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Abstract

The long-tailed visual recognition tasks pose great challenges for neural networks on how
to handle the imbalanced predictions between head and tail classes, i.e., models tend to
classify tail classes as head classes. While existing research focused on data resampling and
loss function engineering, in this paper, we take a different perspective: the classification
margins. We study the relationship between the margins and logits (classification scores)
and empirically observe that the uncalibrated margins and logits are positively correlated.
We propose a simple yet effective MARgin Calibration approach (MARC) to dynamically
calibrate the margins to obtain better logits. We validate MARC through extensive exper-
iments on common long-tailed benchmarks including CIFAR-LT, ImageNet-LT, Places-LT,
and iNaturalist-LT. Experimental results demonstrate that our MARC achieves favorable
results on these benchmarks. In addition, MARC is extremely easy to implement with
just three lines of code. We hope this simple approach will motivate people to rethink the
uncalibrated margins and logits in long-tailed visual recognition.

1 Introduction

Despite the great success of neural networks in the visual recognition field (Simonyan & Zisserman, 2014;
He et al., 2016), it is still challenging for neural networks to deal with the ubiquitous long-tailed datasets
in the real world (Buda et al., 2018; Kang et al., 2019; Zhou et al., 2020). To be clear, in the long-tailed
datasets, the high-frequency classes (head classes) occupy most of the instances, whereas the low-frequency
classes (tail classes) involve a small amount of instances (Liu et al., 2019; Van Horn & Perona, 2017). Due
to the imbalance of the training data, the model performs well in head classes and its performance is much
worse in tail classes (Buda et al., 2018; Zhang et al., 2021).

Towards addressing the long-tailed recognition problem, there are several strategies such as data re-sampling
and loss function engineering. Data re-sampling aims to ‘simulate’ a balanced training dataset by over-
sampling the tail class or under-sampling the head classes (Ando & Huang, 2017; Buda et al., 2018; Pouyanfar
et al., 2018; Shen et al., 2016), while loss re-weighting is introduced to adjust the weights of losses for different
classes or different instances (Byrd & Lipton, 2019; Khan et al., 2017; Wang et al., 2017). For more balanced
gradients between classes, some class-balanced loss functions adjust the logits(classification scores) instead
of weighting the losses (Menon et al., 2020; Cao et al., 2019; Ren et al., 2020).

However, as pointed out by existing research (Ganganwar, 2012; Zhou & Liu, 2005; Cao et al., 2019), data
re-sampling strategies and loss re-weighting schemes will possibly cause underfitting on the head class and
overfitting on the tail class. On the other hand, class-balanced loss functions or data re-sampling will lead
to worse data representations compared with the standard training using the cross-entropy loss and the
instance-balanced sampling (i.e., each instance has the same probability of being sampled) (Kang et al.,
2019; Ren et al., 2020). In addition, the recent research reveals that the uncalibrated decision boundary
given by the classifier head seems to be the performance bottleneck of the long-tailed visual recognition (Kang
et al., 2019; Zhang et al., 2021). To benefit from both good data representations and the unbiased decision
boundary, Decoupling, a heuristic two-stage strategy is proposed to adjust the initially-learned classifier
head (Kang et al., 2019) after the standard training. Furthermore, distribution alignment (Zhang et al.,
2021) is developed as an adaptive calibration function to adjust the initially trained classification scores for
each data point. However, as pointed out by existing research (Platt et al., 1999; Elsayed et al., 2018), the
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Figure 1: Logits, margins, and class-wise accuracy of CIFAR-10-LT with imbalance factor 200.
Here, before and after refers to standard training and our method, respectively. The class indexes are sorted
by the number of samples (Head to tail).

margins and logits have a critical effect to the classification performance. the relation between the uncalibrated
margin and the logits is neglected in existing research, where the margin is the distance from the data point
to the decision boundary.

In this paper, we study the relationship between margins and logits, which are critical factors that dominate
the long-tailed performance. As shown in Figure 1, we empirically find that the margin and the logit are
correlated with the cardinality of each class. To be concrete, before any calibration, head classes tend to
have much larger margins and logits than tail classes. Therefore, it is necessary to calibrate the margin to
obtain the balanced logits. More importantly, as shown in Figure 1c, the uncalibrated margins and logits
will have a negative impact on the classification performance. Therefore, it remains challenging to design
an efficient method for such calibration that can achieve satisfying performance without introducing much
computational burden.

