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Abstract

This paper introduces new parameter-free first-order methods for convex optimiza-
tion problems in which the objective function exhibits Holder smoothness. Inspired
by the recently proposed distance-over-gradient (DOG) technique, we propose an
accelerated distance-adaptive method which achieves optimal anytime convergence
rates for Holder smooth problems without requiring prior knowledge of smoothness
parameters or explicit parameter tuning. Importantly, our parameter-free approach
removes the necessity of specifying target accuracy in advance, addressing a signif-
icant limitation found in the universal fast gradient methods (Nesterov, 2015). We
further present a parameter-free accelerated method that eliminates the need for
line-search procedures and extend it to convex stochastic optimization. Preliminary
experimental results highlight the effectiveness of our approach on convex non-
smooth problems and its advantages over existing parameter-free or accelerated
methods.

1 Introduction

In this paper, we consider the following composite function
min ¢ (z) := f(x) + g(x), (D
zER

where f: RY — R is a continuous convex function, and g: R? — R U {400} is a simple proper
lower semi-continuous (Isc) convex function of which the proximal operator is easy to evaluate.
First-order algorithms—(sub)gradient descent and their accelerated variants—are the workhorses for
solving (T)), particularly in large-scale machine learning and Al applications. Their empirical success,
however, hinges on judiciously chosen stepsizes; manual tuning quickly becomes the dominant
practical bottleneck.

In standard analysis, the stepsize policy is often designed based on the smoothness level of the
objective function. Specifically, subgradient methods for nonsmooth problems typically employ
diminishing stepsizes, whereas gradient descent methods for smooth optimization often utilize a
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stepsize inversely proportional to the gradient Lipschitz parameter. In a seminal work, Nesterov [27]
considered convex Holder smooth problem where f(x) satisfies the following condition:

IVF(z) = VW)« < Lyllz = yl”, Yo,y € R™. @)

where v € [0, 1] continuously interpolates between the nonsmooth (v = 0) and smooth (v = 1)
settings. Nesterov introduced accelerated gradient methods capable of universally achieving optimal
convergence rates without prior knowledge of the smoothness parameters of the objective. Notably,
the universal fast gradient method exhibits a convergence rate of

. L;% D2
P(a*) —p(a) <O | = +€ |- (3)
€1+v k T+v
where Dy := ||2° — 2*| denotes the initial distance to the minimizer. An appealing property of this

method is its independence from explicit knowledge of the smoothness level v and the parameter L, .

Despite these attractive features, recent studies have highlighted significant limitations of the universal
gradient methods. One notable issue is that the universal gradient method relies on a line search
subroutine to adapt to the unknown smoothness level, which makes it challenging to extend to
stochastic optimization. More critically, the performance of universal methods is sensitive to the
predetermined target accuracy level e. As e must be set in advance, the method does not have an
anytime convergence guarantee, which is crucial for practical implementations where iterations can
be halted at an arbitrary stage. In addition, as pointed out by Orabona [30]], an optimally set e should
depend on Dy, which is unfortunately unknown beforehand. Setting the value of e without prior
knowledge of the underlying problem structure often results in suboptimal trade-offs between the
two error terms in (3. This turns out to be a critical problem in nonsmooth optimization and online
learning [23} 13} 16} 5, 140]. Although [17] achieves a near-optimal rate in the smooth setting, it does
not have a theoretical guarantee for nonsmooth or weakly smooth problems. A key strength of their
work is providing guarantees for unbounded domains, albeit with a suboptimal rate in that setting.
[1]] investigates parameter-free methods and notes that most existing approaches still require certain
problem-specific information, such as the Lipschitz constant and Dy. In contrast, our algorithms
only require an estimate of a lower bound for Dy, and this incurs only a minor additional cost.
Moreover, [15] further shows that it is impossible to develop a truly tuning-free algorithm for smooth
or nonsmooth stochastic convex optimization when the domain is unbounded.

In this paper, we demonstrate that near-optimal parameter-free convergence rates can be achieved
for convex Holder smooth optimization, up to logarithmic factors. Specifically, instead of fixing the
target €, we set variable target levels that dynamically change based on the optimization trajectory.
As mentioned earlier, an optimal level shall depend on the distance to the minimizer and is difficult to
compute. Motivated by the Distance over Gradients (DOG) style stepsize [3}14], we approximate
||#° — 2*|| by the maximum distance to the iterates and use this knowledge to choose stepsize in the
accelerated gradient method. Leveraging the technique of distance adaptation, we are able to obtain a
parameter-free and anytime convergence rate of

DIV, log? e2e
0( " peal b )

where L, is the locally Holder smoothness constant and 7 is an initial guess for 4D, without
requiring any predefined accuracy level, knowing the smoothness level v or the Holder constant.

In addition, we propose a line-search-free accelerated method that achieves optimal convergence
rates for both Holder smooth and stochastic optimization problems. To eliminate the need for line
search, we adopt a bounded domain assumption, as originally introduced by Rodomanov et al. [34]].
Different from their approach, which explicitly requires the domain diameter D to set stepsizes,
our method exploits distance adaptation to approximate D. This can be particularly appealing as
computing the diameter of a general convex set can be computationally intractable. Moreover, by
estimating D through the observed distance from the initial point, our method naturally adopts more
adaptive stepsizes in large domains. Theorem [3|characterizes the convergence rate of this algorithm
in the stochastic setting. Since we adopt the bounded domain assumption, the convergence rate
remains the same as that in (@), with Dy replaced by D. Although we cannot guarantee the potential
gap between Dy and D, experimental results support our theoretical insights and demonstrate the
practical effectiveness of our approach.



1.1 Related work

The increasing computational cost associated with hyperparameter tuning has driven significant
research interest in developing adaptive or parameter-free algorithms. The online learning community
has extensively studied parameter-free optimization, particularly focusing on achieving nearly-optimal
regret bounds without prior knowledge of domain boundedness or the distance to the minimizer.
For example, see [23], 124} 29, |5, 140]. A recent breakthrough has been made by Carmon and Hinder
[3l], which moves beyond regret analysis and focuses directly on stochastic optimization. This
algorithm appears to be conceptually simpler and motivates a few more practical SGD algorithms,
such as Ivgi et al. [14], Defazio and Mishchenko [6], Moshtaghifar et al. [26]. A notable related
study to our work is Moshtaghifar et al. [26], which applied the distance adaptation technique to
Nesterov’s dual averaging method. They have offered convergence guarantees across various problem
classes, including nonsmooth, smooth, (Lg, L1)-smooth functions, and many others. However, the
convergence rate for the Holder smooth problem remains suboptimal.

The concept of universal gradient methods adapting to Holder smoothness was pioneered by Nes-
terov [27]]. Subsequent works extended this approach to nonconvex optimization [11], stochastic
settings [[10] and stepsize adjustment [28]. It has been demonstrated that normalized gradient step-
sizes [35] can automatically adapt to Holder smoothness without requiring line search, as shown
in Grimmer [[12], Orabona [31]. Recently, Rodomanov et al. [34] proposed a line-search-free univer-
sally optimal method that is robust to stochastic noise in gradient estimations. However, this method
requires the domain to be bounded and the diameter to be known. In parallel to universal methods,
bundle-type methods [20, 2] have emerged as an effective approach for nonsmooth optimization,
enabling self-adaptation to Holder smoothness [[18]. However, these methods often involve solving
a complex cut-constrained subproblem and lack straightforward extensions to stochastic settings.
The Polyak stepsize method [32]] also exhibits self-adaptation to smoothness [[13] and Lipschitz
parameters [25]. It can be seen as a special case of the bundle-level method [8]. While imposing
Nesterov’s acceleration technique [[7] in the Polyak stepsize can universally achieve the optimal rates
for Holder smooth problems, it typically requires knowledge of the optimal value.

Finally, it is important to emphasize that the parameter-free algorithms discussed in this paper differ
from adaptive gradient methods [9], which have been substantially studied in the literature [[16}[33136].
While adaptive gradient methods primarily focus on adjusting to Lipschitz constants or constructing
a preconditioner to approximate the Hessian inverse [41} 38, [21], parameter-free algorithms in our
context do not rely on such adaptation mechanisms.

2 Preliminaries

Let R? denote the d-dimensional Euclidean space. Let || - || = 1/{-, -) be the norm associated with
inner product (-, -). Its dual norm is defined by ||s||.. = max,=1(s,z), where s € R¢. For a convex
function f : RY — R U {+o0}, we use V f(z) to denote a (sub)gradient of f(-) at the point z. We
use Bs(z) = {y € R : ||y — z|| < &} to denote the closed ball of radius § centered at x. We define

I, as (ﬁ)HTV when v < 1 and 1 when v = 1 to simplify the expressions.

A convex function f is said to be locally Holder smooth at z with radius r if there exists a mapping
M, : R% x (0,400) — (0, +00) such that, for any z € RY, for any x,y € B,.(z) (r > 0), we have

IVf(2) = Vi)l < M, (z,7) [z = yl|". ©)

Nesterov [27] considered the global Hélder smooth functions (2)) where the smoothness mapping
M, (z,r) is reduced to a constant L,. However, we will show that by incorporating both line
search and distance adaptation, we can guarantee the boundedness of the iterates. Consequently, the
complexity relies on the local Holder smoothness, which is defined by

—

M, := M, (z*,3Dg) < +00.



3 The accelerated distance-adaptive method

Motivation Before describing the main algorithm, we first shed light on the intuition of Nesterov’s
universal gradient methods [27]. From the definition of global Holder smoothness (2), we have the
Holder descent condition:

) < F(@) + (Vf(@)y —a) + 2l — g,

1+v
This inequality can be translated into an inexact variant of the usual Lipschitz smooth condition:
v(Ly, d) J
F) < f(@) + (VF(@)y —2) + =z —yll* + 5. ©)
where (L, §) := (%%)%Lﬁ%, and § € (0,00) is the trade-off parameter. Since the Holder

exponent may be unknown a priori, Nesterov proposed to use pre-specify § = €, where ¢ is the target
accuracy, and then perform line search over v(L,, d) to satisfy the inexact Lipschitz smoothness
condition (6).

