
Accelerated Distance-adaptive Methods for Hölder
Smooth and Convex Optimization

Yijin Ren∗ Haifeng Xu∗

School of Information Management and Engineering
Shanghai University of Finance and Economics

Qi Deng †

Antai College of Economics and Management
Shanghai Jiao Tong University

lanyjr@stu.sufe.edu.cn, xuhaifeng2004@stu.sufe.edu.cn, qdeng24@sjtu.edu.cn

Abstract

This paper introduces new parameter-free first-order methods for convex optimiza-
tion problems in which the objective function exhibits Hölder smoothness. Inspired
by the recently proposed distance-over-gradient (DOG) technique, we propose an
accelerated distance-adaptive method which achieves optimal anytime convergence
rates for Hölder smooth problems without requiring prior knowledge of smoothness
parameters or explicit parameter tuning. Importantly, our parameter-free approach
removes the necessity of specifying target accuracy in advance, addressing a signif-
icant limitation found in the universal fast gradient methods (Nesterov, 2015). We
further present a parameter-free accelerated method that eliminates the need for
line-search procedures and extend it to convex stochastic optimization. Preliminary
experimental results highlight the effectiveness of our approach on convex non-
smooth problems and its advantages over existing parameter-free or accelerated
methods.

1 Introduction

In this paper, we consider the following composite function

min
x∈Rd

ψ(x) := f(x) + g(x), (1)

where f : Rd → R is a continuous convex function, and g : Rd → R ∪ {+∞} is a simple proper
lower semi-continuous (lsc) convex function of which the proximal operator is easy to evaluate.
First-order algorithms—(sub)gradient descent and their accelerated variants—are the workhorses for
solving (1), particularly in large-scale machine learning and AI applications. Their empirical success,
however, hinges on judiciously chosen stepsizes; manual tuning quickly becomes the dominant
practical bottleneck.

In standard analysis, the stepsize policy is often designed based on the smoothness level of the
objective function. Specifically, subgradient methods for nonsmooth problems typically employ
diminishing stepsizes, whereas gradient descent methods for smooth optimization often utilize a

∗Equal contribution
†Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

stepsize inversely proportional to the gradient Lipschitz parameter. In a seminal work, Nesterov [27]
considered convex Hölder smooth problem where f(x) satisfies the following condition:

∥∇f(x)−∇f(y)∥∗ ≤ Lν∥x− y∥ν ,∀x, y ∈ Rd. (2)

where ν ∈ [0, 1] continuously interpolates between the nonsmooth (ν = 0) and smooth (ν = 1)
settings. Nesterov introduced accelerated gradient methods capable of universally achieving optimal
convergence rates without prior knowledge of the smoothness parameters of the objective. Notably,
the universal fast gradient method exhibits a convergence rate of

ψ(xk)− ψ(x∗) ≤ O

 L
2

1+ν
ν D2

0

ϵ
1−ν
1+ν k

1+3ν
1+ν

+ ϵ

 . (3)

where D0 := ∥x0 − x∗∥ denotes the initial distance to the minimizer. An appealing property of this
method is its independence from explicit knowledge of the smoothness level ν and the parameter Lν .

Despite these attractive features, recent studies have highlighted significant limitations of the universal
gradient methods. One notable issue is that the universal gradient method relies on a line search
subroutine to adapt to the unknown smoothness level, which makes it challenging to extend to
stochastic optimization. More critically, the performance of universal methods is sensitive to the
predetermined target accuracy level ϵ. As ϵ must be set in advance, the method does not have an
anytime convergence guarantee, which is crucial for practical implementations where iterations can
be halted at an arbitrary stage. In addition, as pointed out by Orabona [30], an optimally set ϵ should
depend on D0, which is unfortunately unknown beforehand. Setting the value of ϵ without prior
knowledge of the underlying problem structure often results in suboptimal trade-offs between the
two error terms in (3). This turns out to be a critical problem in nonsmooth optimization and online
learning [23, 3, 6, 5, 40]. Although [17] achieves a near-optimal rate in the smooth setting, it does
not have a theoretical guarantee for nonsmooth or weakly smooth problems. A key strength of their
work is providing guarantees for unbounded domains, albeit with a suboptimal rate in that setting.
[1] investigates parameter-free methods and notes that most existing approaches still require certain
problem-specific information, such as the Lipschitz constant and D0. In contrast, our algorithms
only require an estimate of a lower bound for D0, and this incurs only a minor additional cost.
Moreover, [15] further shows that it is impossible to develop a truly tuning-free algorithm for smooth
or nonsmooth stochastic convex optimization when the domain is unbounded.

In this paper, we demonstrate that near-optimal parameter-free convergence rates can be achieved
for convex Hölder smooth optimization, up to logarithmic factors. Specifically, instead of fixing the
target ϵ, we set variable target levels that dynamically change based on the optimization trajectory.
As mentioned earlier, an optimal level shall depend on the distance to the minimizer and is difficult to
compute. Motivated by the Distance over Gradients (DOG) style stepsize [3, 14], we approximate
∥x0 − x∗∥ by the maximum distance to the iterates and use this knowledge to choose stepsize in the
accelerated gradient method. Leveraging the technique of distance adaptation, we are able to obtain a
parameter-free and anytime convergence rate of

O

(
D1+ν

0 L̂ν log
2 eD0

r̄

k
1+3ν

2

)
, (4)

where L̂ν is the locally Hölder smoothness constant and r̄ is an initial guess for 4D0, without
requiring any predefined accuracy level, knowing the smoothness level ν or the Hölder constant.

In addition, we propose a line-search-free accelerated method that achieves optimal convergence
rates for both Hölder smooth and stochastic optimization problems. To eliminate the need for line
search, we adopt a bounded domain assumption, as originally introduced by Rodomanov et al. [34].
Different from their approach, which explicitly requires the domain diameter D to set stepsizes,
our method exploits distance adaptation to approximate D. This can be particularly appealing as
computing the diameter of a general convex set can be computationally intractable. Moreover, by
estimating D through the observed distance from the initial point, our method naturally adopts more
adaptive stepsizes in large domains. Theorem 3 characterizes the convergence rate of this algorithm
in the stochastic setting. Since we adopt the bounded domain assumption, the convergence rate
remains the same as that in (4), with D0 replaced by D. Although we cannot guarantee the potential
gap between D0 and D, experimental results support our theoretical insights and demonstrate the
practical effectiveness of our approach.

2

1.1 Related work

The increasing computational cost associated with hyperparameter tuning has driven significant
research interest in developing adaptive or parameter-free algorithms. The online learning community
has extensively studied parameter-free optimization, particularly focusing on achieving nearly-optimal
regret bounds without prior knowledge of domain boundedness or the distance to the minimizer.
For example, see [23, 24, 29, 5, 40]. A recent breakthrough has been made by Carmon and Hinder
[3], which moves beyond regret analysis and focuses directly on stochastic optimization. This
algorithm appears to be conceptually simpler and motivates a few more practical SGD algorithms,
such as Ivgi et al. [14], Defazio and Mishchenko [6], Moshtaghifar et al. [26]. A notable related
study to our work is Moshtaghifar et al. [26], which applied the distance adaptation technique to
Nesterov’s dual averaging method. They have offered convergence guarantees across various problem
classes, including nonsmooth, smooth, (L0, L1)-smooth functions, and many others. However, the
convergence rate for the Hölder smooth problem remains suboptimal.

The concept of universal gradient methods adapting to Hölder smoothness was pioneered by Nes-
terov [27]. Subsequent works extended this approach to nonconvex optimization [11], stochastic
settings [10] and stepsize adjustment [28]. It has been demonstrated that normalized gradient step-
sizes [35] can automatically adapt to Hölder smoothness without requiring line search, as shown
in Grimmer [12], Orabona [31]. Recently, Rodomanov et al. [34] proposed a line-search-free univer-
sally optimal method that is robust to stochastic noise in gradient estimations. However, this method
requires the domain to be bounded and the diameter to be known. In parallel to universal methods,
bundle-type methods [20, 2] have emerged as an effective approach for nonsmooth optimization,
enabling self-adaptation to Hölder smoothness [18]. However, these methods often involve solving
a complex cut-constrained subproblem and lack straightforward extensions to stochastic settings.
The Polyak stepsize method [32] also exhibits self-adaptation to smoothness [13] and Lipschitz
parameters [25]. It can be seen as a special case of the bundle-level method [8]. While imposing
Nesterov’s acceleration technique [7] in the Polyak stepsize can universally achieve the optimal rates
for Hölder smooth problems, it typically requires knowledge of the optimal value.

Finally, it is important to emphasize that the parameter-free algorithms discussed in this paper differ
from adaptive gradient methods [9], which have been substantially studied in the literature [16, 33, 36].
While adaptive gradient methods primarily focus on adjusting to Lipschitz constants or constructing
a preconditioner to approximate the Hessian inverse [41, 38, 21], parameter-free algorithms in our
context do not rely on such adaptation mechanisms.

2 Preliminaries

Let Rd denote the d-dimensional Euclidean space. Let ∥ · ∥ =
√
⟨·, ·⟩ be the norm associated with

inner product ⟨·, ·⟩. Its dual norm is defined by ∥s∥∗ = max∥x∥=1⟨s, x⟩, where s ∈ Rd. For a convex
function f : Rd → R ∪ {+∞}, we use ∇f(x) to denote a (sub)gradient of f(·) at the point x. We
use Bδ(x) = {y ∈ Rd : ∥y − x∥ ≤ δ} to denote the closed ball of radius δ centered at x. We define
Iν as (1

1−ν)
1+ν
2 when ν < 1 and 1 when ν = 1 to simplify the expressions.

A convex function f is said to be locally Hölder smooth at z with radius r if there exists a mapping
Mν : Rd × (0,+∞)→ (0,+∞) such that, for any z ∈ Rd, for any x, y ∈ Br(z) (r > 0), we have

∥∇f(x)−∇f(y)∥∗ ≤Mν(z, r) ∥x− y∥ν . (5)

Nesterov [27] considered the global Hölder smooth functions (2) where the smoothness mapping
Mν(z, r) is reduced to a constant Lν . However, we will show that by incorporating both line
search and distance adaptation, we can guarantee the boundedness of the iterates. Consequently, the
complexity relies on the local Hölder smoothness, which is defined by

M̂ν :=Mν(x
∗, 3D0) < +∞.

3

3 The accelerated distance-adaptive method

Motivation Before describing the main algorithm, we first shed light on the intuition of Nesterov’s
universal gradient methods [27]. From the definition of global Hölder smoothness (2), we have the
Hölder descent condition:

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ Lν

1 + ν
∥x− y∥1+ν .

This inequality can be translated into an inexact variant of the usual Lipschitz smooth condition:

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ γ(Lν , δ)

2
∥x− y∥2 + δ

2
. (6)

where γ(L, δ) := (1−ν
1+ν

1
δ)

1−ν
1+ν L

2
1+ν , and δ ∈ (0,∞) is the trade-off parameter. Since the Hölder

exponent may be unknown a priori, Nesterov proposed to use pre-specify δ = ϵ, where ϵ is the target
accuracy, and then perform line search over γ(Lν , δ) to satisfy the inexact Lipschitz smoothness
condition (6).

The primary challenge with this approach is selecting an optimal value for δ. This parameter controls a
fundamental trade-off: a smaller δ improves the approximation accuracy using a smooth surrogate, but
it increases the effective smoothness constant γ(Lν , δ). However, choosing the optimal δ necessitates
the knowledge of the distance to the minimizer, and cannot be done easily when the domain is
unconstrained. Moreover, even if the domain is bounded with D = maxx,y∈dom g ∥x− y∥ <∞, this
value can poorly overestimate ∥x− x∗∥.
To address the limitation in the existing universal fast gradient method, we present the accelerated
distance-adaptive method (AGDA) in Algorithm 1. Our algorithm can be viewed as a variant of the
accelerated regularized dual averaging method [37, 27, 39] which involves the triplets {xk, vk, yk}.
The main difference from the prior work is the new stepsize and line search procedure to adapt to the
distance to the minimizer.

Specifically, leveraging the distance adaptation technique [26, 14], we approximate D0 by a sequence
of values:

r̄k = max{r̄k−1, rk}, where rk = ∥x0 − vk∥, k ≥ 0, (7)
and then set the averaging sequence ak based on the distance estimation:

ak+1 = Ak+1 −Ak, where Ak+1 :=
(∑k

i=0r̄
1
2
i

)2
, k = 0, 1, 2, . . . (8)

To deal with the unknown Hölder smooth parameter, we invoke a line search procedure to find the
appropriate value of βk+1, which satisfies

f(yk+1) ≤ f(xk+1) + ⟨∇f(xk+1), yk+1 − xk+1⟩+ βk+1

64τ2kAk+1
∥yk+1 − xk+1∥2 + τkηk

2
, (9)

where ηk measures the inexactness in Lipschitz smooth approximation and τk is introduced by
Nesterov’s momentum (τk = 1 in the non-accelerated method). As mentioned earlier, ηk is set to a
fixed δ in the universal (fast) gradient method. Different from the earlier approach, we simply take

ηk =
βk+1r̄

2
k−βk r̄

2
k−1

8ak+1
, which dynamically adjusts during the optimization process.

Line search We describe how to find a suitable βk+1 that satisfies the descent property (9). Note
that in this inequality yk+1 is dependent on βk+1, we can describe the searching process of βk+1

by formulating it as finding a root of a continuous function. To formalize the idea, we define the
auxiliary function lk(β) as follows:

lk(β) :=− f(yk+1(β)) + f(xk+1) + ⟨∇f(xk+1), yk+1(β)− xk+1⟩

+
β

64τ2kAk+1
∥yk+1(β)− xk+1∥2 +

βr̄2k − βkr̄2k−1

16Ak+1
,

(10)

where yk+1(β) = τkv
k+1(β) + (1 − τk)y

k is the trial point, and vk+1(β) :=

argminx
∑k+1

i=1 ai(⟨∇f(xi), x⟩ + g(x)) + β
2 ∥x − x0∥2. Our line search consists of two stages,

each involving an iterative procedure. We assume the first stage and the second stage can be ter-
minated in i′k-th and i∗k-th iterations, respectively. In the first stage, we find the smallest value
i ∈ {1, 2, . . . , } such that lk(2i−1βk) is nonnegative and set i′k = i. Consequently, we will have two
situations:

4

Algorithm 1 Accelerated Gradient Method with Distance Adaption (AGDA)
Input: x0 and r̄;

1: Initialize A0 = 0, r̄−1 = r̄0 = r̄ and β0 be a small constant, like 10−3.
2: Set initial solution: v0 = y0 = x0

3: for k = 0, 1, ...,K − 1 do
4: Set rk and r̄k according to (7);
5: Update ak+1 and Ak+1 by (8), and set τk = ak+1

Ak+1
;

6: Set xk+1 = τkv
k + (1− τk)yk;

7: Apply the line search to find βk+1 such that lk(βk+1) ≥ 0;
8: Compute vk+1 = argminy

{βk+1

2 ∥x
0 − y∥2 +

∑k+1
i=1 ai(⟨∇f(xi), y − xi⟩+ g(y))

}
;

9: Set yk+1 = τkv
k+1 + (1− τk)yk;

10: end for
Output: zK = argminy∈{y0,y1,...,yK} ψ(y)

1. i′k = 1, i.e., lk(βk) ≥ 0, then we set i∗k = 0 and complete the line search;
2. i′k > 1, then we perform a binary search to find an approximate root of lk(·) = 0 in the

interval [2i
′
k−2βk, 2i

′
k−1βk]. The search stops when the interval width is no more than a

tolerance level of ϵlk = β0

2k2 . We set βk+1 as the right endpoint of the final interval.