Inspired by the above phenomenon, we propose a simple yet effective MARgin Calibration (MARC) ap-
proach for long-tailed recognition. In detail, after getting the representations and the classifier head from
the standard training, we propose a simple class-specific margin calibration function with only 2K learnable
parameters to dynamically adjust the initially learned margins, where K is the number of classes. As demon-
strated in Figure 1, the logits are more balanced when using MARC. We conduct experiments on several
popular long-tail benchmark datasets: CIFAR-10-LT (Krizhevsky et al., 2009), CIFAR-100-LT (Krizhevsky
et al., 2009), Places-LT (Zhou et al., 2017), iNaturalist 2018 (Van Horn et al., 2018), and ImageNet-LT (Liu
et al., 2019). The results demonstrate that our proposed MARC approach performs remarkably well while
remaining very simple to implement. We hope that our exploration will attract attention to the imbalanced
margins in long-tailed recognition. To sum up, our contributions are as follows:

• For the first time, we study the uncalibrated predictions from a margin-based perspective in long-
tailed recognition. We empirically find that uncalibrated margins will cause imperfect predictions.

• Based on our observations, we propose a simple yet effective margin calibration (MARC) function
with only 2K trainable parameters to adjust the margin and get the unbiased prediction.

• MARC performs notably well on various long-tailed visual benchmarks like CIFAR-10-
LT (Krizhevsky et al., 2009), CIFAR-100-LT (Krizhevsky et al., 2009), ImageNet-LT (Liu et al.,
2019), Places-LT (Zhou et al., 2017) and iNaturalist2018 (Van Horn et al., 2018). In addition, it is
extremely easy to implement with just three lines of code.

2 Related Work

Long-tailed visual recognition has attracted much attention for its commonness in the real world (He &
Garcia, 2009; Buda et al., 2018; Kang et al., 2019; Ren et al., 2020; Yang & Xu, 2020; Hong et al., 2021).
Existing methods can be divided into four categories.
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Data re-sampling. Data re-sampling technologies re-sample the imbalanced training dataset to ‘simulate’
a balanced training dataset. These methods include under-sampling, over-sampling, and classed-balanced
sampling. Under-sampling decreases the probability of the instance of head classes being sampled (Drum-
mond et al., 2003), whereas over-sampling makes instances of tail classes more likely to be sampled (Chawla
et al., 2002; Han et al., 2005; Wang et al., 2021a). Class-aware sampling chooses instances of each class with
the same probabilities (Shen et al., 2016).

Loss function engineering. Loss function engineering is another direction to obtain balanced gradients
during the training. The typical methods can be categorized as loss-reweighting and logits adjustment.
Loss re-weighting adjusts the weights of losses for different classes or different instances in a more balanced
manner, i.e. the instances in tail classes have larger weights than those in head classes (Byrd & Lipton, 2019;
Khan et al., 2017; Wang et al., 2017). On the other hand, instead of re-weight losses, some class-balanced
loss functions adjust the logits to get balanced gradients during training (Menon et al., 2020; Cao et al.,
2019; Ren et al., 2020; Yang et al., 2009).

Decision boundary adjustment. Nevertheless, data re-sampling or loss function engineering will influence
the representations of data (Ren et al., 2020). Lots of empirical observations show that we can acquire good
representation when using the standard training and the classifier head is the performance bottleneck (Kang
et al., 2019; Zhang et al., 2021; Yu et al., 2020; Kim & Kim, 2020). To solve the above problem, decision
boundary adjustment methods re-adjust the classifier head after the standard training (Kang et al., 2019;
Zhang et al., 2021). However, they ignore the relationship between the uncalibrated margins and logits.

Other methods. There also exist other paradigms to deal with the long-tailed recognition task, including
task-specific neuron networks design (Wang et al., 2021c; Zhou et al., 2020; Wang et al., 2021a), transfer
learning (Liu et al., 2019; Yin et al., 2019), domain adaptation (Jamal et al., 2020), semi supervised learning
and self supervised learning (Yang & Xu, 2020). But these methods either rely on the non-trivial network
design or external data. In contrast, our proposed MARC is very simple to implement and does not require
external data. The detailed comparison between MARC and similar methods is shown in Table 1.