The primary challenge with this approach is selecting an optimal value for . This parameter controls a
fundamental trade-off: a smaller  improves the approximation accuracy using a smooth surrogate, but
it increases the effective smoothness constant (L, , ). However, choosing the optimal § necessitates
the knowledge of the distance to the minimizer, and cannot be done easily when the domain is
unconstrained. Moreover, even if the domain is bounded with D = max, yedom ¢ || — || < oo, this
value can poorly overestimate ||z — z*||.

To address the limitation in the existing universal fast gradient method, we present the accelerated
distance-adaptive method (AGDA) in Algorithm|[I] Our algorithm can be viewed as a variant of the
accelerated regularized dual averaging method [37,27, [39] which involves the triplets {z*, v*, y*}.
The main difference from the prior work is the new stepsize and line search procedure to adapt to the
distance to the minimizer.

Specifically, leveraging the distance adaptation technique [2614]], we approximate Dy by a sequence
of values:

Fr = max{Fy_1,71}, where ry = ||z° —o"||, k >0, @)
and then set the averaging sequence aj, based on the distance estimation:
ko -3\2
a1 = Apg1 — Ag, where Apyq = (37 72)7, k=0,1,2,... (8)

To deal with the unknown Holder smooth parameter, we invoke a line search procedure to find the
appropriate value of Sj.1, which satisfies

PO < P 4 (V) — ok ¢ DL e e T
64’7’k Ak+1 2

where 7, measures the inexactness in Lipschitz smooth approximation and 7 is introduced by

Nesterov’s momentum (7, = 1 in the non-accelerated method). As mentioned earlier, 7y, is set to a

fixed J in the universal (fast) gradient method. Different from the earlier approach, we simply take

e = Brt17r —BrTr_q

8ot , which dynamically adjusts during the optimization process.

Line search We describe how to find a suitable 31 that satisfies the descent property (©). Note
that in this inequality y**! is dependent on 311, we can describe the searching process of 1
by formulating it as finding a root of a continuous function. To formalize the idea, we define the
auxiliary function I (3) as follows:

(B) == f"H(B) + Fa™T) + (V@) g () — M)

+ B Hka(B) _ $k+1||2 + ﬂf% B kalifl (10)
6472 A1 16A,11
where y**t1(8) = mo*tY(B) + (1 — m)y* is the trial point, and V*T1(3) =

argming M a;((Vf(2?),2) + g(x)) + 2]z — 2°|2. Our line search consists of two stages,

each involving an iterative procedure. We assume the first stage and the second stage can be ter-
minated in i} -th and i}-th iterations, respectively. In the first stage, we find the smallest value
i.E {17 2, ..., } such that [;(2°~1 ;) is nonnegative and set i}, = i. Consequently, we will have two
situations:



Algorithm 1 Accelerated Gradient Method with Distance Adaption (AGDA)
Input: z° and 7;
1: Initialize Ag =0,7_1 =Tq =T
2: Set initial solution: 1° = 9% = 2
3: fork=0,1,.... K — 1do

and [y be a small constant, like 1073,
0

4: Set 7, and 7), according to (@);
5: Update ag1 and Agyq by (B), and set 7, = A* 4:1 ;
6: Set 2F+! = 1ok 4 (1 — 7)ok
7: Apply the line search to find B1 such that I, (Br+1) > 0;
. k+1 i i .
8:  Compute v"*! = argmin, {252 (20 — y||? + S0 ai((Vf(a),y — o) + g(y) }:
9: Set y*+! = mpoFt 4+ (1 — 1)k
10: end for

Output: X = argminge o 1 o5y 9P(y)

1. ), =1,1ie., lx(Br) > 0, then we set i} = 0 and complete the line search;

2. 1}, > 1, then we perform a binary search to find an approximate root of {;(-) = 0 in the
interval [2i% =24, 2ix~1 ﬂk] The search stops when the interval width is no more than a
tolerance level of e} = 5 k2 We set Sy41 as the right endpoint of the final interval.

‘We now establish the correctness and computational efficiency of the line search procedure.

Proposition 1. Suppose f(-) is locally Holder smooth () in Bsp,(x*). In Algorithm|l} for any
k > 0, at least one of the following two conditions holds:

L 1x(Bk) > 0;
2. there exists (3} | > Py such that ly(B};, ) = 0, and for all 3 > 3;; |, we have l;(3) > 0.

Consequently, we have P11 < (9( ) Moreover, the total number of iterations required by the
line search in Algorzthmlzs Zk:o (¢, +i}) = O(K log K).

Remark 1. Proposition implies that our method requires an additional O(log K) function eval-
uations compared to other algorithms [27]. However, it is worth emphasizing that our line search

procedure only requires access to function values, whereas the line search in the universal fast
gradient method involves both gradient and function value evaluations.

Next, we provide two lemmas to obtain an important upper bound on the convergence rate and the
guarantee of the boundedness of the optimization trajectory.

Lemma 1. In Algorithm|[I] suppose 7 < 4Dy. If fori = 0,1,... .k, the line searches are successful
and we have 1;(B;+1) > 0, then we have the following convergence property:

D} — D? 72
w(ykﬂ) _ 1/’(17*) < 5k+1( 0 k+1) + 5k+1 k+1 .
2Ak 41 8Ak+1
Lemma 2. In AlgOrithm suppose that for all i = 0,1, ... k, the iterates x*,y" and v* lie within

the set Bsp,(x*). Then, the line search in the k-th iteration terminates in a finite number of steps,
and x* 1 yk+1 kL remain within Bsp, (x*).

(11

One key insight of the distance adaptation is that the inequality (TT) implies the boundedness of ry.
To avoid the first step of Algorithm [I]from searching too far and breaking the boundedness of 7y,
we should adopt a conservative distance estimation such that 7 < 4D,. The smaller 7 is, the more
likely it is that 7 < 4Dg holds. Therefore, by repeatedly applying these two lemmas, we derive
an important upper bound on the convergence rate and establish the boundedness guarantee of the
optimization trajectory throughout all iterations.

Theorem 1. Suppose f(-) is locally Holder smooth () in Bsp, (z*). For any k > 0, it holds that
D2 _ D2) 5 ,]:2

ky *) < ﬁk( 0 k kT

vl) — o) < AL DR Sk

(12)

Furthermore, if ¥ < 4 Do, then it holds that ||v* — 2°|| < 4Dg and ||v* — z*|| < 3Dq, for all k > 0.



Since both z* and y" are convex combination of v, we immediately have that all the generated points
{xz7 yl}izo are in B3 p, (:C*)

Next, we further refine the upper bound in (T2). Since D — D3 < 2Dgry, r, < 7y and ry, < 4D,
the upper bound in Theorem [I|can be relaxed to

3BTk Do
AN *) DRI RO
vy") - v < —
It remains to control the growth of . To this end, we invoke a useful logarithmic bound [14}22] as
follows.

Lemma 3. Ler (d;)$2, be a positive nondecreasing sequence. Then for any K > 1,

dK edK
d ( ) log
min Fo< . (13)

i_ld‘ - K

To apply the above result, we simply take dj, = /7. It shows there is always some k < K where
the error r’“ is bounded by (’)(log I;T/T))

Next, we brlng all the pieces together. As pointed out earlier, the line search ensures that 1 is
order up to O(k ) Together with the bound over distance-adaptive term A , We arrive at our
final convergence rate in the following theorem.

Theorem 2. Suppose all the assumptions of Theorem|l|hold. Then, Algorithm|l|exhibits a conver-
gence rate that

143v

K2

i M\UDHZ/ D /1 2 DD
w<y’“>—w(a:*>ec9< o™ (52) ” log ) (14)

,1/2

where k* = arg min ST

0<i<k 2i=0 Ti
Remark 2. The term (%) % in the inequality (14) approaches 1 as k increases and is bounded by a
small constant under the mild condition k > Q(log(Dy/T)). If 7 is sufficiently large, this condition is
much weaker than the polynomial dependency on Dy typically required for nontrivial rate in gradient
descent.
Remark 3. According to (14), to achieve an e-optimality gap, our method attains a near-optimal

2(1+v) -

complexity bound of O(D s H%) where the O notation hides logarithmic factors arising

from line search and distance adaptation, such as O(log %) and (9(log2 %)

Remark 4. Theorems[I|and[2|require the initial guess 7 to lie within a reasonably large neighborhood,
specifically ¥ < 4Dy. This condition is a key assumption underlying distance-adaptive methods [14]].
For theoretical purposes, we provide an automatic initialization strategy for  in certain special cases
(see Appendix). Empirically, we observe that the performance of the algorithm is largely insensitive
to the specific choice of 1.

4 Stochastic optimization

In this section, we focus on stochastic optimization of Holder smooth functions, wherein problem (TJ),
f () exhibits the expectation form:

f(@) = Ee[f (=, )],

where ¢ is a random sample following from specific distribution. Due to the difficulty in exactly
computing the gradient V f(z), it is challenging to perform line search. To bypass this issue, we
present a new line-search-free and accelerated distance-adaptive method in Algorithm[2} At the cost
of removing linesearch, we require an additional boundedness assumption.

Assumption 1 (Boundedness of domain). The set dom g is bounded, namely, D = sup, , c qom 4 |7~
y|| < +o0. We denote M,, = M,,(z*, D) for simplicity.



Let us use V f (z,&) to represent a stochastic gradient we further assume the stochastic gradient has
a bounded variance: 02 := sup, cpa E§[||Vf(ac €)= V£(x)|?] < +oo. For the sake of notation, we

denote V f(z*) = V f(a*, ¢ k) and V f ( By = Vf(yk,¢ i) to present the stochastic gradient in the
k-th iteration, where £ and £}/ are two i.i.d. samples.

