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Abstract — Generative Artificial Intelligence (GenAI), 
particularly Large Language Models (LLMs), offer powerful 
capabilities for interpreting the complex data landscape in 
healthcare. In this paper, we present a comprehensive overview of 
the capabilities, requirements and applications of GenAI for 
deriving clinical insights and improving clinical efficiency. We 
first provide some background on the forms and sources of patient 
data, namely real-time Remote Patient Monitoring (RPM) streams 
and traditional Electronic Health Records (EHRs). The sheer 
volume and heterogeneity of this combined data present 
significant challenges to clinicians and contribute to information 
overload.  

In addition, we explore the potential of LLM-powered 
applications for improving clinical efficiency. These applications 
can enhance navigation of longitudinal patient data and provide 
actionable clinical decision support through natural language 
dialogue. We discuss the opportunities this presents for 
streamlining clinician workflows and personalizing care, 
alongside critical challenges such as data integration complexity, 
ensuring data quality and RPM data reliability, maintaining 
patient privacy, validating AI outputs for clinical safety, 
mitigating bias, and ensuring clinical acceptance. We believe this 
work represents the first summarization of GenAI techniques for 
managing clinician data overload due to combined RPM / EHR 
data complexities. 

Keywords— Generative AI, Large Language Models, 
Healthcare, Clinical Decision Support, Conversational Agent, 
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I. INTRODUCTION 
Modern healthcare is characterized by an unprecedented 

confluence of patient data from multiple sources. Clinicians are 
often required to synthesize combined information from 
traditional Electronic Health Records (EHRs) with rapidly 
growing Remote Patient Monitoring (RPM) data. EHR data 
contains repositories of largely episodic data captured in 
clinical settings [28]. RPM data consists of continuous and real-
world data generated by Remote Patient Monitoring programs 
utilizing wearable biosensors and other connected health 
platforms [5][15]. There is a rapid growth in data, particularly 
RPM data, covering everything from vital signs and activity 

levels to glucose trends obtained outside of clinical settings. 
This presents both significant opportunities and major 
challenges. Current clinical workflows rely on manual reviews, 
using dashboards that typically present a fragmented view of 
the data [1][20]. This increases the risk of information overload, 
cognitive burden and burnout for clinicians, which can affect 
the quality and timeliness of care [36]. 

The advent of GenAI [11], particularly LLMs, offers a 
transformative opportunity to navigate this data overload and 
complexity [9]. Advanced models like GPT-4, Med-PaLM 2, 
and Gemini demonstrate remarkable capabilities in 
understanding natural language [4], processing diverse 
information formats including text, images and representations 
of time-series data common in RPM [33], performing complex 
reasoning [15], and generating human-like responses [27]. The 
proficiency of LLMs in human dialogue enables the 
development of intuitive conversational interfaces [34] for 
clinicians to potentially interact with complex, integrated 
patient datasets using natural language queries. Some possible 
applications are: requesting summaries of longitudinal RPM 
trends contextualized by EHR events, exploring correlations, or 
asking specific questions in a unified conversational session 
without needing specialized analytical tools or manually 
collating information from disparate sources. 

In this paper, we provide a comprehensive overview of 
leveraging GenAI, especially LLMs, to manage the complexity 
arising from integrated EHR and RPM data. We examine how 
the volume and heterogeneity of this combined data contribute 
to clinician information overload. We explore the potential of 
LLM-powered applications for clinicians to navigate this data 
through natural language and improve clinical efficiency. We 
also detail the critical challenges that must be addressed, such 
as data integration, quality assurance, privacy, AI validation, 
and clinical acceptance. With this review, we aim to guide 
future innovation in developing clinically relevant decision 
support tools that effectively leverage this complex data 
landscape. The organization of this paper is as follows. In 
Section II, we provide an overview of the patient data 
landscape, detailing the distinct characteristics of patient data 
originating from RPM systems and traditional EHRs and its 



modalities. Section III explores the core capabilities of GenAI, 
particularly Large Language Models (LLMs), the critical 
prerequisites for effective and safe application of GenAI in 
healthcare, and key application areas where GenAI can provide 
clinical value. Finally, Section IV presents a discussion of the 
potential implications of a GenAI-based approach, 
implementation challenges, and future directions for leveraging 
GenAI to manage complex patient data and support clinical 
workflows. 