3 Method

3.1 Preliminaries

In the popular setting of long-tailed recognition (Kang et al., 2019; Cui et al., 2019; Ren et al., 2020), the
training data distribution is imbalanced while the test data distribution is balanced. More formally, let
D = {(xi, yi)}n

i=1 be a training set, where yi denotes the label of data point xi. Specifically, n =
∑K

j=1 nj

is the total number of training samples, where nj is the number of training samples in class j and K is the
number of classes. We assume n1 > n2 > · · · > nK without loss of generality. Normally, the prediction
function is composed of two modules: the feature representation learning function f : x 7→ z parameterized
by θr and the classifier g : z 7→ y parameterized by θc, where z ∈ Rp denotes the feature representation and
p is the feature dimension. Typically, g is a linear classifier that gives the classification score of class j as:

ηj = g(z) := Wjz + bj , (1)

where Wj and bj are the weight vector and bias for class j, respectively. Finally, using the softmax function,
the probability of xi being classified as label yi is expressed as:

p(y = yi|xi; θr, θc) = exp(ηyi
)∑K

j=1 exp(ηj)
, (2)

and its loss is computed as the cross-entropy loss:

ℓ(xi, yi; θr, θc) = − log
(

exp(ηyi
)∑K

j=1 exp(ηj)

)
. (3)

3.2 Uncalibrated Margins and Logits
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Figure 2: Illustration of mar-
gins. The red and blue dots
denote majority and minority
classes, respectively.

The decision boundary is often uncalibrated in long-tailed recognition,
which will lead to imperfect predictions, i.e., the model tends to classify
tail classes as head classes. To alleviate this issue, data re-sampling and
loss function engineering are two directions to simulate a ‘balanced’ train-
ing dataset. However, such techniques will do harm to the representation
learning of the model (Kang et al., 2019; Ren et al., 2020). To benefit from
both the good representation and the calibrated decision boundary, deci-
sion boundary adjusts methods are developed (Kang et al., 2019; Zhang
et al., 2021). However, existing decision boundary adjustment methods
ignore such calibration in the margins, which is essential to avoid un-
calibrated predictions. Thus, we aim to calibrate the margins to obtain
balanced predictions.

In this paper, we find that the margins and logits are uncalibrated in long-tailed recognition. The margins
are illustrated in Figure 2. We define an affine hyperplane Hj ∈ Rp−1 of class j as Wjz + bj = 0, i.e. any
representation point falling on the positive side of Hj can be attributed to class j. Assume that z0 is a
point satisfying Wjz0 + bj = 0, i.e., z0 is on the hyperplane Hj . Suppose z1 is an arbitrary point in the
feature space. We construct the vector z1 − z0 pointing from z0 to z1 and project it onto the normal vector
Wj . The length of the projection vector projWj

(z1 − z0) is the margin from z1 to Hj . More formally, such
margin is calculated as:

dj =
∥∥projWj (z1 − z0)

∥∥
=
∥∥∥∥Wj · (z1 − z0)

Wj · Wj
Wj

∥∥∥∥
= Wj · z1 − Wj · z0

∥Wj∥

= Wjz1 + bj

∥Wj∥
(since Wjz0 + bj = 0),

(4)

where ∥ · ∥ denotes L2 norm. Thus, the logit Wj · z1 + bj can also be expressed as ∥Wj∥dj . Based on this
conclusion, we can rewrite equation 2 as:

p(y = yi|xi; θr, θc) = exp(ηyi
)∑K

j=1 exp(ηj)
= exp(∥Wyi

∥dyi
)∑K

j=1 exp(∥Wj∥dj)
. (5)

Consider a data point is on the decision boundary of class j and class t (on the hyperplane in Figure 2), i.e.,
such data point has the same probability of being classified as class j or class t. Clearly, the assumed data
point on the decision boundary satisfies:

ηj = ηt = ∥Wj∥dj = ∥Wt∥dt. (6)
According to equation 6, data will be classified as class t because dj < dt when ∥Wj∥ = ∥Wt∥. And our
empirical observations show that head classes tend to have much larger margins and logits than tail classes:

d̄1 > d̄2 > · · · > d̄K ,

η̄1 > η̄2 > · · · > η̄K ,

if n1 > n2 > · · · > nK ,

(7)

where d̄j is the average margin of class j and η̄j is the average logit of class j after the standard training.
In detail, on the sub-dataset Dj = {(xi, yi = j)}nj

i=1, η̄j = 1
nj

ηj , d̄j = η̄j

∥Wj∥ .

