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ABSTRACT

Limited availability of multilingual text corpora for training language models often
leads to poor performance on downstream tasks due to undertrained representation
spaces for languages other than English. This ‘under-representation’ has motivated
recent cross-lingual transfer methods to leverage the English representation space
by e.g. mixing English and ‘non-English’ tokens at input or extending model
parameters to accommodate new languages, which in turn increases computational
complexity. To address this, we introduce Fusion for Language Representations
(FLARE) in adapters, a method designed to improve both the representation quality
and downstream performance for languages other than English. FLARE integrates
source and target language representations within the bottlenecks of low-rank
LoRA adapters using lightweight linear transformations. This maintains parameter
efficiency as the method does not require additional parameters, while improving
transfer performance, further narrowing the performance gap to English. Further-
more, the proposed latent representation fusion does not increase the number of
input tokens, this way maintaining computational efficiency. Moreover, FLARE
provides flexibility to integrate various types of representations, e.g., we show that
it is possible to fuse latent translations extracted from machine translation models.
A series of experiments across representative cross-lingual natural language un-
derstanding tasks, including natural language inference, question-answering and
sentiment analysis, demonstrate FLARE’s effectiveness, reducing the performance
gap to English to 8.39% for XLM-R Large and 12.41% for Llama 3 across our
benchmarks, with performance differences averaged over task-specific metrics.1

1 INTRODUCTION

Representation degradation for ‘non-English’ languages poses a challenge in the context of pretrained
multilingual language models (mPLMs)2. Large-scale English text corpora are widely available
for self-supervised pretraining, resulting in superior representation quality and downstream task
performance when compared to low(er)-resource languages (Lauscher et al., 2020; Yang et al., 2022).
Training mPLMs on massively multilingual text data creates a unified representation space that
enables cross-lingual information transfer. Despite the substantial improvements, the imbalance in
pretraining resources still substantially reduces downstream performance (Winata et al., 2022).

Cross-lingual transfer (termed XLT henceforth) aims to narrow this performance gap by transferring
task-specific knowledge acquired in high-resource languages to lower-resource languages (Ruder
et al., 2019). Given the dominance of English in pretraining corpora, machine translations (MT)
are frequently utilized to avoid processing non-English data (Shi et al., 2010; Artetxe et al., 2020;
2023; Ansell et al., 2023). Techniques utilizing source and target language representation spaces
include language mixup (Yang et al., 2022), and concatenating multilingual input sequences for
in-context XLT (Kim et al., 2024; Tanwar et al., 2023; Cueva et al., 2024). These approaches, while
improving XLT, typically focus on representations in a specific mPLM layer or require extensive
training and computational resources by extending the input length. Additionally, these typically

1Our code repository is available at https://anonymous.4open.science/r/FLARE-241E
2The domination of the English representation space is observed independent of model architectures, including

encoder-only, decoder-only and encoder-decoder transformer (Wu & Dredze, 2020; Lee et al., 2022a; Yang et al.,
2022; Wendler et al., 2024; Tang et al., 2024).

1

https://anonymous.4open.science/r/FLARE-241E


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

rely on high-quality MT output for source language input. Despite the widespread use of discrete
machine translations, only few studies explore enhancing the ‘internal’ information extracted from
MT models (Ponti et al., 2021; Schmidt et al., 2024), and MT output is typically not used to model
sub-sentential interaction between source and target language representations.

Figure 1: Fusion of source and target representa-
tions in LoRA adapters inserted within the query
and value matrices. The representations are fused
in the adapter bottlenecks and the outputs are added
+ to the query and value outputs before softmax
⊗ activation.

When adapting mPLMs to new tasks and lan-
guages, the choice of adaptation method is cru-
cial for downstream performance. Parameter-
efficient fine-tuning (PEFT) methods are de-
signed to acquire new knowledge and specialize
general-purpose models for specific tasks or do-
mains while minimizing the number of extra
parameters required and keeping the large un-
derlying mPLM frozen (Hu et al., 2022). In
particular, bottleneck-style adapters extract rel-
evant features from new data by compressing
model representations with the assumption that
task information can be captured in a lower-
dimensional space (Houlsby et al., 2019). This
directly aligns with the XLT objectives, provid-
ing resource-efficient language and task adapta-
tion capabilities and support for infusing model
representations with new knowledge. Similarly,
low-rank adapters (LoRA) also create such ‘rep-
resentation bottlenecks’; they get inserted into the query and value attention modules, and exemplify
a widely adopted PEFT approach in large language models (Hu et al., 2022). In XLT, adapters are
extensively used for acquiring task and language knowledge (Pfeiffer et al., 2020). Yet, the extent of
knowledge transfer within adapters themselves remains underexplored.

In this work, we introduce Fusion for Language Representations (FLARE) within lower-dimensional
adapter bottlenecks to improve parameter-efficient XLT. As illustrated in Figure 1, we propose
token-wise fusion of source and target language representations within each transformer block. In
contrast to existing methods that leverage source and target representations to improve cross-lingual
transfer, our fusion approach maintains computational efficiency by avoiding extending input lengths
due to concatenation. Our findings suggest that even lightweight linear transformations, such as
addition or multiplication, enhance XLT performance, as they allow for the interaction of source and
target language representations within the adapter bottlenecks. Besides improved performance, a key
advantage of our method lies in its parameter efficiency, as the fusion operations are located within
the adapter bottlenecks, thereby not introducing additional parameters while enhancing performance.

Our experiments across natural language inference, sentiment classification, and question answering
tasks, using encoder-only, encoder-decoder, and decoder-only mPLMs, demonstrate that our fusion
technique effectively reduces the cross-lingual transfer performance gap between English and other
languages. For example, FLARE narrows XLM-R Large’s average performance gap to English from
9.34% to 8.39% across all evaluated tasks, compared to standard LoRA, with differences averaged
over task-specific metrics. Similarly, with decoder-only models like Llama 3, the gap is reduced
from 13.63% to 12.41%. Further experiments illustrate that computational efficiency can be further
enhanced by using latent translations as source language inputs in FLARE, and demonstrate the
versatility of the method, which is orthogonal to the choice of mPLMs and MT systems.

Contributions. 1) We introduce the FLAREmethod, fusion for language representations in bottleneck
adapters for parameter-efficient cross-lingual transfer. 2) Our approach effectively narrows the
transfer performance gap between English and other languages across various downstream tasks.
3) We demonstrate the adaptability of our approach by incorporating machine translation encoder
representations directly into the mPLM.

2 RELATED WORK

Cross-lingual Representation Transfer. Enhancing performance for languages underrepresented in
the mPLMs’ pretraining data often involves aligning and combining representations from various

2
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languages to facilitate XLT (Oh et al., 2022). By concatenating multilingual input sequences, mPLMs
leverage a shared representation space across both source and target language inputs (Kim et al.,
2024; Tanwar et al., 2023; Cueva et al., 2024). Techniques such as mixtures of task and language
adapters have been implemented to merge language representation spaces effectively (Lee et al.,
2022b). In projection-based approaches, target language representations are projected onto a high-
resource language (e.g., English), to enhance feature extraction in the high-resource language, before
re-projecting back to the target language (Xu et al., 2023). Yang et al. (2022) introduced X-Mixup,
combining source and target representations in one specific layer of the mPLM using cross-attention.
Building on this concept, Cao et al. (2023) used cross-attention with semantic and token-level
alignment loss terms, aiming to transfer knowledge from the source to the target language. In
contrast, our fusion method modifies the architecture of bottleneck adapters to combine source and
target language representations. This enables the efficient fusion of multilingual representations
across all transformer layers without adding model parameters, thereby contributing to the stream of
parameter-efficient XLT.