II. PATIENT DATA 
Patient data includes a broad spectrum of information about 

the current health status and medical history of a patient. This 
data acts as the foundation upon which healthcare providers 
form clinical decisions and treatment plans. Patient data has 
multiple inherent modalities and is collected from a large 
variety of disparate sources. In this section we discuss two main 
types of patient data: Patient-Generated Health Data [1], 
typically generated through RPM [1] tools and EHRs 
containing data captured by clinicians and labs [42][43].  

Information overload is a growing challenge for 
healthcare providers in the context of patient data. Clinicians 
are tasked with deciphering a large amount of digitized 
information, often overwhelming their cognitive capacity and 
limiting their ability to process all of the available information 
effectively for patient care. Some of the challenges here include 
difficulty in finding, processing, and acting upon relevant 
patient data due to a large volume of potentially clinically 
irrelevant or duplicative data, compounded with poor 
organization or poor user interfaces in EHR systems [41].  
More recently, data obtained directly from patients in a non-
clinical setting, termed as Patient-generated Health Data, is 
proving to be a supplementary source of patient data to EHR. 
The high volume and high velocity of this data from wearable 
sensors can exacerbate this overload. 

The added effort of data entry into EHR systems is a task 
that adds to cognitive overload for clinicians [41], due to 
workflows that enforce documentation requirements, 
sometimes due to regulatory requirements such as the HITECH 
regulations [57].  Kroth et al (2019) [41] describe this as “note 
bloat” / “note overload” [56] driven by requirements for long 
progress notes and additional note taking towards billing, 
quality improvement measures, avoiding malpractice, 
compliance, visit history documentation, and physical exam 
documentation. These tasks are frequently hindered by poor 
EHR design that detracts from patient care due to misalignment 
with clinician workflows. [44][45] 
A. Patient-Generated Health Data (PGHD) 

Patient-Generated Health Data refers to health-related 
information that is created, recorded, gathered, or inferred by 
patients, their families, or caregivers outside of traditional 
clinical settings [1]. This data can be gathered through a variety 
of technologies and methods, including digital biosensors, 
manual log or journal entries. 

RPM is a method of healthcare delivery that relies on digital 
technologies to collect PGHD such as vital signs, weight, blood 
glucose levels, symptoms, etc. from patients in a remote 

location, away from traditional clinical settings. PGHD data is 
electronically transmitted to healthcare providers in a different 
location for assessment and potential intervention [5]. In the 
following sections we will discuss the types of RPM data 
sources. 

1) Wearable Biosensors 
Wearable biosensors include a diverse range of electronic 

devices which can be worn on, adhered onto or minimally 
implanted under the skin. These electrophysiological and 
electrochemical sensors are designed to continuously or 
frequently capture physiological, behavioral, or biochemical 
data directly from the individual [5][38]. 

A few common sensor types used for RPM are: Inertial 
Measurement Units (IMUs) and pressure sensors [19] to track 
movement for enabling step counting, activity classification, 
gait analysis, and fall detection. Optical Photoplethysmography 
(PPG) sensors and Electrocardiography (ECG) sensors for 
tracking cardiovascular health. Other physiological 
measurements include body temperature sensors, Continuous 
Glucose Monitors (CGMs) and upcoming technologies to 
monitor biomarkers in breath (Volatile Organic Compounds for 
metabolic/respiratory status) and sweat (electrolytes, 
metabolites) [5][36]. 