Algorithm 2 AGDA Line Search Free Modification (AGDA LSFM)
Input: z°, 7;
1: Initialize Ag =0, By = 0,79 = T;
2: Set initial solution: v° = £ = 30 = 27;
3: fork=0,1,.... K —1do
4 Solve v* = arg min,, Zf:() a;[f(@)) + (Vf(x)),z — %) + g(z)] + %on —x|%
5: Setdy, = ||z° — 2*|;
6: Update 71, and A1 by (T3] and .
7:
8

Set a1 = Ak+1 Ak, T = Ak+1

Set 2F+1 = 7oF + (1 — 7,) 9%
9: Compute ¥+ = arg min, {ar1[(Vf(z
10: SetyFtl = mahtl 4 (1 — 7)Yk,

11:  Setny *7ﬁ“§?+ﬂ”k
12: Solve (T6) to obtain the solution B4 1;

13: end for

RHL) = 2R 4 g(y)] + B (b — y2)s

Algorithm 2]is equipped with the following rules:
TE = max{?k,l, Tk, dk}, k>0, (15)

where dj, = ||#* — 20|

In stochastic settings, traditional line search methods cannot be used as they introduce bias. Therefore,
it is necessary to develop an approach that does not rely on line search. Rather than performing line
search to find the descent direction, Rodomanov et al. [34] proposes a nonlinear balance equation. The
core idea is to bound the error term f(y**1) — f(zF+1) — (V f(2k+1), yhtt — ghtl) — He|yhtt
2**+1|2 by constructing a balance equation incorporating D. We demonstrate that the term used to
bound the error is effectively equivalent to line search, allowing us to use 7' to approximate D, which
implies that D is not essential. Subsequently, we will explain how to formulate the balance equation.

As we mentioned in Section line search strategy aims to find S such that I (Sx+1) = 0. The
difficulty is that y**! depends on ;1 and thus solving I;(3x11) = 0 cannot be achieved by a
closed-form solution. The motivation for applying the balance equation is to decouple the updating
rule of y’“r1 from the Sx41. Once y’€+1 has been updated, [ (8r+1) = 0 will degenerate to the
following balance equation

Br+1 — B ﬁk

PR = (V) = T k) — By )

64T]3Ak;+1
where [ = max(0,-). We use (Vf(y**1),y*+1 — 2*+1) 1o replace the —f(y**+!) + f(z"+1)
since we cannot obtain the function value.

Since we decouple y**! from 34 1, equation has a simple form that is easy to solve. Moreover,
it has a unique closed-form solution given by

(6472 Aa 1 (97 () = T, 54 = ) — Bl — ok 2
BrZ + [y = R

Br+1 = Br + . (17)

We leave the details about conducting the closed-form solution in the appendix.

We next conduct the convergence analysis of Algorithm[2] In order to use the unbiasedness of the
inexact oracle, we adopt the balance equation to update the 3;1. Moreover, we use 7, is a natural
underestimation of D and Lemma [3| ensures that the cost of underestimation can be reduced to
O(log 2). We leave the proof in the appendix.



Theorem 3. Suppose Assumption|l|holds. Algorithm|2|exhibits a convergence rate that

T 1+v
M, D UD) (18)

E[(y* ) —p(z*)] e O | =L— +
[w(y ) w(w )] ( K 2 = V K
where k* = arg min1<k<K{L;I; }

5 Experiments

We evaluate the performance of our proposed method on a diverse set of convex optimization
problems. The goal is to assess its efficiency and robustness across different application scenarios.
Additional implementation details and extended results (more different problems and large scale
experiments) are provided in the appendix.

5.1 Deterministic setting

— T T

11071 \’1

<
=102 -
—— AGDA e z T
1073 = o T e

0 5000 10000 15000 20000 25000 30000 "0 200 400 600 800 1000 0 200 400 600 800 1000
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10-1 — Dogwithr. =001 —
DADA with 7 = 0.01
—— DADAWith7=1 |

Figure 1: Performance of the compared algorithms. Left: softmax problem. Middle: Matrix game
problem of size (n, m) = (896, 128). Right: Matrix game of size (n, m) = (448, 64).

Softmax The first problem is optimizing the softmax function:

. S (ai, ) — b;
irenRri wlog [Z exp ()1 ; (19)

i=1 K

where a; € R?, b; € R and p is a given positive factor. This function can be viewed as a smooth
approximation of the maximization function.

To facilitate a clear comparison, we design a simple baseline problem for evaluation. Specifically, we
first generate i.i.d. vectors {a;} and b; whose components are uniformly distributed in the interval

[—1,1]. Using these vectors, we define an initial softmax objective f(z) as in (T9). We then shift

the data by redefining a; = a; — V f(04), where 0 is the d-dimensional zero vector, and set f(z)
according to (19), using the new a; and the original b;. With this construction, z = 0,4 becomes the
global minimizer of f(z).

We employ various methods for comparison, specifically considering DOG [14], DADA [26], and
the universal fast gradient method (FGM) [27] as benchmarks. For DOG, we set r. = 0.01. Both
DADA and AGDA are configured with 7 = 0.01, while for FGM, we set ¢ = 0.01. We set
n = 1000, d = 2000 and . = 0.005 as the parameters of the problem. The results of our method
are illustrated in the left part of Figure [l As expected from complexity analysis, FGM, being
an accelerated method, outperforms the non-accelerated baselines DOG and DADA. Notably, our
proposed algorithm achieves the fastest convergence among all tested methods, which empirically
confirms the advantage of our adaptive stepsize selection.

Matrix game The second problem we experimented with is the matrix game problem [27]. We
denote A, as the standard simplex with dimension d > 0. Specifically, consider a payoff matrix
A € R™™ where two agents engage in a game by adopting mixed strategies x € A,, and y € A,
respectively to play a game without knowledge of each other’s strategy. The gain of the first agent is



given by (x, Ay), which corresponds to the loss of the second agent. The Nash equilibrium of this
game can be found by solving the saddle-point (min-max) problem:
i , Ay). 20
2, s e .
This problem can be posed as a minimization problem: mingea,, yea,, {Upa(2,y) = Yp(x) —
Yaly)} = 0, where ¢ (z)=maxi <j<m(z, Ae;) and Pa(y)=min <i<n (ei; Ay).

We generate the payoff matrix A such that each entry is independently and uniformly distributed
within the interval [—1, 1]. This problem is nonsmooth with Holder smoothness parameter v = 0,
making it a suitable test case for evaluating the robustness of optimization algorithms under minimal
smoothness assumptions. We evaluate all methods on two problem sizes: (n, m) = (896, 128) and
(n,m) = (448, 64). The performance of our method, along with the baselines, is shown in the right
panels of Figure[I] The results demonstrate that our algorithm remains highly effective even in
challenging nonsmooth settings, outperforming the alternatives in both cases.

5.2 Stochastic setting

+— AGDA-LSFM with 7 = 1 106} —— AGDA-LSFM | —— Accuracy:0.2
a 107 + AGDA-LSFM with 7 = 0.1 a | —— Adam | 8000 Accuracy:0.4 A
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Figure 2: Performance of the compared algorithms. Left: robustness test on diabetes dataset. Right:
Long-run test on Boston housing dataset. Right: robustness test on the softmax problem

Least-squares For the stochastic setting, we first consider the following problem:

. 1
min f(z) = =||Az — b||3 st [jz|z <7 (21)
z€R? 2

We set the constraint radius » = 10 and conduct experiments using real-world datasets from LIBSVMﬂ
For the first test, we use the diabetes dataset to examine robustness. For both USFGM and our
AGDA-LSFM algorithm, we vary the initialization hyperparameter D for USFGM and 7 for AGDA-
LSFM—to evaluate sensitivity to stepsize-related inputs. As shown in the left panel of Figure [2}
USFGM [34] and Adam exhibit unstable performance when hyperparameters are poorly tuned, while
our algorithm maintains strong and consistent convergence across a wide range of settings.

To further validate algorithm efficiency in a practical regime, we repeat the experiment on the Boston
housing dataset, tuning all methods with their best-performing hyperparameters. The middle panel of
Figure [2| shows that our method achieves competitive long-term performance while preserving its
robustness advantage. These results illustrate that our approach is not only stable but also effective in
real-world stochastic optimization tasks.

5.3 Robustness

We conduct additional experiments to assess the robustness of our method with respect to the choice
of the parameter 7, which reflects an estimate of the initial distance to the optimal solution, Dy. Our
goal is to show that the performance of our algorithm remains stable across a wide range of 7 values,
thereby reducing the sensitivity to inaccurate user-specified estimates.

To this end, we revisit the softmax minimization problem and vary 7 logarithmically from 10~ to
10%. For each setting, we fix the target function value tolerance at ¢ € {0.2,0.4,0.6,0.8,1} and
record the number of iterations required to reach the specified accuracy. The results, shown in the

*https://www.csie.ntu.edu.tw/cjlin/libsvm/


https://www.csie.ntu.edu.tw/cjlin/libsvm/

third panel of Figure [2] reveal that our method is highly robust: the number of iterations remains
nearly constant across several orders of magnitude of . This suggests that our approach can tolerate
significant misspecification of Dy without compromising convergence efficiency. In practice, users
may either provide a rough estimate of the initial distance or simply default to a moderate value such
as ¥ = 1073, which performs consistently well across our tests.

5.4 Non-convex neural network

To evaluate performance in non-convex optimization, we trained a ResNet18 model on the CIFAR-10
dataset. We compared the proposed AGDA algorithm against two established optimizers: AdamW
and DoG. For AdamW, we set the learning rate to 10~3 . The DoG algorithm was configured with
re = 1073, which is consistent with the primary hyperparameter used in the AGDA implementation.
The comparative results are presented below.

Training Loss Validation Loss Accuracy
L scomrsen 0175 | T a5 S D S ——
3 - DoG B 80 i
0.150
360
wn2 s w 0.125 ©
CHR 3 3
3 So.100 S 40
1 AN <
N 0.075
| o Adamw
0.050 - . 20, AGDA_LSFM
o bt —— . / + DoG
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch Epoch

Figure 3: Performance of the compared algorithms in network training. Left: Training Loss. Right:
Validation Loss. Right: Accuracy.