We now establish the correctness and computational efficiency of the line search procedure.
Proposition 1. Suppose f(·) is locally Hölder smooth (5) in B3D0

(x∗). In Algorithm 1, for any
k ≥ 0, at least one of the following two conditions holds:

1. lk(βk) ≥ 0;

2. there exists β∗
k+1 > βk such that lk(β∗

k+1) = 0, and for all β > β∗
k+1, we have lk(β) > 0.

Consequently, we have βk+1 ≤ O(k
3−3ν

2). Moreover, the total number of iterations required by the
line search in Algorithm 1 is

∑K−1
k=0 (i′k + i∗k) = O(K logK).

Remark 1. Proposition 1 implies that our method requires an additional O(logK) function eval-
uations compared to other algorithms [27]. However, it is worth emphasizing that our line search
procedure only requires access to function values, whereas the line search in the universal fast
gradient method involves both gradient and function value evaluations.

Next, we provide two lemmas to obtain an important upper bound on the convergence rate and the
guarantee of the boundedness of the optimization trajectory.
Lemma 1. In Algorithm 1, suppose r̄ ≤ 4D0. If for i = 0, 1, . . . , k, the line searches are successful
and we have li(βi+1) ≥ 0, then we have the following convergence property:

ψ(yk+1)− ψ(x∗) ≤
βk+1(D

2
0 −D2

k+1)

2Ak+1
+
βk+1r̄

2
k+1

8Ak+1
. (11)

Lemma 2. In Algorithm 1, suppose that for all i = 0, 1, . . . , k, the iterates xi, yi and vi lie within
the set B3D0

(x∗). Then, the line search in the k-th iteration terminates in a finite number of steps,
and xk+1, yk+1, vk+1 remain within B3D0

(x∗).

One key insight of the distance adaptation is that the inequality (11) implies the boundedness of rk.
To avoid the first step of Algorithm 1 from searching too far and breaking the boundedness of rk,
we should adopt a conservative distance estimation such that r̄ ≤ 4D0. The smaller r̄ is, the more
likely it is that r̄ ≤ 4D0 holds. Therefore, by repeatedly applying these two lemmas, we derive
an important upper bound on the convergence rate and establish the boundedness guarantee of the
optimization trajectory throughout all iterations.
Theorem 1. Suppose f(·) is locally Hölder smooth (5) in B3D0

(x∗). For any k > 0, it holds that

ψ(yk)− ψ(x∗) ≤ βk(D
2
0 −D2

k)

2Ak
+
βkr̄

2
k

8Ak
, (12)

Furthermore, if r̄ ≤ 4D0, then it holds that ∥vk − x0∥ ≤ 4D0 and ∥vk − x∗∥ ≤ 3D0, for all k ≥ 0.

5

Since both xi and yi are convex combination of vi, we immediately have that all the generated points
{xi, yi}i≥0 are in B3D0(x

∗).

Next, we further refine the upper bound in (12). Since D2
0 −D2

k ≤ 2D0rk, rk ≤ r̄k and rk ≤ 4D0,
the upper bound in Theorem 1 can be relaxed to

ψ(yk)− ψ(x∗) ≤ 3βkr̄kD0

2Ak
.

It remains to control the growth of r̄k
Ak

. To this end, we invoke a useful logarithmic bound [14, 22] as
follows.
Lemma 3. Let (di)∞i=0 be a positive nondecreasing sequence. Then for any K ≥ 1,

min
1≤k≤K

dk∑k−1
i=0 di

≤

(
dK

d0

) 1
K

log edK

d0

K
. (13)

To apply the above result, we simply take dk =
√
r̄k. It shows there is always some k < K where

the error r̄k
Ak

is bounded by O
(log2(r̄T /r̄)

K2

)
.

Next, we bring all the pieces together. As pointed out earlier, the line search ensures that βk+1 is
order up to O(k 3−3ν

2). Together with the bound over distance-adaptive term r̄k
Ak

, we arrive at our
final convergence rate in the following theorem.
Theorem 2. Suppose all the assumptions of Theorem 1 hold. Then, Algorithm 1 exhibits a conver-
gence rate that

ψ(yk
∗
)− ψ(x∗) ∈ O

(
M̂νD

1+ν
0

(
4D0

r̄

)1/k
log2 eD0

r̄

K
1+3ν

2

)
, (14)

where k∗ = argmin
0≤i≤k

r̄
1/2
k∑k−1

i=0 r̄
1/2
i

.

Remark 2. The term (4D0

r̄)
1
k in the inequality (14) approaches 1 as k increases and is bounded by a

small constant under the mild condition k ≥ Ω(log(D0/r̄)). If r̄ is sufficiently large, this condition is
much weaker than the polynomial dependency on D0 typically required for nontrivial rate in gradient
descent.
Remark 3. According to (14), to achieve an ϵ-optimality gap, our method attains a near-optimal

complexity bound of Õ
(
D

2(1+ν)
1+3ν

0 ϵ−
2

1+3ν
)
, where the Õ notation hides logarithmic factors arising

from line search and distance adaptation, such as O(log 1
ϵ) and O(log2 D0

r̄).
Remark 4. Theorems 1 and 2 require the initial guess r̄ to lie within a reasonably large neighborhood,
specifically r̄ ≤ 4D0. This condition is a key assumption underlying distance-adaptive methods [14].
For theoretical purposes, we provide an automatic initialization strategy for r̄ in certain special cases
(see Appendix). Empirically, we observe that the performance of the algorithm is largely insensitive
to the specific choice of r̄.

4 Stochastic optimization

In this section, we focus on stochastic optimization of Hölder smooth functions, wherein problem (1),
f(x) exhibits the expectation form:

f(x) = Eξ[f(x, ξ)],

where ξ is a random sample following from specific distribution. Due to the difficulty in exactly
computing the gradient ∇f(x), it is challenging to perform line search. To bypass this issue, we
present a new line-search-free and accelerated distance-adaptive method in Algorithm 2. At the cost
of removing linesearch, we require an additional boundedness assumption.
Assumption 1 (Boundedness of domain). The set dom g is bounded, namely,D = supx,y∈dom g ∥x−
y∥ < +∞. We denote M̃ν =Mν(x

∗, D) for simplicity.

6

Let us use ∇f̃(x, ξ) to represent a stochastic gradient, we further assume the stochastic gradient has
a bounded variance: σ2 := supx∈Rd Eξ[∥∇f̃(x, ξ)−∇f(x)∥2∗] < +∞. For the sake of notation, we
denote ∇̃f(xk) = ∇f̃(xk, ξxk) and ∇̃f(yk) = ∇f̃(yk, ξyk) to present the stochastic gradient in the
k-th iteration, where ξxk and ξyk are two i.i.d. samples.

Algorithm 2 AGDA Line Search Free Modification (AGDA LSFM)
Input: x0, r̄;

1: Initialize A0 = 0, β0 = 0, r̄0 = r̄;
2: Set initial solution: v0 = x̂0 = y0 = x0;
3: for k = 0, 1, ...,K − 1 do
4: Solve vk = argminx

∑k
i=0 ai[f(x

i) + ⟨∇̃f(xi), x− xi⟩+ g(x)] + βk

2 ∥x
0 − x∥2;

5: Set dk = ∥x0 − x̂k∥;
6: Update r̄k and Ak+1 by (15) and (8)
7: Set ak+1 = Ak+1 −Ak, τk = ak+1

Ak+1
;

8: Set xk+1 = τkv
k + (1− τk)yk;

9: Compute x̂k+1 = argminy{ak+1[⟨∇̃f(xk+1), y − xk+1⟩+ g(y)] + βk

2 ∥v
k − y∥2};

10: Set yk+1 = τkx̂
k+1 + (1− τk)yk;

11: Set ηk =
βk+1r̄

2
k−βk r̄

2
k

8ak+1
;

12: Solve (16) to obtain the solution βk+1;
13: end for

Algorithm 2 is equipped with the following rules:

r̄k = max{r̄k−1, rk, dk}, k > 0, (15)

where dk = ∥x̂k − x0∥.
In stochastic settings, traditional line search methods cannot be used as they introduce bias. Therefore,
it is necessary to develop an approach that does not rely on line search. Rather than performing line
search to find the descent direction, Rodomanov et al. [34] proposes a nonlinear balance equation. The
core idea is to bound the error term f(yk+1)− f(xk+1)−⟨∇f(xk+1), yk+1− xk+1⟩− Hk

2 ∥y
k+1−

xk+1∥2 by constructing a balance equation incorporating D. We demonstrate that the term used to
bound the error is effectively equivalent to line search, allowing us to use r̄k to approximate D, which
implies that D is not essential. Subsequently, we will explain how to formulate the balance equation.

As we mentioned in Section 3, line search strategy aims to find βk+1 such that lk(βk+1) = 0. The
difficulty is that yk+1 depends on βk+1 and thus solving lk(βk+1) = 0 cannot be achieved by a
closed-form solution. The motivation for applying the balance equation is to decouple the updating
rule of yk+1 from the βk+1. Once yk+1 has been updated, lk(βk+1) = 0 will degenerate to the
following balance equation

βk+1 − βk
2Ak+1

r̄2k = [⟨∇̃f(yk+1)− ∇̃f(xk+1), yk+1 − xk+1⟩ − βk+1

64τ2kAk+1
∥yk+1 − xk+1∥2]+, (16)

where [·]+ = max(0, ·). We use ⟨∇̃f(yk+1), yk+1 − xk+1⟩ to replace the −f(yk+1) + f(xk+1)
since we cannot obtain the function value.

Since we decouple yk+1 from βk+1, equation (16) has a simple form that is easy to solve. Moreover,
it has a unique closed-form solution given by

βk+1 = βk +
[64τ2kAk+1⟨∇̃f(yk+1)− ∇̃f(xk+1), yk+1 − xk+1⟩ − βk∥yk+1 − xk+1∥2]+

32τ2k r̄
2
k + ∥yk+1 − xk+1∥2

. (17)

We leave the details about conducting the closed-form solution in the appendix.

We next conduct the convergence analysis of Algorithm 2. In order to use the unbiasedness of the
inexact oracle, we adopt the balance equation to update the βk+1. Moreover, we use r̄k is a natural
underestimation of D and Lemma 3 ensures that the cost of underestimation can be reduced to
O(log D

r̄). We leave the proof in the appendix.

7

Theorem 3. Suppose Assumption 1 holds. Algorithm 2 exhibits a convergence rate that

E[ψ(yk
∗
)− ψ(x∗)] ∈ O

(
M̃νD

1+ν

K
1+3ν

2

+
σD√
K

)
. (18)

where k∗ = argmin1≤k≤K{ r̄k
Ak
}.

5 Experiments

We evaluate the performance of our proposed method on a diverse set of convex optimization
problems. The goal is to assess its efficiency and robustness across different application scenarios.
Additional implementation details and extended results (more different problems and large scale
experiments) are provided in the appendix.

5.1 Deterministic setting

Figure 1: Performance of the compared algorithms. Left: softmax problem. Middle: Matrix game
problem of size (n,m) = (896, 128). Right: Matrix game of size (n,m) = (448, 64).

Softmax The first problem is optimizing the softmax function:

min
x∈Rd

µ log

[
n∑

i=1

exp

(
⟨ai, x⟩ − bi

µ

)]
, (19)

where ai ∈ Rd , bi ∈ R and µ is a given positive factor. This function can be viewed as a smooth
approximation of the maximization function.

To facilitate a clear comparison, we design a simple baseline problem for evaluation. Specifically, we
first generate i.i.d. vectors {âi} and bi whose components are uniformly distributed in the interval
[−1, 1]. Using these vectors, we define an initial softmax objective f̂(x) as in (19). We then shift
the data by redefining ai = âi −∇f̂(0d), where 0d is the d-dimensional zero vector, and set f(x)
according to (19), using the new ai and the original bi. With this construction, x = 0d becomes the
global minimizer of f(x).

We employ various methods for comparison, specifically considering DOG [14], DADA [26], and
the universal fast gradient method (FGM) [27] as benchmarks. For DOG, we set rϵ = 0.01. Both
DADA and AGDA are configured with r̄ = 0.01, while for FGM, we set ϵ = 0.01. We set
n = 1000, d = 2000 and µ = 0.005 as the parameters of the problem. The results of our method
are illustrated in the left part of Figure 1. As expected from complexity analysis, FGM, being
an accelerated method, outperforms the non-accelerated baselines DOG and DADA. Notably, our
proposed algorithm achieves the fastest convergence among all tested methods, which empirically
confirms the advantage of our adaptive stepsize selection.

Matrix game The second problem we experimented with is the matrix game problem [27]. We
denote ∆d as the standard simplex with dimension d > 0. Specifically, consider a payoff matrix
A ∈ Rn×m, where two agents engage in a game by adopting mixed strategies x ∈ ∆n and y ∈ ∆m

respectively to play a game without knowledge of each other’s strategy. The gain of the first agent is

8

given by ⟨x,Ay⟩, which corresponds to the loss of the second agent. The Nash equilibrium of this
game can be found by solving the saddle-point (min-max) problem:

min
x∈∆n

max
y∈∆m

⟨x,Ay⟩. (20)

This problem can be posed as a minimization problem: minx∈∆n,y∈∆m{ψpd(x, y) = ψp(x) −
ψd(y)} = 0, where ψp(x)=max1≤j≤m⟨x,Aej⟩ and ψd(y)=min1≤i≤n⟨ei, Ay⟩.
We generate the payoff matrix A such that each entry is independently and uniformly distributed
within the interval [−1, 1]. This problem is nonsmooth with Hölder smoothness parameter ν = 0,
making it a suitable test case for evaluating the robustness of optimization algorithms under minimal
smoothness assumptions. We evaluate all methods on two problem sizes: (n,m) = (896, 128) and
(n,m) = (448, 64). The performance of our method, along with the baselines, is shown in the right
panels of Figure 1. The results demonstrate that our algorithm remains highly effective even in
challenging nonsmooth settings, outperforming the alternatives in both cases.

5.2 Stochastic setting

Figure 2: Performance of the compared algorithms. Left: robustness test on diabetes dataset. Right:
Long-run test on Boston housing dataset. Right: robustness test on the softmax problem

Least-squares For the stochastic setting, we first consider the following problem:

min
x∈Rd

f(x) =
1

2
∥Ax− b∥22 s.t. ∥x∥2 ≤ r. (21)

We set the constraint radius r = 10 and conduct experiments using real-world datasets from LIBSVM3.
For the first test, we use the diabetes dataset to examine robustness. For both USFGM and our
AGDA-LSFM algorithm, we vary the initialization hyperparameter D for USFGM and r̄ for AGDA-
LSFM—to evaluate sensitivity to stepsize-related inputs. As shown in the left panel of Figure 2,
USFGM [34] and Adam exhibit unstable performance when hyperparameters are poorly tuned, while
our algorithm maintains strong and consistent convergence across a wide range of settings.

To further validate algorithm efficiency in a practical regime, we repeat the experiment on the Boston
housing dataset, tuning all methods with their best-performing hyperparameters. The middle panel of
Figure 2 shows that our method achieves competitive long-term performance while preserving its
robustness advantage. These results illustrate that our approach is not only stable but also effective in
real-world stochastic optimization tasks.

5.3 Robustness

We conduct additional experiments to assess the robustness of our method with respect to the choice
of the parameter r̄, which reflects an estimate of the initial distance to the optimal solution, D0. Our
goal is to show that the performance of our algorithm remains stable across a wide range of r̄ values,
thereby reducing the sensitivity to inaccurate user-specified estimates.