Continuous monitoring of these biological parameters 
through wearable sensor devices offers unprecedented potential 
for RPM using longitudinal trends in health data, and provides 
opportunities for personalized interventions, and early disease 
detection [5][35]. 

2) Patient Reported Outcomes (PROs) 
Patient Reported Outcomes include data gathered through 
surveys, interviews and data capture platforms where patients 
subjectively report on their health improvements, severity of 
symptoms, and general health status [21]. Examples include: 

• Logs / Diaries such as food diaries, pain journals, 
seizure logs, migraine tracking. 

• Electronic / Mobile Health (eHealth/mHealth) 
applications used by patients to self-report various 
types of health information such as symptoms, 
medication adherence, lifestyle data (diet, exercise), 
and mood through websites or mobile apps. Patient 
Portals provided by healthcare providers enable 
information to be captured directly from manual 
entries made by patients or their caregivers. 

B. Electronic Health Records (EHRs) 
EHRs are digitized versions of patient charts [28] stored as 

temporal data in software-based platforms. This data forms 
longitudinal health records and contains structured (tabular) 
and unstructured (text) events. Clinicians interact with this 
information through Graphical User Interfaces (GUI).  

EHR systems include data such as: 
• Documentation/Notes entered by clinicians containing 

both structured tabular data and unstructured text 
documentation of a patient's care and treatment 

• Lab Test Results containing structured data with 
numerical values, units, reference ranges, flags for 



abnormal results, transmitted electronically through a 
Laboratory Information System (LIS) to the EHR. 

• Medical Imaging Reports containing image data and 
interpretation of the results by a specialist, 
electronically transmitted from Radiology Information 
Systems (RIS) and Picture Archiving and 
Communication Systems (PACS) [17]. 

C. Modalities in Patient Data 
As illustrated in the previous sections, patient data 

originates from various clinical and remote sources, and is  
present in multiple formats. This inherent heterogeneity and 
fragmentation present challenges for integration and analysis 
[10]. Table I provides a consolidated overview of the data 
modalities in patient data, with examples of data sources and 
the characteristics of the data as it relates to healthcare 
applications.  

Table I: Health care data modalities 
Modality Examples 
Text 
(Unstructured) 

Clinical Notes, Radiology Reports, 
Patient Correspondence 

Structured Data 
(Tabular/Coded) 

Lab Results, Vital Signs, Medication 
Lists, Diagnostic Codes, Allergy Lists, 
Demographics, PROs (Survey responses, 
diaries) 

Signal / 
Waveform 
(Time-Series) 

ECG, PPG, CGM, Blood Pressure, IMU 
Movement data 

Image X-rays, CT scans, MRI, Ultrasound, 
Pathology Slides 

Video Surgical Recordings, Endoscopy, 
Ultrasound Videos, Telemedicine 
Sessions 

      In the next section, we explore recent research into the use 
of GenAI applications to alleviate overload while interfacing 
with patient data.  

III. GENERATIVE AI FOR CLINICAL INSIGHTS FROM 
INTEGRATED RPM AND EHR DATA: CAPABILITIES, 

PREREQUISITES AND APPLICATIONS 
GenAI represents a significant advancement in the 

capabilities of AI. GenAI models are capable of generating 
novel content that mirrors patterns learned from existing data. 
Bahn and Strobel (2023) [11] showcase different types of GenAI 
and their abilities in interaction with different modalities of data. 

Applications of GenAI in healthcare environments is an area 
that continues to be the subject of ongoing research and 
development and has great potential to assist clinicians along 
with optimizing health care processes [51]. Transformer-based 
models, which are pre-trained on vast datasets, have powerful 
capabilities that enable interpreting the large quantity and 
variety of patient data present across RPM and EHR. Leveraging 
GenAI technologies like Natural Language Processing to 
summarize, synthesize and navigate patient data and assist 
clinicians in documentation offers a promising pathway to 
address the critical challenge of clinician information overload 
[23]. 