The results clearly show that AGDA-LSFM maintains performance on par with the AdamW baseline
and achieves superior results compared to DoG. Crucially, these findings establish the competitiveness
of our method against SOTA parameter-free approaches, suggesting its practical robustness extends
beyond the theoretical assumptions (e.g., boundedness and convexity) that underpin its derivation,
even within deep learning’s highly non-convex landscape.

6 Conclusion

This paper introduces a novel parameter-free first-order method for solving composite convex op-
timization problems without requiring prior knowledge of the initial distance to the optimum (D)
or the Holder smoothness parameters. Our method achieves a near-optimal complexity bound for
locally Holder smooth functions in an anytime fashion, making it broadly applicable and practical.
In the stochastic setting, we further develop a line-search-free accelerated method that eliminates
the need for estimating the problem-dependent diameter D during stepsize selection. This enhances
both theoretical generality and practical usability. Preliminary experiments demonstrate that our
algorithms are competitive and often outperform existing universal methods for Holder smooth
optimization, particularly in terms of robustness and adaptivity. An important direction for future
research is to improve the dependence on the diameter D, in the convergence complexity, and to
further relax the boundedness assumptions typically required in the stochastic setting.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We state the complete contributions in Section I}
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Appendix A.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We give all assumptions needed in Section 2] [3]and ] We leave all the
complete proofs in Appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our experimental reproduction scripts will been placed in the supplementary
material.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our experiments use publicly available datasets or randomly generated data
based on specific methodologies. We are committed to making our code completely open
source.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All details can be found in the paper and supplemental material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our experimental results do not report standard deviation correlation results in
the deterministic case. We focus on the convergence rate of algorithm in the stochastic case
and do not report them too.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were conducted on personal computers, utilizing CPUs for
computations, with 16GB of RAM.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The code in submission is fully compliant with the NeurIPS code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This paper focuses on a theoretical problem without any societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

17


https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There are no such risks in this paper.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets are properly credited, and the license
and terms of use are explicitly mentioned and respected in the paper.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide a complete document of our code.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve such research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve such research.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This paper does not involve any LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Structure of the Appendix In Section[A] we discuss the limitations of our algorithms. Section [B]
presents the proofs of the lemmas for completeness. In Sections |C| and [D] we provide detailed
proofs of the main results discussed in Sections [3]and ] In Sectior% we introduce two methods
for automatically setting the hyperparameters. Finally, Section [F] offers additional experiments to
demonstrate the advantage of the proposed algorithms.
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A Limitations

Algorithm [I] significantly reduces the multiplicative overhead of choosing a sufficiently small pa-
rameter 7 from a polynomial to a logarithmic factor, and lowers the average number of gradient
evaluations to one per iteration—compared to four per iteration in the Universal Fast Gradient Method
(FGM) [27]. However, this improvement comes at the cost of increased computational burden during
the line search procedure. Specifically, to accurately adapt to the local Holder smoothness, our
method requires a more precise selection of the parameter Jy, leading to a total of O(k log k) line
search operations after k iterations, whereas, in contrast, FGM only requires O(k).

B Auxiliary lemmas

B.1 Proof of Lemma[3

This result was first established in Ivgi et al. [14, Lemma 3] and Liu and Zhou [22, Lemma 30]. We
give a proof for completeness.

Proof. Let Ry, = Z,ffl —~ and Ro_l = 0, then for any k£ > 0
i=0 Ti
1 -1 Tk 1 Tk -1
1R =Tl Ty =R, - —R_".
+1ib1 k 1 k+1 Th1 k
Then
o T
i 1 i -1
= R R +(1- )R,
zz(:) Tit1 ; . Z = rig1 '
k-1 . =1
=R +) (1—- )R <RI+ k- L,
i=0 Tit1 i—o itl

where £* = arg ming<;<y, R;. It then follows that

I <1+k k([T 2)®

i= 0 T4 = O T
Ry < . i1 < . L1+1
Zt 01 1::1 k(Hz 017"::1)E
1—|—k—k(:—2) l—klog(ro)
= o\ L — T
k(2)* k(2%
1 - log(f—") _ (@)%log(e:—’;).
k(ro)f 70 k

Tk

B.2 Proof of auxiliary Lemmas

The following three-point Lemma is a well-known result. See also Chen and Teboulle [4, Lemma
3.2] and Lan et al. [19, Lemma 6]. We give a proof for the sake of completeness.

Lemma 4. For any proper Isc convex function ¢ : R — R U {+oc}, any z € dom ¢ and 3 > 0.
Let 2z, = arg mingedom ¢ { () + §||Z — x||*}. Then, we have
B B B

8(@) + iz — ol 2 9(z4) + Sllz = 24l + Lllzy — o, Vo € R 22)
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Proof.
1 1 1 1
Sl = ol + S le = 2P = Sz = wl =32l = (4,2) + 5 2 )P
1 1
5l = (e za) + Sl P
1 1
= S0P+ {2 2) = Sl
(2= 2y, @ — 24,

In view of the first-order optimal condition at z,, we have

(Vo(z4) + B(24 — 2), — 24) 2 0.

Combining the two inequalities above, we have

B B B
§||Z+ — x|+ 5”2 -z | - §||Z —z|? =Bz =z, x — z4)
<(Vo(zy), @ — 24)
< o(z) — o(z4),
where the last inequality uses the convexity of ¢(-). O

Lemma 5. Foranyu > 0, k > 0, there exits a positive constant ¢, such that:

(E+1)% — k"> cy(k+ 1)1 (23)
where c,, only depends on u.
Proof. When k = 0, we have (1)* — 0% = 1% = 1%~! = 1. Now consider k£ > 0. We distinguish
between two cases.

Case 1: If u > 1, we have
k+1

(k+ 1" —k* = u/ e > ukt!
k
and hence
k u—1 1 u—1
—_— > | = .
(1) =(5)
Therefore,

(b4 1)" — k" > u(%)“’l(k +1)et,

Case2: 0<u<1,

k+1
(k+1)"—k*= u/ o e > u(k +1)%L
k

Therefore, we can set ¢, = ()"~ O

C Missing details in Section 3]

In this section, we provide a detailed convergence analysis of Algorithm [T} For the sake of simplicity,
we define the following notations.

k+1

Bra(e) = 3 alf () + (V) x — o) + (o)) + P a0 — a2
i=1

 BrsaTh — BeTy

861k+1

Nk

Using this definition, it follows that ¢o(z) = 22 [|2° — 2|2
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C.1 Proof of important lemmas

To begin our analysis, we first prove the key bound (6) used in universal gradient methods. The
bound (@) ensures that these methods can be accelerated by line search without prior knowledge
about v and L.

The following result is from [[27], Lemma 2]. We give a proof for completeness.

—~ —~ Sy ~2
Lemma 6. Let v(M,,0) =v,(M,,08) = (;—Z%)}TVMVH”, where v € [0,1] and 6 > 0. Here, we

set (%%)}% = 1. Suppose that for any x,y € Bsp,(z*), we have
IVf(2) = V)l < M|z —y]"- (24)
Then, for any z,y € Bsp,(z*) we have
M,,5 5
£0) < 5(@) + (V1) =)+ LDy ey 8 ©3)

Proof. Note that the condition (24) immediately implies

—

FW) < F@)+ (VS @)y — )+ T o =y

from basic convex analysis.

For any a,b € Ry and p,q > 1, 1% + % = 1, applying Young’s inequality we obtain

ppe

T4 > (26)

p q

1—v
We choose p = 1—127 q= 13—” a=t1"and b= (%%ﬂ) i+v and have
_ 1+v & QV
R G IS o v R AR O B
2 2 = M—va

(1+v)t? 1—v M, 1 (14+v)d

o A T
S g
.0+ 3= 0,
We set ¢ = ||z — y|| and obtain (23) directly. O

To demonstrate the primary convergence results in Section 3] we first establish some useful lemmas
regarding the well-definedness of line search and the boundedness of the iterates.

Lemma 7. Let g : R? — RU {400} be a proper Isc convex function. For a given vector ¢ € R? and
point 1° € RY, define the function z(h) for any h > 0 as: z(h) := argmingcga{{c, ) + g(z) +
h||z® — z||?}. Then, the function ||x° — z(h)|| is monotonically decreasing in h and converges to 0
as h — 4oc.

Proof. First, we prove ||x° — z(h)|| is monotonically decreasing in h. For any hy, hy such that
hg > hy > 0, in view of the optimality of z(h;) and z(h2), we have

(e, 2(h1)) + g(z(h1)) + ha|2® = 2(ho)|* < (e, 2(h2)) + g(2(h2)) + hala® = 2(R2)[I* 27)

and

(e, 2(h1)) + g(2(h1)) + hall2® — 2(h1)|I* > e, 2(h2)) + g(2(h2)) + hal|2® — 2(ha)||*.  (28)
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Combining and and noticing that hy — h1 > 0, we have
(h2 = ha)l|2® = 2(h)l* > (ha = ha)ja” — 2(ha)|%,

which implies . o
27 = 2(ha)ll = [lz7 = 2(h2)]l.