Representation fusion is also applied to integrate information across different modalities (Fang et al.,
2021; Ramnath et al., 2021). For instance, Qu et al. (2024) employed feature routing in cross-modal
vision-language tasks, guiding language model representations through the LoRA bottleneck using
the last hidden state of a vision model. Our work differs in its scope and fusion methodology:
FLARE extracts significantly richer representations from the source and target languages by capturing
layer-wise representations for each transformer block in the mPLMs. Moreover, by ensuring dimen-
sional alignment, we perform token-wise representation fusion within adapter bottlenecks, thereby
transferring finer-grained information across languages.

PEFT in Multilingual Language Models and Cross-Lingual Transfer. PEFT aims to incorporate
task or language-specific knowledge into mPLMs without updating all model weights (Pfeiffer
et al., 2020). Most prominent techniques include sparse fine-tuning by selectively updating model
parameters (Ansell et al., 2022), and inserting adapter modules that reduce trainable parameters
to a small fraction of total weights of the underlying mPLM (Houlsby et al., 2019). Furthermore,
PEFT modules are composable, and thus information combination from multiple modules is possible
(Wang et al., 2022; Lee et al., 2022b). Bottleneck adapters project model representations into a
lower-dimensional space and then back to their original dimensions, creating a bottleneck that
regulates information flow (Houlsby et al., 2019). During this adaptation process, the weights of
the (m)PLM remain frozen. Following the same assumption that task-specific knowledge can be
compressed in a low-dimensional space, low-rank adapters (LoRA) (Hu et al., 2022) and its more
recent variants (Liu et al., 2024) are widely utilized for fine-tuning language models. They are
inserted into the attention modules of transformer architectures, maximizing the capacity to adapt
to new task-specific information, while preserving parameter efficiency. In our work, we extend
the task and knowledge acquisition capabilities of these adapters by modifying their architecture
to process inputs from multiple languages without increasing the parameter count. This involves
sharing parameters, such as the adapter projection layers, across language inputs, enabling the fusion
of different language representations within the bottleneck (e.g., as implemented in LoRA).

3 METHODOLOGY

3.1 LANGUAGE REPRESENTATION FUSION

Our methodology is based on the hypothesis that incorporating English with target language represen-
tations enhances cross-lingual knowledge transfer and distills task-relevant information into the target
language. We assume (MT-created) parallel corpora P = {

(
xS , xT

)
} during task fine-tuning, where

x are instances in the respective source and target language. Our methodology particularly focuses on
employing machine-translated ‘silver’ parallel data, akin to translate-train and translate-test settings,
as we believe this approach is the most realistic in practice. We contend that transferring information
during task fine-tuning is more resource-efficient compared to extensive pretraining on large-scale
self-supervised text corpora.

Yang et al. (2022) introduced cross-lingual manifold mixup (X-Mixup), aligning multilingual rep-
resentations within a specific transformer layer using consistency loss terms and a cross-attention
module. However, this method introduces additional model parameters and shows performance
variability depending on the choice of the mixup layer. Another straightforward and effective method

3
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Transformer
Block

Source
Language

Target
Language

Figure 2: During the forward pass with
fusion adapters, source language rep-
resentations xS are fused with target
language representations xT in each
transformer block i. Source represen-
tations are extracted by inferencing the
mPLM without the fusion adapters.

Transformer
Block

Transformer
Block

Target
Language

MT Encoder

Figure 3: Illustration of the FLARE MT vari-
ant where projected encoder representations
from an MT model are directly fused with tar-
get language representations within the fusion
adapters in the mPLM. Encoder representa-
tions from the MT model serve as latent trans-
lations, avoiding discretization in the decoder.

for aligning multilingual representations is to concatenate source and target language input sequences
xS,T = [xS ;xT ] where x ∈ R2m, with m representing the sequence length of both source and target
languages. This so-called input-level fusion enables cross-lingual knowledge transfer across all layers
of the mPLM, facilitating in-context learning, which typically does not require additional training
(Cueva et al., 2024). However, this approach is computationally expensive due to increased input
sequence lengths and encounters scalability issues related to the context length limitations in mPLMs.

To address these limitations, we propose FLARE, a method for representation-level language fusion
within bottleneck adapters, as illustrated in Figure 1. Instead of extending the input, FLARE processes
source and target language representations independently and fuses them only within the adapters,
thus preserving computational efficiency. Source language representations vSi , extracted from the
frozen mPLM without adapters, and target language representation vTi at transformer block i are
down-projected using W down and combined with fusion function ϕ (see Section 3.2) to create a
fused representation h = ϕ

(
vSi+1W

down, vTi W
down

)
, where h ∈ Rm×r with sequence length m

and bottleneck dimensions r. We utilize the source representation vSi+1, which has been processed by
the subsequent transformer block, to leverage task-specific information extracted from the source
language. Following a standard LoRA procedure, this fused low-rank representation is then up-
projected and added to the frozen attention outputs v0 to form the target language output representation
vTi+1 = hWup + v0 of the attention block. This enhances the target language adaptation by directing
the model’s attention to task-relevant information. The down-projection within the bottleneck adapters
is applied to both target and source language representations, exploiting the unified embedding space
acquired during self-supervised pretraining for cross-lingual adaptation.3

3Assuming that new task information can be learned within low-rank adapters, we posit that task-specific
cross-lingual knowledge can be effectively transferred within adapter bottlenecks. This enhances efficiency, and
also compresses and aligns task-relevant information, simplifying the complexity of representations r ≪ d. This
setup enables the application of lightweight transformations that merge information from both source and target
representations.

4
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A key advantage of representation fusion is the reduction in computational complexity, thereby
enhancing parameter efficiency for both task and language adaptation. By processing multilingual
inputs separately and only fusing highly compressed representations within adapter bottlenecks, our
method avoids the computational overhead associated with quadratic scaling in attention computations
for model dimensions d, thus enhancing resource efficiency. Furthermore, the memory requirements
are limited to the last hidden states obtained from the output of each transformer block.

Moreover, our fusion approach is agnostic regarding the source language representation. This
flexibility allows directly leveraging representations extracted from the MT encoder M as ‘latent
translations’ for fusion. We propose to extract a single representation from the MT model vT =
M

(
xT

)
, where vT ∈ Rm×dM , which serves as a latent translation. To ensure compatibility

between the dimensionality of the MT encoder outputs and the mPLM, we utilize a single linear
projection layer W proj . This projection is trained during the adaptation to the downstream task in
the target language, thereby maintaining efficiency. Moreover, projections between different model
representation spaces can be enhanced using self-supervised data, as demonstrated in related studies
(Liu et al., 2023). Consequently, the up-projected representation vTW proj is fused with the target
language representation within the adapter bottlenecks of each mPLM layer; see Figure 3. This
FLARE MT method enhances resource efficiency by bypassing a forward pass in the mPLM, which
is required when using discrete text in the source language, and preserves the inherent translation
uncertainty within the embeddings by avoiding discretization in the MT decoder, thus mitigating
potential translation errors (Ponti et al., 2021; Unanue et al., 2023).

