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Abstract

Most of the existing Large Language Model
(LLM) benchmarks on bioinformatics problem
reasoning focus on problems grounded to niche
research domains where datasets contain a small
number of samples and, therefore are not truly
representative of the broad domain of bioinfor-
matics. To systematically examine the reasoning
capabilities required for solving complex bioin-
formatics problems, we introduce an expansive
benchmark suite BioinformaticsBench for LLMs.
BioinformaticsBench contains a carefully curated
dataset featuring a range of collegiate-level sci-
entific problems from several bioinformatics do-
mains, such as genetics, genomics, single celled
analysis, proteomics, and metagenomics. Based
on the dataset, we conduct an in-depth bench-
marking study of representative open-source and
proprietary LLMs with various prompting strate-
gies. The results reveal that current LLMs are
able to deliver a satisfactory performance, with an
overall best score of 74%. Furthermore, through
a detailed user study, we categorize the errors
made by LLMs into ten problem-solving abilities.
Our analysis indicates that while different models
have different domains of expertise, GPT-4o is
the best performing model overall. We envision
that BioinformaticsBench will catalyze further de-
velopments in the reasoning abilities of LLMs,
thereby ultimately contributing to scientific re-
search and discovery.

1. Introduction
Bioinformatics is an interdisciplinary field at the nexus of
biology, computer science, and statistics. In the past decade,
there have been rapid advancements in high-throughput
leading to a wealth of genomic, transcriptomic, and pro-
teomic datasets, which has fueled a need for innovative
computational approaches to extract insights from complex
biological datasets. While dataset interpretation is central to
understanding intricate biological phenomena1, the extrac-
tion of meaningful, novel insights presents a challenging

endeavor due to their inherent complexity and volume of
these datasets.

Recent advancements in artificial intelligence(Brown et al.,
2020) and particularly in the development of large language
models (LLMs), offer a promising direction in the pursuit of
efficient and robust multimodal data interpretation in bioin-
formatics(Brandes et al., 2023; Livesey & Marsh, 2023;
Al Ahdal et al., 2023). LLMs, such as GPT-4(OpenAI, 2023)
(the fourth iteration of the Generative Pre-trained Trans-
former model (GPT-4), trained by OpenAI), have demon-
strated remarkable capabilities in a wide array of natural
language processing tasks(Yang et al., 2022). These models
are built upon state-of-the-art deep learning architectures,
trained on massive amounts of text data to simulate hu-
man conversations, and promise to generate coherent and
contextually relevant responses across a range of scientific
domains(Touvron et al., 2023). LLMs, with their ability to
learn patterns, semantic relationships, and hidden structures
in unstructured text data, offer a new perspective to assist
bioinformatics research. They hold promise for tasks such
as gene expression analysis, variant interpretation, protein
folding prediction, and drug discovery(Elsborg & Salvatore,
2023).

The creation of benchmark sets is an active area of research
in computer science, with several large scale benchmark sets
created in the domains of Science(Wang et al., 2023), Math-
ematics(Lu et al., 2023), and Law(Guha et al., 2024). While
several papers have been published on the use of LLMs in
bioinformatics, there is very little work done on benchmark
set creation. There are only 2 benchmarks that have been
proposed till date, Bioinfo-Bench(Chen & Deng, 2023) and
BioCoder(Tang et al., 2023), both of which have several
drawbacks. Bioinfo-Bench only contains 200 questions and
lacks a coverage of multiple sub-fields within the broad
domain of bioinformatics. While BioCoder is more thor-
ough, incorporating 1,026 Python functions and 1,243 Java
methods extracted from GitHub, along with 253 examples
from the Rosalind Project, all pertaining to bioinformatics,
it is only limited to coding based problem solving. These
drawbacks result in an incomplete assessment of the analyt-
ical and problem-solving skills required to tackle complex
scientific problems. Therefore, it is essential to develop a
new benchmark to evaluate the research progress of LLMs
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in solving bioinformatics problems.

2. Contribution
In this paper, we present BioinformaticsBench, which is to
date the largest benchmark set containing 602 human anno-
tated questions across 9 different bioinformatics domains.