3.3 Margin Calibration (MARC)

To get the calibrated logits, we propose MARC to calibrate the margins after the standard training. Con-
cretely speaking, we train a simple class-specific margin calibration model with the original margin fixed:

d̂j = ωj · dj + βj , (8)
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where ωj > 0 and βj ≥ 0 are learnable parameters for class j and j ∈ [1, K]. In other words, MARC only
has 2K trainable parameters. Thus, the calibrated logit is computed as:

∥Wj∥d̂j = ∥Wj∥(ωj · dj + βj)
= ωj · ∥Wj∥dj + βj · ∥Wj∥
= ωj · ηj + βj · ∥Wj∥,

(9)

where ηj is the initial fixed logit. Then, we can get the calibrated prediction distribution:

p(y = yi|xi; θr, θc) = exp(ωyi
· ηyi

+ βyi
· ∥Wyi

∥)∑K
j=1 exp(ωj · ηj + βj · ∥Wj∥)

. (10)

The training process of the margin calibration approach can be written with just three lines of Pytorch codes
as shown in Line 4-6 of Algorithm 1.

Algorithm 1 The torch-like code for MARC.
1: Initialization of the margin calibration approach:

omega=torch.nn.Parameter(torch.ones(1,K))
beta=torch.nn.Parameter(torch.zeros(1,K))

2: Input: training data x, standard pre-trained neural network model.
3: with torch.no_grad():
4: w_norm = torch.norm(model.fc.weight, dim=1)
5: logit_before = model(x)
6: logit_after = omega * logit_before + beta * w_norm
7: Compute loss and update parameters of omega and beta.

Furthermore, for more balanced gradients during training, we re-weight the loss as the previous work
does (Zhang et al., 2021). Finally, the loss for training the margin calibration approach is:

ℓ(xi, yi; θ̃r, θ̃c, ω, β) = −Uyi
· log

(
exp (ωyi · ηyi + βyi · ∥Wyi∥)∑K

j=1 exp(ωj · ηj + βj · ∥Wj∥)

)
, (11)

where θ̃r and θ̃c denote that these parameters are frozen during training. The weight for class yi is calculated
as:

Uyi
= K · (1/nyi

)γ∑K
j=1(1/nj)γ

, (12)

where γ is a scale hyper-parameter. When γ = 0, the weight for all classes is 1, which means no re-weighting
at all.

To be more clear, the whole detailed training procedure including both standard training and margin cal-
ibration function training is demonstrated in Algorithm 2. Lines 2-6 include the training procedure of the
standard training using the instance-balanced sampling and the cross-entropy loss. Lines 7-11 contain the
training process of our margin calibration function. It is well noting that in the second stage, parameters θr

and θc are all fixed.

3.4 Discussion

We clarify the differences between MARC and other learnable decision boundary adjustment methods in
detail. As shown in Table 1, Decouple-cRT (Kang et al., 2019) retrains the whole parameters of the classifier,
while Decouple-LWS (Kang et al., 2019) only adjusts the norm of weight vectors ∥Wj∥. Instead of adjusting
the classifier head, DisAlign (Zhang et al., 2021) chooses to calibrate the logit for each data point. But their
calibration method is heuristic that simply adds the calibrated logit and the original logit with a re-weighting
scheme. To be more clear, the weighted sum of logits for DisAlign is σ(zj)(ωjηj +β)+(1−σ(zj))ηj , where σ(·)
is an instance-specific confidence function. However, different from previous methods, our MARC focuses
on calibrating the margin which we believe is the performance bottleneck of the long-tailed classifier.
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Table 1: The difference between MARC and other decision boundary adjustment methods. j ∈ [1, K] is
class index.