3.2 FUSION FUNCTIONS

To fuse cross-lingual representations in bottleneck adapters, we evaluate both linear and non-linear
transformations that do not require additional model parameters, alongside cross-attention. We extract
token-wise representations from source and target language sequences, capturing rich contextual
information at the token level. Extracting source language and target language representations
from the same underlying mPLM ensures matching hidden dimensions d in each transformer layer,
facilitating subsequent representation fusion in the low-rank bottleneck adapters.

The down-projected representations in the adapter bottlenecks for source and target languages are
denoted as S = vSW down and T = vTW down, where S and T are representations of dimensions
Rm×r. These representations are subsequently combined at the token level through the following
fusion functions:

1. element-wise addition (add): S + T
2. element-wise multiplication (mul): S ◦ T
3. cross-attention:4 softmax

(
WQ

a S(WK
a T)′√

r

)
WV

a T

WQ
a , WK

a and WV
a are the weight matrices of the query, key and value projections in the adapter a,

respectively, and ′ denotes the matrix transpose. We focus on lightweight linear transformations to
maintain both parameter and computational efficiency.

We extend the linear fusion functions using non-linear transformations through rectified linear units
ReLU (S) and ReLU (T ) (Qu et al., 2024). This addition improves feature extraction capabilities
by selectively enabling information flow in token representations. Given the inherent misalignment of
multilingual input sequences at the token level, extracting token-level representations for subsequent
fusion may introduce alignment issues. We hypothesize that the adapter projections W down aid
the alignment of multilingual representations. Further correcting for misalignment between source
and target language representations, non-linear transformation functions can restrict propagating
misaligned information, which ultimately might improve downstream task performance.

4Although cross-attention modules add parameters to the adapters, the low bottleneck dimensions r, typically
smaller than 64, minimize the parameter count in comparison to the model’s internal dimensions d. Specifically,
we utilize a single cross-attention head to maintain efficiency.

5
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3.3 TRAINING

For task adaptation in the target language, we insert LoRA adapters into query and value weight
matrices of the mPLM previously fine-tuned on English task data (referred to as the base model). In
FLARE, these adapters implement fusion function ϕ that combines source and target language input
representations into a single fused representation, as illustrated in Figure 1. Consistent with standard
PEFT training, only the task head and LoRA parameters and output layer are trainable, while all other
parameters remain frozen.

During the forward pass, detailed in Figure 2, representations from both the source and target
languages are extracted at each transformer block. Layer-wise source language representations are
obtained from the base model and stacked in matrix V S ∈ Rl×m×d, where l represents the number
of layers in the mPLM. Target language representations are obtained during the forward pass through
the base model with LoRA adapters. In each layer, source and target language representations are
transformed and compressed to lower dimensions r ≪ h in the adapter’s down-projection W down.
The shared down-projection layers, applied to both source and target language representations before
subsequent fusion, reduce the model’s reliance on the English representation space. The final steps
include the application of a fusion function and standard up-projection, as already described in
Sections 3.1 and 3.2.

4 EXPERIMENTAL SETUP

4.1 UNDERLYING MODELS AND BASELINES

mPLMs. Our experiments are based on various mPLMs including the encoder-only XLM-R Base
(270M parameters) and Large (550M) (Conneau et al., 2020), the encoder-decoder mT5-XL (3.7B)
(Xue et al., 2021), and the decoder-only Llama 3 (8B) (AI@Meta, 2024).

Fine-Tuning Setup. We follow a modular XLT approach where the mPLM is fine-tuned on English
task data and subsequently adapted using task data in the target language (Zhao et al., 2021). Unless
stated otherwise, models are fine-tuned using r = 64 and α = 128 in the LoRA configurations, while
the hyperparameter configurations of each model are detailed in Table 5 in the appendix.

Baselines. We benchmark FLARE against zero-shot cross-lingual transfer, translate-test, and translate-
train baselines, X-Mixup, as well as input-level fusion models trained with the same LoRA configura-
tions as the FLARE variants. Model checkpoints are selected on validation data that was machine
translated from English to the respective target languages. For FLARE, we select the best performing
fusion function for each dataset, with detailed results provided in Table 3. X-Mixup aligns source and
target language representations through cross-attention in one specific transformer layer and further
aligns model outputs using consistency loss terms (Yang et al., 2022). In contrast, input-level fusion
combines source and target language texts directly in the input prompt of the mPLM, doubling the
sequence length (Kim et al., 2024; Cueva et al., 2024).5 More details on the baselines below:

Zero-Shot XLT. The base model fine-tuned on English task data is directly evaluated on test data in
the target languages without further training.

Translate-Test. Test sets in each target language are translated into English using NLLB (NLLB Team
et al., 2022). Subsequently, the base model is evaluated on these machine-translated test sets.6

Translate-Train. The base model is fine-tuned on machine-translated task data in the respective
target languages. For each model, fine-tuning is performed with LoRA adapters, establishing strong
baselines for the benchmarked XLT approaches. The training data comprises instances translated
from English to the target language using NLLB. For fusion methods and X-Mixup, we obtain the
required ‘silver’ parallel data also through MT (using NLLB). The training set consists of parallel
sets of English and MT-ed instances, whereas the validation and test sets consist of parallel target
language instances and corresponding machine translations into English. We posit that the assumed

5The context length for input-level fusion models is doubled. Due to memory and context length limitations,
these models could not be evaluated for TyDiQA; see later.

6Although monolingual English-only PLMs can process machine-translated text, they fail to outperform
multilingual models, particularly when evaluating low-resource languages or culturally sensitive content (Ebing
& Glavaš, 2024).
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absence of gold translations both during training and during inference is the most realistic evaluation
of FLARE models.

4.2 EVALUATION TASKS AND DATASETS

XNLI consists of machine-translated sentence pairs that are translated from English to 15 languages
(Conneau et al., 2018). The task involves determining whether a sentence entails, contradicts, or is
neutral to a given premise.

NusaX is a human-annotated sentiment classification dataset that spans 11 Indonesian languages,
including low-resource languages (Winata et al., 2023). With 500 labeled instances for each language,
the dataset evaluates few-shot adaptation.

TyDiQA-GoldP is a human-annotated extractive QA dataset covering 8 languages (Clark et al., 2020).
The task is to extract the answer spans from context passages.

Additional information on evaluation languages and datasets used for source language fine-tuning are
available in Table 9 in the appendix.

4.3 MACHINE TRANSLATIONS

We utilize NLLB’s 3.3B variant (NLLB Team et al., 2022) as the main MT model, with greedy
decoding to obtain translations (Artetxe et al., 2023). To ensure consistency in our experimental
setup, we also translate languages that are not directly supported by NLLB. Specifically, Madurese
(mad) and Ngaju (nij) are translated using the Indonesian language identifier, as these languages are
not supported by NLLB7 (Winata et al., 2023). For translating extractive QA datasets, we enclose the
answer spans within marker tokens prior to translation with NLLB (Chen et al., 2023). This method
allows us to determine the position of the translated answer spans by locating these marker tokens in
the translated text. Instances that fail to retain the answer span marker tokens in the translated output
are excluded from evaluation.