A. Core LLM capabilities relevant to integrated healthcare 
data analysis. 
LLMs bring a suite of capabilities uniquely suited to working 

with combined RPM and EHR data, enabled by their underlying 
architecture: 

• Natural Language Understanding (NLU) and 
Generation (NLG): The attention mechanisms in 
Transformer models allow LLMs to weigh the 
importance of different words (tokens) in context and 
their large parameter counts encode vast linguistic 
knowledge [9]. LLMs are able to generate fluent, 
contextually appropriate text in natural language, 
forming the basis for natural conversational interfaces 
[34] and automated report generation from analyzed 
data. These capabilities enable a nuanced 
understanding of complex clinical language and 
clinician queries. 

• Handling Diverse Inputs: Alongside the native 
processing of text tokens, LLMs can be adapted for 
multimodal inputs [33][35]. Inherently multimodal 
architectures like Gemini, Med-PaLM use specialized 
encoders like Vision Transformers for images, and 
potentially others for time-series and fusion 
mechanisms like cross-attention to allow the model to 
jointly reason across different data types. Structured 
EHR data and numerical features derived from time-
series RPM data can be tokenized or embedded into 
formats the LLM can process [10]. 

• Information Synthesis and Summarization: LLMs 
can process long sequences of input tokens and 
perform abstractive summarization, generating novel 
sentences that capture the essence of the input, rather 
than just extracting key phrases. The input tokens can 
include both EHR text [30] and appropriately encoded 
RPM data. This allows for more concise and readable 
summaries of potentially lengthy and complex 
integrated patient histories. 

• Reasoning and Question Answering: LLMs develop 
rudimentary reasoning capabilities from the patterns in 
their massive training data [15]. Techniques like 
Chain-of-Thought (CoT) prompting [51] encourage 
step-by-step reasoning, improving performance on 
complex queries. This enables LLMs to formulate 
answers by grounding its reasoning in relevant facts [4] 
as shown by Liu et al (2023) [47]. 

B. Prerequisites for Effective GenAI Applications in 
Healthcare 

 Applying the capabilities of GenAI models to patient data 
safely, in order to reduce data overload and improve clinical 
efficiency, requires addressing a few key prerequisites. 

1) Robust Data Foundation 
• Integration and standardization of data: Healthcare 

data is often trapped in separate systems such as EHRs 
at different hospitals, labs, pharmacies, wearables that 
don't easily communicate or share information [14]. 
While GenAI doesn't solve the problem of 
interoperability, its potential drives the need for better 
integration between disparate data systems. A lack of 



standardization in EHR systems makes it hard to 
aggregate data from different sources for analysis. 
Common issues include inconsistent codes, 
terminologies and formats for the same diagnoses, 
medications, lab test results [2]. RPM data may not be 
in a standardized format across devices and raw data 
like sensor readings isn't inherently useful without the 
associated clinical context. Sophisticated analysis, 
often involving AI/ML, must be conducted to turn it 
into meaningful clinical insights by understanding 
context. To solve these issues, EHR data can be made 
accessible to the GenAI system's integration layer 
through standardized APIs such as Health Level 7 - 
Fast Healthcare Interoperability Resources (HL7-
FHIR) as described by Tiase et al (2020) [43]. EHR 
data must be mapped across differing standards such 
as ICD (International Classification of Diseases), CPT 
(Current Procedural Terminology), and LOINC 
(Logical Observation Identifiers Names and 
Codes)[30]. Similarly, standardized outputs from 
RPM platforms are needed like IEEE 11073 - Personal 
Health Device (PHD) Standards [2]. Kawu et al 
(2023)  [42] and Gene et al (2018) [54] describe a data 
integration framework to integrate PGHD from Apple 
HealthKit with the  Epic EHR system. 