Method Calibration method
Decouple-cRT (Kang et al., 2019) retrain Wj , bj

Decouple-LWS (Kang et al., 2019) ∥Wj∥1−ωj

DisAlign (Zhang et al., 2021) σ(zj)(ωjηj + β) + (1 − σ(zj))ηj

MARC ωj · dj + βj

Algorithm 2 The detailed training procedure including both standard training and margin calibration
function training.

1: Input: The training dataset D = {(xi, yi)}n
i=1, the parameters of the representation function θr, the

parameters of the classifier θc, the parameters of the margin calibration function ω and β, the number
of classes K and the pre-defined scale hyper-parameter γ.

2: First stage: the standard training use the instance-balanced sampling and the cross entropy loss.
3: while not reach the maximum iteration do
4: Use instance-balanced sampling to sample a batch of data Ds = {(xi, yi)}s

i=1 from the training dataset
D, where s is the batch size.

5: Compute the loss and update the model parameters.
ℓ(Ds; θr, θc) = −1

s

∑s
i=1 log

(
exp(ηyi

)∑K

j=1
exp(ηj)

)
, where ηj is the classification score of class j.

6: end while
7: Second stage: Calibrate the margins trained in the first stage.
8: while not reach the maximum iteration do
9: Use instance-balanced sampling to sample a batch of data Ds = {(xi, yi)}s

i=1 from the training dataset
D, where s is the batch size.

10: Compute the loss and update the model parameters.
ℓ(Ds; θ̃r, θ̃c, ω, β) = 1

s

∑s
i=1(−Uyi

· log
(

exp(ωyi
·ηyi

+βyi
·∥Wyi

∥)∑K

j=1
exp(ωj ·ηj+βj ·∥Wj∥)

)
, where parameters with ·̃ are fixed

during training and Uj is calculated as shown in Eq. 12.
11: end while
12: Return: Model parameters θr, θc, ω, β.

4 Experiments

In this section, we conduct extensive experiments compared with the state-of-the-art methods to validate
the effectiveness of MARC. Firstly, we report the performance on common benchmarks like CIFAR-10-
LT (Krizhevsky et al., 2009), CIFAR-100-LT (Krizhevsky et al., 2009), ImageNet-LT (Liu et al., 2019),
Places-LT (Zhou et al., 2017) and iNaturalist2018 (Van Horn et al., 2018). The results of MARC are
competitive even though MARC is simple. Then we conduct further analysis to explain the reason for the
success of MARC.

4.1 Setup

Datasets We follow the common evaluation protocol (Liu et al., 2019) and conduct experiments on CIFAR-
10-LT (Krizhevsky et al., 2009), CIFAR-100-LT (Krizhevsky et al., 2009), ImageNet-LT (Liu et al., 2019),
Places-LT (Zhou et al., 2017) and iNaturalist2018 (Van Horn et al., 2018). The imbalance factor used in
CIFAR datasets is defined as Nmax/Nmin where Nmax is the number of samples on the largest class and Nmin

the smallest. We report CIFAR results with two different imbalance ratios: 100 and 200. For ImageNet-LT
and Places-LT experiments, we further split classes into three sets: Many-shot (with more than 100 images),
Medium-shot (with 20 to 100 images), and Few-shot (with less than 20 images).
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Training Configuration For a fair comparison, our experiments are conducted under the most com-
monly used codebase of long-tailed studies: Open Long-Tailed Recognition (OLTR) (Liu et al., 2019), using
PyTorch (Paszke et al., 2019) framework. The model structures used for CIFAR, ImageNet-LT, Places-LT
and iNaturalist18 datasets are ResNet32, ResNeXt50, ResNet152 and ResNet50, respectively. The model
for Places-LT is pre-trained on the full ImageNet-2012 dataset while models for other datasets are trained
from scratch. For ImageNet-LT, Places-LT, and iNaturalist18, we train 90, 30, and 200 epochs in the first
standard training stage; and 10, 10, and 30 epochs in the second margin calibration stage, with the batch size
of 256, 128, and 256, respectively. For CIFAR-10-LT and CIFAR-100-LT, the models are trained for 13,000
iterations with a batch size of 512. We use the SGD optimizer with momentum 0.9 and weight decay 5e − 4
for all datasets except for iNaturalist18 where the weight decay is 1e − 4. In the standard training stage, we
use a cosine learning rate schedule with an initial value of 0.05 for CIFAR and 0.1 for other datasets, which
gradually decays to 0. In the margin calibration stage, we use a cosine learning rate schedule with an initial
learning rate starting from 0.05 to 0 for all datasets. γ is set to 1.2 for all datasets. The hyper-parameters of
compared methods follow their paper. For fairness, we use the same pre-trained model for decision boundary
adjustment methods.