5 RESULTS AND DISCUSSION

Main Results displayed in Table 1 confirm our hypothesis that task-specific knowledge can be
efficiently transferred from English to other languages within adapter bottlenecks. FLARE con-
sistently surpasses the zero-shot, translate-test, and translate-train baselines across various tasks,
demonstrating robust performance with machine-translated training data in the target language and
machine-translated source language data during inference. Moreover, the results from the few-shot
adaptation scenario on NusaX suggest that FLARE does not require extensive labeled task data to
improve downstream performance on lower-resource languages. While input-level fusion shows
competitive results on NusaX, FLARE significantly outperforms input-level fusion on XNLI. On
average, FLARE outperforms input-level fusion by 1.93%, and 1.75% for XLM-R Large and Llama
3, respectively. The results show that input-level fusion replicates English performance, indicating
its inability to leverage information from the target language, which highlights a key limitation of
this approach (see Table 2). In contrast, FLARE mitigates this issue through parameter sharing in the
down-projection of the adapter, ensuring that representations from both source and target languages
contribute to the final output. Additionally, fusion functions like add ensure a balanced combination
of both source and target language representations. Beyond performance benefits, FLARE reduces
the average training time on XNLI by more than 30% when compared to input-level fusion.

Furthermore, FLARE consistently outperforms the X-Mixup baselines by 3.10%, and 3.22% for
XLM-R Large and Llama 3, respectively. This indicates that FLARE mitigates the performance
variability observed in X-Mixup by fusing compressed source and target language representations
within adapters inserted in all transformer layers.

When comparing FLARE with the FLARE MT variant which utilizes latent translations, it becomes
evident that the mPLM’s task-specific source representations enhance downstream performance. In

7We note that Toba Batak (bbc) is unsupported by NLLB and excluded from the evaluation due to translation
artifacts resulting in random classification performance.
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Table 1: Average performance (with standard deviation) on natural language understanding datasets.
Metrics used are: Accuracy for XNLI, F1 / Exact Match for TyDiQA, and Micro F1 for NusaX. The
best-performing results for each XLT model are highlighted in bold.†

Model XNLI TyDiQA NusaX Avg.

Zero-Shot Cross-Lingual Transfer (models are trained on English data)

XLM-R Base 72.65 ± 0.6 49.08±1.0/37.33±1.0 62.35 ± 2.6 59.40
XLM-R Large 77.42 ± 0.3 65.21±0.2/54.09±0.4 75.55 ± 1.2 70.87
mT5-XL 78.31 ± 0.8 64.76±0.9/52.58±1.6 74.26 ± 2.0 59.40
Llama 3 8B 76.86 ± 0.2 60.26±1.1/45.83±1.7 51.82 ± 2.4 60.57

Translate-Test (test data is translated to English)

XLM-R Base 74.78 ± 0.4 48.76±0.8/36.94±1.0 75.93 ± 0.5 64.52
XLM-R Large 77.01 ± 0.1 65.65±0.2/54.19±0.4 75.41 ± 0.5 70.87
mT5-XL 79.13 ± 0.4 64.88±0.7/52.83±1.3 75.70 ± 0.3 71.23
Llama 3 8B 80.18 ± 0.4 60.39±1.1/45.85±1.7 71.99 ± 1.3 68.43

Translate-Train (models are trained on training data translated to the target language)

XLM-R Base w/ LoRA 76.95 ± 0.3 50.06±0.7/37.79±0.9 70.93 ± 0.2 63.94
w/ X-Mixup 69.32 ± 0.3 44.61±0.7/34.05±0.8 69.74 ± 0.7 59.46
w/ input-level fusion 74.25 ± 0.3 43.03±0.2/26.81±0.2 77.40 ± 1.0 62.19
w/ FLARE MT 76.49 ± 0.6 48.99±1.2/37.29±1.2 71.67 ± 0.5 63.77
w/ FLARE 75.51 ± 0.4 49.96±0.8/37.74±0.8 72.77 ± 0.2 64.04

XLM-R Large w/ LoRA 80.61 ± 1.0 65.08±0.9/53.83±1.2 76.77 ± 1.0 72.28
w/ X-Mixup 79.51 ± 1.2 60.68±1.1/51.62±1.4 74.74 ± 0.8 70.13
w/ input-level fusion 77.36 ± 1.0 55.46±0.6/38.74±0.3 78.61 ± 0.3 67.69
w/ FLARE MT 81.67 ± 1.2 65.24±0.5/54.00±0.8 77.16 ± 0.2 72.82
w/ FLARE 81.05 ± 0.4 65.36±0.6/54.35±0.8 78.78 ± 0.7 73.23

mT5-XL w/ LoRA 80.04 ± 1.6 65.55±1.0/53.72±1.4 80.45 ± 0.2 73.38
w/ X-Mixup 81.16 ± 1.4 63.84±1.7/49.86±1.2 78.60 ± 0.5 72.20
w/ input-level fusion 79.11 ± 1.1 - 80.06 ± 0.3 -
w/ FLARE MT 82.76 ± 1.2 - 80.33 ± 0.1 -
w/ FLARE 81.14 ± 1.1 65.73±1.2/54.51±1.5 80.59 ± 0.2 73.95

Llama 3 8B w/ LoRA 81.30 ± 0.4 60.11±1.5/45.28±1.6 74.14 ± 1.1 69.38
w/ X-Mixup 79.25 ± 0.3 58.03±1.3/43.14±1.3 72.31 ± 0.6 67.38
w/ input-level fusion 78.52 ± 0.4 - 76.70 ± 0.5 -
w/ FLARE MT 77.37 ± 0.4 - 73.68 ± 0.5 -
w/ FLARE 81.99 ± 0.3 60.44±1.3/45.75±1.2 76.73 ± 0.9 70.61

†FLARE results are reported using the fusion functions that yielded the best performance: add+relu for XNLI
and NusaX, and mul for TyDiQA. Results marked with ‘-’ exceed GPU memory or context length limits.

settings where extracting task-specific knowledge for the source representations from the mPLM is
challenging, such as when dealing with translation quality issues in lower-resource languages, the
richer translation information from the MT model’s encoder representations can enhance downstream
performance (see Table 6).

Table 2: Average performance for the translate-train set-
ting with gold English translations during inference across
languages included in the XNLI, and NusaX datasets, rep-
resenting optimal translation quality. Evaluation metrics
include accuracy for XNLI and Micro F1 for NusaX.

Model XNLI NusaX
Translate-Train (fusion models are trained on data translated
into the target language and evaluated using gold transla-
tions from the target language to the source language)

XLM-R Base
w/ input-level fusion 84.63 87.87
w/ FLARE 84.62 75.43

XLM-R Large
w/ input-level fusion 87.19 90.93
w/ FLARE 88.15 84.66

mT5-XL
w/ input-level fusion 89.67 90.57
w/ FLARE 86.57 80.72

Impact of Translation Quality.