Next, we prove limy, 1 ||2° — 2z(h)|| = 0 by contradiction. If there exists § > 0, for any
h € Ry, ||lz° — z(h)|| > 6, then we have

(e, 2(h)) + g(2(h)) + hlla® = 2(W)II* = (c, z(h)) + g(=(h)) + hd®.
Let us consider h > hy > 0. Uusing the optimality of z(hg), we obtain

(e, 2(h) + g(2(h)) + holla® — 2(R)[|* = (e, 2(ho)) + g(2(ho)) + hol|2° — 2(ho) %,

Note that monotonicity proved above implies |20 — z(h)| < ||2° — z(ho)

inequality, we have
(¢, 2(h)) + 9(2(h)) = (¢, 2(ho)) + g(2(ho))-
Moreover, using the optimality at z(h) and the lower boundedness ||z° — z(h)|| > &, we have
(e, 2%) + g(2°) > (¢, 2(h)) + g(2(h)) + hlla” — 2(R)|I* > (e, 2(ho)) + g(2(ho)) + hd*.  (29)

Since & can be arbitrarily large, this result is impossible unless ¢ = 0. O

, together with the above

C.2 Convergence analysis of AGDA

Outline The analysis of AGDA is slightly more involved than the standard complexity analysis for
smooth problems, as we must simultaneously prove the boundedness of the iterates and establish the
convergence rate. Our proof strategy is centered on an inductive argument. To proceed, we outline
the structure of the analysis. Lemma [I]and Lemma [2] develop crucial results regarding one-step
iteration, including the success of the line search, convergence error, and the boundedness of the
iterates, assuming that all previous steps are well-defined. This serves as the foundational building
block for our inductive analysis. Lemma (8] establishes growth bounds on ). Building on this,
Proposition[T|addresses the complexity of the line search step. By employing mathematical induction,
we conclude in Theorem [I]the boundedness property of all iterates and establish key convergence
properties of **1. Finally, utilizing the technique of distance-adaptive stepsizes, we derive the
overall convergence rate of AGDA in Theorem 2]

Next, we establish an important property about the convergence of the algorithm.
Proof of Lemmalll

Proof. Since l;(Bk+1) > 0, we have

e (Bre1) = — Fmv™ ™ (Brar) + (L= 7)y") + F@ ) + (VF@H), 70" (Braa)

BFIQC - Bk?i—l
16 Ak 41

Brt1

k_ k+1
647]?Ak+1

+(1 = 7)y* =2t + 70T (B) + (1 — 73)yF — 212 + >0,

(30)

i.e.,

FMY) < )+ (VFER), = P & #Hywr1 — g2 4 T
64717 A 2

Bri1Te—Brra_| .
%j“,nholds

FOM) <= m) (@) + (VM) g = a0+ mu (@) + (VM) 08— aMt)
Br+1 k+1 Uk||2 + 5k+17712c - 5@371
647']?Ak+1 16Ak+1
S =) fY*) + e (f (@) + (VM) 0P =2t Hh)

Br+1 [+ — |2 + BT = BrTi
64Ax+1 16Aj41

Because zF 1 = mp0F + (1 — 7 )yF, yF 1 = oL+ (1 —7)y* and gy, =

7 llv

+
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Multiplying both sides by A1, we have
Aprt f(YFT) SARFP) + apa (f (™) + (VM) oM = 2MH)

ﬂkJrl Hvk+1 _ kag n Bk-&-lfi - ﬁkf;%,l .

+ 64 16
Note that
[ = oF ) < (o =20 4 [[oF = 2%))? < (2max {0 — 20|, [o* — 2°(I})? < 47
It follows that
Aprt f(YEY) SARSP) + apa (f (™) + (Vf (M), 0" —2MHh)
3k “ k4+1 kH2 5k+1 ﬂk _z ) 5k+17712§ - kai—l
64 + 16
SAkf( ") app (@) + (T f (), 08— b))
+ @Hvkﬂ — ok Brer1 = Br o 2.+ Brr1Ti — Briy G
2 16 16
SARF(YF) + anpa (F @) + (V@) oM =2
&”Ukﬂ — ok Bri1Toyr — BiTi  BrsiTh — BrTh_y
16 16 ’
where the last inequality uses 7'x41 > Tk.
On the other hand, since g(-) is convex, we have
g(y* ) < (1= m)g(y*) + meg(0"F1). (32)

Combining (31) and (32), we obtain
App () SARYF) + appa (f@T) + (VF@EM), 08 — 284 4 g (o T)

=2 =2 =2 =2
@Hvkﬂ — k|2 Br1Tin — BrTie | BraT — Brle—y
16 16 ’

For Bk [[pF+1 — k|12, we use Lemma then

Apprp(y*H) <Aw( BY b g (F(@FY) + (VF(@FTY), 0P — gkl 4 (o))

Zaz VA, 0 ) 4 gt ) + e o2

Br
—Z:az (Vf(h),v" —$>+9(Uk))—7||170—”k||2
5k+17”k+1 —BkTh | BeaTh — BrTh
16 16
ft1

<A+ a0+ (TS =) g0 ) 4 B o

—Zaz (Vi) —x>+g<vk>>—%||x°—vk||2

5k+17"k+1 — BiTr . BrgaTr — By
16 16 '

(33)
We can shorten the inequality by using the definition of ¢y, (-):

Bre1Thyy — Befi  BraTh — Brlp_
A p ) < A) + gun (041) — (o) 4 DTt T e Ta = Pl
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Applying the upper inequality recursively, it holds

6Z+1Tz if% ﬁz+17ﬁ ﬂz ri_
A1) <o () )+ Z Bl B > 1
i=0
< k+1 BkJrl —2 ﬂ() 2 5k+1 —2 50 2
<1 (0) + 16 k+1 7 1670 6 k161
Br+1 Brt1
<opr (VFT) + 16 Tri1 16 Thi

Br+1 _
<1 () + 8+ Trsi-

where ¢ (v°) = 0 and 3y > 0.

k+1

Since v = arg min ¢ 1(x), we use Lemma again and obtain that:
xT

B
A1 (YY) <@g (0P + P2

8
k
- i k 5k+1 0 k+1 2 3k+1 72
=2 af(a) + (VH ) = gt + St Ia? - ot P S
k+1
< * 0 * ﬁk+1 0_*2_6k+1 k+1 _ 2
D () + (Vfw)a = o) gla) + Z I o = SR o)
/Bk+1
+ 3 Thi1

o Bra1 Br+1 Brs1 o
SApp1(x”) + TJFHQT0 el TJrHUkﬂ —z|* + 3 Ay

k+1 _

Finally, we use Dy and Dy 1 to replace ||z° — 2*|| and ||v x*|| and have

Ap1p(y ) < Apap(a®) + mﬂDo BHleH +— Pra G

8
Br(Dg — Diyq) n BiThi1
2Ak 11 8Ak+1

Dyt —w(a*) <
O

Note that the convergence result above is conditioned on the success of the line search, which further
requires the boundedness of the iterates. We prove these important properties in the following lemma.

Proof of Lemma

Proof. For clarity, we divide the proof into the following parts.
Part 1: Finite termination of the line search.

Given the value of z*, y*, A1, T , Tk, Tx_1, and By, 1(B) is defined by

(B) = — [ (B) + (1 — 7)) + f(@h) + (T (), mo L (B)

By — Bk, (Y
T 164k
where v*1(8) = argmin, cgs Sy a;((VF(2),2) + g(x)) + 4|z — 2°|1%, € Ry

We analyze the function v**1(3) and I () first. v*+1(3) € dom g is well-defined and unique since
Zle a;((Vf(zh),z) + g(z)) + §||a: — 2|, 8 € Ry is strong convex and has a unique optimal
solution. We claim that g(x) restricted to dom g is continuous since it is convex and Isc. The convexity
guarantees g(x) is continuous at the interior point of dom g, and lower semicontinuity guarantees

+(1 =)y =) + 170" (B) + (1 = m)y* — 2™ HH1* +

647']3Ak+1
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that it maintains the continuity on the remaining points of dom g. Thus v*(3) is continuous. Since
l(B) is the composition of continuous functions, it is also continuous.

Next, we discuss the behavior of ,(3) when 8 — +4oc. Recall that we assume x* v* y* €

Bsp, (z*), we shall first prove that the line search for y**! must be finitely terminated. Specifically,
applying Lemmawith c= Zfill Vf(z*) and h = g we have that for a sufficiently large value 5,
when 3 > B, ||z — v¥+1(B)|| < 2Dy, which further implies ||z* — v**1(3)| < 3D.

Let us consider 3 > 8!, 6 > 0, where

~ 8Ap416+ Bkﬂ%_l
=2

[3;{_’1{_1 = max {[3, , 327’,3Ak+1'y(]\/4\l,, d), 5k}

Tk

we must have v*+1(3) € Bsp, (z*). Since y**1() is a convex combination of v**1(3) and y*, we
have y**1(3) € Bsp,(z*). Similarly, we have 2%+ € Bsp, (z*). Lemma@implies

~(M,, 5 ) .
FE) < 5@ + (5@ )+ DD g2y D vy € Bin, ). 39
Moreover, due to the definition of 3|, we have
V(M,.8) B g & < BTE =Bk
2 T 642 Ans, 2= 164p

Combining the above two results, we conclude that [;,(5) > 0. That is, [;,(3) remains nonnegative
when [ exceeds a certain threshold, and hence the search will terminate in finitely many steps.

Furthermore, we would like to point out that 2}, is another threshold. For any § > 25/, we
have [, () > 0. The reason is that the following inequalities hold:
v(My,0) _ B 28 6 _ BT —BiTh oy _ 2B7R — BiTi 4

< , and ° <
2 T 642 Apsy 642 A 02T T 1645 164711

The second stage of the line search procedure also ends in finite steps as it employs a simple bisection
method.

Part 2: Boundedness of the (k + 1)-th iterates.
First, we immediately have z¥*1 = 7.0F + (1 — 7 )y* € Bsp, (z*) by the assumption. Next, we
prove y*+1, vk +1 € Byp (2*). Part 1 implies 1;(8;11) > 0 (i = 0,1,..., k). Applying Lemmall}
we have ) ) )

(D6 — Diy1) | BrtiTiesy

k+1 * Bk""l
U — o) < PR e

(36)

‘We shall consider two cases.
Case 1: 71 = 7, then 11 < 7 < 4Dg;
Case 2: 7,11 = ri+1. Due to the non-negativity of the optimality gap and (36), we have

0< ﬁk-&-l[D(% - Dl%+1] 5k+17’;2€+1
- 24541 8Ak+1

By dividing both sides by 2‘}:;1 , we obtain

2

r?
0<D§— D+ ZH,

7’2 r
Dk+1§\/D§+%§DO+ ’;“.
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By the triangle inequality, we have:

Tk+1
2

Tht1 < Do+ Dyy1 < Do+ Do +

rr+1 < 4Dg.
By repeatedly using the Dy, < Dy + 2=, we have:

Dk§D0+%’“§Do+2Do§3Do.