To this end, we revisit the softmax minimization problem and vary r̄ logarithmically from 10−4 to
104. For each setting, we fix the target function value tolerance at ϵ ∈ {0.2, 0.4, 0.6, 0.8, 1} and
record the number of iterations required to reach the specified accuracy. The results, shown in the

3https://www.csie.ntu.edu.tw/cjlin/libsvm/

9

https://www.csie.ntu.edu.tw/cjlin/libsvm/

third panel of Figure 2, reveal that our method is highly robust: the number of iterations remains
nearly constant across several orders of magnitude of r̄. This suggests that our approach can tolerate
significant misspecification of D0 without compromising convergence efficiency. In practice, users
may either provide a rough estimate of the initial distance or simply default to a moderate value such
as r̄ = 10−3, which performs consistently well across our tests.

5.4 Non-convex neural network

To evaluate performance in non-convex optimization, we trained a ResNet18 model on the CIFAR-10
dataset. We compared the proposed AGDA algorithm against two established optimizers: AdamW
and DoG. For AdamW, we set the learning rate to 10−3 . The DoG algorithm was configured with
rϵ = 10−3, which is consistent with the primary hyperparameter used in the AGDA implementation.
The comparative results are presented below.

Figure 3: Performance of the compared algorithms in network training. Left: Training Loss. Right:
Validation Loss. Right: Accuracy.

The results clearly show that AGDA-LSFM maintains performance on par with the AdamW baseline
and achieves superior results compared to DoG. Crucially, these findings establish the competitiveness
of our method against SOTA parameter-free approaches, suggesting its practical robustness extends
beyond the theoretical assumptions (e.g., boundedness and convexity) that underpin its derivation,
even within deep learning’s highly non-convex landscape.

6 Conclusion

This paper introduces a novel parameter-free first-order method for solving composite convex op-
timization problems without requiring prior knowledge of the initial distance to the optimum (D0)
or the Hölder smoothness parameters. Our method achieves a near-optimal complexity bound for
locally Hölder smooth functions in an anytime fashion, making it broadly applicable and practical.
In the stochastic setting, we further develop a line-search-free accelerated method that eliminates
the need for estimating the problem-dependent diameter D during stepsize selection. This enhances
both theoretical generality and practical usability. Preliminary experiments demonstrate that our
algorithms are competitive and often outperform existing universal methods for Hölder smooth
optimization, particularly in terms of robustness and adaptivity. An important direction for future
research is to improve the dependence on the diameter D0 in the convergence complexity, and to
further relax the boundedness assumptions typically required in the stochastic setting.

7 Acknowledgements

This research was supported in part by the National Natural Science Foundation of China
[Grants 12571325, 72394364/72394360] and the Natural Science Foundation of Shanghai [Grant
24ZR1421300].

10

References
[1] Amit Attia and Tomer Koren. How free is parameter-free stochastic optimization? arXiv

preprint arXiv:2402.03126, 2024.

[2] Aharon Ben-Tal and Arkadi Nemirovski. Non-euclidean restricted memory level method for
large-scale convex optimization. Mathematical Programming, 102:407–456, 2005.

[3] Yair Carmon and Oliver Hinder. Making sgd parameter-free. In Conference on Learning Theory,
pages 2360–2389. PMLR, 2022.

[4] Gong Chen and Marc Teboulle. Convergence analysis of a proximal-like minimization algorithm
using bregman functions. SIAM Journal on Optimization, 3(3):538–543, 1993.

[5] Ashok Cutkosky and Kwabena Boahen. Online learning without prior information. In Confer-
ence on learning theory, pages 643–677. PMLR, 2017.

[6] Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett, editors, Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pages 7449–7479. PMLR,
23–29 Jul 2023.

[7] Qi Deng, Guanghui Lan, and Zhenwei Lin. Uniformly optimal and parameter-free first-order
methods for convex and function-constrained optimization. arXiv preprint arXiv:2412.06319,
2024.

[8] Nikhil Devanathan and Stephen Boyd. Polyak minorant method for convex optimization.
Journal of Optimization Theory and Applications, pages 1–20, 2024.

[9] John C Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 2011.

[10] Alexander Vladimirovich Gasnikov and Yu E Nesterov. Universal method for stochastic
composite optimization problems. Computational Mathematics and Mathematical Physics, 58:
48–64, 2018.

[11] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Generalized uniformly optimal methods
for nonlinear programming. Journal of Scientific Computing, 79:1854–1881, 2019.

[12] Benjamin Grimmer. Convergence rates for deterministic and stochastic subgradient methods
without lipschitz continuity. SIAM Journal on Optimization, 29(2):1350–1365, 2019. ISSN
1052-6234.

[13] Elad Hazan and Sham Kakade. Revisiting the polyak step size. arXiv preprint arXiv:1905.00313,
2019.

[14] Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dynamic
step size schedule. In International Conference on Machine Learning, pages 14465–14499.
PMLR, 2023.

[15] Ahmed Khaled and Chi Jin. Tuning-free stochastic optimization. arXiv preprint
arXiv:2402.07793, 2024.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[17] Itai Kreisler, Maor Ivgi, Oliver Hinder, and Yair Carmon. Accelerated parameter-free stochastic
optimization. In The Thirty Seventh Annual Conference on Learning Theory, pages 3257–3324.
PMLR, 2024.

[18] Guanghui Lan. Bundle-level type methods uniformly optimal for smooth and nonsmooth convex
optimization. Mathematical Programming, 149(1-2):1–45, 2015.

11

[19] Guanghui Lan, Zhaosong Lu, and Renato DC Monteiro. Primal-dual first-order methods with
iteration-complexity for cone programming. Mathematical Programming, 126(1):1–29, 2011.

[20] C. Lemaréchal, A. S. Nemirovski, and Y. E. Nesterov. New variants of bundle methods.
Mathematical Programming, 69:111–148, 1995.

[21] Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342,
2023.

[22] Zijian Liu and Zhengyuan Zhou. Stochastic nonsmooth convex optimization with heavy-tailed
noises: High-probability bound, in-expectation rate and initial distance adaptation. arXiv
preprint arXiv:2303.12277, 2023.

[23] Brendan Mcmahan and Matthew Streeter. No-regret algorithms for unconstrained online convex
optimization. Advances in neural information processing systems, 25, 2012.

[24] H Brendan McMahan and Francesco Orabona. Unconstrained online linear learning in hilbert
spaces: Minimax algorithms and normal approximations. In Conference on Learning Theory,
pages 1020–1039. PMLR, 2014.

[25] Aaron Mishkin, Ahmed Khaled, Yuanhao Wang, Aaron Defazio, and Robert Gower. Directional
smoothness and gradient methods: Convergence and adaptivity. Advances in Neural Information
Processing Systems, 37:14810–14848, 2024.

[26] Mohammad Moshtaghifar, Anton Rodomanov, Daniil Vankov, and Sebastian Stich. Dada: Dual
averaging with distance adaptation. arXiv preprint arXiv:2501.10258, 2025.

[27] Yu Nesterov. Universal gradient methods for convex optimization problems. Mathematical
Programming, 152(1):381–404, 2015.

[28] Konstantinos A Oikonomidis, Emanuel Laude, Puya Latafat, Andreas Themelis, and Panagiotis
Patrinos. Adaptive proximal gradient methods are universal without approximation. arXiv
preprint arXiv:2402.06271, 2024.

[29] Francesco Orabona. Simultaneous model selection and optimization through parameter-free
stochastic learning. Advances in Neural Information Processing Systems, 27, 2014.

[30] Francesco Orabona. Is nesterov’s universal algorithm really universal?, November 2023. Blog
post, Parameter-Free Learning and Optimization Algorithms.

[31] Francesco Orabona. Normalized gradients for all. arXiv preprint arXiv:2308.05621, 2023.

[32] Boris T Polyak. Introduction to optimization. 1987.

[33] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

[34] Anton Rodomanov, Ali Kavis, Yongtao Wu, Kimon Antonakopoulos, and Volkan Cevher. Uni-
versal gradient methods for stochastic convex optimization. arXiv preprint arXiv:2402.03210,
2024.

[35] Naum Zuselevich Shor. Minimization methods for non-differentiable functions, volume 3.
Springer Science & Business Media, 2012.

[36] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26,
2012.

[37] Paul Tseng. On accelerated proximal gradient methods for convex-concave optimization.
submitted to SIAM Journal on Optimization, 2(3), 2008.

[38] Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener,
Lucas Janson, and Sham M. Kakade. SOAP: Improving and stabilizing shampoo using adam. In
Proceedings of the 13th International Conference on Learning Representations (ICLR), 2025.

12

[39] Lin Xiao. Dual averaging method for regularized stochastic learning and online optimization.
Advances in Neural Information Processing Systems, 22, 2009.

[40] Jiujia Zhang and Ashok Cutkosky. Parameter-free regret in high probability with heavy tails.
Advances in Neural Information Processing Systems, 35:8000–8012, 2022.

[41] Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu
Ye, Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv
preprint arXiv:2406.16793, 2024.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We state the complete contributions in Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in Appendix A.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: We give all assumptions needed in Section 2, 3 and 4. We leave all the
complete proofs in Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our experimental reproduction scripts will been placed in the supplementary
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our experiments use publicly available datasets or randomly generated data
based on specific methodologies. We are committed to making our code completely open
source.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All details can be found in the paper and supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Our experimental results do not report standard deviation correlation results in
the deterministic case. We focus on the convergence rate of algorithm in the stochastic case
and do not report them too.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were conducted on personal computers, utilizing CPUs for
computations, with 16GB of RAM.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The code in submission is fully compliant with the NeurIPS code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on a theoretical problem without any societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

17

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There are no such risks in this paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets are properly credited, and the license
and terms of use are explicitly mentioned and respected in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

18

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide a complete document of our code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve such research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve such research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

19

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not involve any LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix

A Limitations 22

B Auxiliary lemmas 22

B.1 Proof of Lemma 3 . 22

B.2 Proof of auxiliary Lemmas . 22

C Missing details in Section 3 23

C.1 Proof of important lemmas . 24

C.2 Convergence analysis of AGDA . 25

C.3 Proof of Proposition Proposition 1 . 31

C.4 Proof of Theorem 1 . 32

C.5 Proof of Theorem 2 . 33

D Missing details in Section 4 34

D.1 Proof of Theorem 3 . 38

E Two approaches for automatic initialization of parameters in Algorithm 1 43

E.1 Automatic initialization of β0 . 43

E.2 Automatic initialization of r̄ . 44

F More experiment details 45

F.1 Line-search bisection method . 46

Structure of the Appendix In Section A, we discuss the limitations of our algorithms. Section B
presents the proofs of the lemmas for completeness. In Sections C and D, we provide detailed
proofs of the main results discussed in Sections 3 and 4. In Section E, we introduce two methods
for automatically setting the hyperparameters. Finally, Section F offers additional experiments to
demonstrate the advantage of the proposed algorithms.

21

A Limitations

Algorithm 1 significantly reduces the multiplicative overhead of choosing a sufficiently small pa-
rameter r̄ from a polynomial to a logarithmic factor, and lowers the average number of gradient
evaluations to one per iteration—compared to four per iteration in the Universal Fast Gradient Method
(FGM) [27]. However, this improvement comes at the cost of increased computational burden during
the line search procedure. Specifically, to accurately adapt to the local Hölder smoothness, our
method requires a more precise selection of the parameter βk, leading to a total of O(k log k) line
search operations after k iterations, whereas, in contrast, FGM only requires O(k).

B Auxiliary lemmas

B.1 Proof of Lemma 3

This result was first established in Ivgi et al. [14, Lemma 3] and Liu and Zhou [22, Lemma 30]. We
give a proof for completeness.

Proof. Let Rk = rk∑k−1
i=0 ri

and R−1
0 = 0, then for any k ≥ 0

rk+1R
−1
k+1 = rkR

−1
k + rk

rk
rk+1

= R−1
k+1 −

rk
rk+1

R−1
k .

Then
k−1∑
i=0

ri
ri+1

=

k−1∑
i=0

R−1
i+1 −

ri
ri+1

R−1
i =

k−1∑
i=0

R−1
i+1 −R

−1
i + (1− ri

ri+1
)R−1

i

= R−1
k +

k−1∑
i=0

(1− ri
ri+1

)R−1
i ≤ R−1

k∗ (1 + k −
k−1∑
i=0

ri
ri+1

),

where k∗ = argmin0≤i≤k Ri. It then follows that

Rk∗ ≤
1 + k −

∑k−1
i=0

ri
ri+1∑k−1

i=0
ri

ri+1

≤
1 + k − k(

∏k−1
i=0

ri
ri+1

)
1
k

k(
∏k−1

i=0
ri

ri+1
)

1
k

=
1 + k − k(r0rk)

1
k

k(r0rk)
1
k

≤
1− k log(r0rk)

1
k

k(r0rk)
1
k

=
1− log(r0rk)

k(r0rk)
1
k

= (
rk
r0

)
1
k

log(e rkr0)

k
.

B.2 Proof of auxiliary Lemmas

The following three-point Lemma is a well-known result. See also Chen and Teboulle [4, Lemma
3.2] and Lan et al. [19, Lemma 6]. We give a proof for the sake of completeness.

Lemma 4. For any proper lsc convex function ϕ : Rd → R ∪ {+∞}, any z ∈ domϕ and β > 0.
Let z+ = argminx∈domϕ{ϕ(x) + β

2 ∥z − x∥
2}. Then, we have

ϕ(x) +
β

2
∥z − x∥2 ≥ ϕ(z+) +

β

2
∥z − z+∥2 +

β

2
∥z+ − x∥2,∀x ∈ Rd. (22)

22

Proof.

1

2
∥z+ − x∥2 +

1

2
∥z − z+∥2 −

1

2
∥z − x∥2 =

1

2
∥x∥2 − ⟨z+, x⟩+

1

2
∥z+∥2

+
1

2
∥z∥2 − ⟨z, z+⟩+

1

2
∥z+∥2

− 1

2
∥z∥2 + ⟨z, x⟩ − 1

2
∥x∥2

=⟨z − z+, x− z+⟩.

In view of the first-order optimal condition at z+, we have

⟨∇ϕ(z+) + β(z+ − z), x− z+⟩ ≥ 0.

Combining the two inequalities above, we have

β

2
∥z+ − x∥2 +

β

2
∥z − z+∥2 −

β

2
∥z − x∥2 = β⟨z − z+, x− z+⟩

≤ ⟨∇ϕ(z+), x− z+⟩
≤ ϕ(x)− ϕ(z+),

where the last inequality uses the convexity of ϕ(·).

Lemma 5. For any u ≥ 0, k ≥ 0, there exits a positive constant cu such that:

(k + 1)u − ku ≥ cu(k + 1)u−1, (23)

where cu only depends on u.

Proof. When k = 0, we have (1)u − 0u = 1u = 1u−1 = 1. Now consider k > 0. We distinguish
between two cases.

Case 1: If u ≥ 1, we have

(k + 1)u − ku = u

∫ k+1

k

xu−1dx ≥ uku−1

and hence (
k

k + 1

)u−1

≥
(
1

2

)u−1

.

Therefore,

(k + 1)u − ku ≥ u(1
2
)u−1(k + 1)u−1.

Case 2: 0 ≤ u < 1,

(k + 1)u − ku = u

∫ k+1

k

xu−1dx ≥ u(k + 1)u−1.

Therefore, we can set cu = u(12)
u−1.