• Quality & Cleaning: Information in EHR can be 
incomplete (gaps in patient history), inaccurate 
(typing errors, incorrect entries), inconsistent 
(mismatched terminology), or outdated [28][22]. RPM 
data from consumer devices may lack the rigorous 
validation of clinical-grade equipment, thereby 
impacting reliability [1]. Data continuity may be 
affected by device connectivity and battery life 
limitations. Patient-Reported Outcomes are highly 
dependent on patient engagement, tech literacy and 
manual data entry, often lacking context, and a 
reliance on snapshots of subjective data [21]. While 
primarily a data engineering task, GenAI can 
potentially assist in data cleaning by identifying 
inconsistencies and anomalies. GenAI can also be 
used for imputing missing values. Data preprocessing 
is required for consistent input quality of the data used 
in the LLM. 

• Privacy & Security: Patient data is highly sensitive 
and legally protected (e.g., HIPAA, GDPR) [29]. 
Adopting cybersecurity best practices, managing 
patient consent, and anonymizing data are major 
concerns. Architectural solutions like secure HIPAA-
compliant cloud environments, strong encryption and 
strict access controls must be adopted along with 
privacy-enhancing technologies like federated 
learning which involves training models locally 
without centralizing raw data or differential privacy 
during fine-tuning [36][29]. 

2) Model Validation & Safety 
• Accuracy: Models need testing against established 

medical benchmarks such as MedQA for question 

answering [4]. As shown by Tam et al (2024) [46] 
evaluation metrics such as ROUGE (Recall-Oriented 
Understudy for Gisting Evaluation) [37], BERTScore 
(Score for Bidirectional Encoder Representations 
from Transformers) [37], AUROC (Area Under the 
Receiver Operating Characteristic) [53] must be 
considered along with benchmarks such as HELM 
(Holistic Evaluation of Language Models) [46]. 
Clinical validation studies to compare system outputs 
to expert judgment and patient outcomes is essential 
[31]. Grounding techniques must be adopted in the 
models to improve factuality. For clinical factuality, 
Retrieval Augmented Generation (RAG) [39] is 
crucial, allowing the LLM to access and cite specific, 
retrieved patient data from the integrated RPM/EHR 
store or external medical knowledge bases. 

• Domain Specificity: LLMs must be fine-tuned using 
curated RPM and EHR datasets containing scenarios 
and clinical guidelines that adapt to the specific 
language and reasoning patterns of the domain [32]. 
RAG can also be used to provide access to up-to-date 
information without constant retraining. 

• Bias Mitigation: Bias mitigation techniques must be 
used at every stage of training the models. Examples 
include auditing tools, balancing datasets during data 
preparation, using algorithmic fairness constraints 
during model training, and using fairness metrics 
across subgroups during output evaluation. [12]. 

• Explainability: Using Explainable AI (XAI) methods 
for LLMs such as interpreting attention weights, using 
simpler proxy models, generating natural language 
explanations via techniques like CoT along with 
source attribution via RAG contributes towards 
transparency [18]. 

3) Adoption & Clinical Trust 
• Workflow Integration: GenAI-powered 

conversational interfaces should be designed to fit 
better into existing clinician workflows than static 
reports [16][8]. Integration with EHRs via APIs (like 
FHIR SMART) [43] help the conversational AI agent 
to be embedded within existing clinician tools. 

• Trust: Demonstrated reliability, validation, 
transparency regarding limitations, insights from 
explainability methods, and user-centered design of 
the conversational interface are key factors in 
fostering clinicians’ trust in AI assistance systems [7]. 
Ethical and regulatory considerations: The 
architecture must incorporate robust logging and audit 
trails to track AI inputs, outputs, and user interactions. 
This helps build accountability into the system. 
Compliance must be maintained with regulations 
around patient data and FDA guidance on AI-based 
SaMD (Software as a Medical Device), particularly 
regarding risk classification and required validation 
levels [13]. Consent mechanisms must be built into the 
user interface and data governance framework. 