That is, [|[v**! — 2*|| < 3Dg and thus v**! € B3p, (2*). Thus, we have y**1 € Byp, (z*) as well
since "+ is the convex combination of v**! and y*. O

The following lemma develops an upper bound of 5y.

Lemma 8. Suppose f(-) is locally Holder smooth in Bsp,(xz*) and By < 27I,,]\//.71,F”. In Algorithm
forany k > 0, given 62 41 > 0, if at least one of the following two propositions holds:

1. 1(Br) > 0, in which case we set P11 = Br;
2. there exists a root (3}, | where l(f}, ) = 0 and the line search returns a value satisfying
!
6k+1 < Bz+1 + €Lt1-

Then, we have

3

3v
2

Be < LM, k2 + S € 37)

i=1
Proof. First, we estimate the growth of a1. We have
1 1 1 1 11
aken = Agr — Ak = (A7 — A7) (AL, + A7) <204,

which gives
2 —
(] < 47”kAk+1~

Next, for 3}, , that satisfies 11,835, ,) = 0, applying Lemma we have

y* 1 (Bii1) € Bap, (z7), (38)

where 3*+1(3) is defined in the main text of the paper.

Ik(B% 1) = 0 implies that

F@H(Bra)) = f@™) + (VM) " (Br) — 2™

n Bit1 Iy (B ,) — 25T + BriaTh — BrTi 4 (39)
6472 Ajt1 h 164511
Applying Lemmal6] we have

FO T Brin)) = f@) + (VA " (B ) — )

v 40)
V(M ,9) . 2 (
=y (B) — T
2 2
B T —BrTr_ .
We take § = —+=g5-—=—+==, then combine (39) and (40), we have
Bt <~ (31 BiiTh = BT 1\ . @1
327"?14]@_;,_1 - v 8Ak+1 ’

We prove this lemma by induction. By the assumption on Sy, it holds for £ = 0. Next, we assume it
is valid for some k.
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Case 1: The line search is satisfied by the previous step size (8;11 = ).

The inductive hypothesis is trivially satisfied for k& + 1:

k+1
4+ 26“

Brs1 = Be < LM, k=" —l—Ze <271, M, (

=1

where the final inequality holds because 7 is non-decreasing.

Case 2: The line search requires a new step size (5x4+1 > (k).

Case 2.a: Bj41 < Bf,, + €, andv = 1.

Brt1 < 8Ak+1
327,?Ak+1 - BZ_HF’% — ﬂkr_l%—l
By <2"My7y, = 271, M, 7y,

—

)OMV = Ml/

k+1
Brs1 <27, M7 + € < 2L, M,7p + ) el
i=1

Case 2.b: Bi41 < B;,, + €, 4, and v # 1. First we analyze S, ;. Since 3 ; is the maximal zero
point of [j,(-), applying Lemmal[6] we have

_2 -
Bt (/\ Bret1The — PrTi_1
327']?Ak+1 - v 8Ak+1 ’

i.e.

1—v 1—v

B§+1 < (1_V - ,8214]6‘+1 =) )1+ My <
327; A L4 v BT — PrTiq

<

)

o
7 N
oo
b

E

+

—
N———
I

S

=)
+v

It can be rewritten in the following form:

* * 1-v 1044y 7% ol-v Am
Bk+1(5k+1 — B) T < 27T T (k4 1)“m M.

As [y increases with 81 > [y, the left-hand side also increases. Thus, by identifying a value
where the left-hand side is at most equal to the right-hand side, we can determine an upper bound for

Brs1-

Letc, = 27(12) %" “M,. For ¢,7 (k +1)*2

” el we have

1117

k k
(e (k1) + 3 e (k+ 1) + 3 e = 5+
i=1 i=1
§=% - 3=3 u 3-3 k 1—
e (k+1)"= + Y ek + 1) 4+ d—er kT =Y )
=1 i=1 i—1
k (42)
>(e ik +1)"7 + Y ek + 1) — e k)T
=1
>cmz(k + 1) (q, f”(k +1)7T - CVF]’;]{BESV )TH
2y —3v  1—v
>c,}+" P+ 1) 2 (k1) 2 — k)T
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Since 253¢ € [0, 3], and min ($)*"! = 277 > i 3_31’(%)%71 > 3=3v_ Applying lemma

1<u<d
it holds that ) i
L —3v v v, 1l—v
ATF (k1) T (k4 1) — k)T
3 3V 2 2 B
> TR (k1) (k1)) T
3.3y 1 a4 —2 2 , (43)

- 4
10+4v

>0 T 1\71+"*““(k+1) ==

This inequality implies that 3; ; < 271, M, (k4 1)"2

imp € and Bryr < By +ey <

271, M, (k+ 1) + Y F el -
Moreover, since we set efg = 257” we can obtain an upper bound of 3, as follows
k+1

ﬁk+1 S 27-[1/]/\4\

Z < 2T, M, (k+1)"2

< 281, M, rk(k—i—l)

C.3 Proof of Proposition Proposition 1]

Proof. In the proof of Lemma 2] we have proved that the first stage of the line search terminates in a

finite number of steps, and thus lk(2i§c_1 Br) > 0. Moreover, we also proved that [;(-) is continuous.
Next, we show that at least one of the two propositions mentioned in Proposition [T]is correct.

When ¢), = 1, we have [, (21';«*15;@) = l;(Bk) > 0. Thus, the first proposition holds in this case.

When i, > 1, we have [,(2%+~18;) > 0 and I;,(2%*~28;) < 0. Since [(-) is continuous, based
on the intermediate value theorem, there exists at least one root in the interval [2’772 B, 2tk —1 Bk)-
Moreover, as previously discussed in Lemma [2| there exists a threshold 2™ such that for any
B > 288, 1k(B) > 0. Now, since (/) has at least one root and the set of roots has an upper
bound, there exists a maximal root 3; , ; of the continuous function /x(-), and therefore the second
proposition holds.

It remains to estimate the upper bound of the amount of searching. Without loss of generality, we

assume that 3y < 277, VM\ L7 in the Algorithm This is a common assumption in the previous work,
for example, see [27], and it is reasonable since the upper bound of the searched value increases
polynomiallil in k. The initial value of the searched value is not very sensitive. Thus all the conditions

of Lemma 3| are satisfied, we apply it to obtain that S;4+1 < O(k =

231/ )'

The first stage in the line search in the k-th iteration starts from [y to at most 25;41. So the
length of the interval is at most 23511 — B and this stage in line search procedure requires at most
i <1+ log(%) times in the k-th iteration. We sum them up and obtain that up to the k-th
iteration, the total amount of line search operations in the first stage is at most

Zz < 1+log2)k+log(ﬁgﬂ) < O(k+logk).
0

The second step in line search process in the k-th iteration start from 20-=1 3, to at most 2% 3;,.
Hence, the interval length is at most 2%+ 3, — 2+ =13, = 20+=1 3, < B, and this step of process

requires at most i, — i}, < 1+ 1og(%) times in the k-th iteration. We sum them up and obtain that
k+1

up to the k-th iteration, the total amount of line search operations in the first part is at most

k k k k
sz <k+ Zlog (d =k + log Hﬂl —log Hei < O(klogk),
j=1 i=1 i i=1 i=1
where we apply Lemma{g]to estimate [3j,.
To summarize, the total amount of line search operations is O(k log k). O
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C.4 Proof of Theorem

Proof. We first prove the first part of this theorem. We apply Lemma [I]and 2] to prove it by induction.
First, 20 =0 = 40 € Bsp, (x*). Next, we assume it holds for some k& > 0.

Since =¥, v* y* € Bsp,(z*), we have l,(Bry1) > 0 and xF+l oF 1 gkl € Bip (2%) by
Lemmal[2] Thus, applying Lemmal[I] it holds that

(Dg - D]2c+1) 5k+1771%+1

Br+1
ALy (o
by™) —Pa”) < 2441 8Ak+1

(44)

Therefore, for any k£ > 0, we have

Bu(D3~ DF) | Bt

k *
V() — v(et) < PR ¢ 45)

Then, we prove the second part of this Theorem. The proof is similar to that of Lemma[2] For
completeness, we give a proof directly using the conclusion obtained in the first part and induction.

Since we assume 7 < 4D, then 7y = 7 < 4D . Next, we assume it holds for certain £ > 0, then
2P = 1ok 4+ (1 — 7)y¥ lies in Bap, (*).

Case 1: 7y = T, then rp 1 < 7 < 4Dy;

Case 2: 741 = rr+1. Applying the conclusion obtained in the first part, we have

< Br1(D§ — D y) N Br+1Tr41

0< o™~ < =4 — A, (46)

Then it holds that

2
.
0§D§-D,§+1+%
2

.
D}, <D+ ’“4“

7’2 r
D1 < \| D3 + ’Z“ < Do+ ’;“.

By the triangle inequality, we have:

’
Tht1 < Do+ Dyy1 < Do+ Do + kil

Tp+1 < 4Dg.

Repeat using the Dy, < Dy + %, we have:

DkSDo+%SD0+2D0S3D0~

That is, [[v*+! — 2*|| < 3Dy and thus v*+! € Bsp, (x*). y**+! € Bsp, (z*) as well since y*+1 is
convex combination of v**1 and y*.

In conclusion, we prove that for any i € N, |[v* — 2°|| < 4Dy and ||v* — z*|| < 3D,. O

The boundedness property is essential for us to remove the standard global Holder smoothness
assumption on the whole domain. Instead, we can safely use the local Holder smoothness assumption
as all the iterates remain in the ball Bsp, (z*).