C Missing details in Section 3

In this section, we provide a detailed convergence analysis of Algorithm 1. For the sake of simplicity,
we define the following notations.

ϕk+1(x) =

k+1∑
i=1

ai[f(x
i) + ⟨∇f(xi), x− xi⟩+ g(x)] +

βk+1

2
∥x0 − x∥2,

ηk =
βk+1r̄

2
k − βkr̄2k−1

8ak+1
,

Using this definition, it follows that ϕ0(x) = β0

2 ∥x
0 − x∥2.

23

C.1 Proof of important lemmas

To begin our analysis, we first prove the key bound (6) used in universal gradient methods. The
bound (6) ensures that these methods can be accelerated by line search without prior knowledge
about ν and Lν .

The following result is from [[27], Lemma 2]. We give a proof for completeness.

Lemma 6. Let γ(M̂ν , δ) = γν(M̂ν , δ) = (1−ν
1+ν

1
δ)

1−ν
1+ν M̂

2
1+ν
ν , where ν ∈ [0, 1] and δ > 0. Here, we

set (1−1
1+1

1
δ)

1−1
1+1 = 1. Suppose that for any x, y ∈ B3D0

(x∗), we have

∥∇f(x)−∇f(y)∥∗ ≤ M̂ν∥x− y∥ν . (24)

Then, for any x, y ∈ B3D0(x
∗) we have

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ γ(M̂ν , δ)

2
∥x− y∥2 + δ

2
. (25)

Proof. Note that the condition (24) immediately implies

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ M̂ν

1 + ν
∥x− y∥1+ν

from basic convex analysis.

For any a, b ∈ R+ and p, q ≥ 1, 1p + 1
q = 1, applying Young’s inequality we obtain

ap

p
+
bq

q
≥ ab. (26)

We choose p = 2
1+ν , q = 2

1−ν , a = t1+ν and b = (1+ν
1−ν

δ

M̂ν
)

1−ν
1+ν and have

(1 + ν)t2

2
+

(1− ν)(1+ν
1−ν

δ

M̂ν
)

2
1+ν

2
≥ t1+ν(

1 + ν

1− ν
δ

M̂ν

)
1−ν
1+ν

(1 + ν)t2

2
(
1− ν
1 + ν

M̂ν

δ
)

1−ν
1+ν +

(1 + ν)δ

2M̂ν

≥ t1+ν

t2

2
(
1− ν
1 + ν

1

δ
)

1−ν
1+ν M̂

2
1+ν
ν +

δ

2
≥ t1+ν

1 + ν
M̂ν

t2

2
γ(M̂ν , δ) +

δ

2
≥ t1+ν

1 + ν
M̂ν .

We set t = ∥x− y∥ and obtain (25) directly.

To demonstrate the primary convergence results in Section 3, we first establish some useful lemmas
regarding the well-definedness of line search and the boundedness of the iterates.
Lemma 7. Let g : Rd → R∪ {+∞} be a proper lsc convex function. For a given vector c ∈ Rd and
point x0 ∈ Rd, define the function z(h) for any h > 0 as: z(h) := argminx∈Rd{⟨c, x⟩ + g(x) +
h∥x0 − x∥2}. Then, the function ∥x0 − z(h)∥ is monotonically decreasing in h and converges to 0
as h→ +∞.

Proof. First, we prove ∥x0 − z(h)∥ is monotonically decreasing in h. For any h1, h2 such that
h2 > h1 > 0, in view of the optimality of z(h1) and z(h2), we have

⟨c, z(h1)⟩+ g(z(h1)) + h1∥x0 − z(h1)∥2 ≤ ⟨c, z(h2)⟩+ g(z(h2)) + h1∥x0 − z(h2)∥2 (27)

and

⟨c, z(h1)⟩+ g(z(h1)) + h2∥x0 − z(h1)∥2 ≥ ⟨c, z(h2)⟩+ g(z(h2)) + h2∥x0 − z(h2)∥2. (28)

24

Combining (28) and (27) and noticing that h2 − h1 > 0, we have

(h2 − h1)∥x0 − z(h1)∥2 ≥ (h2 − h1)∥x0 − z(h2)∥2,
which implies

∥x0 − z(h1)∥ ≥ ∥x0 − z(h2)∥.

Next, we prove limh→+∞ ∥x0 − z(h)∥ = 0 by contradiction. If there exists δ > 0, for any
h ∈ R+, ∥x0 − z(h)∥ ≥ δ, then we have

⟨c, z(h)⟩+ g(z(h)) + h∥x0 − z(h)∥2 ≥ ⟨c, z(h)⟩+ g(z(h)) + hδ2.

Let us consider h > h0 > 0. Uusing the optimality of z(h0), we obtain

⟨c, z(h)⟩+ g(z(h)) + h0∥x0 − z(h)∥2 ≥ ⟨c, z(h0)⟩+ g(z(h0)) + h0∥x0 − z(h0)∥2,
Note that monotonicity proved above implies ∥x0 − z(h)∥ ≤ ∥x0 − z(h0)∥, together with the above
inequality, we have

⟨c, z(h)⟩+ g(z(h)) ≥ ⟨c, z(h0)⟩+ g(z(h0)).

Moreover, using the optimality at z(h) and the lower boundedness ∥x0 − z(h)∥ ≥ δ, we have

⟨c, x0⟩+ g(x0) ≥ ⟨c, z(h)⟩+ g(z(h)) + h∥x0 − z(h)∥2 ≥ ⟨c, z(h0)⟩+ g(z(h0)) + hδ2. (29)

Since h can be arbitrarily large, this result is impossible unless δ = 0.

C.2 Convergence analysis of AGDA

Outline The analysis of AGDA is slightly more involved than the standard complexity analysis for
smooth problems, as we must simultaneously prove the boundedness of the iterates and establish the
convergence rate. Our proof strategy is centered on an inductive argument. To proceed, we outline
the structure of the analysis. Lemma 1 and Lemma 2 develop crucial results regarding one-step
iteration, including the success of the line search, convergence error, and the boundedness of the
iterates, assuming that all previous steps are well-defined. This serves as the foundational building
block for our inductive analysis. Lemma 8 establishes growth bounds on βk. Building on this,
Proposition 1 addresses the complexity of the line search step. By employing mathematical induction,
we conclude in Theorem 1 the boundedness property of all iterates and establish key convergence
properties of yk+1. Finally, utilizing the technique of distance-adaptive stepsizes, we derive the
overall convergence rate of AGDA in Theorem 2.

Next, we establish an important property about the convergence of the algorithm.

Proof of Lemma 1

Proof. Since lk(βk+1) ≥ 0, we have

lk(βk+1) =− f(τkvk+1(βk+1) + (1− τk)yk) + f(xk+1) + ⟨∇f(xk+1), τkv
k+1(βk+1)

+(1− τk)yk−xk+1⟩+ βk+1

64τ2kAk+1
∥τkvk+1(β) + (1− τk)yk − xk+1∥2 +

βr̄2k − βkr̄2k−1

16Ak+1
≥ 0,

(30)
i.e.,

f(yk+1) ≤ f(xk+1) + ⟨∇f(xk+1), yk+1 − xk+1⟩+ βk+1

64τ2kAk+1
∥yk+1 − xk+1∥2 + τkηk

2
.

Because xk+1 = τkv
k+(1−τk)yk, yk+1 = τkv

k+1+(1−τk)yk and ηk =
βk+1r̄

2
k−βk r̄

2
k−1

8ak+1
, it holds

f(yk+1) ≤(1− τk)(f(xk+1) + ⟨∇f(xk+1), yk − xk+1⟩) + τk(f(x
k+1) + ⟨∇f(xk+1), vk+1 − xk+1⟩)

+
βk+1

64τ2kAk+1
τ2k∥vk+1 − vk∥2 +

βk+1r̄
2
k − βkr̄2k−1

16Ak+1

≤(1− τk)f(yk) + τk(f(x
k+1) + ⟨∇f(xk+1), vk+1 − xk+1⟩)

+
βk+1

64Ak+1
∥vk+1 − vk∥2 +

βk+1r̄
2
k − βkr̄2k−1

16Ak+1
.

25

Multiplying both sides by Ak+1, we have

Ak+1f(y
k+1) ≤Akf(y

k) + ak+1(f(x
k+1) + ⟨∇f(xk+1), vk+1 − xk+1⟩)

+
βk+1

64
∥vk+1 − vk∥2 +

βk+1r̄
2
k − βkr̄2k−1

16
.

Note that

∥vk+1 − vk∥2 ≤ (∥vk+1 − x0∥+ ∥vk − x0∥)2 ≤ (2max{∥vk+1 − x0∥, ∥vk − x0∥})2 ≤ 4r̄2k+1.

It follows that

Ak+1f(y
k+1) ≤Akf(y

k) + ak+1(f(x
k+1) + ⟨∇f(xk+1), vk+1 − xk+1⟩)

+
βk
64
∥vk+1 − vk∥2 + βk+1 − βk

64
4r̄2k+1 +

βk+1r̄
2
k − βkr̄2k−1

16

≤Akf(y
k) + ak+1(f(x

k+1) + ⟨∇f(xk+1), vk+1 − xk+1⟩)

+
βk
2
∥vk+1 − vk∥2 + βk+1 − βk

16
r̄2k+1 +

βk+1r̄
2
k − βkr̄2k−1

16

≤Akf(y
k) + ak+1(f(x

k+1) + ⟨∇f(xk+1), vk+1 − xk+1⟩)

+
βk
2
∥vk+1 − vk∥2 +

βk+1r̄
2
k+1 − βkr̄2k
16

+
βk+1r̄

2
k − βkr̄2k−1

16
,

(31)

where the last inequality uses r̄k+1 ≥ r̄k.

On the other hand, since g(·) is convex, we have

g(yk+1) ≤ (1− τk)g(yk) + τkg(v
k+1). (32)

Combining (31) and (32), we obtain

Ak+1ψ(y
k+1) ≤Akψ(y

k) + ak+1(f(x
k+1) + ⟨∇f(xk+1), vk+1 − xk+1⟩+ g(vk+1))

+
βk
2
∥vk+1 − vk∥2 +

βk+1r̄
2
k+1 − βkr̄2k
16

+
βk+1r̄

2
k − βkr̄2k−1

16
,

For βk

2 ∥v
k+1 − vk∥2, we use Lemma 4, then

Ak+1ψ(y
k+1) ≤Akψ(y

k) + ak+1(f(x
k+1) + ⟨∇f(xk+1), vk+1 − xk+1⟩+ g(vk+1))

+

k∑
i=1

ai(f(x
i) + ⟨∇f(xi), vk+1 − xi⟩+ g(vk+1)) +

βk
2
∥x0 − vk+1∥2

−
k∑

i=1

ai(f(x
i) + ⟨∇f(xi), vk − xi⟩+ g(vk))− βk

2
∥x0 − vk∥2

+
βk+1r̄

2
k+1 − βkr̄2k
16

+
βk+1r̄

2
k − βkr̄2k−1

16

≤Akψ(y
k) +

k+1∑
i=1

ai(f(x
i) + ⟨∇f(xi), vk+1 − xi⟩+ g(vk+1)) +

βk+1

2
∥x0 − vk+1∥2

−
k∑

i=1

ai(f(x
i) + ⟨∇f(xi), vk − xi⟩+ g(vk))− βk

2
∥x0 − vk∥2

+
βk+1r̄

2
k+1 − βkr̄2k
16

+
βk+1r̄

2
k − βkr̄2k−1

16
.

(33)

We can shorten the inequality (33) by using the definition of ϕk(·):

Ak+1ψ(y
k+1) ≤ Akψ(y

k) + ϕk+1(v
k+1)− ϕk(vk) +

βk+1r̄
2
k+1 − βkr̄2k
16

+
βk+1r̄

2
k − βkr̄2k−1

16
.

26

Applying the upper inequality recursively, it holds

Ak+1ψ(y
k+1) ≤ϕk+1(v

k+1)− ϕ0(v0) +
k∑

i=0

βi+1r̄
2
i+1 − βir̄2i
16

+

k∑
i=0

βi+1r̄
2
i − βir̄2i−1

16

≤ϕk+1(v
k+1) +

βk+1

16
r̄2k+1 −

β0
16
r̄20 +

βk+1

16
r̄2k −

β0
16
r̄2−1

≤ϕk+1(v
k+1) +

βk+1

16
r̄2k+1 +

βk+1

16
r̄2k+1

≤ϕk+1(v
k+1) +

βk+1

8
r̄2k+1.

where ϕ0(v0) = 0 and β0 > 0.

Since vk+1 = argmin
x
ϕk+1(x), we use Lemma 4 again and obtain that:

Ak+1ψ(y
k+1) ≤ϕk+1(v

k+1) +
βk+1

8
r̄2k+1

=

k+1∑
i=1

ai(f(x
i) + ⟨∇f(xi), vk − xi⟩+ g(vk)) +

βk+1

2
∥x0 − vk+1∥2 + βk+1

8
r̄2k+1

≤
k+1∑
i=1

ai(f(x
i) + ⟨∇f(xi), x∗ − xi⟩+ g(x∗)) +

βk+1

2
∥x0 − x∗∥2 − βk+1

2
∥vk+1 − x∗∥2

+
βk+1

8
r̄2k+1

≤Ak+1ψ(x
∗) +

βk+1

2
∥x0 − x∗∥2 − βk+1

2
∥vk+1 − x∗∥2 + βk+1

8
r̄2k+1.

Finally, we use D0 and Dk+1 to replace ∥x0 − x∗∥ and ∥vk+1 − x∗∥ and have

Ak+1ψ(y
k+1) ≤ Ak+1ψ(x

∗) +
βk+1

2
D2

0 −
βk+1

2
D2

k+1 +
βk+1

8
r̄2k+1

ψ(yk+1)− ψ(x∗) ≤
βk(D

2
0 −D2

k+1)

2Ak+1
+
βkr̄

2
k+1

8Ak+1
.

Note that the convergence result above is conditioned on the success of the line search, which further
requires the boundedness of the iterates. We prove these important properties in the following lemma.

Proof of Lemma 2

Proof. For clarity, we divide the proof into the following parts.

Part 1: Finite termination of the line search.

Given the value of xk, yk, Ak+1, τk , r̄k, r̄k−1, and βk, lk(β) is defined by

lk(β) :=− f(τkvk+1(β) + (1− τk)yk) + f(xk+1) + ⟨∇f(xk+1), τkv
k+1(β)

+(1− τk)yk−xk+1⟩+ β

64τ2kAk+1
∥τkvk+1(β) + (1− τk)yk − xk+1∥2 +

βr̄2k − βkr̄2k−1

16Ak+1
,

(34)

where vk+1(β) := argminx∈Rd

∑k+1
i=1 ai(⟨∇f(xi), x⟩+ g(x)) + β

2 ∥x− x
0∥2, β ∈ R+.

We analyze the function vk+1(β) and lk(β) first. vk+1(β) ∈ dom g is well-defined and unique since∑k
i=1 ai(⟨∇f(xi), x⟩ + g(x)) + β

2 ∥x − x
0∥, β ∈ R+ is strong convex and has a unique optimal

solution. We claim that g(x) restricted to dom g is continuous since it is convex and lsc. The convexity
guarantees g(x) is continuous at the interior point of dom g, and lower semicontinuity guarantees

27

that it maintains the continuity on the remaining points of dom g. Thus vk(β) is continuous. Since
lk(β) is the composition of continuous functions, it is also continuous.