 



C. Key Application Areas for GenAI with Integrated 
RPM/EHR Data 
GenAI models enable specific applications for reducing 

data overload for clinicians, improving workflows, assisting 
decision making and reducing documentation overhead: 

1) Enhancing Clinical Workflow Efficiency: Reducing 
Data Overload and Documentation burden 

As discussed in Section II, information overload is a major 
challenge for clinicians, in both, consuming and interpreting 
large amounts of patient data, and in generating detailed 
clinician notes [56]. To reduce the cognitive load, GenAI 
applications can be deployed for interacting with patient data: 

a) Text Summarization using LLMs 
 One of the powerful applications of LLMs can be the 
summarization of EHR records to ease the information overload 
on clinicians. Lee et al (2024) [3] explore the potential of LLMs 
in summarizing patient charts and radiology reports, and its 
implications in reducing information overload. The review 
conducted by Li, Zhou et al (2024) [30] describes the use of 
evaluation metrics such as ROUGE, BERTScore, AUROC 
against data sources like MIMIC (Medical Information Mart for 
Intensive Care), CCKS (China Conference on Knowledge 
Graph) and i2b2/n2c2 (National NLP Clinical Challenges) to 
quantify the performance of LLMs. Zhang et al (2023) [25] have 
reviewed ongoing efforts to use LLMs in a variety of 
applications that help in reducing cognitive load for clinicians 
through support for administrative tasks and patient engagement 
with Natural Language Generation 

b) Note Generation using LLMs. 
 Documentation overhead is another source of cognitive 

load that leads to workflow inefficiency. By virtue of their 
natural language generation abilities, LLMs are a great fit for 
clinical note generation. Discharge notes containing diagnosis, 
treatments and follow-up care can be generated through LLMs 
as shown through a qualitative and quantitative analysis 

conducted by Jung, HyoJe, et al. (2024) [40] for LLMs such as 
TinyLlama, LLama2, Mistral, BioMistral, Meditron, SOLAR. 

Barak-Corren et al (2024) [50] have also shown quantifiable 
results in the use of ChatGPT that show improvements in 
clinician time spent on note-taking and charting, and a 
reduction in self-reported clinician effort in these tasks. 

2) Clinical Decision Support 
Conversational data querying using LLMs can be a valuable 

tool to support clinicians in decision-making. [24]. 
Conversational agents can reduce or eliminate the need for 
clinicians to use separate portals and manually review data, 
thereby improving the efficiency of established clinician 
workflows. 

The potential of LLM in knowledge intensive clinical 
applications is supported by their ability to perform 
exceptionally well on complex medical tests. Bicknell et al 
(2024) [6] showcase GPT-4o achieving over 90% accuracy on 
750 USMLE-style questions, against a medical student average 
of 59.3% with 95% Confidence Interval.  

As shown by evaluations conducted by Singhal, Karan, et 
al. (2023) [52], and Nori, King et al (2023) [51], Large language 
models (LLMs) such as Flan-PaLM, Med-PalM 2, GPT-4 have 
exhibited a remarkable  ability to interpret a wide array of 
domains and generate responses with natural language as it 
relates to the field of medicine and healthcare. In various 
performance benchmarks run on proficiency examinations 
containing multiple-choice and long-form medical question 
answering using popular datasets such as USMLE, MedQA, 
PubMedQA, MedMCQA, MMLU, LLMs have shown 
promising performance in physician-level medical question 
answering. 

While this suggests that LLMs show strong medical 
knowledge required for clinical reasoning, further assessments 
beyond standardized tests are required to ensure clinical 
readiness. Applying raw knowledge contained in LLMs 

 
Figure 1: Leveraging GenAI techniques for managing complex patient health data to reduce clinical data overload 



effectively in clinical workflows [8] requires frameworks for 
grounding LLM responses and mitigating hallucination risks. 

