOCK CANCER PENDULUM ENERGY FOREST

CQR 1.30(0.05) 1.98(0.22) 0.42(0.01) 1.85(0.23) 3.09(0.13) 2.25(0.31) 0.19(0.01) 3.18(0.19)
KDE 1.34(0.05) 0.50(0.01) 3.79(0.02) 4.72(0.29) 3.82(0.09) 3.96(0.09) 2.72(0.07) 2.90(0.17)

LASSO 3.01(0.04) 3.54(0.12) 3.46(0.03) 1.39(0.04) 3.55(0.14) 3.99(0.07) 1.29(0.03) 3.97(0.29)
CB 1.19(0.01) 3.78(0.02) 3.42(0.01) 1.32(0.01) 3.14(0.04) 3.71(0.03) 1.26(0.01) 3.75(0.03)
CHR 1.40(0.02) 1.49(0.23) 0.68(0.02) 1.59(0.07) 3.42(0.12) 1.69(0.11) 0.23(0.01) 3.03(0.15)

R2CCP (OURS) 1.34(0.02) 3.80(2.61) 0.50(0.00) 0.92(0.02) 3.21(0.08) 1.60(0.07) 0.20(0.02) 3.80(0.26)

Table 1: This is the length results over all datasets. We see that our method achieves the best length
on 10 of the 16 datasets. Meanwhile, CQR is best at 5, CHR is best at 3, CB is best at 1, and KDE
is the best at 3. Our method achieves the shortest intervals across these datasets.

4.2 Comparison to other Conformal Prediction Algorithms

The crucial criteria for assessing a Conformal Prediction algorithm consist of (1) coverage, repre-
senting the percentage of generated conformal sets that incorporate accurate labels, and (2) the length
of the generated conformal sets. Our baseline techniques consist of the Kernel Density Estimator as
proposed by Lei and Wasserman [2014], alongside a conformity score shown by the estimated prob-
ability density. Furthermore, we take into consideration Fong and Holmes [2021], which employs
the likelihood of a posterior distribution in their conformity function, and Sesia and Romano [2021],
which uses quantile regressors on every bin of a histogram density estimator. We have included the
Conformal Quantile Regression as described by Romano et al. [2019], which employs conformity
based on the labels’ distance from quantile regressors. Additionally, we have used the Lasso Confor-
mal Predictor with a distance to mean regressors, which is the most straightforward option. We use
synthetic data exhibiting bimodally distributed and log-normally distributed to illustrate particular
weaknesses of existing methods. We use real datasets also in Romano et al. [2019]. Specifically,
these are several datasets from the UCI Machine Learning repository (Bio, Blog, Concrete, Com-
munity, Energy, Forest, Stock, Cancer, Solar, Parkinsons, Pendulum) [Nottingham et al., 2023] and
the medical expenditure panel survey number 19–21 (MEPS-19–21) [Cohen et al., 2009]. These
regression datasets are commonly used to evaluate the strength of regression models. Our approach
yields tighter intervals on real datasets than some of the strongest existing baselines.