Next, we discuss the behavior of lk(β) when β → +∞. Recall that we assume xk, vk, yk ∈
B3D0(x

∗), we shall first prove that the line search for yk+1 must be finitely terminated. Specifically,
applying Lemma 7 with c =

∑k+1
i=1 ∇f(xi) and h = β

2 , we have that for a sufficiently large value β̂,
when β ≥ β̂, ∥x0 − vk+1(β)∥ ≤ 2D0, which further implies ∥x∗ − vk+1(β)∥ ≤ 3D0.

Let us consider β ≥ βTH
k+1, δ > 0, where

βTH
k+1 := max

{
β̂,

8Ak+1δ + βkr̄
2
k−1

r̄2k
, 32τ2kAk+1γ(M̂ν , δ), βk

}
we must have vk+1(β) ∈ B3D0

(x∗). Since yk+1(β) is a convex combination of vk+1(β) and yk, we
have yk+1(β) ∈ B3D0(x

∗). Similarly, we have xk+1 ∈ B3D0(x
∗). Lemma 6 implies

f(yk+1(β)) ≤ f(xk+1) + ⟨∇f(x), y − x⟩+ γ(M̂ν , δ)

2
∥x− y∥2 + δ

2
,∀x, y ∈ B3D0

(x∗). (35)

Moreover, due to the definition of βTH
k+1, we have

γ(M̂ν , δ)

2
≤ β

64τ2kAk+1
, and

δ

2
≤
βr̄2k − βkr̄2k−1

16Ak+1
.

Combining the above two results, we conclude that lk(β) ≥ 0. That is, lk(β) remains nonnegative
when β exceeds a certain threshold, and hence the search will terminate in finitely many steps.

Furthermore, we would like to point out that 2βTH
k+1 is another threshold. For any β ≥ 2βTH

k+1, we
have lk(β) > 0. The reason is that the following inequalities hold:

γ(M̂ν , δ)

2
≤ β

64τ2kAk+1
<

2β

64τ2kAk+1
, and

δ

2
≤
βr̄2k − βkr̄2k−1

16Ak+1
<

2βr̄2k − βkr̄2k−1

16Ak+1
.

The second stage of the line search procedure also ends in finite steps as it employs a simple bisection
method.

Part 2: Boundedness of the (k + 1)-th iterates.

First, we immediately have xk+1 = τkv
k + (1 − τk)yk ∈ B3D0(x

∗) by the assumption. Next, we
prove yk+1, vk+1 ∈ B3D0(x

∗). Part 1 implies li(βi+1) ≥ 0 (i = 0, 1, . . . , k). Applying Lemma 1,
we have

ψ(yk+1)− ψ(x∗) ≤
βk+1(D

2
0 −D2

k+1)

2Ak+1
+
βk+1r̄

2
k+1

8Ak+1
. (36)

We shall consider two cases.

Case 1: r̄k+1 = r̄k, then rk+1 ≤ r̄k ≤ 4D0;

Case 2: r̄k+1 = rk+1. Due to the non-negativity of the optimality gap and (36), we have

0 ≤
βk+1[D

2
0 −D2

k+1]

2Ak+1
+
βk+1r

2
k+1

8Ak+1
.

By dividing both sides by βk+1

2Ak+1
, we obtain

0 ≤ D2
0 −D2

k+1 +
r2k+1

4
,

which implies:

Dk+1 ≤

√
D2

0 +
r2k+1

4
≤ D0 +

rk+1

2
.

28

By the triangle inequality, we have:

rk+1 ≤ D0 +Dk+1 ≤ D0 +D0 +
rk+1

2
rk+1 ≤ 4D0.

By repeatedly using the Dk ≤ D0 +
r̄k
2 , we have:

Dk ≤ D0 +
rk
2
≤ D0 + 2D0 ≤ 3D0.

That is, ∥vk+1 − x∗∥ ≤ 3D0 and thus vk+1 ∈ B3D0
(x∗). Thus, we have yk+1 ∈ B3D0

(x∗) as well
since yk+1 is the convex combination of vk+1 and yk.

The following lemma develops an upper bound of βk.

Lemma 8. Suppose f(·) is locally Hölder smooth in B3D0(x
∗) and β0 ≤ 27IνM̂ν r̄

ν . In Algorithm 1,
for any k ≥ 0, given ϵlk+1 > 0, if at least one of the following two propositions holds:

1. lk(βk) ≥ 0, in which case we set βk+1 = βk;

2. there exists a root β∗
k+1 where lk(β∗

k+1) = 0 and the line search returns a value satisfying
βk+1 ≤ β∗

k+1 + ϵlk+1.

Then, we have

βk ≤ 27IνM̂ν r̄
ν
k−1k

3−3v
2 +

k∑
i=1

ϵli. (37)

Proof. First, we estimate the growth of ak+1. We have

ak+1 = Ak+1 −Ak =
(
A

1
2

k+1 −A
1
2

k

)(
A

1
2

k+1 +A
1
2

k

)
≤ 2 r̄

1
2

k A
1
2

k+1,

which gives
a2k+1 ≤ 4r̄kAk+1.

Next, for β∗
k+1 that satisfies lk(β∗

k+1) = 0, applying Lemma 1, we have

yk+1(β∗
k+1) ∈ B3D0

(x∗), (38)

where yk+1(β) is defined in the main text of the paper.

lk(β
∗
k+1) = 0 implies that

f(yk+1(β∗
k+1)) = f(xk+1) + ⟨∇f(xk+1), yk+1(β∗

k+1)− xk+1⟩

+
β∗
k+1

64τ2kAk+1
∥yk+1(β∗

k+1)− xk+1∥2 +
β∗
k+1r̄

2
k − βkr̄2k−1

16Ak+1
.

(39)

Applying Lemma 6, we have

f(yk+1(β∗
k+1)) = f(xk+1) + ⟨∇f(xk+1), yk+1(β∗

k+1)− xk+1⟩

+
γ(M̂ν , δ)

2
∥yk+1(β∗

k+1)− xk+1∥2 + δ

2
.

(40)

We take δ = β∗
k+1r̄

2
k−βk r̄

2
k−1

8Ak+1
, then combine (39) and (40), we have

β∗
k+1

32τ2kAk+1
≤ γ

(
M̂ν ,

β∗
k+1r̄

2
k − βkr̄2k−1

8Ak+1

)
; (41)

We prove this lemma by induction. By the assumption on β0, it holds for k = 0. Next, we assume it
is valid for some k.

29

Case 1: The line search is satisfied by the previous step size (βk+1 = βk).

The inductive hypothesis is trivially satisfied for k + 1:

βk+1 = βk ≤ 27IνM̂ν r̄
ν
k−1k

3−3v
2 +

k∑
i=1

ϵli ≤ 27IνM̂ν r̄
ν
k(k + 1)

3−3v
2 +

k+1∑
i=1

ϵli,

where the final inequality holds because r̄k is non-decreasing.

Case 2: The line search requires a new step size (βk+1 > βk).

Case 2.a: βk+1 ≤ β∗
k+1 + ϵlk+1 and ν = 1.

β∗
k+1

32τ2kAk+1
≤(8Ak+1

β∗
k+1r̄

2
k − βkr̄2k−1

)0M̂ν = M̂ν

β∗
k+1 ≤27M̂ν r̄k = 27IνM̂ν r̄k

βk+1 ≤27IνM̂ν r̄k + ϵli ≤ 27IνM̂ν r̄k +

k+1∑
i=1

ϵli.

Case 2.b: βk+1 ≤ β∗
k+1 + ϵlk+1 and ν ̸= 1. First we analyze β∗

k+1. Since β∗
k+1 is the maximal zero

point of lk(·), applying Lemma 6, we have

β∗
k+1

32τ2kAk+1
≤ γ(M̂ν ,

β∗
k+1r̄

2
k − βkr̄2k−1

8Ak+1
),

i.e.

β∗
k+1

32τ2kAk+1
≤
(
1− ν
1 + ν

8Ak+1

β∗
k+1r̄

2
k − βkr̄2k−1

) 1−ν
1+ν

M̂
2

1+ν
ν ≤

(
8Ak+1

(β∗
k+1 − βk)r̄2k

) 1−ν
1+ν

M̂
2

1+ν
ν .

It can be rewritten in the following form:

β∗
k+1(β

∗
k+1 − βk)

1−ν
1+ν ≤ 2

10+4ν
1+ν r̄

2ν
1+ν

k (k + 1)2
1−ν
1+ν M̂

2
1+ν
ν .

As βk+1 increases with βk+1 ≥ βk, the left-hand side also increases. Thus, by identifying a value
where the left-hand side is at most equal to the right-hand side, we can determine an upper bound for
βk+1.

Let cν = 27(1
1−ν)

1+ν
2 M̂ν . For cν r̄νk(k + 1)

3−3ν
2 +

∑k
i=1 ϵ

l
i, we have

(cν r̄
ν
k(k + 1)

3−3ν
2 +

k∑
i=1

ϵli)(cν r̄
ν
k(k + 1)

3−3ν
2 +

k∑
i=1

ϵli − βk)
1−ν
1+ν

≥(cν r̄νk(k + 1)
3−3ν

2 +

k∑
i=1

ϵli)(cν r̄
ν
k(k + 1)

3−3ν
2 +

k∑
i=1

ϵli − cν r̄νk−1k
3−3ν

2 −
k∑

i=1

ϵli)
1−ν
1+ν

≥(cν r̄νk(k + 1)
3−3ν

2 +

k∑
i=1

ϵli)(cν r̄
ν
k(k + 1)

3−3ν
2 − cν r̄νk−1k

3−3ν
2)

1−ν
1+ν

≥cν r̄νk(k + 1)
3−3ν

2 (cν r̄
ν
k(k + 1)

3−3ν
2 − cν r̄νkk

3−3ν
2)

1−ν
1+ν

≥c
2

1+ν
ν r̄

2ν
1+ν

k (k + 1)
3−3ν

2 ((k + 1)
3−3ν

2 − k
3−3ν

2)
1−ν
1+ν

(42)

30

Since 3−3v
2 ∈ [0, 32], and min

1≤u≤ 3
2

(12)
u−1 = 2−

1
2 > 1

2 , 3−3v
2 (12)

3−3v
2 −1 ≥ 3−3v

4 . Applying lemma 5,

it holds that
c

2
1+ν
ν r̄

2ν
1+ν

k (k + 1)
3−3ν

2 ((k + 1)
3−3ν

2 − k
3−3ν

2)
1−ν
1+ν

≥3− 3ν

4
c

2
1+ν
ν r̄

2ν
1+ν

k (k + 1)
3−3ν

2 ((k + 1)
1−3ν

2)
1−ν
1+ν

≥3− 3ν

4
(

1

1− ν
)2

14
1+ν M̂

2
1+ν
ν r̄

2ν
1+ν

k (k + 1)
3−3ν

2 ((k + 1)
1−3ν

2)
1−ν
1+ν

≥2
10+4ν
1+ν M̂

2ν
1+ν
ν r̄

2ν
1+ν

k (k + 1)2
1−ν
1+ν

(43)

This inequality implies that β∗
k+1 ≤ 27IνM̂ν r̄

ν
k(k + 1)

3−3ν
2 +

∑k
i=1 ϵ

l
i and βk+1 ≤ β∗

k+1 + ϵlk+1 ≤
27IνM̂ν r̄

ν
k(k + 1)

3−3ν
2 +

∑k+1
i=1 ϵ

l
i.

Moreover, since we set ϵlk = β0

2k2 , we can obtain an upper bound of βk as follows

βk+1 ≤ 27IνM̂ν r̄
ν
k(k+1)

3−3ν
2 +

k+1∑
i=1

β0
2i2
≤ 27IνM̂ν r̄

ν
k(k+1)

3−3ν
2 +β0 ≤ 28IνM̂ν r̄

ν
k(k+1)

3−3ν
2 .

C.3 Proof of Proposition Proposition 1

Proof. In the proof of Lemma 2, we have proved that the first stage of the line search terminates in a
finite number of steps, and thus lk(2i

′
k−1βk) ≥ 0. Moreover, we also proved that lk(·) is continuous.

Next, we show that at least one of the two propositions mentioned in Proposition 1 is correct.

When i′k = 1, we have lk(2i
′
k−1βk) = lk(βk) ≥ 0. Thus, the first proposition holds in this case.

When i′k > 1, we have lk(2i
′
k−1βk) ≥ 0 and lk(2i

′
k−2βk) < 0. Since lk(·) is continuous, based

on the intermediate value theorem, there exists at least one root in the interval [2i
′
k−2βk, 2

i′k−1βk].
Moreover, as previously discussed in Lemma 2, there exists a threshold 2βTH such that for any
β ≥ 2βTH

k+1, lk(β) > 0. Now, since lk(β) has at least one root and the set of roots has an upper
bound, there exists a maximal root β∗

k+1 of the continuous function lk(·), and therefore the second
proposition holds.

It remains to estimate the upper bound of the amount of searching. Without loss of generality, we
assume that β0 ≤ 27IνM̂ν r̄

v in the Algorithm 1. This is a common assumption in the previous work,
for example, see [27], and it is reasonable since the upper bound of the searched value increases
polynomially in k. The initial value of the searched value is not very sensitive. Thus all the conditions
of Lemma 8 are satisfied, we apply it to obtain that βk+1 ≤ O(k

3−3ν
2).

The first stage in the line search in the k-th iteration starts from βk to at most 2βk+1. So the
length of the interval is at most 2βk+1 − βk and this stage in line search procedure requires at most
i′k ≤ 1 + log(2βk+1

βk
) times in the k-th iteration. We sum them up and obtain that up to the k-th

iteration, the total amount of line search operations in the first stage is at most
k∑

j=1

i′j ≤ (1 + log 2)k + log(
βk+1

β0
) ≤ O(k + log k).

The second step in line search process in the k-th iteration start from 2ik−1βk to at most 2ikβk.
Hence, the interval length is at most 2ikβk − 2ik−1βk = 2ik−1βk ≤ βk+1 and this step of process
requires at most i∗k − i′k ≤ 1+ log(βk+1

ϵlk+1

) times in the k-th iteration. We sum them up and obtain that

up to the k-th iteration, the total amount of line search operations in the first part is at most
k∑

j=1

i∗j ≤ k +
k∑

i=1

log

(
βi
ϵli

)
= k + log

(
k∏

i=1

βi

)
− log

(
k∏

i=1

ϵli

)
≤ O(k log k),

where we apply Lemma!8 to estimate βk.

To summarize, the total amount of line search operations is O(k log k).

31

C.4 Proof of Theorem 1

Proof. We first prove the first part of this theorem. We apply Lemma 1 and 2 to prove it by induction.
First, x0 = v0 = y0 ∈ B3D0

(x∗). Next, we assume it holds for some k ≥ 0.

Since xk, vk, yk ∈ B3D0(x
∗), we have lk(βk+1) ≥ 0 and xk+1, vk+1, yk+1 ∈ B3D0(x

∗) by
Lemma 2. Thus, applying Lemma 1, it holds that

ψ(yk+1)− ψ(x∗) ≤
βk+1(D

2
0 −D2

k+1)

2Ak+1
+
βk+1r̄

2
k+1

8Ak+1
. (44)

Therefore, for any k > 0, we have

ψ(yk)− ψ(x∗) ≤ βk(D
2
0 −D2

k)

2Ak
+
βkr̄

2
k

8Ak
. (45)

Then, we prove the second part of this Theorem. The proof is similar to that of Lemma 2. For
completeness, we give a proof directly using the conclusion obtained in the first part and induction.

Since we assume r̄ ≤ 4D0, then r̄0 = r̄ ≤ 4D0. Next, we assume it holds for certain k ≥ 0, then
xk+1 = τkv

k + (1− τk)yk lies in B3D0
(x∗).