Translation quality is an important fac-
tor when combining source and target
language representations. The results
in Tables 2 and 1 show that FLARE is
robust to lower-quality machine trans-
lations while being capable of enhanc-
ing performance when gold translations
are available. In extractive QA tasks,
where lower-quality machine transla-
tions negatively impact model perfor-
mance, FLARE consistently surpasses
the translate-train and translate-test base-
lines. In contrast, the performance of
input-level fusion substantially deteri-
orates when evaluated using machine-
translated inputs, underscoring its re-
liance on the quality of English text in-
puts. However, when provided with gold
translation data, input-level fusion matches or exceeds English performance (see Tables 6, 7, and 8).

Replacing the machine translated source language inputs with gold translations indicates the upper
performance limit for XLT models. FLARE benefits significantly from higher-quality translations
with its performance scaling directly in line with translation quality. This makes translation accuracy
the most influential factor for downstream performance in fusion models.
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Figure 4: Average performance differences on NusaX and
TyDiQA for XLM-R Large using FLARE MT with MT mod-
els of different size.

On Latent MT Fusion.

FLARE MT outperforms zero-shot
and translate-test baselines and shows
competitive performance with regu-
lar FLARE. This indicates that errors
in discrete translations directly affect
downstream performance. In contrast
to regular FLARE, the MT encoder
representations used in FLARE MT
include task-agnostic language infor-
mation, and therefore do not trans-
fer task knowledge to the target lan-
guages. Nonetheless, it provides a
resource-efficient alternative to regular FLARE by avoiding the need for decoding in the MT and
eliminating the forward pass in the mPLM, making it especially valuable in scenarios where transla-
tion quality is limited. The MT model size, serving as a proxy for translation quality, has a lower
impact on performance. The results in Figure 4 show that performance with the NLLB 600M variant
is comparable to, or even better than, that with NLLB 3.3B. This suggests that when latent trans-
lations from a larger MT model are down-projected to match the model dimensions (dM < dMT),
information is lost, reducing downstream performance.

Table 3: Average performance of different fusion functions
using XLM-R Large with FLARE, evaluated on TyDiQA
with F1 / Exact Match and on NusaX with Micro F1.

Fusion Function TyDiQA NusaX
Translate-Train (models are trained on data translated to
the target language)

add 65.04/53.48 79.69
mul 65.36/54.35 78.18
add+relu 65.06/53.78 78.78
cross-attention 65.04/53.64 77.07

Additionally, the detailed results for
XNLI in Table 6 (appendix) show that
FLARE MT is particularly beneficial
for lower-resource languages, such as
Swahili and Urdu, compared to FLARE,
when exposed to large amounts of train-
ing data.

Impact of Fusion Function.

Table 3 presents the average performance
of fusion functions inside LoRAs of
XLM-R Large. The results suggest that
adding non-linearity to the fusion functions does not provide decisive performance benefits over sim-
pler linear transformations. Notably, the functions add, mul, and add+relu show the best performance.
Despite the additional parameters available in cross-attention, the technique does not yield superior
downstream performance. This is consistent with the performance of X-Mixup in Table 1. In sum,
given that the optimal fusion function appears to be task-dependent, these functions can be regarded
as hyperparameters that can also be fine-tuned based on validation data.

Table 4: Average performance for varying adapter bot-
tleneck size r in LoRA; based on XLM-R Large, using
FLARE. Evaluation metrics include F1 / Exact Match for
TyDiQA and Micro F1 for NusaX.

Model r TyDiQA NusaX
Translate-Train (models are trained on training data trans-
lated to the target language)

XLM-R Base 8 51.05/38.11 63.40
w/ FLARE 51.12/39.08 66.46
XLM-R Large 64.87/53.81 77.79
w/ FLARE 65.03/53.96 79.21

XLM-R Base 64 50.06/37.79 70.93
w/ FLARE 49.96/37.74 72.77
XLM-R Large 65.08/53.83 76.77
w/ FLARE 65.36/54.35 78.78

XLM-R Base 128 49.77/37.78 70.46
w/ FLARE 50.42/38.63 73.12
XLM-R Large 65.26/53.97 77.36
w/ FLARE 66.18/55.46 79.35

Impact of Adapter Capacity. Increas-
ing the bottleneck size within LoRA
enhances FLARE’s performance across
datasets, with larger adapter capacities
yielding better results. As displayed in
4, even with a small bottleneck size of
r = 8, FLARE achieves strong perfor-
mance, demonstrating that highly com-
pressed language representations are suf-
ficient to facilitate cross-lingual transfer
in the representation space. However,
increasing the adapter capacity further
improves performance, particularly for
more complex tasks like extractive QA,
which require finer-grained representa-
tions for optimal fusion. Interestingly,
FLARE can leverage larger adapter ca-
pacities more effectively compared to
regular LoRA adapters without fusion.

9
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Layer-wise Language Activation.

Figure 6 shows that the magnitudes of source and target language activations across the entire XLM-R
Large are comparable. This indicates that FLARE does not overly rely on either source or target
representations during fusion. Further, Figure 5 displays the average activations for English and
Acehnese in the first adapter bottleneck: this confirms that both source and target languages maintain
similar activation magnitudes. Hence, subsequent Acehnese representations are infused with the
English representations from this initial transfer, integrating balanced source and target language
information. Detailed activations for individual instances are illustrated in Figure 7, which show
positional activation differences and demonstrate the alignment of source and target languages for
information transfer.

6 CONCLUSION

We introduced Fusion for Language Representations (FLARE), a parameter-efficient method for
cross-lingual transfer (XLT) that enhances representation quality and downstream performance for
languages other than English. Our experimental results demonstrate that FLARE outperforms strong
XLT baselines, such as target language fine-tuning with LoRA adapters and input-level fusion,
on natural language understanding tasks, effectively narrowing the performance gap with English.
FLARE is robust to lower-quality machine translations, outperforming strong cross-lingual transfer
baselines. A key takeaway is that FLARE is representation-agnostic, allowing for the direct integration
of latent translations from an MT model in place of translated English text. This further improves
resource-efficiency and enhances knowledge transfer for lower-quality translations.

Limitations. Our work demonstrates that highly compressed English language representations can be
effectively transferred to other languages within adapter bottlenecks. However, our experiments focus
on bilingual transfer settings. Extending fusion adapters to integrate multiple target languages is
non-trivial, as it requires adapters to extract language-agnostic information across multiple languages.

The proposed FLARE method by design relies data availability for both source and target languages.
Consequently, the performance of FLARE is dependent upon the quality of machine translations, as
we also investigated empirically in this work. This dependency poses some significant challenges,
particularly for tasks that require precise positional alignment, like extractive question-answering,
where the quality of machine translations affects downstream performance and model applicability.

Furthermore, our evaluation exclusively employs English as the high-resource source language for
representation fusion. While English is predominantly used in mPLM pretraining corpora, exploring
other high-resource languages that share linguistic similarities with the target languages could
potentially yield similar or improved cross-lingual transfer performance.