Results We report lengths and coverages results in Table 1 respectively. We added figures depict-
ing example probability distributions on these datasets in Figure 3 in Appendix D. The intervals
produced by our method are the shortest over 10 of the 16 datasets. From Figure 3, we see that
our method can learn many different shaped distributions well, which accounts for this significant
improvement in intervals. Overall, the Kernel Density Estimation and our method can accurately
predict the best intervals on datasets where the connection between the data and feature is simple,
such as Bimodal or Log-Normal. While the Kernel Density Estimator can fail when the labels are
complexly related to inputs, no such connection exists in these datasets since the labels are indepen-
dent of the features. Thus, the Kernel Density Method’s simplicity allows it to learn the label density
quickly. Our method also seems to handle the case where there is no connection between the data
and the labels, as seen in Figure 3d in Appendix D. Moreover, on datasets where the label density
is smooth and close to the Laplace prior, such as on Figure 3c and Figure 3i, Conformal Bayes and
our method can accurately learn this distribution since both methods can output smooth distribu-
tions. Moreover, on very sharp datasets such as on Concrete in Figure 3j and Energy in Figure 3h,
both our method and CQR can capture the sharp and unnoisy distribution needed to achieve strong
length. Moreover, on complex distributions such as in Pendulum in Figure 3e and Bio in Figure 3f,
we see that both CHR and our method have the flexibility to portray complex distributions resulting
in the most accurate intervals. Thus, the flexibility of our algorithm to smoothly learn sharp, wide,
complex, and simple conditional label densities results in our method achieving the best length most
consistently over the entire dataset.
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Figure 2: The resulting density estimates with different loss functions. We see that removing entropy
from our loss function or using MLE as error terms causes sharp density estimates. Moreover, adding
in the entropy regularization with MLE does not smooth the density estimate but instead raises
the entire distribution uniformly. This does not give any valuable information for the Conformal
Prediction process.

4.3 Ablation Studies

Our loss function consists of an error and entropy terms. The error term penalizes distributions
that put weight far away from the true label, whereas the entropy term acts as a regularizing term
in the probability distribution space. We will do ablations on both the error and entropy terms to
illustrate the importance of each part. For the error term, there are several notable alternatives that
a practitioner may use. An alternative is the log maximum likelihood or cross-entropy formulations
of the error term, which we denote as

LMLE(θ) = −
N∑
i=1

log(qθ(ỹi | xi)),

where we remind the reader that ỹi = argminŷ∈Ŷ |ŷ − yi|. We note that both MLE and CE are
equivalent formulations in this setting. These two are standard error terms often used in practice.
We will train our models with this loss function over all datasets to see how the change of error term
affects the intervals’ length and the learned density. We will show that our chosen error term is better
for producing optimal intervals empirically. Moreover, we will also demonstrate the importance of
our entropy term. We do this by retraining our models with the entropy part omitted. We also test by
combining the MLE error term with entropy regularization. Therefore, we will perform 4 different
ablation experiments on the loss function by retraining on different variations of the loss functions
and reporting the final length and coverage generated. Overall, the four loss functions we will use are
the original loss function L, the original loss function without entropy LNE, the MLE loss function
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DATASET BIMODAL LOG-
NORMAL

CONCRETE MEPS-19 MEPS-20 MEPS-21 BIO COMMUNITY

LNE 0.430.001 3.250.058 1.890.037 3.730.057 3.790.061 8.780.163 2.010.006 3.640.054
LMLE 0.350.001 1.760.020 0.740.016 1.580.008 1.590.009 1.710.034 2.710.001 2.320.047
LMLE + E 0.360.001 3.520.008 1.910.017 1.600.008 1.630.027 1.700.008 2.320.003 3.770.013
L 0.440.002 1.820.034 0.370.004 1.600.009 1.590.011 1.690.013 1.100.004 1.500.025

DATASET DIABETES SOLAR PARKINSONS STOCK CANCER PENDULUM ENERGY FOREST

LNE 1.920.052 2.200.233 4.760.033 10.170.165 3.260.207 12.820.479 3.300.093 3.330.254
LMLE 1.560.031 0.140.005 0.340.006 4.480.214 3.260.117 3.000.203 0.250.011 3.040.110
LMLE + E 1.960.012 0.150.005 0.230.001 9.730.074 3.950.022 13.400.221 0.250.009 5.240.055
L 1.370.037 0.660.092 0.460.036 1.950.039 3.040.142 1.620.042 0.210.025 2.920.127

Table 2: we present the length results over all of the variant loss functions. We find that our loss
function delivers the best over 12 datasets, demonstrating that our chosen loss function often gen-
erates the best intervals. For datasets where our method does not deliver the best results, it is likely
that tuning the weight on the entropy τ and the smoothing term p would likely have improved the
results, but we do not do this for the sake of evaluation.