Case 1: r̄k+1 = r̄k, then rk+1 ≤ r̄k ≤ 4D0;

Case 2: r̄k+1 = rk+1. Applying the conclusion obtained in the first part, we have

0 ≤ ψ(yk+1)− ψ(x∗) ≤
βk+1(D

2
0 −D2

k+1)

2Ak+1
+
βk+1r̄

2
k+1

8Ak+1
. (46)

Then it holds that

0 ≤ D2
0 −D2

k+1 +
r2k+1

4

D2
k+1 ≤ D2

0 +
r2k+1

4

Dk+1 ≤

√
D2

0 +
r2k+1

4
≤ D0 +

rk+1

2
.

By the triangle inequality, we have:

rk+1 ≤ D0 +Dk+1 ≤ D0 +D0 +
rk+1

2
rk+1 ≤ 4D0.

Repeat using the Dk ≤ D0 +
r̄k
2 , we have:

Dk ≤ D0 +
rk
2
≤ D0 + 2D0 ≤ 3D0.

That is, ∥vk+1 − x∗∥ ≤ 3D0 and thus vk+1 ∈ B3D0
(x∗). yk+1 ∈ B3D0

(x∗) as well since yk+1 is
convex combination of vk+1 and yk.

In conclusion, we prove that for any i ∈ N, ∥vi − x0∥ ≤ 4D0 and ∥vi − x∗∥ ≤ 3D0.

The boundedness property is essential for us to remove the standard global Hölder smoothness
assumption on the whole domain. Instead, we can safely use the local Hölder smoothness assumption
as all the iterates remain in the ball B3D0

(x∗).

Finally, all the preparatory work for Theorem 2 is now complete. Proposition 1 ensures the practical
implementability of the algorithm, while the first part of Lemma 1 and Theorem 1 provides the tool
needed to analyze the convergence rate. Furthermore, Theorem 1, Lemma 3, and Lemma 8 ensure
that the convergence rate achieves the best-known rate.

32

C.5 Proof of Theorem 2

Proof. Using the triangle inequality, it holds that

Dk ≥ |D0 − rk|
D2

k ≥ D2
0 − 2D0rk + r2k

2D0rk ≥ D2
0 −D2

k.

(47)

In view of Theorem 1, we have

ψ(yk)− ψ(x∗) ≤ βk[D
2
0 −D2

k]

2Ak
+
βkr̄

2
k

8Ak
≤ 2βkD0rk

2Ak
+
βkr̄

2
k

8Ak
≤ βkD0r̄k

Ak
+
βkr̄

2
k

8Ak
, (48)

where we use (47).

Applying Theorem 1, we can match the right hand side of inequality (48):

ψ(yk)− ψ(x∗) ≤ βkD0r̄k
Ak

+
4βkD0r̄k

8Ak
≤ 3βkD0r̄k

2Ak
, (49)

Denote k∗ = argmin
0≤i≤k

r̄
1
2
k∑k−1

i=0 r̄
1
2
i

. Applying Lemma 3 gives

r̄
1
2

k∗∑k∗−1
i=0 r̄

1
2
i

≤
(r̄kr̄0)

1
2×

1
k log e(r̄kr̄0)

1
2

k
≤

(4D0

r̄)
1
2k log e 4D0

r̄

2k
. (50)

Without loss of generality, we assume that β0 ≤ 27IνM̂ν r̄
v in Algorithm 1. This assumption is

similar to the justification provided in the proof of Proposition 1.

Thus, for k∗, combining the inequality (50) and Lemma 8, it holds that

min
y∈{y0,y1...yk}

ψ(y)− ψ(x∗) ≤ψ(yk
∗
)− ψ(x∗)

≤3βk∗D0r̄k∗

2Ak∗

≤3

2
βk∗D0

(
r̄

1
2

k∗∑k∗−1
i=0 r̄

1
2
i

)2

≤3

2
× 28IνM̂νD0r̄

ν
k∗k∗

3−3v
2

(
(4D0

r̄)
1
2k log e 4D0

r̄

2k

)2

≤384Iν(
4D0

r̄
)

1
k log2 e

4D0

r̄

M̂νD0r̄
ν
k∗k∗

3−3v
2

k2

≤384Iν(
4D0

r̄
)

1
k log2 e

4D0

r̄

M̂νD
1+ν
0 k

3−3v
2

k2

≤384Iν(
4D0

r̄
)

1
k log2 e

4D0

r̄

M̂νD
1+ν
0

k
1+3v

2

,

(51)

where we use the fact (k∗)
3−3v

2 ≤ k 3−3v
2 .

It remains to use that ψ(zk) = miny∈{y0,y1...yk} ψ(y) by definition. Since (4D0

r̄)
1
k ≤ 2 when

k ≥ log(4D0

r̄)/ log 2, the convergence rate of Algorithm 1 is

O

(
M̂νD

1+ν
0 log2 eD0

r̄

k
1+3ν

2

)
. (52)

33

Remark 5. In the proof of Theorem 2, we show that the convergence rate of Algorithm 1 has a
multiplicative factor Iν . In fact, we can set Ak+1 = (

∑k
i=0 r̄

1
n
i)n, where n ≥ 2, n ∈ Z+. By doing

this, we can achieve a result similar to that of Theorem 2. If we choose n ≥ 3, then the multiplicative
factor Iν will be replaced by another constant, which does not depend on ν, as Iν is generated by
Lemma 5.

D Missing details in Section 4

In this section, we provide the detailed proof of the results in Section 4 and conduct the convergence
rate of Algorithm 2. For the stochastic case, we use the notation −ξk to present the other random
variables except ξk. The proofs are similar to the deterministic case, however, we do not need to
prove the boundedness since we have assumed it under Assumption 1.

Lemma 9 and 10 are provided to analyze the balance equation to estimate of βk.
Lemma 9. ∀α ≥ 0, β > 0, ν ∈ [0, 1), we have

αr1+ν − βr2 ≤ 1 + ν

2
(
1− ν
2

)
1+ν
1−ν (α

2
1−ν /β

1+ν
1−ν), r ≥ 0. (53)

This auxiliary result has been used in [[34], Lemma E.3]. We give proof for completeness.

Proof. It is easy to see that αr1+ν − βr2 increases first and then decreases later as r ≥ 0 increases.
It achieves maximum on [0,+∞) iff its gradient equals to zero, i.e r = ((1−ν)α

2β)
1

1−ν .

Thus, for r ≥ 0,

αr1+ν − βr2 ≤α(((1− ν)α
2β

)
1

1−ν)1+ν − β(((1− ν)α
2β

)
1

1−ν)2

≤α((1− ν)α
2β

)
1+ν
1−ν − β((1− ν)α

2β
)

2
1−ν

≤(1− ν
2

)
1+ν
1−ν

α
2

1−ν

β
1+ν
1−ν

− (
1− ν
2

)
2

1−ν
α

2
1−ν

β
1+ν
1−ν

≤(1 + ν

2
)(
1− ν
2

)
1+ν
1−ν

α
2

1−ν

β
1+ν
1−ν

.

Lemma 10. For nonnegative sequences {αi}i∈N and {γi}i∈N, the sequence {hi}i∈N satisfies that

hk+1 − hk ≤
(1− ν)αk+1

h
ν

1−ν

k+1

+ γk+1, (54)

with h0 = 0. Then for k ≥ 1, we have

hk ≤ (

k∑
i=1

αi)
1−ν +

k∑
i=1

γi. (55)

This auxiliary result has been used in [[34], Lemma E.9]. We give proof for completeness.

Proof. We prove it by induction.

Since h0 = 0 ≤ 0, we assume it is valid for some k ≥ 0, then

hk+1 −
(1− ν)αk+1

h
ν

1−ν

k+1

≤γk+1 + hk

≤γk+1 + (

k∑
i=1

αi)
1−ν +

k∑
i=1

γi

≤(
k∑

i=1

αi)
1−ν +

k+1∑
i=1

γi.

34

Define Γk+1(x) := x − (1−ν)αk+1

x
ν

1−ν
. It is easy to verify that Γk+1(x) is increasing in x. Hence, it

suffices to show

(

k∑
i=1

αi)
1−ν +

k+1∑
i=1

γi ≤ Γk+1((

k+1∑
i=1

αi)
1−ν +

k+1∑
i=1

γi),

which means

(

k∑
i=1

αi)
1−ν +

k+1∑
i=1

γi ≤ (

k+1∑
i=1

αi)
1−ν +

k+1∑
i=1

γi − (1− ν)αk+1((

k+1∑
i=1

αi)
1−ν +

k+1∑
i=1

γi)
−ν
1−ν . (56)

Rearranging (56) gives us

(1− ν)αk+1((

k+1∑
i=1

αi)
1−ν +

k+1∑
i=1

γi)
−ν
1−ν ≤ (

k+1∑
i=1

αi)
1−ν − (

k∑
i=1

αi)
1−ν ,

which is implied by

(1− ν)αk+1 ≤ ((

k+1∑
i=1

αi)
1−ν − (

k∑
i=1

αi)
1−ν)(

k+1∑
i=1

αi)
ν . (57)

The inequality (57) is valid since

((

k+1∑
i=1

αi)
1−ν − (

k∑
i=1

αi)
1−ν)(

k+1∑
i=1

αi)
ν

≥((
k+1∑
i=1

αi)
1−ν − (

k+1∑
i=1

αi)
1−ν + (1− ν)(

k+1∑
i=1

αi)
−νak+1)(

k+1∑
i=1

αi)
ν

=((1− ν)(
k+1∑
i=1

αi)
−νak+1)(

k+1∑
i=1

αi)
ν

=(1− ν)ak+1,

where the first inequality is due to the first order condition of the concave function (·)1−ν , ν ∈
[0, 1].

Next, we provide the upper bound of the expectation of βk.
Lemma 11. Suppose the Assumption 1 holds and f(·) is locally Hölder smooth in B3D0(x

∗). In
Algorithm 2, it holds that

E[βk] ≤ 2
9+9ν

2 M̃νD
νk

3−3ν
2 + 25k

3
2σ. (58)

Proof. We denote ∥∇f(xk+1)− ∇̃f(xk+1)∥∗ = ∆x
k+1 and ∥∇f(yk+1)− ∇̃f(yk+1)∥∗ = ∆y

k+1.

The expectation of (∆x
k)

2 and (∆y
k)

2 satisfies

E[(∆x
k)

2] = E[∥∇f(xk+1)− ∇̃f(xk+1)∥2∗] ≤ σ2,

E[(∆y
k)

2] = E[∥∇f(yk+1)− ∇̃f(yk+1)∥2∗] ≤ σ2.
(59)

From the balance equation, we have

τkηk
2

=[⟨∇̃f(yk+1)− ∇̃f(xk+1), yk+1 − xk+1⟩ − βk+1

64τ2kAk+1
∥yk+1 − xk+1∥2]+

≤[⟨∇f(yk+1)−∇f(xk+1), yk+1 − xk+1⟩+ ⟨∇f(xk+1)− ∇̃f(xk+1), yk+1 − xk+1⟩

+ ⟨∇̃f(yk+1)−∇f(yk+1), yk+1 − xk+1⟩ − βk+1

64τ2kAk+1
∥yk+1 − xk+1∥2]+,

≤[M̃ν∥yk+1 − xk+1∥1+ν + (∆y
k+1 +∆x

k+1)∥yk+1 − xk+1∥ − βk+1

64τ2kAk+1
∥yk+1 − xk+1∥2]+.

35

Note that [·]+ is a monotonically increasing function. The first inequality uses the convexity of f(·)
and the second inequality applies the locally Hölder smoothness and Cauchy-Schwarz inequality.

Case 1: ν = 1

βk+1r̄
2
k − βkr̄2k−1

2Ak+1
≤[(M̃ν −

βk+1

64τ2kAk+1
)∥yk+1 − xk+1∥2 + (∆y

k+1 +∆x
k+1)∥yk+1 − xk+1∥]+

βk+1r̄
2
k − βkr̄2k−1 ≤2Ak+1[(M̃ν −

βk+1

64τ2kAk+1
)∥yk+1 − xk+1∥2 + (∆y

k+1 +∆x
k+1)∥yk+1 − xk+1∥]+

βk+1r̄
2
k − βkr̄2k−1 ≤2Ak+1[(M̃ν −

βk+1

28r̄k
)∥yk+1 − xk+1∥2 + (∆y

k+1 +∆x
k+1)∥yk+1 − xk+1∥]+

βk+1r̄
2
k − βkr̄2k−1 ≤2(k + 1)2[r̄k(M̃ν −

βk+1

28r̄k
)∥yk+1 − xk+1∥2 + r̄k(∆

y
k+1 +∆x

k+1)∥yk+1 − xk+1∥]+

βk+1 − βk ≤
2(k + 1)2

r̄k
[(M̃ν −

βk+1

28r̄k
)∥yk+1 − xk+1∥2 + (∆y

k+1 +∆x
k+1)∥yk+1 − xk+1∥]+,

where we use Ak+1 ≤ (k + 1)2r̄k and D ≥ r̄k+1 ≥ r̄k.

We prove that

β2
k ≤

k∑
i=1

210i2((∆x
i)

2 + (∆y
i)

2) + 218M̃2
νD

2. (60)

Since β2
0 = 0 < 218M̃2

νD
2, we prove it by induction. Define k∗ = max{i|βi ≤ 29M̃νD} ≥ 0, so

∀k ≤ k∗ satisfies the inequality 60. We assume it is valid for certain k ≥ k∗, then

βk+1 − βk ≤
1

r̄k
[2(k + 1)2(

βk+1

29D
− βk+1

28r̄k
)∥yk+1 − xk+1∥2 + 2(k + 1)2(∆x

k+1 +∆y
k+1)∥y

k+1 − xk+1∥]+

≤ 1

r̄k
[−2(k + 1)2

βk+1

29r̄k
∥yk+1 − xk+1∥2 + 2(k + 1)2(∆x

k+1 +∆y
k+1)∥y

k+1 − xk+1∥]+

≤ 1

r̄k
2(k + 1)2

29r̄k(∆
x
k+1)

2

2βk+1
+

1

r̄k
2(k + 1)2

29r̄k(∆
y
k+1)

2

2βk+1

=29(k + 1)2
(∆x

k+1)
2 + (∆y

k+1)
2

βk+1
.

Then

1

2
(β2

k+1 − β2
k) ≤ βk+1(βk+1 − βk) ≤ 29(k + 1)2(∆y

k+1 +∆x
k+1)

2

β2
k+1 ≤210(k + 1)2(∆y

k+1 +∆x
k+1)

2 + β2
k

β2
k+1 ≤210(k + 1)2(∆y

k+1 +∆x
k+1)

2 + β2
k

β2
k+1 ≤210(k + 1)2(∆y

k+1 +∆x
k+1)

2 +

k∑
i=1

210i2(∆y
i +∆x

i)
2 + 218M̃2

νD
2

β2
k+1 ≤

k+1∑
i=1

210i2(∆y
i +∆x

i)
2 + 218M̃2

νD
2,

where we use β2
k ≤

∑k
i=1 2

10i2∆2
i + 218M̃2

νD
2 by induction. Applying the inequality a2 + b2 ≤

(a+ b)2 where a, b ≥ 0, we obtain

βk+1 ≤25(
k+1∑
i=1

i2(∆x
i +∆y

i)
2)

1
2 + 29M̃νD.