To enhance conversational data querying in the healthcare 
context, grounding techniques such as Retrieval-Augmented 
Generated (RAG) can be used. Gao et al (2024) [39] have 
shown that GPT-4-turbo is able to match clinical 
recommendations made by physicians for antibiotic requests 
but not in other tasks. 

“EMERGE” - a RAG driven framework proposed by Zhu, 
Ren et al (2024) [53] and REALM - a RAG framework 
proposed by Zhu et al (2024) [32] showcase methods for 
extracting insights from multimodal data  including both time-
series data and clinical notes in EHR systems. The process 
typically involves: (1) Clinician query (NLU by LLM). (2) 
LLM identifies key entities/concepts. (3) Retrieval-Augmented 
Generation (RAG) component converts these to 
embeddings/queries for a database containing indexed, 
preprocessed RPM/EHR data and extracted features. (4) 
Relevant data chunks retrieved. (5) LLM receives original 
query + retrieved context. (6) LLM generates a factually 
grounded answer (NLG).  Elgedawy et al. (2024) [26] shows 
the use of RAG to facilitate a conversational interface, enabling 
a question-answer format of interaction for clinical notes stored 
in EHRs. 

LLMs can also be used in RPM applications to work with 
time-series multi-modal PGHD gathered through sensor 
devices. Chan et al (2024) [10] have shown promising results 
with their MedTsLLM architecture, which focuses on semantic 
segmentation, boundary detection, and anomaly detection in 
respiratory and ECG data. Liu et al (2023) [47] demonstrate that 
LLMs have potential to be used with time-series physiological 
and behavioral data from wearable and clinical-grade sensing 
devices for varied tasks such as activity recognition, computing 
calories burned and atrial fibrillation classification with 
additional grounding and tuning of the LLMs. 

Belyaeva, Cosentino, et al (2023) [35] define the HeLM 
framework: Health Large Language Model for Multimodal 
Understanding for training LLMs on individual-specific data, 
tokenizing and combining EHR and RPM data. 

Wan et al (2024) showcases the application of LLMs for 
report generation based on multi-modal ECG data.[48] Wang, 
et al. (2024) [49] explore GPT-4’s capabilities in generating 
structured diagnosis and treatment reports based on Thyroid 
cancer ultrasound description reports as a supplementary 
decision support tool. 

IV. DISCUSSION 
The preceding sections have highlighted the confluence of 

two major trends in healthcare: the exponential growth of patient 
data from RPM through ubiquitous wearable biosensors 
alongside traditional EHRs (Section II), and the emergence of 
powerful GenAI models, particularly Large Language Models, 
capable of sophisticated data synthesis and natural language 
understanding (Section III). We explored the significant 
challenge this data deluge poses for clinicians, particularly the 
problem of information overload and lack of efficient access to 
the data which leads to a lack of actionable insights. We 
examined the potential for GenAI systems to serve as an 

intuitive interface for navigating and interpreting this complex, 
integrated data landscape in Section III. 

In this section we discuss the broader implications, 
challenges, and future directions for leveraging GenAI to bridge 
the gap between raw patient data and meaningful clinical 
application. 

A. Implications of a GenAI Approach 
Adopting GenAI to interact with PGHD and EHR data holds 

considerable promise for transforming clinical practice. The 
primary implication is the potential to significantly reduce 
clinician cognitive load and improve efficiency [23]. The 
approach of allowing natural language querying and providing 
automated, context-aware summaries along with synthesizing 
trends across both real-time physiology/behavior (wearables) 
and clinical history (EHR), can drastically cut down time spent 
on manual data retrieval [1][20]. Moreover, LLM's have the 
capability to identify subtle patterns within this combined 
longitudinal data which could be missed by humans. This can 
help flag early signs of disease or suggest complex treatment 
responses that might otherwise be missed [4][20]. This moves 
towards enabling more proactive and personalized care, 
tailoring insights to the individual's unique, continuously 
monitored trajectory within their broader clinical context 
[35][55]. Ultimately, making complex data readily accessible 
through intuitive dialogue could democratize data interpretation 
and support more informed decision-making at the point of care. 