4.2 Comparison with previous methods

In this section, we compare the performance of MARC to other recent works. We select some recent methods
from each of the following four categories for comparison: data re-sampling, loss function engineering, decision
boundary adjustment, and others. The standard training with the cross-entropy loss and instance balance
sampling is called Softmax in our results.

CIFAR Table 2 presents results for CIFAR-10-LT and CIFAR-100-LT. MARC outperforms all other meth-
ods in CIFAR-LT. Compared with other decision boundary adjustment methods, MARC shows favorable
results. The accuracy of MARC outruns Decouple-LWS 1.6%, 3%, 0.3% and 1.9% on CIFAR-10-LT(100),
CIFAR-10-LT(200), CIFAR-100-LT(100) and CIFAR-100-LT(200) respectively, where (·) denotes the imbal-
ance factor. In addition, MARC outperforms all data re-sampling and loss function engineering methods

Table 2: Accuracy on CIFAR-10-LT and CIFAR-100-LT datasets with different imbalance ratios.

Dataset CIFAR-10-LT CIFAR-100-LT
Imbalance Factor 100 200 100 200
Softmax 78.7 74.4 45.3 41.0
Data Re-sampling
Class Balanced Sampling (CBS) 77.8 68.3 42.6 37.8
Loss Function Engineering
Class Balanced Weighting (CBW) 78.6 72.5 42.3 36.7
Class Balanced Loss (Cui et al., 2019) 78.2 72.6 44.6 39.9
Focal Loss (Lin et al., 2017) 77.1 71.8 43.8 40.2
LADE (Hong et al., 2021) 81.8 76.9 45.4 43.6
LDAM (Cao et al., 2019) 78.9 73.6 46.1 41.3
Equalization Loss (Tan et al., 2020) 78.5 74.6 47.4 43.3
Balanced Softmax (Ren et al., 2020) 83.1 79.0 50.3 45.9
Decision Boundary Adjustment
DisAlign (Zhang et al., 2021) 78.0 71.2 49.1 43.6
Decouple-cRT (Kang et al., 2019) 82.0 76.6 50.0 44.5
Decouple-LWS (Kang et al., 2019) 83.7 78.1 50.5 45.3
Others
BBN (Zhou et al., 2020) 79.8 - 42.6 -
Hybrid-SC (Wang et al., 2021c) 81.4 - 46.7 -
MARC 85.3 81.1 50.8 47.4
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Table 3: The performance on ImageNet-LT.

Method Many Medium Few Overall
Softmax 65.1 35.7 6.6 43.1
Loss Function Engineering
Focal Loss (Lin et al., 2017) 64.3 37.1 8.2 43.7
Seesaw (Wang et al., 2021b) 67.1 45.2 21.4 50.4
Balanced Softmax (Ren et al., 2020) 62.2 48.8 29.8 51.4
LADE (Hong et al., 2021) 62.3 49.3 31.2 51.9
Decision Boundary Adjustment
Decouple-π-norm (Kang et al., 2019) 59.1 46.9 30.7 49.4
Decouple-cRT (Kang et al., 2019) 61.8 46.2 27.4 49.6
Decouple-LWS (Kang et al., 2019) 60.2 47.2 30.3 49.9
DisAlign (Zhang et al., 2021) 60.8 50.4 34.7 52.2
Others
OLTR (Liu et al., 2019) 51.0 40.8 20.8 41.9
Causal Norm (Tang et al., 2020) 62.7 48.8 31.6 51.8
MARC 60.4 50.3 36.6 52.3

Table 4: The performances on Places-LT, starting from an ImageNet pre-trained ResNet-152.