Finally, our choice of base multilingual LMs has been motivated by the current state-of-the-art (SotA)
in the field of multilingual NLP and XLT to low-resource languages for NLU tasks. The main
models are SotA encoder-only (XLM-R) and encoder-decoder mPLMs (mT5), and decoder-only
LLM (Llama 3). However, we note that the LLM technology and its adaptation to XLT for NLU in
lower-resource languages has not been proven to be fully mature yet Lin et al. (2024); Razumovskaia
et al. (2024).
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer. In Bonnie Webber, Trevor Cohn, Yulan He, and
Yang Liu (eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 7654–7673, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.617. URL https://aclanthology.org/
2020.emnlp-main.617.
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A DETAILED EVALUATION RESULTS

Figure 7 displays average activations within the first adapter bottlenecks in the XLM-R Large model
using FLARE and the add+relu fusion function. This visualization highlights the positional alignment
process between English and Acehnese token representations, with varying activation values across
different sequence positions reflecting the dynamics of language representation fusion.
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Table 6 shows the results for the XNLI dataset for each language in zero-shot XLT, translate-test,
translate-train settings, including translate-train with gold translations in the source language. The
results confirm that FLARE consistently improves XTL performance in the translate-train setting
across different languages without particular bias towards typological relatedness to English or
frequency in pretraining corpora.

Table 7 details the results for the TyDiQA dataset for each language in the zero-shot XLT, translate-
test, and translate-train settings. The outcomes demonstrate that FLARE performance extends to tasks
including positional information, such as extractive question-answering.

Table 8 outlines the performance for the NusaX dataset for each language in zero-shot XLT, translate-
test, translate-train, and translate-train settings with gold translations in the source language. Even
with few training samples, our FLARE method demonstrates consistent performance improvements
across the low-resource languages included in the NusaX dataset.

B TRAINING DETAILS

Our evaluation results are averaged across three random seeds. Initially, we fully fine-tune XLM-R
Base and XLM-R Large models on English task data. For mT5-XL, fine-tuning is conducted using
LoRA adapters set with r = 64 and α = 128, which are subsequently integrated into the model’s
weights prior to task fine-tuning in the target languages. Hyperparameter configurations for full-tuning
each mPLM are provided in Table 5.

The total computation time for the experimental results exceeds 5,000 GPU hours. All models are
trained using half-precision.

C PRACTICAL IMPLICATIONS

The practical implementation of bilingual cross-lingual transfer methods, such as FLARE, requires an
additional step of language identification to determine bilingual adapter for model inference. While
this introduces a preprocessing stage, language identification systems are widely accessible and highly
accurate. For example, NLLB achieves a 95% F1 score across 193 FLORES languages, including
many low-resource languages (Burchell et al., 2023), ensuring that this step can be seamlessly
integrated into real-world applications.

D ANOTHER ABLATION: REPRESENTATION FUSION DURING TRAINING ONLY

To investigate the importance of utilizing source language representations during inference, we
modified FLARE to restrict representation fusion to the training phase only. Specifically, we limited
the fusion with source language representations to 50% of the training instances and excluded source
language data during inference. This evaluates cross-lingual transfer capabilities based on instance-
independent patterns learned from source language representations during training. Our findings
reveal that fusion adapters struggle to learn patterns that are independent of specific instances from
source language representations during training. As a result, when implemented in the XLM-R
Large model on the NusaX test set, the performance of the train-only FLARE variant decreased by
30%. Crucially, this significant drop underscores the importance of incorporating source language
representations during inference to achieve effective cross-lingual adaptation.
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Figure 7: Activation values for individual instances included in the NusaX test set. English and
Acehnese activation values are extracted from the first bottleneck query layer in XLMR-Large, which
is trained with the add+relu fusion function.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Hyperparameter configurations for each mPLM across the XNLI, TyDiQA, and NusaX
datasets. Values listed in curly braces represent the specific settings used for each dataset in sequential
order: {XNLI, TyDiQA, NusaX}.

Model Hparam Values
XLMR-Base epochs 10

batch size 32
sequence length {128, 512, 128}
learning rate 2e-5

XLMR-Large epochs 10
batch size 32
sequence length {128, 512, 128}
learning rate 2e-5

mT5-XL epochs 10
batch size 64
sequence length {128, 512, 128}
learning rate 2e-4

Llama 3 8B epochs 10
batch size 64
sequence length {128, 512, 128}
learning rate 2e-4

Table 6: Average scores per language in the XNLI dataset. Model performance is evaluated using the
Accuracy metric.

Model en ar bg de el es fr hi ru sw th tr ur vi zh Avg.
Zero-Shot Cross-lingual Transfer

XLM-R Base 84.28 71.61 77.10 75.76 74.92 78.27 77.44 69.20 74.85 63.11 71.31 71.27 65.19 74.06 73.05 72.65
XLM-R Large 87.81 77.32 81.84 80.70 80.91 82.92 81.89 74.00 78.88 66.06 76.45 76.36 69.77 78.20 78.54 77.42
mT5-XL 89.04 77.50 82.81 81.72 81.56 83.93 82.93 74.91 80.39 70.64 76.39 77.38 70.86 76.85 78.50 78.31
Llama 3 8B 92.11 76.78 80.11 83.24 80.00 86.06 84.97 72.58 81.66 57.10 72.05 77.59 63.48 80.44 79.97 76.86

Translate-Test (translate test data to English using NLLB 3.3B)

XLM-R Base 84.28 74.42 77.64 78.35 77.90 80.05 78.44 72.56 75.80 70.29 70.65 75.92 66.38 75.64 72.94 74.78
XLM-R Large 87.81 76.52 81.13 81.31 81.03 82.37 81.57 74.47 77.80 71.96 72.32 77.91 67.87 77.79 74.10 77.01
mT5-XL 89.04 79.06 83.17 83.29 82.71 84.09 83.49 76.67 80.54 73.15 74.69 79.64 69.80 80.26 77.31 79.13
Llama 3 8B 92.11 79.75 84.70 84.82 83.95 86.38 84.94 77.37 81.31 74.60 75.03 80.99 69.59 81.01 78.07 80.18

Translate-Train (models are trained on training data translated to the target language)

XLM-R Base 84.28 75.46 79.73 79.17 78.13 80.43 80.13 73.19 78.06 74.10 76.94 76.07 69.31 78.20 78.36 76.95
w/ X-Mixup 84.28 67.19 73.15 71.32 70.34 72.67 71.72 69.39 70.18 63.05 68.70 67.82 62.61 71.46 70.94 69.32
w/ input-level fusion 84.28 74.04 77.21 77.59 77.01 79.17 78.41 71.58 75.04 69.79 70.53 75.43 65.80 75.14 72.83 74.25
w/ FLARE MT 84.28 75.86 79.63 78.20 78.30 80.04 79.79 73.86 77.70 70.91 75.26 75.09 70.47 78.02 77.75 76.49
w/ FLARE 84.28 75.20 77.33 78.20 76.62 78.70 78.74 72.80 75.82 70.79 75.10 75.08 68.51 77.47 76.74 75.51