36

We take the expectation of βk:

E[βk] ≤E[25(
k∑

i=1

i2(∆x
i +∆y

i)
2))

1
2 + 29M̃νD]

≤25(
k∑

i=1

i2(E[(∆x
i)

2] + E[(∆y
i)

2])
1
2 + 29M̃νD

≤25
k∑

i=1

√
2i2σ + 29M̃νD

≤2 11
2 k

3
2σ + 29M̃νD,

where we use the Jensen’s inequality that E[X 1
2] ≤ (E[X])

1
2 and estimate

∑k
i=1 i

2 ≤ k3 roughly.

Case 2: ν ̸= 1 Applying Lemma 9 for three times with r = ∥yk+1 − xk+1∥, α = M̃ν , β =
βk+1

128τ2
kAk+1

; r′ = ∥yk+1 − xk+1∥, α′ = ∆x
k+1, β′ = βk+1

256τ2
kAk+1

; r′′ = ∥yk+1 − xk+1∥, α′′ = ∆y
k+1,

β′′ = βk+1

256τ2
kAk+1

, it holds that

τkηk
2
≤[1 + ν

2
(
1− ν
2

)
1+ν
1−ν M̃

2
1−ν
ν (

128τ2kAk+1

βk+1
)

1+ν
1−ν +

1

2
(∆y

k+1 +∆x
k+1)

2 256τ
2
kAk+1

βk+1
]+

=
1 + ν

2
(
1− ν
2

)
1+ν
1−ν M̃

2
1−ν
ν (

128τ2kAk+1

βk+1
)

1+ν
1−ν + (∆y

k+1 +∆x
k+1)

2 128τ
2
kAk+1

βk+1
,

where the last equality is obviously nonnegative.

Similar to the proof of Lemma 8, we have
a2k+1 ≤ 4r̄kAk+1,

which implies τ2kAk+1 ≤ 4r̄k. Consequently,
τkηk
2
≤1 + ν

2
M̃

2
1−ν
ν (

(1− ν)28r̄k
βk+1

)
1+ν
1−ν + (∆y

k+1 +∆x
k+1)

2 2
9r̄k
βk+1

βk+1r̄
2
k − βkr̄2k−1 ≤Ak+1M̃

2
1−ν
ν (

(1− ν)28r̄k
βk+1

)
1+ν
1−ν +Ak+1(∆

y
k+1 +∆x

k+1)
2 2

10r̄k
βk+1

βk+1r̄
2
k − βkr̄2k ≤(k + 1)2r̄kM̃

2
1−ν
ν (

(1− ν)28r̄k
βk+1

)
1+ν
1−ν + (k + 1)2r̄k(∆

y
k+1 +∆x

k+1)
2 2

10r̄k
βk+1

βk+1 − βk ≤(k + 1)2M̃
2

1−ν
ν (

(1− ν)28

βk+1
)

1+ν
1−ν r̄

2ν
1−ν

k + (k + 1)2(∆y
k+1 +∆x

k+1)
2 210

βk+1
,

where we use Ak+1 ≤ (k + 1)2r̄k and r̄k ≥ r̄k−1. It then follows that

βk+1(βk+1 − βk) ≤(k + 1)2M̃
2

1−ν
ν

((1− ν)28)
1+ν
1−ν

β
2ν

1−ν

k+1

r̄
2ν

1−ν

k + 210(k + 1)2∆2
k+1

β2
k+1 − β2

k ≤2(k + 1)2M̃
2

1−ν
ν

((1− ν)28)
1+ν
1−ν

β
2ν

1−ν

k+1

r̄
2ν

1−ν

k + 211(k + 1)2∆2
k+1.

We apply Lemma 10 with hk = β2
k, αk = 2 × (28)

1+ν
1−ν k2M̃

2
1−ν
ν (1 − ν)

2ν
1−ν r̄

2ν
1−ν

k−1 and γk =

211(k + 1)2∆2
k, it holds that

β2
k ≤(

k∑
i=1

2× (28)
1+ν
1−ν i2M̃

2
1−ν
ν (1− ν)

2ν
1−ν r̄

2ν
1−ν

i−1)
1−ν +

k∑
i=1

211i2∆2
k

≤(29+7ν)M̃2
ν (1− ν)2ν r̄2νk−1(

k∑
i=1

i2)1−ν + 211
k∑

i=1

i2∆2
i

≤(29+7ν)M̃2
ν (1− ν)2νD2νk3−3ν + 211

k∑
i=1

i2∆2
i .

37

Here we estimate
∑k

i=1 i
2 ≤ k3 roughly. Applying the inequality a2+ b2 ≤ (a+ b)2 where a, b ≥ 0,

we obtain

βk ≤(2
9+7ν

2)M̃ν(1− ν)νDνk
3−3ν

2 + 2
11
2 (

k∑
i=1

i2∆2
i)

1
2 .

Finally, we take the expectation of βk:

E[βk] ≤E[(2
9+7ν

2)M̃ν(1− ν)νDνk
3−3ν

2 + 2
11
2 (

k∑
i=1

i2∆2
i)

1
2]

≤(2
9+7ν

2)M̃ν(1− ν)νDνk
3−3ν

2 + 2
11
2 (

k∑
i=1

i2E[∆2
i])

1
2

≤(2
9+7ν

2)M̃ν(1− ν)νDνk
3−3ν

2 + 2
11
2 σ(

k∑
i=1

i2)
1
2

≤(2
9+7ν

2)M̃ν(1− ν)νDνk
3−3ν

2 + 2
11
2 k

3
2σ,

where we use Jensen’s inequality again.

In conclusion, we have E[βk] ≤ 2
9+9ν

2 M̃νD
νk

3−3ν
2 + 2

11
2 k

3
2σ.

We are now ready to derive the convergence rate of Algorithm 2.

D.1 Proof of Theorem 3

Proof. In view of the balance equation (16) and the fact [x]+ ≥ x, it holds that

0 ≤⟨∇̃f(xk+1)− ∇̃f(yk+1), yk+1 − xk+1⟩+ βk+1

64τ2kAk+1
∥yk+1 − xk+1∥2 + τkηk

2

⟨∇f(yk+1), yk+1 − xk+1⟩ ≤⟨∇̃f(xk+1), yk+1 − xk+1⟩+ βk+1

64τ2kAk+1
∥yk+1 − xk+1∥2 + τkηk

2

+ ⟨∇f(yk+1)− ∇̃f(yk+1), yk+1 − xk+1⟩

The first order condition of convex function f(·) implies f(yk+1)− f(xk+1) ≤ ⟨∇f(yk+1), yk+1 −
xk+1⟩, thus

f(yk+1) ≤f(xk+1) + ⟨∇̃f(xk+1), yk+1 − xk+1⟩+ βk+1

64τ2kAk+1
∥yk+1 − xk+1∥2 + τkηk

2

+ ⟨∇f(yk+1)− ∇̃f(yk+1), yk+1 − xk+1⟩.

Because xk+1 = τkv
k + (1 − τk)yk, yk+1 = τkx̂

k+1 + (1 − τk)yk and ηk =
βk+1r̄

2
k−βk r̄

2
k−1

8ak+1
, it

holds that

f(yk+1) ≤(1− τk)(f(xk+1) + ⟨∇̃f(xk+1), yk − xk+1⟩) + τk(f(x
k+1) + ⟨∇̃f(xk+1), x̂k+1 − xk+1⟩)

+
βk+1

64τ2kAk+1
τ2k∥x̂k+1 − vk∥2 + βk+1 − βk

16Ak+1
r̄2k

+ ⟨∇f(yk+1)− ∇̃f(yk+1), yk+1 − xk+1⟩
≤(1− τk)f(yk) + τk(f(x

k+1) + ⟨∇̃f(xk+1), x̂k+1 − xk+1⟩)

+
βk

64Ak+1
∥x̂k+1 − vk∥2 + βk+1 − βk

16Ak+1
r̄2k

+ (1− τk)⟨∇̃f(xk+1)−∇f(xk+1), yk − xk+1⟩+ βk+1 − βk
64Ak+1

∥x̂k+1 − vk∥2

+ ⟨∇f(yk+1)− ∇̃f(yk+1), yk+1 − xk+1⟩.

38

Since ak+1⟨∇̃f(xk+1), x̂k+1⟩ + βk

2 ∥x̂
k+1 − vk∥2 ≤ ak+1⟨∇̃f(xk+1), vk+1⟩ + βk

2 ∥v
k+1 − vk∥2,

we have

f(yk+1) ≤(1− τk)f(yk) + τk(f(x
k+1) + ⟨∇̃f(xk+1), vk+1 − xk+1⟩)

+
βk

64Ak+1
∥vk+1 − vk∥2 + βk+1 − βk

16Ak+1
r̄2k

+ (1− τk)⟨∇̃f(xk+1)−∇f(xk+1), yk − xk+1⟩+ βk+1 − βk
64Ak+1

∥x̂k+1 − vk∥2

+ ⟨∇f(yk+1)− ∇̃f(yk+1), yk+1 − xk+1⟩
≤(1− τk)f(yk) + τk(f(x

k+1) + ⟨∇̃f(xk+1), vk+1 − xk+1⟩)

+
βk

64Ak+1
∥vk+1 − vk∥2 + βk+1 − βk

16Ak+1
r̄2k

+ (1− τk)⟨∇̃f(xk+1)−∇f(xk+1), yk − xk+1⟩+ βk+1 − βk
16Ak+1

r̄2k+1

+ ⟨∇f(yk+1)− ∇̃f(yk+1), yk+1 − xk+1⟩.

Here, the last inequality is due to ∥x̂k+1 − vk∥2 ≤ (dk+1 + rk)
2 ≤ 4r̄2k+1.

We match the two error terms by βk+1r̄
2
k−βk r̄

2
k

16Ak+1
+ βk+1−βk

16Ak+1
r̄2k+1 ≤

βk+1−βk

8Ak+1
r̄2k+1. Multiplying both

sides by Ak+1, we have

Ak+1f(y
k+1) ≤Akf(y

k) + ak+1(f(x
k+1) + ⟨∇̃f(xk+1), vk+1 − xk+1⟩)

+
βk
64
∥vk+1 − vk∥2 + βk+1 − βk

8Ak+1
r̄2k+1

+Ak⟨∇̃f(xk+1)−∇f(xk+1), yk − xk+1⟩
+Ak+1⟨∇f(yk+1)− ∇̃f(yk+1), yk+1 − xk+1⟩.

On the other hand, it holds that

g(yk+1) ≤ (1− τk)g(yk) + τkg(v
k+1). (61)

Combining (31) and (61), we obtain

Ak+1ψ(y
k+1) ≤Akψ(y

k) + ak+1(f(x
k+1) + ⟨∇̃f(xk+1), vk+1 − xk+1⟩+ g(vk+1))

+
βk
2
∥vk+1 − vk∥2 + βk+1 − βk

8Ak+1
r̄2k+1

+Ak⟨∇̃f(xk+1)−∇f(xk+1), yk − xk+1⟩
+Ak+1⟨∇f(yk+1)− ∇̃f(yk+1), yk+1 − xk+1⟩.

39

For βk

2 ∥v
k+1 − vk∥2, we use Lemma 4, then

Ak+1ψ(y
k+1) ≤Akψ(y

k) + ak+1(f(x
k+1) + ⟨∇̃f(xk+1), vk+1 − xk+1⟩+ g(vk+1))

+

k∑
i=1

ai(f(x
i) + ⟨∇̃f(xi), vk+1 − xi⟩+ g(vk+1)) +

βk
2
∥x0 − vk+1∥2

−
k∑

i=1

ai(f(x
i) + ⟨∇̃f(xi), vk − xi⟩+ g(vk))− βk

2
∥x0 − vk∥2

+
βk+1 − βk
8Ak+1

r̄2k+1 +Ak⟨∇̃f(xk+1)−∇f(xk+1), yk − xk+1⟩

+Ak+1⟨∇f(yk+1)− ∇̃f(yk+1), yk+1 − xk+1⟩

≤Akψ(y
k) +

k+1∑
i=1

ai(f(x
i) + ⟨∇̃f(xi), vk+1 − xi⟩+ g(vk+1)) +

βk+1

2
∥x0 − vk+1∥2

−
k∑

i=1

ai(f(x
i) + ⟨∇̃f(xi), vk − xi⟩+ g(vk))

βk
2
∥x0 − vk∥2

+
βk+1 − βk
8Ak+1

r̄2k+1 +Ak⟨∇̃f(xk+1)−∇f(xk+1), yk − xk+1⟩

+Ak+1⟨∇f(yk+1)− ∇̃f(yk+1), yk+1 − xk+1⟩.
(62)

We can simplify (33) by using the definition of ϕk(·):

Ak+1ψ(y
k+1) ≤Akψ(y

k) + ϕk+1(v
k+1)− ϕk(vk)

+
βk+1 − βk
8Ak+1

r̄2k+1 +Ak⟨∇̃f(xk+1)−∇f(xk+1), yk − xk+1⟩

+Ak+1⟨∇f(yk+1)− ∇̃f(yk+1), yk+1 − xk+1⟩.

(63)

Applying the upper inequality recursively, it holds that

Akψ(y
k) ≤ϕk(vk)− ϕ0(v0)

+

k−1∑
i=0

βi+1 − βi
8

r̄2i+1 +Ai⟨∇̃f(xi+1)−∇f(xi+1), yi − xi+1⟩

+Ai+1⟨∇f(yi+1)− ∇̃f(yi+1), yi+1 − xi+1⟩

≤ϕk(vk) +
βk
8
r̄2k −

β0
8
r̄21 +

k−1∑
i=0

Ai⟨∇̃f(xi+1)−∇f(xi+1), yi − xi+1⟩

+Ai+1⟨∇f(yi+1)− ∇̃f(yi+1), yi+1 − xi+1⟩

≤ϕk(vk) +
βk
8
r̄2k +

k−1∑
i=0

Ai⟨∇̃f(xi+1)−∇f(xi+1), yi − xi+1⟩

+Ai+1⟨∇f(yi+1)− ∇̃f(yi+1), yi+1 − xi+1⟩,

where ϕ0(v0) = 0 and β0 = 0.

40

Since vk = argmin
x
ϕk(x), we apply Lemma 4 again and obtain that:

Akψ(y
k) ≤ϕk(vk) +

βk
8
r̄2k +

k−1∑
i=0

Ai⟨∇̃f(xi+1)−∇f(xi+1), yi − xi+1⟩

+Ai+1⟨∇f(yi+1)− ∇̃f(yi+1), yi+1 − xi+1⟩

=

k∑
i=1

ai(f(x
i) + ⟨∇̃f(xi), vk − xi⟩+ g(vk)) +

βk
2
∥x0 − vk∥2 + βk

8
r̄2k

+

k−1∑
i=0

Ai⟨∇̃f(xi+1)−∇f(xi+1), yi − xi+1⟩+Ai+1⟨∇f(yi+1)− ∇̃f(yi+1), yi+1 − xi+1⟩

≤
k∑

i=1

ai(f(x
i) + ⟨∇̃f(xi), x∗ − xi⟩+ g(x∗)) +

βk
2
∥x0 − x∗∥2 − βk

2
∥vk+1 − x∗∥2

+
βk
8
r̄2k +

k−1∑
i=0

Ai⟨∇̃f(xi+1)−∇f(xi+1), yi − xi+1⟩

+Ai+1⟨∇f(yi+1)− ∇̃f(yi+1), yi+1 − xi+1⟩

≤
k∑

i=1

ai(f(x
i) + ⟨∇f(xi), x∗ − xi⟩+ g(x∗)) +

βk
2
∥x0 − x∗∥2 − βk

2
∥vk+1 − x∗∥2

+
βk
8
r̄2k +

k−1∑
i=0

ai+1⟨∇̃f(xi+1)−∇f(xi+1), vi − x∗⟩

+Ai+1⟨∇f(yi+1)− ∇̃f(yi+1), yi+1 − xi+1⟩

≤Akψ(x
∗) +

βk
2
∥x0 − x∗∥2 − βk

2
∥vk+1 − x∗∥2 + βk

8
r̄2k

+

k−1∑
i=0

ai+1⟨∇̃f(xi+1)−∇f(xi+1), vi − x∗⟩

+Ai+1⟨∇f(yi+1)− ∇̃f(yi+1), yi+1 − xi+1⟩.