LMLE, and the MLE loss function with entropy added LMLE + E. We will demonstrate that our chosen
loss function delivers the best results across all the loss functions. We report our results in Table 2.

Results We see that our chosen loss function achieves the best length across most loss functions
in Table 2. The only datasets where our chosen loss function does not achieve the best length are
Energy, Solar, Bimodal, and Log-Normal. We now discuss the individual differences between our
loss function and each variant loss function. When comparing our loss L with the variant without
entropy LNE, we see the lengths constantly increase except for the bimodal distribution. Without
an entropy regularizing term, the outputted probability distributions are not smooth, placing much
mass on a single data point. This overconfidence results in the αth quantile of the low probability
of the true label as in Figure 2. When looking at the differences between our loss function when
changing the error term to Maximum Log Likelihood, we see similar overconfidence. While MLE
loss works on several datasets, such as Energy, Solar, Bimodal, and Log-Normal, it also performs
poorly on other datasets. MLE works well for datasets with less simple label distributions but fails
otherwise due to similar overconfidence. Even when adding entropy as a regularizer to the MLE loss
as in LMLE + E, we see that the addition of entropy does not improve the length. Since MLE loss does
not treat nearby bins differently than far away bins, regularization decreases the overconfidence
but does so uniformly across all bins. The result is a roughly uniform distribution with a single
spike. This does not utilize the structure of regression where bins near the best bin are preferable.
Thus, prioritizing nearby bins is crucial for achieving strong length. Moreover, when adding entropy
regularization to our error term, we do not see a uniform increase in probability across all bins but
instead a smoothening of a direct. This connection between entropy regularization and our distance-
based loss function appears to be a powerful synergy per the intervals produced. Thus, the error
term utilizing the regression structure by prioritizing nearby bins and the regularizing entropy term
preventing overconfidence seem crucial for producing good intervals.

Another important insight is that the datasets where other loss functions excel are the same ones
where other CP methods perform better than ours. In particular, on the Bimodal, Log-Normal,
Parkinson’s, and Solar datasets, our CP method is not superior, and other loss functions outperform
it. This indicates that the MLE’s sharp distributions result in greater accuracy on these specific
datasets. Hence, adjusting the weighting terms for entropy τ and smoothing p could enhance the
smoothness of the learned distribution and, thereby, the performance of our algorithm across these
datasets, leading to the best outcomes. Nevertheless, to maintain fairness, we avoid this approach.
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A Limitations

There are several limitations to our algorithm. The loss function we choose to optimize needs larger
representational power due to increased complexity of the output. Therefore, the neural networks
we used in practice to minimize this loss function are larger than the ones used for CQR. Moreover,
to achieve strong training, we had to slightly vary the hyperparameters for a dataset depending on
its size. For example, larger datasets needed models to be trained with smaller initial learning rate
to avoid divergence. This was not needed for Quantie Regressors. If the network does not train well
or achieve good training or validation loss, the intervals produced will be suboptimal, so finding a
training setup that minimizes the loss effectively is crucial for our algorithm to produce meaningful
intervals. Moreover, we do not directly learn the label distribution and our produced probability
distributions do not directly mirror that of the ground truth distribution. One reason for this is the
use of entropy regularization. While using entropy regularization introduces bias, we found it to be
necessary to prevent the neural network from being overconfident on a simple bin in practice.

A Details on Dataset from Lei and Wasserman [2014]

For the dataset referenced in Figure 1b, we generate the dataset by sampling many (X,Y ) pairs
from the following distribution.

X ∼ Unif[−1.5, 1.5]

Y | X ∼ 1

2
N (f(X)− g(X), σ2(X)) +

1

2
N (f(X) + g(X), σ2(X))

f(X) = (X − 1)2(X + 1), g(X) = 4
√
(X + 1/2)I(X ≥ −1/2), σ2(X) = 1/4 + |X|

This dataset demonstrates bimodality after x passes the threshold of−0.5. This dataset was similarly
used by the Lei and Wasserman [2014].