Dataset selection criteria
Our dataset was selected to capture challenging prob-
lems within a diverse set of bioinformatics sub domains.
These domains included bioinformatic algorithms, biostatis-
tics, functional genomics, genetic linkage and equilibrium,
mendelian genetics, molecular biology, phylogenetics, pro-
teomics and sequence alignment. The questions were se-
lected to ensure a balanced coverage across each of the do-
mains. A breakdown of the category and question statistics
is located in Table 1. To collect relevant questions, 10 text-
books were selected based on the textbooks reputability and
wide use within the bioinformatic community. In addition to
textbooks, 4 publicly accessible problem sets were collected
from university websites, such as Massachusetts Institute of
Technology (MIT) and University of Massachusetts, Boston
(UMass Boston). A team of both graduate and undergradu-
ate students were then tasked with consolidating questions
from the chosen textbooks and problem sets to generate
around 602 questions looking specifically for numeric, mul-
tiple choice, single word, and true or false questions. Nu-
meric questions were required to have units attached. While
parsing through questions from the given sources, if the
question demanded a multi-word answer, the problem was
reformatted to return a multiple choice, single answer or
true/false solution, whenever feasible.

Data Preprocessing
Each of the four question types adhered to specific criteria
as follows, aimed at mitigating potential ambiguities in the
model’s output:
1. Numeric: Each numeric question was modified to in-
clude the units in which the answer would be returned in
(e.g. “Express your answer in KJ”), as well as a specified
number of decimal places (e.g. “Round to one decimal
place”). A standardized format for scientific notation was
implemented when it was necessary for the question’s spec-
ified output (e.g. ”Write your answer in scientific notation.
Format example: 1.00*(10-̂1)”).
2. Single Word: Since models often default to outputting a
sentence or paragraphs to support the answer choice, ques-
tions requiring a single word answer were appended with
the following statement: ”Answer in one word”.
3. Multiple Choice: Questions with the multiple choice
format followed this structure: “Choose one of the follow-
ing: (a) Choice 1 (b) Choice 2 (c) Choice 3”. Each question
included a set of answer selections, typically ranging from
three to five choices.

Table 1: Summary of the BioinformaticsBench dataset. We
report the total number of problems and percentage coverage
for 9 key bioinformatics domains.

TITLE ACRONYM # PROBLEMS COVERAGE

BIOINFORMATIC ALGORITHMS ALGOS 100 16.6%
BIOSTATISTICS BIOSTATS 116 19.3%
FUNCTIONAL GENOMICS FUNCGEN 33 5.5%
GENETIC LINKAGE & EQUILIBRIUM GENLINK 33 5.5%
MENDELIAN GENETICS MENDGEN 115 19.1%
MOLECULAR BIOLOGY MOLBIO 67 11.1%
PHYLOGENETICS PHYGEN 27 4.5%
PROTEOMICS PROTEO 48 8.0%
SEQUENCE ALIGNMENT SEQALIGN 63 10.5%

4. True/False: These questions were often presented as
statements. For example, “True or False, the Burrows
Wheeler Transform is a lossless compression algorithm”.
To mitigate an explanation, each statement incorporated the
directive “Report your answer as True or False” for succinct-
ness.
Additionally, each question was tagged with the correspond-
ing citation, including page number or website address for a
validity check. A team of 2 PhD students with high domain
expertise, manually verified the correctness of the questions
and their solutions, ensuring that the dataset was high accu-
racy.

3. Experiments
This section presents the experiments to assess the capabili-
ties of LLMs in scientific problem-solving.

3.1. Experimental Setup

We evaluate our dataset on six unimodal LLMs,which
include four proprietary models: GPT-3.5-Turbo
(gpt-3.5-turbo-0125)(OpenAI, 2022), GPT-4-Turbo(gpt-
4-turbo)(Achiam et al., 2023), GPT-4o (gpt-4o-2024-
05-13)(openAI, 2024), along with four open-source
models:LLaMA-2-7B (llama-2-7b-chat),(Touvron et al.,
2023), LLaMA-3-8B(Meta-Llama-3-8B-Instruct)

We consider two different learning and prompting ap-
proaches described below:

1. Zero-shot and few-shot learning. In the zero-shot learn-
ing setting, models are not provided with any prior examples,
which evaluates their inherent problem-solving capabilities
with background knowledge and reasoning abilities. In the
few shot setting, a few examples are given to the model
before the test example. This aims to asses their capability
to learn new information from the demonstrations and in-
corporate it into their problem solving process
2. Prompting based approaches. For our experiments, all
settings begin with a system prompt that describes the type
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and categories of questions. Additionally, we utilize a CoT
prompting strategy in the zero setting. This was achieved
by adding ”A: Let’s think step by step” at the end of the
question prompt, and asking for the final answer.

Implementation details: We set temperature to default for
all models to reduce the randomness of the predictions. Af-
ter making an API call (GPT) or running a pretrained model
(LLaMA3), our evaluation pipeline was used to parse the
response received, and evaluate each questions’ correctness.