Finally, all the preparatory work for Theorem [2]is now complete. Proposition [I]ensures the practical
implementability of the algorithm, while the first part of Lemma [I]and Theorem [I]provides the tool
needed to analyze the convergence rate. Furthermore, Theorem|I| Lemma[3] and Lemma 8| ensure
that the convergence rate achieves the best-known rate.
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C.5 Proof of Theorem

Proof. Using the triangle inequality, it holds that
Dy, > |Dg — 7]
D} > Di — 2Dgry, + 13
2Dor > D3 — Dj.

In view of Theorem [T} we have

D) — (a*) < Bx[D§ — Dj] + BrTr < 2B Dot n BT} < Dol

2Ay 8Ar — 2A% 8Ar — Ay
where we use (7).
Applying Theorem [I] we can match the right hand side of inequality (#8):

Br Doty n 48, Doy, < 3Bk Doty
Ay 8A, - 24, ’

PY(y*) —o(a) <

3

Denote k* = arg min gives

. Applying Lemma
0<i<k Z’io 7

m\»—\

() loge(z)

S elgs T k N 2k

N|=

4D
(420

1
)2F log e220

=}

47)
51@77%
84, (43)
49)
(50)

Without loss of generality, we assume that 5y < 27IVJT/[\VF” in Algorithm|l} This assumption is

similar to the justification provided in the proof of Proposition [T}

Thus, for k*, combining the inequality (50) and Lemmalg] it holds that
min - (y) — () <Py*) - (")

ye{y07yl”.yk}
<35k*D077k*
— 2Ap

3 i 2
T

§§5k*D0 (k*kll)
S

=0 2

3 r g 253 (%)i
<3 x 281, M, Do7y. k* 2 ( 5%

4Dy .

-y ADg M, Do k*

<3841, 1
(F20)F log? e == b

4Dy .

<3841, 1
(F20)F log?e =0 220

) 4DO M, Dt

<3841,(—2)% log e

4Dq
=

3—3v 3—3v
where we use the fact (k*) 2 2

It remains to use that ¢)(z*) = minye 0,1 ¢ ¢(y) by definition. Since (
k> log(%) /log 2, the convergence rate of Algorithmis

o (M LD 10g% DO)
p .

1430
2
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) 51)

1

)* < 2 when

(52)



Remark 5. In the proof of Theorem 2} we show that the convergence rate of Algorithm[I| has a
1

multiplicative factor I,,. In fact, we can set A1 = (Z?:o 7 )", wheren > 2,n € Z. By doing
this, we can achieve a result similar to that of Theorem@] If we choose n. > 3, then the multiplicative
Jactor I, will be replaced by another constant, which does not depend on v, as 1, is generated by
Lemmal[3]

D Missing details in Section 4]

In this section, we provide the detailed proof of the results in Section 4 and conduct the convergence
rate of Algorithm 2] For the stochastic case, we use the notation —¢, to present the other random
variables except .. The proofs are similar to the deterministic case, however, we do not need to
prove the boundedness since we have assumed it under Assumption ]

Lemma [9]and [I0]are provided to analyze the balance equation to estimate of .
Lemma9. Vo > 0,5 > 0,v € [0,1), we have

1 1-— v v
artt — pr? < _;V( 21/)%(0413”/51:),7“20. (53)

This auxiliary result has been used in [[34]], Lemma E.3]. We give proof for completeness.

Proof. It is easy to see that ar'*” — 312 increases first and then decreases later as > 0 increases.
. . o . . - 1
It achieves maximum on [0, +00) iff its gradient equals to zero, i.e r = (%) v,

Thus, for r» > 0,

arit —ﬁ’l‘Q Sa(((lgﬂy)a)llu>l+v _B((%)liu )2
ga((l ;/Bu)a Liv —ﬂ((l ;ﬁu)a)lzy
1 — v 10 aT7 l—v. 2 aT>
<( 2 )145}3 ~ 2 )14535

2
1+v 1 —v 14v aT¥
S( 2 )( 2 )17’/ itv *

1—v

O

Lemma 10. For nonnegative sequences {«; }ien and {7; }ien, the sequence {h;};cn satisfies that
1—v)ag
hoos — b < L2208 (54)

T—v
hk+1

with hg = 0. Then for k > 1, we have
k k
hie < (o)™ 4D s (55)
i=1 i=1

This auxiliary result has been used in [[34], Lemma E.9]. We give proof for completeness.

Proof. We prove it by induction.

Since hg = 0 < 0, we assume it is valid for some k£ > 0, then

1—v)ag
hgi1 — (1# Vi1 + by
hy
k k
<+ Q) T+ v
i=1 i=1

k+1

k
<Qa)' ™+
i=1 i=1
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Define Ty 1(7) := x — (17”1)% It is easy to verify that 'y, 1 () is increasing in z. Hence, it
x —v

suffices to show
k+1 k+1 k+1

az 1 U+Z'72§Fk:+1 Zaz 1 V+Z’Yz

Mk

z=1
which means

k+1 k+1 k+1 k+1 k+1
Zaz 4 Z% <O a)' T+ = (L= (O ) ™+ D )T (56)
=1 i=1 i=1 i=1
Rearranging (56) gives us
k+1 k+1 k+1 k
(1= v)ars (Y ai)'™ ”+Z% <O a) =),
i=1 i=1 i=1
which is implied by
k+1 k+1
(1= v)agrs < (O i)' Zaz )" ) Zaz : (57)
i=1
The inequality (57) is valid since
k+1 k k+1
(O a) ™= a0 )"
i=1 i=1 i=1
k+1 k+1 k+1 k+1
(e = Qe (L= ) (D @) ara) (D )
i=1 i=1 i=1 i=1
k+1 k+1
1—v Zaz)_”akH) Zaz
=(1—-v)ak41,
\[)vheTe the first inequality is due to the first order condition of the concave function (-)!=" v €
0,1]. O

Next, we provide the upper bound of the expectation of (.

Lemma 11. Suppose the Assumption[I| holds and f(-) is locally Holder smooth in Bsp,(z*). In
Algorithm[2] it holds that

9+91/

E[B] <272 M,D"k =" + 25k 0. (58)

Proof. We denote [[Vf(a++1) = ¥ £z = AT, and [V £+ = 9F(A).L = AL,
The expectation of (Af)? and (AY)? satisfies

E[(A7)%] = E[|V /(") = V|2 < 0°

= < g N
~ - (59)
E[(AD)?] =E[|VF(*) = VAHIE] < o®
From the balance equation, we have
T () — @A), 4 k) D e e
2 ’ 6472 Ap 1 *
SUVLTY) = V@), M =2 1 (V) = VR, M — 2
s k+1y k+1\ , k+1  _k+1\ Br+1 k+1 k412
TR = VI =) = ey P
Y v T ﬁk
<INyt = T 4 (AL + ARl — T - T — e

64TI§A]€+1
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Note that [-]; is a monotonically increasing function. The first inequality uses the convexity of f(-)
and the second inequality applies the locally Holder smoothness and Cauchy-Schwarz inequality.

Casel: v =1

Bri17h — Bri_y <[(T, — A)Hykﬂ CaETR (AT, AT T — 2]
24411 ST 642 A Rt T Sk *
Bet1Th — BiFr_y <2Ap1[(M, — 64%;12“)”?/“1 — " 4 (AL + AL )T = 2L
BeaTh — BFr_y <2Apa[(M, — g%g)llyk*l — " 4+ (AL + AT )T = 2
Bri1Th — BrTr_y <2(k +1)°[Fr(M, — g’;—;;)lly’““ — P2 (A + AR DI = 2]
s — e <2 D g, Bty ey ag, A - o,

where we use Ay 1 < (k+1)%fp and D > 7p 1 > 7.
We prove that
k
B <> 2102 ((AT)? + (AY)?) + 28 M2 D2, (60)
i=1

Since 32 = 0 < 2'8M2D?, we prove it by induction. Define k* = max{i|3; < 2°M, D} > 0, so
VEk < k* satisfies the inequality@l We assume it is valid for certain k > k*, then

1 Br+1  Brt1 e
Bry1 — B SE[Q(/? +1)%( 29D 257, My — 2P 4 2(k + 1)%( k+1 T AZH)H?JHI |

1 Br .
<—[-2(k + 1)2297;; " — P 4 2(k + 1A+ ALY =2

<%
1 21 (Af, )7 1 2971, (A}, 1)?
<ok 4122 k) Loy )2 T TRk
Tk ( ) 2Bk+41 Tk ( ) 28141
9 (Ai+1)2 + (AZ+1)2

=2°(k +1)

Br+1

Then

S (B~ BD) < B (Bun — Bi) <200k + 12(AY,, + AF,)°

Bri1 <2k + 1)2(AZ+1 + A7)+ BR
By <2k + 1)2(A1yc+1 + AL )+ B

k
B <20k + 1P(AY, + AL )P + D203 (A + AY)? 207 D?

i=1
k1

B < ZQIOiQ(A? + A7)+ 21 M D,
i=1

where we use 37 < Zle 210;2A2 4 218012 D2 by induction. Applying the inequality a? + b? <
(a + b)? where a, b > 0, we obtain

k+1

B <2°(Y (AT + AY)?)E + 2°M,D.
=1
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We take the expectation of [3y:

k
<2°» V2if0 +2°M,D
i=1
<29 k30 +2°M,D,
where we use the Jensen’s inequality that E[X 2] < (E[X])2 and estimate Zl 1% < k3 roughly.
Case 2: v # 1 Applying Lemma [9| for three times with r = [|y*+! — 2FH1||, a = M,, § =