XLM-R Large 87.81 79.46 84.25 82.77 83.34 84.62 83.18 77.91 81.54 74.56 79.85 80.84 74.84 81.81 79.56 80.61
w/ X-Mixup 87.81 78.46 82.44 82.00 80.22 82.85 81.38 76.07 80.58 74.13 79.40 79.20 73.65 81.50 81.24 79.51
w/ input-level fusion 87.81 77.40 81.52 81.19 81.47 82.52 81.18 75.00 77.90 72.24 72.88 78.58 68.57 78.22 74.30 77.36
w/ FLARE MT 87.81 80.98 84.83 84.19 84.04 85.10 83.87 79.11 82.14 76.78 80.39 81.77 76.36 81.95 81.83 81.67
w/ FLARE 87.81 81.10 84.17 83.41 83.50 84.01 83.59 79.32 79.63 75.64 80.45 80.21 75.55 81.35 82.77 81.05

mT5-XL 89.04 79.68 83.62 83.47 81.90 84.42 84.08 77.42 81.56 76.22 77.18 77.96 73.24 79.37 80.38 80.04
w/ X-Mixup 89.04 81.62 83.73 83.51 83.80 85.27 83.94 78.23 80.73 77.83 80.76 79.73 74.82 81.37 80.83 81.16
w/ input-level fusion 89.04 79.39 83.04 82.43 82.46 83.60 83.15 76.53 80.55 73.43 75.41 79.32 69.94 79.78 78.50 79.11
w/ FLARE MT 89.04 81.40 85.77 85.49 84.95 85.85 85.61 80.48 83.39 79.06 80.66 83.17 77.50 82.53 82.79 82.76
w/ FLARE 89.04 81.45 83.86 83.60 82.37 85.00 83.61 79.13 81.42 77.56 79.68 80.64 74.41 81.44 81.80 81.14

Llama 3 8B 92.11 80.31 83.98 84.85 83.93 86.41 85.62 77.70 83.21 76.19 79.04 79.93 72.96 81.86 82.25 81.30
w/ X-Mixup 92.11 79.82 81.73 83.82 80.73 84.31 86.57 75.92 78.63 74.41 74.83 75.45 72.51 80.52 80.18 79.25
w/ input-level fusion 92.11 78.49 83.09 84.27 81.90 85.12 83.56 75.84 79.68 71.45 72.24 79.79 67.35 79.78 76.75 78.52
w/ FLARE MT 92.11 76.85 80.09 78.45 80.66 81.98 80.75 76.42 79.56 71.82 75.67 74.43 71.23 77.91 77.41 77.37
w/ FLARE 92.11 78.85 83.64 84.33 85.56 86.79 87.67 78.55 83.66 78.51 79.39 80.42 76.94 81.46 82.15 81.99

Translate-Train (fusion models are trained on data translated into the target language and evaluated using gold translations from the target language to the source language)

XLM-R Base w/ input-level fusion 84.28 84.85 84.79 84.79 84.71 84.67 84.25 84.63 84.31 84.53 84.63 84.51 84.87 84.75 84.47 84.63
w/ FLARE 84.28 84.63 84.63 84.53 84.67 84.55 84.57 84.35 84.39 84.65 84.87 84.87 84.79 84.67 84.49 84.62

XLM-R Large w/ input-level fusion 87.81 88.41 88.54 88.46 88.36 88.28 88.02 88.38 85.91 86.23 85.91 85.85 86.05 85.85 86.45 87.19
w/ FLARE 87.81 88.10 88.06 88.04 88.12 88.02 88.08 88.40 88.12 88.46 88.16 88.14 88.22 88.04 88.16 88.15

mT5-XL w/ input-level fusion 89.04 90.04 89.80 89.54 89.70 89.78 89.50 89.80 89.52 89.56 89.84 89.66 89.38 89.52 89.70 89.67
FLARE 89.04 88.62 88.74 88.80 85.34 87.83 86.19 84.31 86.12 89.66 88.49 89.56 79.22 85.33 83.73 86.57
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Table 7: Average scores per language in the TyDiQA dataset. Model performance is evaluated using
the F1 / Exact Match metrics.

Model en ar ben fi ind ko ru sw tel Avg.
Zero-Shot Cross-lingual Transfer

XLM-R Base 62.55/52.13 51.37/35.58 50.62/36.75 42.73/29.61 58.50/46.65 40.60/32.35 41.62/31.45 58.47/45.54 48.73/40.70 49.08/37.33
XLM-R Large 72.50/57.90 62.86/51.50 72.54/60.48 51.57/37.68 68.59/58.66 53.26/40.48 56.57/44.21 69.76/59.04 86.58/80.68 65.21/54.09
mT5-XL 74.45/66.36 56.91/42.34 73.78/56.67 54.29/39.97 68.95/58.30 55.60/44.87 54.25/41.81 69.59/58.03 84.68/78.68 64.76/52.58
Llama 3 8B 71.82/65.78 59.17/41.72 60.20/47.00 54.20/34.39 64.75/48.93 48.93/36.32 51.71/35.34 66.37/52.90 76.78/70.00 60.26/45.83

Translate-Test (translate test data to English using NLLB 3.3B)

XLM-R Base 62.55/52.13 51.17/36.50 47.98/35.39 42.59/27.69 58.43/47.31 40.84/30.58 41.72/30.14 58.70/47.59 48.61/40.30 48.76/36.94
XLM-R Large 72.50/57.90 62.62/50.43 73.62/60.43 52.73/38.64 68.86/58.91 55.14/41.21 55.79/42.73 69.68/58.47 86.79/82.73 65.65/54.19
mT5-XL 74.19/66.36 56.66/42.03 73.81/56.67 54.09/39.97 69.87/59.30 55.98/45.30 54.66/42.17 69.38/58.53 84.63/78.68 64.88/52.83
Llama 3 8B 71.82/65.78 59.13/41.56 60.94/47.00 54.02/34.08 64.75/48.93 48.93/36.32 51.71/36.34 66.37/52.40 77.28/70.13 60.39/45.85

Translate-Train (models are trained on training data translated to the target language)

XLM-R Base 62.55/52.13 52.46/36.67 50.59/38.54 44.42/27.37 58.90/47.67 40.53/29.45 42.45/31.52 59.50/48.53 51.63/42.60 50.06/37.79
w/ X-Mixup 62.93/52.13 48.54/32.71 47.11/32.55 44.05/24.58 54.07/46.47 34.58/25.34 38.46/30.43 44.45/43.56 45.58/36.73 44.61/34.05
w/ FLARE MT 62.55/52.13 51.35/37.38 48.52/35.16 43.34/28.34 59.78/48.41 38.47/29.47 42.72/31.31 58.57/47.61 49.22/40.66 48.99/37.29
w/ FLARE 62.55/52.13 52.55/37.48 49.80/36.75 43.67/27.56 59.76/48.77 40.35/29.65 42.28/30.52 58.63/47.54 52.63/43.67 49.96/37.74

XLM-R Large 72.50/57.90 61.51/49.41 72.26/58.45 51.61/39.51 68.50/59.25 55.28/41.30 55.47/42.58 68.53/57.32 87.50/82.82 65.08/53.83
w/ X-Mixup 72.50/57.90 54.43/47.61 68.17/56.17 48.30/33.76 62.51/58.53 49.36/42.47 54.82/41.52 66.03/52.39 81.85/80.55 60.68/51.62
w/ FLARE MT 72.50/57.90 61.68/48.87 71.46/58.35 52.33/37.65 68.39/59.80 56.37/43.40 56.58/43.54 68.62/57.60 86.55/82.84 65.24/54.00
w/ FLARE 72.50/57.90 61.88/49.77 71.41/58.55 52.55/39.65 68.35/60.40 56.12/41.64 55.48/43.61 69.44/57.46 87.71/83.71 65.36/54.35

mT5-XL 74.19/66.36 59.34/43.28 70.71/59.17 55.81/40.44 70.14/59.45 56.92/46.58 55.22/40.98 70.64/60.24 85.59/79.61 65.55/53.72
w/ X-Mixup 74.19/66.36 57.95/41.78 69.12/60.41 54.44/40.59 68.47/58.95 55.42/28.50 52.68/30.60 68.92/57.45 83.75/80.63 63.84/49.86
w/ FLARE 74.19/66.36 58.50/47.66 71.99/59.00 55.90/40.76 70.45/60.98 58.12/45.30 55.01/42.57 69.92/59.90 85.95/79.90 65.73/54.51