3.2. Results and Analysis

We report the model performance in terms of accuracy score
for each textbook and an average score across all problems.
The results of the LLMs in various settings are summarized
in table 2. We have the following observations.
Observation 1: BioinformaticsBench is complex enough
to differentiate among LLMs. Our results show that open-
source models such as LLaMA were consistently outper-
formed by their proprietary counterparts across all settings
within the textbook dataset. Notably, GPT-4o and GPT-4-
Turbo lead in performance by a significant margin. For ex-
ample, GPT-4o outperforms LLaMA-3 by 44% in the zero-
shot setting. Additionally, within both LLaMA and GPT
series, we observe a clear correlation between increased
model capacity (i.e., larger parameter sizes) and improved
performance. Intrestingly, while LLaMA performed poorly
overall, it had an exceptionally high performance in the
functional genomics domain, with a 21% performance gain
compared to GPT-3.5 in the zero shot setting. Therefore,
the complexity of BioinformaticsBench is able to differen-
tiate the performance among different LLMs in different
domains.
Observation 2. BioinformaticsBench highlights varied
efficacy of prompting strategies across LLMs. Our find-
ings suggest that the effectiveness of employing prompting
strategies varies significantly among different LLMs. As
shown in table 2, GPT-4-Turbo outperforms GPT-4o in be-
coming the top performing shows a marked improvement in
the CoT setting over the zero-shot setting, with an average
performance increasing from 67.6% to 72.8%. Interestingly,
the performance overall increased in all categories except
genetic linkage, for which the performance went down by
around 9%. Meanwhile, despite the advanced capabilities of
GPT-4o demonstrated by its zero-shot learning performance,
it falls short compared to GPT-4o in chain of thought. This
suggests a potential reduction in its program understanding
capabilities. We also observed GPT-3.5-Turbo to exhibit a
similar trend, with it’s performance falling by 5% in the CoT
setting. Our findings illustrate that BioinformaticsBench
can reveal the nuanced differences in the ability of LLMs to
utilize prompting strategies effectively.

4. Evaluation Metrics
The accuracy was computed by comparing the response
generated by the LLMs with the correct response. First, the
text enclosed within the curly braces was extracted. For
numerical quantities with values less than 1, a relative tol-
erance of 10% was allowed, while for quantities greater
than 1, a relative tolerance of 5% was allowed. For string
based responses, the strings were first converted to upper
case and then matched. After extracting commas and text
bracket, only exact string matches were considered. The
accuracy was computed by dividing the number of correct
responses by the total number of questions, per category and
per dataset. Additionally, computational time was measured
for each evaluation run using time.time().

5. Error analysis of prompting strategies
Considering the substantial advancements of current LLMs,
an in-depth analysis of the particular skills that are either en-
hanced or limited under certain settings becomes imperative.
Previous works have relied on human labor to annotate error
reasons into different categories, which is both expensive
and time-consuming (Zhong et al., 2023). In this section, we
present an evaluation protocol that automates the classifica-
tion of error reasons into deficient skills. This time-efficient
approach enables large-scale analyses in future research. In
order to quantify the impact of each setting on scientific
problem-solving, we first define an essential skill set that
is required by solving scientific problems. Then, an LLM
verifier is employed to automatically classify each incor-
rectly solved problem based on the absence of a specific
skill from the essential skill set. This approach generates
error profiles, showcasing a direct comparison of different
strategies. Firstly, we analyze the incorrect solutions made
by GPT-3.5-Turbo for problems that provide detailed so-
lutions. We chose GPT-3.5-Turbo since it had the highest
error rate among the GPT models. Two PhD students who
were highly familiar with the problems in our datasets, an-
notated the source of the error for each problem, indicating
the specific line where the model makes a mistake and why.
From 100 such error annotations, we distill these errors into
ten essential skills that GPT-3.5-Turbo might lack:

1. Chain of thought: This ability involves decomposing the
problem into smaller, manageable parts, understanding the
relationships between these parts and maintaining a logical
consistency between them.
2. Assumption identification: This skill involves the abil-
ity to recognize relevant and necessary assumptions in the
problem.
3. Correct response, missing output: This describes the
inability of the model to output the answer in the desired
boxed format, despite correctly solving the question.
4. Incorrect response, missing output: This describes the
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Table 2: Experimental results in terms of accuracy (%) on the textbook dataset. The best performing score is highlighted in
bold and second-best is underlined. The average score is weighted by the number of problems in each textbook.