B Coverage Data

We have presented the coverage data for the Conformal Prediction comparison as well as the ablation
experiments in Table 3 and Table 4 respectively. Since all methods obey the classical Conformal
Prediction framework, we expect coverage at the guaranteed level of 1−α from ??. This guaranteed
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is indeed what we see across all experiments. This confirms that our coverage guarantee indeed holds
in practice.

DATASET BIMODAL LOGNORM CONCRETE MEPS-19 MEPS-20 MEPS-21 BIO COMMUNITY

CQR 0.90(0.00) 0.91(0.00) 0.91(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00)
KDE 0.93(0.00) 0.90(0.00) 0.90(0.00) 0.91(0.00) 0.92(0.00) 0.91(0.00) 0.90(0.00) 0.90(0.00)
LASSO 0.90(0.00) 0.91(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00)
CB 0.90(0.00) 0.91(0.01) 0.88(0.01) 0.90(0.00) 0.90(0.00) 0.89(0.00) 0.90(0.00) 0.90(0.00)
CHR 0.90(0.00) 0.91(0.00) 0.91(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00)
R2CCP (OURS) 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00)

DATASET DIABETES SOLAR PARKINSONS STOCK CANCER PENDULUM ENERGY FOREST

CQR 0.91(0.00) 0.91(0.00) 0.90(0.00) 0.91(0.00) 0.92(0.00) 0.91(0.00) 0.90(0.00) 0.91(0.00)
KDE 0.91(0.00) 0.71(0.15) 0.89(0.00) 0.90(0.00) 0.92(0.01) 0.90(0.01) 0.91(0.00) 0.81(0.08)
LASSO 0.91(0.00) 0.90(0.00) 0.90(0.00) 0.91(0.00) 0.92(0.00) 0.90(0.00) 0.90(0.00) 0.90(0.00)
CB 0.89(0.00) 0.92(0.01) 0.90(0.00) 0.88(0.01) 0.87(0.02) 0.88(0.01) 0.89(0.01) 0.90(0.01)
CHR 0.91(0.00) 0.91(0.00) 0.90(0.00) 0.91(0.00) 0.92(0.00) 0.91(0.00) 0.91(0.00) 0.91(0.00)
R2CCP (OURS) 0.90(0.00) 0.92(0.02) 0.96(0.00) 0.92(0.02) 0.90(0.00) 0.90(0.00) 0.91(0.01) 0.89(0.00)

Table 3: This is the coverage data over all datasets. We see that all methods achieve the roughly
1− α coverage guaranteed by conformal prediction.

DATASET BIMODAL LOGNORM CONCRETE MEPS-19 MEPS-20 MEPS-21 BIO COMMUNITY

L 0.90(0.02) 0.90(0.02) 0.90(0.02) 0.90(0.01) 0.90(0.01) 0.90(0.01) 0.90(0.00) 0.90(0.01)
LNE 0.90(0.02) 0.81(0.03) 0.84(0.03) 0.90(0.01) 0.90(0.01) 0.90(0.01) 0.68(0.01) 0.88(0.02)
LMLE 0.90(0.02) 0.90(0.02) 0.90(0.02) 0.90(0.01) 0.90(0.01) 0.90(0.01) 0.90(0.00) 0.90(0.01)
LMLE + E 0.90(0.02) 0.90(0.02) 0.90(0.02) 0.90(0.01) 0.90(0.01) 0.90(0.01) 0.92(0.00) 0.90(0.01)

DATASET DIABETES SOLAR PARKINSONS STOCK CANCER PENDULUM ENERGY FOREST

L 0.90(0.03) 0.90(0.02) 0.95(0.01) 0.90(0.03) 0.90(0.05) 0.90(0.03) 0.90(0.03) 0.89(0.03)
LNE 0.94(0.02) 0.90(0.02) 0.73(0.01) 0.89(0.03) 0.90(0.05) 0.90(0.03) 0.90(0.02) 0.77(0.04)
LMLE 0.90(0.03) 0.90(0.02) 0.90(0.01) 0.91(0.03) 0.90(0.05) 0.90(0.03) 0.90(0.02) 0.89(0.03)
LMLE + E 0.90(0.03) 0.90(0.02) 0.90(0.01) 0.90(0.03) 0.90(0.05) 0.90(0.03) 0.90(0.03) 0.90(0.03)

Table 4: This is the coverage data for different loss functions from the ablation.