Method Many Medium Few Overall
Softmax 46.4 27.9 12.5 31.5
Loss Function Engineering
Focal Loss (Lin et al., 2017) 41.1 34.8 22.4 34.6
Balanced Softmax (Ren et al., 2020) 42.0 38.0 17.2 35.4
LADE (Hong et al., 2021) 42.8 39.0 31.2 38.8
Decision Boundary Adjustment
Decouple-LWS (Kang et al., 2019) 40.6 39.1 28.6 37.6
Decouple-π-norm (Kang et al., 2019) 37.8 40.7 31.8 37.9
DisAlign (Zhang et al., 2021) 40.0 39.6 32.3 38.3
Others
OLTR (Liu et al., 2019) 44.7 37.0 25.3 35.9
Causal Norm (Tang et al., 2020) 23.8 35.8 40.4 32.4
MARC 39.9 39.8 32.6 38.4

that my need laborious hyper-parameter. The performance of well-designed networks such as BBN and
Hybrid-SC are also not as good as that of MARC.

ImageNet-LT We further evaluate MARC on the ImageNet-LT dataset. As Table 3 shows, MARC is
better than all loss function engineering methods. Compared with LADE, although our overall accuracy is
0.4% higher, the accuracy on the few-shot classes is 5.4% higher. The few-shot accuracy and overall accuracy
of MARC are 1.9% and 0.1% higher than DisAlign respectively. Our results are quite surprising considering
the simplicity of MARC (See next section for time comparison).

Places-LT For the Places-LT dataset, MARC achieves better performance than other decision boundary
adjustment methods. Though our overall accuracy is lower than LADE, our few-shot accuracy is still 1.4%
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higher than LADE. Though MARC is not the best in Places-LT, the results of MARC are still competitive
compared with other methods.

iNaturalist-LT Finally, we present the Top-1 accuracy results for iNaturalist-LT dataset in Table 5. We
can observe a similar trend that our proposed method wins all the existing approaches and surpasses DisAlign
by 0.1% absolute improvement.

Table 5: Top-1 accuracy on iNaturalist-LT.

Method Top-1 Accuracy
Softmax 65.0
Loss Function Engineering
Class Balanced Loss (Cui et al., 2019) 61.1
LDAM (Cao et al., 2019) 64.6
Balanced Softmax (Ren et al., 2020) 69.8
LADE (Hong et al., 2021) 70.0
Decision Boundary Adjustment
Decouple-π-norm (Kang et al., 2019) 69.3
Decouple-LWS (Kang et al., 2019) 69.5
DisAlign (Zhang et al., 2021) 70.3
Others
Casual Norm (Tang et al., 2020) 63.9
Hybrid-SC (Wang et al., 2021c) 68.1
MARC 70.4

4.3 Effectiveness validation

Comparison of the trainable parameters of decision boundary adjustment methods As shown
in Table 6, MARC achieves the best performance among other compared methods on CIFAR-100-LT(200)
and ImageNet-LT. Even though our trainable parameters are more than Decouple-LWS, our performance
is better. Besides, it is surprising that MARC obtains such a favorable performance with only so few
parameters.

Table 6: Comparison of the trainable parameters (#Param.) of the learnable decision boundary
adjustment methods. p is the feature dimension and K is the number of classes (ResNeXt50 for ImageNet-
LT: p = 2048, K = 1000).

Method CIFAR-100-LT ImageNet-LT #Param.
Decouple-cRT 44.5 49.6 pK + K
Decouple-LWS 45.3 49.9 K
DisAlign 43.6 52.2 p + 2K
MARC 47.4 52.3 2K

Effects of different standard pre-trained model We use different standard pre-trained models on
CIFAR-100-LT(200) to explore their effects. As Table 7 illustrates, as the pre-trained dataset gets more
balanced, the performance of our margin calibration method gets better. This shows that when comparing
decision boundary methods, using the same standard training model is very important for fairness. And
the codebase will also affect the standard training. This is the reason why the result of DisAlign in our
paper is inconsistent with the original paper since we cannot get the same standard pre-trained model they
used. So instead, we use our own standard pre-trained model for MARC and DisAlign for fairness. Table 7
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also demonstrates that the margin calibration method can achieve better performance when given better
representations. So our future works include how to get better representations.