We use D0 and Dk to replace ∥x0 − x∗∥ and ∥vk − x∗∥. Since D2
0 −D2

k ≤ 2D0rk ≤ 2Dr̄k , we
have

Akψ(y
k) ≤Akψ(x

∗) +
βk
2
D2

0 −
βk
2
D2

k +
βk
8
r̄2k

+

k−1∑
i=0

ai+1⟨∇̃f(xi+1)−∇f(xi+1), vi − x∗⟩

+Ai+1⟨∇f(yi+1)− ∇̃f(yi+1), yi+1 − xi+1⟩,

which implies

ψ(yk)− ψ(x∗) ≤ βk(D
2
0 −D2

k)

2Ak
+
βkr̄

2
k

8Ak
+

k−1∑
i=0

ai+1⟨∇̃f(xi+1)−∇f(xi+1), vi − x∗⟩

+Ai+1⟨∇f(yi+1)− ∇̃f(yi+1), yi+1 − xi+1⟩

≤ 9βkDr̄k
8Ak

+

k−1∑
i=0

ai+1⟨∇̃f(xi+1)−∇f(xi+1), vi − x∗⟩

+Ai+1⟨∇f(yi+1)− ∇̃f(yi+1), yi+1 − xi+1⟩.

(64)

41

We take the expectations of both sides and obtain

E[ψ(yk)]− E[ψ(x∗)] ≤E[9βkDr̄k
8Ak

] + E[
k−1∑
i=0

ai+1⟨∇̃f(xi+1)−∇f(xi+1), vi − x∗⟩]

+ E[
k−1∑
i=0

Ai+1⟨∇f(yi+1)− ∇̃f(yi+1), yi+1 − xi+1⟩].

Since E[∇̃f(xi+1)−∇f(xi+1)] = 0 and vi, x∗, ξi+1 are independent, we have

E

[
k−1∑
i=0

ai+1⟨∇̃f(xi+1)−∇f(xi+1), vi − x∗⟩

]

=E−ξxi+1

[
Eξxi+1

[
k−1∑
i=0

ai+1⟨∇̃f(xi+1)−∇f(xi+1), vi − x∗⟩

]]
= 0.

For the same reason, we have

E

[
k−1∑
i=0

Ai+1⟨∇f(yi+1)− ∇̃f(yi+1), yi+1 − xi+1⟩

]

=E−ξyi+1

[
Eξyi+1

[
k−1∑
i=0

Ai+1⟨∇f(yi+1)− ∇̃f(yi+1), yi+1 − xi+1⟩

]]
= 0.

Thus

E[ψ(yk)]− ψ(x∗) ≤9

8
E
[
βkDr̄k
Ak

]
.

We will apply Lemma 11 and 3 to obtain the final complexity. Note that k∗ = argmin
0≤i≤k

r̄k∑k−1
i=0 r̄i

.

Applying Lemma 3, we obtain that:

r̄
1
2

k∗∑k∗−1
i=0 r̄

1
2
i

≤
(r̄kr̄0)

1
2×

1
k log e(r̄kr̄0)

1
2

k
≤

(4D0

r̄)
1
2k log e 4D0

r̄

2k
. (65)

Thus, for k∗, combining the inequality (65) and Lemma 11, it holds that

E
[
ψ(yk

∗
)
]
− ψ(x∗)

≤ 9

8
E
[
βk∗Dr̄k∗

Ak∗

]
≤ 9

8
E

[
βkD

(
r̄

1
2

k∗∑k∗−1
i=0 r̄

1
2
i

)2
]

≤ 9

8
E[(2

9+9ν
2 M̃νD

1+νk
3−3ν

2 + 25k
3
2Dσ)

(
(4Dr̄)

1
2k log e 4Dr̄
2k

)2

]

≤ 36(
4D

r̄
)

1
k log2 e

4D

r̄

M̃νD
1+νk

3−3v
2 + k

3
2Dσ

k2

≤ 36(
4D

r̄
)

1
k log2 e

4D

r̄
(
M̃νD

1+ν

k
1+3ν

2

+
Dσ√
k
).

(66)

where we use the facts {βi}i∈N is nondecreasing and the random variable B is independent of both k
and D.

Finally, it remains to use zk = yk
∗

by definition.

42

The following lemma is used to show that the balance equation admits a closed-form solution.
Lemma 12. Let β,l,d ≥ 0 and r > 0. Then the equation

(β+ − β)r = [l − β+d]+ (67)

has a unique solution given by

β+ = β +
[l − βd]+
r + d

. (68)

This auxiliary result has been used in [[34], Lemma E.1]. We give proof for completeness.

Proof. First, the equation has a unique solution since the left-hand side increases from zero to infinity
monotonically with respect to β+ while the right-hand side decreases from a nonnegative number to
zero monotonically with respect to β+.

We show that the β+ in (68) is the very solution of (67).

When l − βd ≤ 0, β+ = β. LHS = (β+ − β)r = 0 and RHS = [l − β+d]+ = [l − βd]+ ≤ 0,
which implies RHS = 0. Therefore, LHS = RHS and β+ is the solution.

When l − βd > 0, β+ = β + l−βd
r+d . then LHS = (β+ − β)r = (β + [l−βd

r+d]+ − β)r = r l−βd
r+d

and RHS = [l − β+d]+ = [l − βd − l−βd
r+d d]+ = [r

r+d (l − βd)]+ = r
r+d (l − βd). Therefore,

LHS = RHS and β+ is the solution as well.

E Two approaches for automatic initialization of parameters in Algorithm 1

E.1 Automatic initialization of β0

In the proof of Proposition 1 and Theorem 2, we assume that β0 ≤ 27IνM̂ν r̄
ν . This is reasonable

since the upper bound of βk increases polynomial in k, it still holds for enough large k. Previous
works often ignore the choice of a legal β0. Nevertheless, we provide a simple method for choosing
an admissible β0.

Algorithm 3 β0 Initialization Method
Input: x0, r̄, any other point x′ ∈ Rd that satisfies ∥x′−x0∥ ≤ r̄ and f(x′)−f(x0)−⟨∇f(x0), x′−

x0⟩ > 0;
Output: β̄ ≤ 27IνM̂ν r̄

ν ;
1: Set c = min{[f(x′)− f(x0)− ⟨∇f(x0), x0 − x′⟩]/r̄2, 12};

and M = 2 f(x′)−f(x0)−⟨∇f(x0),x0−x′⟩−cr̄2/2
∥x0−x′∥2 ;

2: Let β̄ = r̄max{8
√
2M, 128M}min{1,

√
c};

Proposition 2. Suppose f(·) is locally Hölder smooth and f(·) is not a linear function in dom g. If
r̄ is small enough such that r̄ ≤ 4D0, then Algorithm 3 can generate a β0 that satisfies

β0 ≤ 27IνM̂ν r̄
v, (69)

and this method can be implemented in one operation.

Proof. Since

M = 2
f(x′)− f(x0)− ⟨∇f(x0), x0 − x′⟩ − c r̄

2

2

∥x0 − x′∥2
≥ 0,

we have

f(x′) = f(x0) + ⟨∇f(x0), x0 − x′⟩+ M

2
∥x0 − x′∥2 + c

r̄2

2
. (70)

The equation (70) is tight and x0, x′ ∈ B3D0(x
∗), so that we have

M ≤ γ(M̂ν , cr̄
2) = (

1− ν
1 + ν

1

cr̄2
)

1−ν
1+ν M̂

2
1+ν
ν . (71)

43

c
1
2 r̄min{(128M̄)

1
2 , 128M̄} ≤ c

1−ν
2 r̄(128M̄)

1+ν
2 = 128(

1− ν
1 + ν

)
1−ν
2 M̂ν r̄

v. (72)

Thus
c

1
2 r̄min{(128M̄)

1
2 , 128M̄} ≤ 27IνM̂ν r̄

v. (73)

So we can initialize β0 = c
1
2 r̄min{(128M̄)

1
2 , 128M̄}.

E.2 Automatic initialization of r̄

As mentioned in the context, Algorithm 1 requires an input r̄ as a guess of 4D0 that satisfies
r̄ ≤ 4D0. Setting a small enough r̄ to meet r̄ ≤ 4D0 will incur a multiplicative cost of (4D0

r̄)1+ν

in the convergence rate for other algorithms without distance adaptation. In contrast, we reduce the
multiplicative cost to log2(4D0

r̄). Moreover, we provide a simple method for obtaining an admissible
r̄ ≤ 4D0 in some special cases.

Proposition 3 can handle the cases where we can choose x0 and make sure f(·) + g(·) is weakly
smooth on one of its neighborhoods. Then we can modify the problem by setting f ′(x) = f(x)+g(x)
and g′(x) = 0 to get a legal r̄.

Algorithm 4 r̄ Initialization Method
Input: x0 and an initial guess r for 4D0

Output: r̄ ≤ 4D0

1: Initialize i← −1
2: repeat
3: i← i+ 1
4: di ← 2−ir
5: Run Algorithm 1 with parameter d by one iteration and collect the point v1i and the coefficient
β1,i

6: Denote r1,i = ∥v1i − x0∥
7: until v1i is an interior point in dom g and r1,i ≥ di
8: Set r̄ = di

Proposition 3. For any x ∈ dom g, g(x) = 0, if there exists δ > 0, S = Bδ(x0) ⊂ dom g, and
let νS be the maximal Hölder exponent of f(·) on S with finite local Hölder continuous constant
M̂νS

< +∞, νS > 0, then Algorithm 4 can generate r̄ ≤ 4D0, and this method can be implemented
in a finite number of iterations.

Proof. Without loss of generality, we assume δ ≤ 3D0, since if δ > 3D0, we can always take a
smaller δ′ ≤ 3D0 that still satisfies the condition.

Note that Theorem 1 implies that if r̄1,i = r1,i, then r̄ ≤ r1,i ≤ 4D0, and this conclusion is
independent of the value of β1. So we only need to prove that this method completes in a finite
number of operations. Note that x1 = τ0v

0+(1− τ0)y0 = τ0x
0+(1− τ0)x0 = x0 does not depend

on the value of τ0. The condition of this method ensures that there exists an interior point in the
direction of −∇f(x0).
Applying Lemma 7, it holds that

∥v′i − x0∥ ≥ ∥v1i − x0∥,

where we define

v′i =arg min
x∈dom g

(di⟨∇f(x1), x− x1⟩+
β0∥x− x0∥2

2

=arg min
x∈dom g

⟨∇f(x0), x− x0⟩+ β0∥x− x0∥2

2di
.

(74)

44

Applying Lemma 7 again with hi = β0

2di
, we have ∥v′i − x0∥ → 0 as i → +∞. Therefore, there

exists large enough i∗ such that ∀i ≥ i∗,it satisfies that

δ ≥ ∥v′i − x0∥ ≥ ∥v1i − x0∥, (75)

Case 1: If this method requires at most i∗ operations. Then we prove it directly.

Case 2: If this method requires more than i∗ operations.

Inequality (75) show that v1i ∈ Bδ(x0) ⊂ dom g, which means v1i is an interior point. Then, applying
the first-order optimality condition to the interior point v1i , we have:

di∇f(x0) + β1,i(v
1
i − x0) = 0

v1i − x0 = di
∇f(x0)
β1,i

.
(76)

We can adapt the method 3 to obtain a legal β0 to produce β1 ≤ cνd
ν
i , which is guaranteed by

Lemma 8, where cν = 27IνM̂ν .

r1,i =∥v1i − x0∥ = di
∥∇f(x0)∥

β1
≥ d1−ν

i

∥∇f(x0)∥
cν

. (77)

Thus r1,i = d1−ν
i

∥∇f(x0)∥
cν

≥ di when 2−ir = di ≤
(

∥∇f(x0)∥
cν

) 1
v

, v ̸= 0 and this method requires

at most − 1
ν log

(
∥∇f(x0)∥

cν

)
/ log 2 loops.

F More experiment details

In this section, we provide more details about the experiments.

Softmax problem We first reexamine the softmax problem with more parameter settings. Specifi-
cally, we set µ ∈ {0.1, 0.01, 0.001}. In all the results, we find that our AGDA consistently performs
better than the other compared methods.

Figure 4: Performance of the compared algorithms on the softmax problem. From left to right:
µ = 0.1, µ = 0.01 and µ = 0.001.

Figure 5: Performance of the compared algorithms on the Lp norm problem. Left: p = 1 with
diabetes. Middle: p = 1.5 with boston. Right: p = 2 with boston.

45

Lp norm problem We consider the following problem as an illustrative example, where the
smoothness property can be directly adjusted by modifying a parameter p ∈ [1, 2]:

min
x∈Rd

f(x) = ∥Ax− b∥p, (78)

where A ∈ Rn×d, b ∈ Rn are taken from real-world datasets in LIBSVM. It is important to note that
the smoothness of this problem can be controlled by changing the parameter p; as p increases, the
degree of smoothness decreases.

We use the same comparison methods as in the softmax problem, adhering to the same parameter
settings. In this problem, our algorithm significantly outperforms the other methods, especially when
p is small. This suggests that our algorithm is more adaptive in nonsmooth settings and highlights its
greater stability.

Large scale problem Subsequently, we present the efficacy of our method when applied to large-
scale instances. Our main focus is a performance comparison with the UGM algorithm.

F.1 Line-search bisection method

Here we provide the pseudocode of Line-search bisection method for clarification.

Algorithm 5 Two-Stage Line Search

Input: βk, function lk(·); tolerance ϵlk = β0

2k2

Output: βk+1

1: i← 1
2: while lk(2i−1βk) < 0 do
3: i← i+ 1
4: end while ▷ Stage 1 complete
5: i′k ← i
6: if i′k = 1 then ▷ Case 1: lk(βk) ≥ 0
7: i∗k ← 0
8: βk+1 ← βk
9: else ▷ Case 2: Need binary search

10: a← 2i
′
k−2βk

11: b← 2i
′
k−1βk

12: while b− a > ϵlk do
13: m← (a+ b)/2
14: if lk(m) < 0 then
15: a← m
16: else
17: b← m
18: end if
19: end while
20: βk+1 ← b
21: end if

46

	Introduction
	Related work

	Preliminaries
	The accelerated distance-adaptive method
	Stochastic optimization
	Experiments
	Deterministic setting
	Stochastic setting
	Robustness
	Non-convex neural network

	Conclusion
	Acknowledgements
	 Appendix
	Limitations
	Auxiliary lemmas
	Proof of Lemma 3
	Proof of auxiliary Lemmas

	Missing details in Section 3
	Proof of important lemmas
	Convergence analysis of AGDA
	Proof of Proposition proposition:line search finite
	Proof of Theorem 1
	Proof of Theorem 2

	Missing details in Section 4
	Proof of Theorem 3

	Two approaches for automatic initialization of parameters in Algorithm 1
	Automatic initialization of beta 0
	Automatic initialization of bar r

	More experiment details
	Line-search bisection method