C More Experimental Details

In order to maintain fairness across all baselines, we use the same size neural network for our
method across all experiments. Specifically, we discretize the range space into K = 50 points,
weight the entropy term by τ = 0.2, use a 1000 hidden dimension, use 4 layers, use weight decay
of 1e − 4, use p = .5, and use AdamW as an optimizer. For most of the experiments, we use
learning rate 1e−4 and batch size 32. However, for certain datasets, namely the MEPS datasets, we
used a larger batch size of 256 to improve training time and used a smaller learning rate to prevent
training divergence. We did change any other parameter between all of our runs. For the baselines
of CQR and CHR, we use the neural network configurations mentioned in the paper. We found that
the parameterizations mentioned by the authors in the papers achieved the best performance and
changing the parameterizations weakened their results.

D Output Distribution

Here, we plot the distribution of lengths of all Conformal Prediction methods over all datasets. We
also plot example density functions learned by out method, CHR, and KDE on all datasets. We note
that KDE’s learned densities seem to be relatively less informative. Moreover, the learned densities
from CHR are noisy and not smooth. Moreover, we plot several examples of only our learned
probability distribution. We use this when referencing the experiments to demonstrate the different
shapes of label distributions from the data.
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Figure 3: Example Probability Distributions outputted by our learned methodology on different
datapoints from different datasets. We can see there are a variety of different shapes of distributions
learned.
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Figure 4: Bimodal Length Distribution across all CP Methods
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Figure 5: Bio Length Distribution across all CP Methods
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Figure 6: Breast Cancer Length Distribution across all CP Methods
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Figure 7: Community Length Distribution across all CP Methods
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Figure 8: Concrete Length Distribution across all CP Methods
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Figure 9: Diabetes Length Distribution across all CP Methods
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Figure 10: Energy Length Distribution across all CP Methods
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Figure 11: Forest Length Distribution across all CP Methods
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Figure 12: Log Normal Length Distribution across all CP Methods
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Figure 13: Meps 19 Length Distribution across all CP Methods
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Figure 14: Meps 20 Length Distribution across all CP Methods
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Figure 15: Meps 21 Length Distribution across all CP Methods
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Figure 16: Parkinsons Length Distribution across all CP Methods
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Figure 17: Pendulum Length Distribution across all CP Methods
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Figure 18: Solar Length Distribution across all CP Methods
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Figure 19: Stock Length Distribution across all CP Methods
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(a) BIO
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(b) BREAST CANCER

Figure 20: Plot of outputted density functions for ours, KDE, and CHR on for BIO and BREAST
CANCER
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(a) BIMODAL
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(b) COMMUNITY

Figure 21: Plot of outputted density functions for ours, KDE, and CHR on for BIMODAL and
COMMUNITY
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(a) CONCRETE
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(b) DIABETES

Figure 22: Plot of outputted density functions for ours, KDE, and CHR on for CONCRETE and
DIABETES
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(a) ENERGY
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(b) FOREST

Figure 23: Plot of outputted density functions for ours, KDE, and CHR on for ENERGY and FOR-
EST
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(a) LOG NORMAL
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(b) MEPS-21

Figure 24: Plot of outputted density functions for ours, KDE, and CHR on for LOG NORMAL and
MEPS-19
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(a) PARKINSON’S
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(b) PENDULUM

Figure 25: Plot of outputted density functions for ours, KDE, and CHR on for PARKINSON’S and
PENDULUM
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(a) SOLAR
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(b) STOCK

Figure 26: Plot of outputted density functions for ours, KDE, and CHR on for SOLAR and STOCK
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