Table 7: Top-1 accuracy on CIFAR-100-LT(200) with different standard pre-trained models.

Standard pre-trained dataset Top-1 Accuracy
CIFAR-100-LT(200) 47.1
CIFAR-100-LT(100) 50.7
CIFAR-100-LT(50) 54.5

4.4 Further analysis

In this section, we conduct different experiments for further analysis. To be concrete, we empirically show
that MARC can achieve more balanced margins and logits compared with DisAlign. Moreover, the class-wise
accuracy of MARC is much better than the standard training baseline model on CIFAR-LT, which indicates
that we can alleviate the imbalanced prediction problem and reduce the performance gap between the head
classes and the tail classes.

Visualization of the margin and logit In this subsection, we visualize the values of margins and logits
for each class to show the effect of MARC. As illustrated both in Figure 3, Figure 4c and Figure 4d, before
margin calibration, the margins and the logits are uncalibrated, i.e. the head classes tend to have much
larger margins and logits than tail classes. We believe the bias in margins and logits will lead to imperfect
predictions in long-tailed visual recognition. The margins and logits become more balanced after the margin
calibration. This result proves that we can get better predictions by calibrating the margin. Moreover, as
shown in Figure 4a and Figure 4b, MARC will obtain more balanced margins and gradients than DisAlign.
The instability of DisAlign may be caused by their heuristic design of the combination of the calibrated
logits and the origin logits.

Class-wise performance on CIFAR-LT As we can see in Figure 3c and 3d, after our margin calibration
method, the performance on tail classes is improved while that on head classes is not severely affected. More
intuitively, Figure 5 shows the class-wise performance. The accuracy of the tail class is much higher than
that of the head class. The performance degradation on head classes may be caused by the false positive
predictions on head classes, i.e., the standard training method tends to classify tail classes as head classes,
resulting in high accuracy on the head classes. The bad performance on tail classes when using standard
training also proves this. In addition, the overall accuracy and F1-score show that MARC alleviates the
uncalibrated prediction problem.
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(c) Standard training.
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(d) MARC.

Figure 3: (a) and (b): Logits and margins of CIFAR-100-LT(200). Here, before refers to the standard
training results and after refers to the results after our calibration method. The class indexes are sorted by
the number of samples (Head to tail). (c) and (d): Confusion matrix of the standard training and
MARC on long-tailed CIFAR-10-LT(200). The fading color of diagonal elements refers to the disparity
of the accuracy.
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(a) Margins of DisAlign.
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(b) Logits of DisAlign.
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(c) Margins of MARC.
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(d) Logits of MARC.

Figure 4: The values of margins and logits for each class on the ImageNet-LT dataset. The class
indexes are sorted by the number of samples (Head to tail). Before refers to the standard training results
and after refers to the results after using the decision boundary adjustment method.
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(a) CIFAR-100-LT(200).
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(b) F1 scores on CIFAR-LT.

Figure 5: The detailed performance of CIFAR-100-LT(200). Before refers to the standard training results
and after refers to the results after MARC.
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Figure 6: Accuracy on CIFAR-
100-LT(200) with different γ.

Effects of different γ To explore the effect of different γ, we also
conduct experiments and visualize the performances on all CIFAR-100-
LT(200). The results are shown in Figure 6. We can observe that com-
pared 1.2 is the best compared with other values. γ can not be too large
since in this way the weight for head classes is too small. It is well noting
that MARC also achieves 45.2% accuracy when γ is 0. This means MARC
still works even if we do not use any loss re-weighting techniques in the
second stage. For other datasets, we directly use 1.2 for γ.

5 Conclusions

This paper studied the long-tailed visual recognition problem. Specifically, we found that head classes tend
to have much larger margins and logits than tail classes. Motivated by our findings, we proposed a margin
calibration function with only 2K learnable parameters to obtain the balanced logits in long-tailed visual
recognition. Even though our method is very simple to implement, extensive experiments show that MARC
achieves favorable results compared with previous methods.

We hope that our study on logits and margins could provide experience for future research. In the future,
we plan to explore better representations for long-tailed decision adjustment methods. At the same time,
we plan to study the theory behind the logits and margins to provide a more theoretical analysis.
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