B. Challenges in Implementation 
Despite the potential, realizing the benefits of this approach 

faces significant real-world hurdles, echoing challenges 
discussed in Sections II and III: 

• Foundational Data Integration: Bridging technical 
and semantic gaps between diverse wearables and 
siloed EHRs to create a standardized, reliable data 
stream is a major prerequisite challenge requiring effort 
beyond the GenAI model itself [14][18][2]. 

• Trustworthiness of GenAI in Clinical Contexts: 
Ensuring the clinical validity, safety, and reliability of 
LLM-generated insights is paramount. Current 
problems include mitigating model hallucinations, 
ensuring factual grounding (where techniques like 
RAG, discussed in Section III, become critical), 
managing inherent biases learned from training data 
[12], and providing sufficient transparency or 
explainability for clinical acceptance [18]. Rigorous 
validation methodologies suitable for generative and 
conversational systems in high-stakes clinical 
environments are still maturing [31][22]. 

• Privacy, Security, and Consent: Handling highly 
sensitive, integrated health data via cloud-connected AI 
systems necessitates a strong focus on security 
measures and strict compliance with privacy 
regulations like HIPAA [29]. Current challenges 
involve managing granular patient consent for diverse 
data uses, ensuring secure data transmission and 



processing pipelines, and mitigating re-identification 
risks, especially as models become more powerful [31]. 

• Workflow Compatibility and Adoption: Care must 
be taken to ensure minimal disruption to clinical 
workflows. To build clinicians’ trust in the system, 
conversational interfaces must be efficient, and 
integrate seamlessly with existing tools (like the EHR). 
Clear communication about the AI's limitations and an 
emphasis on feedback-driven human-centered design is 
crucial for adoption [7]. 

C. Future Directions 
 The successful adoption of conversational GenAI in clinical 
applications requires ongoing innovation: 

• Longitudinal Adaptation and Continual Learning: 
Enabling models to continuously adapt to individual 
patient changes over time and be able to incorporate 
new medical knowledge without extensive retraining 
or compromising safety is essential for long-term 
sustainable adoption in clinical applications [36]. 

• Efficiency and Scalability: Developing LLMs with 
lower requirements for computing resources along 
with higher efficiency in inference techniques is 
crucial for maintaining cost-effectiveness at scale 
within healthcare systems. 

• Human-AI Collaboration Dynamics: Further 
investigation and research is needed to optimize 
conversational interaction by understanding and 
adapting the user experience to be centered around 
clinician workflows. Verifying the quality of AI-
generated information is also an important open 
problem [7]. 

• Evolving Regulatory and Ethical Frameworks: 
Creating validation approaches and ethical guidelines 
to keep pace with rapid GenAI advancements and 
ensure responsible innovation remains an ongoing 
societal and regulatory challenge in the healthcare 
domain [13]. 

V. CONCLUSION 
The concept of using LLMs for integrated data analysis offers 
distinct potential advantages over alternative solutions aimed at 
mitigating data overload such as dashboards and other GUI 
tools. In this paper, we present a comprehensive overview of 
the applications of GenAI techniques to improve clinician 
engagement with integrated patient data, focusing on the 
combination of real-time RPM [5] streams and traditional 
EHRs. We discuss various categories and modalities of patient 
data. Further, we discuss the capabilities, prerequisites and 
applications of a GenAI-approach in providing clinical insights 
from integrated RPM and EHR data. Lastly we discuss the 
implications, challenges in implementation and future direction 
for adoption of GenAI in clinical applications. With this review, 
we aim to guide future innovation in developing clinically 
relevant decision support tools that effectively leverage this 
complex data landscape. 
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