Model
Bioinformatics

ALGOS BIOSTATS FUNCGEN GENLINK MENDGEN MOLBIO PHYGEN PROTEO SEQALIGN AVERAGE

Zero-Shot Learning
LLaMA-2-7B-chat 26.00 8.62 42.24 6.06 17.39 26.86 33.33 20.83 14.28 19.60

LLaMA-3-8B-instruct 35.00 26.72 60.60 12.12 30.43 26.86 26.62 33.33 22.22 30.10
GPT-3.5-Turbo 35.00 47.41 39.39 12.12 42.61 31.34 44.44 41.67 33.33 38.20
GPT-4-Turbo 56.00 65.51 81.81 60.61 81.74 65.67 66.67 68.75 61.90 67.60

GPT-4o 64.00 79.31 96.97 63.64 85.22 61.19 85.19 70.83 65.08 74.10
Zero-Shot Learning + CoT Prompting

GPT-3.5-Turbo 31.00 38.79 36.36 24.24 40.87 34.32 29.63 20.83 25.40 33.20
GPT-4-Turbo 68.00 68.97 84.85 51.52 87.83 70.15 81.48 68.75 66.67 72.80

GPT-4o 57.00 74.13 87.88 63.64 85.21 58.20 88.89 68.75 66.67 71.30

inability of the model to output the answer in the desired
boxed format, while also incorrectly solving the question.
5. Problem deduction skills: This pertains to the ability to
infer and deduce potential solutions or underlying principles
from the given information in a problem.
6. Unit Conversion: This skill involves the ability to con-
vert the answer to the unit specified in the question.
7. Domain Knowledge: This skill involves a comprehen-
sive understanding of key scientific principles, terminology,
and methodologies across bioinformatics subdomains.
8. Hallucination: This occurs when the model generates
a response that is either factually incorrect, nonsensical, or
disconnected from the input prompt.
9. Logical reasoning: This is the ability to make a reasoned
argument and to identify fallacies or inconsistencies in an
argument or set of data.
10. Arithmetic: This involves the ability to accurately carry
out mathematical operations and computations.

After identifying this essential skill set, we assess the per-
formance of the LLMs under different settings to discern
the specific problem-solving skills they lack.

Can LLMs replace human domain experts as error eval-
uators?
Given the high cost of human annotations required to at-
tribute the cause of incorrect solutions to specific skill de-
ficiencies, we propose a novel self-critique protocol: we
design a specific prompt that outlines these abilities, and
employ a set of 3 LLMs to serve as classifiers and determine
whether a specific error results from the lack of a particular
problem-solving skill. Finally, we employ a consensus vote
of the classification results to determine the class. This leads
to the lack of human intervention while still maximizing
the classification accuracy. To be specific, we utilize GPT-
3.5-Turbo, GPT-4 and GPT-4 Turbo models as verifiers to
determine the reason behind each error and pinpoint the
missing skill. However, this approach resulted in only a
37.5% agreement among GPT-4o and GPT-4-Turbo models,
and a 36% agreement among GPT-4o and GPT-3.5 mod-
els. This proves that while certain LLMs can be used to

solve bioinformatics problems, error analysis still remains a
challenge. (Figure 1).

Figure 1: Error analysis via human annotation for GPT3.5.
The total number of errors were distilled down into 10 cat-
egories for a set of 100 questions, and the percentages are
plotted above.

6. Conclusion
This paper presents BioinformaticsBench, the largest to date
benchmark containing more than 600 questions across 9 dif-
ferent bioinformatics sub domains. Our comprehensive eval-
uation includes a diverse arrays of Large Language Models
(LLMs), spanning both open-source and proprietary models,
and employing a variety of prompting strategies. We envi-
sion that the BioinformaticsBench dataset and evaluation
protocol presented in this paper could lay a foundation for
future research and enable advancements in understanding
and enhancing problem-solving capabilities of LLMs.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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APPENDIX

Model Pricing Comparison

Table 3: Computational and pricing requirements for the dif-
ferent models. The model run time is measured in seconds
for the zero shot setting and the pricing for input and output
tokens are presented ($/1Mtokens).

Model Run Time (sec) Input Output

GPT-3.5-Turbo 1784 0.50 1.50
GPT-4-Turbo 6012 10.00 30.00
GPT-4o 3377 5.00 15.00
LLaMA2-7B 3346 FREE FREE
LLaMA3-8B 4048 FREE FREE

For GPT models, pricing varies depending on usage and
integration. On the other hand, LLaMA models, which are
freely accessible, need to be install and deployed on a local
machine in order to run.
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