Llama 3 8B 71.82/64.07 58.55/40.94 61.51/46.67 54.55/35.35 64.07/50.15 49.59/35.90 50.01/33.95 64.38/49.83 78.22/69.47 60.11/45.28
w/ X-Mixup 71.82/64.07 57.73/39.96 60.63/44.83 53.27/33.60 60.92/47.64 45.38/30.42 48.83/32.65 62.29/47.39 75.20/68.60 58.03/43.14
w/ FLARE 71.82/64.07 59.56/40.63 60.97/47.50 53.95/35.69 63.94/49.13 51.18/37.18 49.98/33.82 65.52/51.71 78.38/70.37 60.44/45.75

Table 8: Average scores per language in the NusaX dataset. Model performance is evaluated using
the Micro F1 metric.

Model en ace ban bjn bug ind jav mad min nij sun Avg.
Zero-Shot Cross-lingual Transfer

XLM-R Base 90.50 55.31 61.60 69.51 31.94 90.44 77.40 50.26 69.81 51.30 65.93 62.35
XLM-R Large 91.83 68.64 75.97 80.47 50.92 91.02 84.95 69.83 80.18 70.15 83.35 75.55
mT5-XL 91.38 72.43 76.38 79.75 44.84 90.61 87.46 61.38 77.76 65.27 86.73 74.26
Llama 3 8B 88.98 47.60 52.18 51.66 40.90 73.33 55.04 51.84 52.88 46.09 46.64 51.82

Translate-Test (translate test data to English using NLLB 3.3B)

XLM-R Base 90.50 76.53 75.76 84.33 72.14 86.22 83.83 56.09 81.61 58.32 84.47 75.93
XLM-R Large 91.83 76.30 72.70 83.39 70.33 86.78 83.28 58.99 81.04 57.03 84.32 75.41
mT5-XL 91.38 76.25 73.43 81.68 69.25 86.64 83.50 60.63 82.43 60.49 82.68 75.70
Llama 3 8B 88.98 72.12 75.53 78.20 66.55 81.02 78.44 58.26 77.36 55.63 76.82 71.99

Translate-Train (models are trained on training data translated to the target language)

XLM-R Base 90.50 69.90 70.13 77.99 62.13 86.95 80.60 51.94 78.30 53.93 77.45 70.93
w/ X-Mixup 90.50 65.82 69.33 71.51 70.70 86.60 81.38 52.00 75.21 56.48 68.32 69.74
w/ input-level fusion 90.50 80.24 74.69 83.24 71.89 89.63 84.87 61.50 83.27 59.39 85.29 77.40
w/ FLARE MT 90.50 70.28 67.88 77.87 62.51 89.90 81.11 56.85 79.61 55.24 75.47 71.67
w/ FLARE 90.50 69.81 71.68 76.89 70.40 87.34 79.55 58.15 79.60 58.21 76.05 72.77

XLM-R Large 91.83 75.14 73.75 81.90 61.12 89.48 85.60 69.56 81.47 65.45 84.20 76.77
w/ X-Mixup 91.83 70.28 72.75 80.39 58.46 87.82 84.85 62.06 81.08 68.08 81.61 74.74
w/ input-level fusion 91.83 77.84 76.48 83.12 69.37 89.47 87.16 66.95 80.17 68.86 86.64 78.61
w/ FLARE MT 91.83 73.52 75.45 80.75 58.68 90.95 86.59 69.00 83.82 68.13 84.76 77.16
w/ FLARE 91.83 75.32 76.83 80.91 70.23 90.17 87.21 70.67 85.07 69.21 82.18 78.78

mT5-XL 91.38 80.52 81.68 85.66 65.67 89.73 90.28 70.54 82.64 69.20 88.64 80.45
w/ X-Mixup 91.38 80.33 74.75 83.61 68.78 88.33 88.58 68.52 83.45 65.73 83.94 78.60
w/ input-level fusion 91.38 80.99 79.25 84.88 71.55 89.63 86.64 67.03 83.35 68.80 88.47 80.06
w/ FLARE MT 91.38 81.18 83.44 84.91 66.10 90.01 89.68 70.64 84.82 71.79 88.71 80.33
w/ FLARE 91.38 81.72 81.66 85.42 66.39 89.24 89.98 70.06 84.06 69.31 88.03 80.59

Llama 3 8B 88.98 75.47 72.50 81.29 63.80 87.00 80.81 63.87 78.49 61.37 76.87 74.14
w/ X-Mixup 88.98 75.32 63.19 80.72 70.74 87.16 80.61 65.09 73.93 55.89 70.44 72.31
w/ input-level fusion 88.98 74.88 75.18 84.00 67.54 89.67 83.65 65.66 82.05 62.88 81.51 76.70
w/ FLARE MT 88.98 70.42 72.22 77.91 61.33 89.11 82.25 68.83 78.46 61.95 74.30 73.68
w/ FLARE 88.98 76.15 75.87 81.94 69.72 88.22 83.33 65.59 82.11 62.19 82.19 76.73

Translate-Train (fusion models are trained on data translated into the target language and evaluated using gold translations from the target language to the source language)

XLM-R Base w/ input-level fusion 90.50 90.04 88.45 88.23 88.51 89.83 90.19 84.76 88.55 82.79 87.38 87.87
w/ FLARE 90.50 74.79 77.66 79.66 85.84 89.52 82.06 51.11 80.25 57.10 76.31 75.43

XLM-R Large w/ input-level fusion 91.83 91.24 91.08 90.55 90.69 91.99 90.88 91.23 91.07 90.07 90.52 90.93
w/ FLARE 91.83 89.24 88.98 82.55 90.07 90.22 88.15 71.20 87.58 72.93 85.71 84.66

mT5-XL w/ input-level fusion 91.38 91.39 90.39 91.47 91.54 90.88 89.49 88.87 90.86 89.20 91.60 90.57
w/ FLARE 91.38 83.80 80.55 84.06 64.70 88.32 90.50 74.36 83.64 69.29 88.00 80.72
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Table 9: Overview of languages and corresponding source data used in the experiments, categorized
by task.

Task Language ISO Code Source
XNLI Arabic ar

Crowd-sourced (Williams et al., 2018)

Bulgarian bg
Chinese zh
French fr
German de
Greek el
Hindi hi
Russian ru
Spanish es
Swahili sw
Thai th
Turkish tr
Urdu ur
Vietnamese vi

TyDiQA Arabic ar

Wikipedia (Clark et al., 2020)

Bengali ben
Finnish fi
Indonesian ind
Korean ko
Russian ru
Swahili sw
Telugu tel

NusaX Acehnese ace

SmSA (Purwarianti & Crisdayanti, 2019)

Balinese ban
Banjarese bjn
Buginese bug
Indonesian ind
Javanese jav
Madurese mad
Minangkabau min
Ngaju nij
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