128€E;1k+1 ’ = ”yk+1 - xk+1”’ al = Aglg-i-l’ ﬁ/ = 256€%-Xk+1 ; T/I = ||yk+1 - xk+1”’ CKN = Az-‘rl’
_ B :
BH = 2567%71;424—1’ it holds that
Tk iy ~ o2 ZApit a1 525672 Ak 11
< 1—v Ml/ Y ———E T YT A A kT
5 <[ 5 ( 5 ) ( e ) +2( k1 T P Bora  F
l+v 1- 12872 Apy1 | 100 12872 Ag i1
= _2\4-1 V(L kTR A A 2227 kTRt
2 S 2 ) ( Br+1 VA (B Ak Bet1
where the last equality is obviously nonnegative.
Similar to the proof of Lemmal|[g] we have
aj 1 < AT Ap,
which implies 72 Ag41 < 47%. Consequently,
e _1+v -2 (1—v)28%7, FER 5 297
ML N (ST E LAY A Zk
2 2 " Br+1 )7 (B i) Br+1
_ _ 2 (1 —v)28F  1tv 2107
ﬁk+17"1% - 51#"%—1 <Ak+1M ! (w)l v+ Ak+1(A}Z+1 + A75#1)27]c
Br+1 Br+1
-2 (1 —=1)28%F, 14w 9105
/BkJrl/rk. 5ka (k+ 1)2FkMVliu(w)1*" + (k+1)27:k(AZ+1 +A£+1)27k
Br+1 Br+1
-2 (1 —=1p)28 910
Buon — B <(b+ D2 (U208 | s par,, + A, 22—
Br+1 Br+1
where we use Ay 1 < (k + 1)), and 7, > 7%_1. It then follows that
2 ((1-v)28)T=r 2o
Bra1(Brs1 — Br) <(k+1)*My) % +2%(k +1)A% 4,
Brit
v 1—v 28 —12 v
BEi1 — BE <2(k+1)2M, u + 2" (k+1)2A7, ;.
5k+1
. 14v
We apply Lemma |10 with h, = 82, ap = 2 x (28)T- vk:2M1 (1= )T ,3 ; and v, =

21 (k +1)2AZ, it holds that

k Voo o~ 2 L, 2v k
2<() 2 x (2T ENTT (1) TR )+ Y 2ti2AR
i=1 =1
k

k
§(29+7V)M3(1 _ V)Quleil(z Z-Q)l—u + oll Z Z2AZ2

i=1

k
§(29+7U)ME(1 _ I/)QVDQVk3—3IJ + 211 ZZ2A3
i=1
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Here we estimate 3.7 i2 < k3 roughly. Applying the inequality a® + b2 < (a+b)? where a,b > 0,
we obtain

ﬁk_( 9+7V)MV(1_V) Dk ZZQAQ%

Finally, we take the expectation of [j:

k
E[B] <E[(272° )M, (1 —v)" Dk = +27% (Y i?A2)3]
i=1
9+7 ~ 1 k 1
<)L (1 - v)” 33" 2E[AZ)b
i=1
9+7 ~ 3-3 11 b 1
<27 )M,(1-v)"D'k > +220(> i%)2
i=1
<(27°)M, (1 - v)” +2% k30,
where we use Jensen’s inequality again
In conclusion, we have E[8;] < M, DVETEY + 2% ko O

We are now ready to derive the convergence rate of Algorithm 2]

D.1 Proof of Theorem[3

Proof. In view of the balance equation and the fact [z] > =, it holds that

- - B
0 S<Vf($k+l) - Vf(ka),ka _ l‘k+1> + $Hyk+l _ .Z‘k+1||2 +

64T£Ak+1
<Vf(yk+1)’yk+1 _ mk+1> §<@f(xk+1)7yk+l _ xk+1> + #” k+1 xk+1”2 + Tk
6477 Aj1 2

(VW) = VR, g — b

The first order condition of convex function f(-) implies f(y**1) — f(aF*1) < (Vf(yFT1), yF+t —
2R+, thus

PR <FHY) 4 (T @), g — b 4 52k+1 Iy — 22 + Tk
64TkAk+1 2

+ (V) = VR, T — 2k,

2 2
Br+1T,—BrTh_1

Because 2"t = 10% + (1 — 7)yF, vF T = 7@t + (1 — 7p)y* and n, = Sors it

holds that

FOEY) <= m)(F@™) + (V)% = aM0) + mp(F @) + (V) 2P =2t

Br+1 22l — ok |2 + Brt1 — 5k Brr1 = Br 2

6472 Apeq ¥ 1645, *©
H(VFE) = VR, - $k+1>

S(L— 1) f(WF) + 7 (F@Fh) + (V (@), 25 — 2P )
B okt ok 2, Brt1 — Bk

61A, " R T oA, F

+ (1 _ Tk)<@f(xk+1) _ Vf(a?k+l),yk _ Z‘k+1> + %H ~k+1 k||2

+

+

+ <Vf(yk+1) Vf( k+1) yk+1 _ xk+1>.
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Since g1 (V (1), 2k +1) 4 B ghtt —

VI < apa (VF(R), 0F ) 4 B ot — ok,
we have

FOMY) <L =) fF) + me(f(@P 1) + (VF(RT) oM — 2P )

ﬁk ||Uk+1 _ UkHQ ﬂk*‘rl Bkrk
64Ak+1 16Ak 1

+(1—Tk)<@f($k+l)—Vf(karl),yk —$k+1>+ Bk-&-l ”Ak+1 kHQ
64 Ak 41
H (V) = VIR, g — 2

<(L =) F(y") + m(F (@) + (V (@), oF T — gty
Br B+ _ k2 Br+1 — B ﬁk
644511 o™ = o + 164,41 i

(= m (TP~ TR,y - ok g P Py
16Aj11
+ (VW) = VFE), g —ab ).

Here, the last inequality is due to || — v*||2 < (dgy1 + ri)? < 477,

We match the t terms by 2B | Beni—Brg2 o Ben—Brp2  Muyltiplying both
e match the two error terms by =7 1640, k+1 < KA Tk+1 ultiplying bo
sides by Ag1, we have

At fTY) SARFP) + arsr (F@T) + (V (P, 0T — 2F )

Bk & Br+1 — B Bk_
ot — | + TSAr Tri1

+ Ap(V (@) = Vi k+1)7yk — g th)
+ Ap 1 (VFT) = VEQEM), T = 2b ).

On the other hand, it holds that

g™ < (1= 1)) + Teg(WF ). (61)

Combining (31) and (6), we obtain

A1 (yF ) <A (WF) + arga (F@F) + (V@M oF =

B B Br _
+ Ek”,ulﬁ_l _ ,Uk||2 kgrj; k I%Jrl
+ AV (@) =V f(x ]’C’Ll)»yl’C — "t

+ Apt (VFPT) = VEQMT), M = 2b ).

) + gt )
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For Bk [[F+1 — k|12, we use Lemma then

A1 (y™) SARPWE) + area (f @) + (V) 0" =2 4 g (")

+ Y ai(f@) + (V) o* T —a) 4 g(F ) + %on — R 2

k
Y (T ) ) = S o

ﬁkgfi Oz Pop1 + Ap(V (@) = V(b g% — 2"t

+Ak+1<Vf(y’““) V), gt — 2h
k+1

_|_

A+ () + (90,07 =) g0 ) 4 B
- Zaxf(xi) V.0 a) + g0 2 — o
' ﬁ’;;; Ohst 1 ARTIEH) = V), — o)
—I—AkH(Vf(ka) Vf( k+1) yk+1 _xk+1>.
We can simplify by using the definition of ¢/(+):
A1 () <A (YF) + drgr (05 — i (v")
+ BB AT - T, - )

+ A (V) = V), gF =2t
Applying the upper inequality recursively, it holds that

A (y*) <gr(v*) — ¢o(v”)
k—1 ﬁ _ﬁ‘
R A B A Ca W
=0
+Ai+1<Vf(yi+1) Vf( z+1) i+1 —,’Ei+1>

k—1
<ou(vh) + Berp - 20 R AT - VS )
A1+1<Vf( i+1) Vf( z+1) i+171,z+1>

<gn(v )+@i+ZA (VA = Vi), g - ™)

Ai+l<vf(yz+l) Vf( z+1) i+1 _mi+1>

where ¢o(v?) = 0 and By = 0.
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Since v* = arg min ¢y, (z), we apply Lemma again and obtain that:

k—1
Ak¢(yk) <oy (v )-l-& I%+ZAi<@f(xi+l) Vix 1+1) i_xi+1>

+Ai+1<Vf(yi+1) Viy ™),y =t
k
=D a1 + (9508 0 gk + a4 B
=1
k—1
+ Az<@f( z+l) Vf( z+1) z_xi+1>_’_Ai+1<vf(yi+1) Vf( z+1) i+1 _xi+1>
» - 3 A
<D ai(f(@') + (V@) 2" = a') + g(a7) + S — 27| = Skt — 272
=1
%f}% ;A Vf H—l) Vf( H—l) i_xi+1>
F A (VYY) = V(Y y Tt - 2it)
B0 — o2 = Brporn g2

k
< Zai(f(xi) +{(Vf(h), 2" — 2" + g(z*)) +

i=1
k—1

Y () - ) o )
1=0

+Ai+1<Vf(yi+1) Vf( z+1) i+1 7l,i+1>
<A + e —at P - B a4 Dy
k—1
+ Z a1 (Vf(@) = V(@) o' — 2%)

=0

+ A (VT — Vf( L) it gt Ly,

We use Dy and Dy, to replace ||z — 2*|| and ||v* — z*||. Since D3 — D? < 2Dgry, < 2DFy, , we

have
Ap(h) <Aty + 203 - Dpp 4 D
k—1
3 aun (V@) - Vi), o - o)

=0

+ A (VT - Vf( )y — 2t

)

which implies

< Bk(D(Q) ) 5k + Zaerl Vf z+1) Vf(xiJrl),’Ui o CU*>

_ i+1 z+1 i+l il

+ A (V™) = Vf( ),y ') 64)
9Bk Dy = = i+1 i+1 i *
< SA, 4—1220ai+1<Vf(33Z )=V f(z"™),v" — )

F A (VYY) = V), gt — 2t
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We take the expectations of both sides and obtain

’ gﬁkD’Fk S v i+1 41 .
E(y")] - Bl SEI=r =]+ B aia (V@) = V@), o' = )]
i=0

k—1
+]E[ZA1'+1<Vf(yi+1) Vf( z+1) i+1_x1-+1>].
i=0

Since E[V f(z't1) — Vf(z*t1)] = 0 and v*, 2*, £ are independent, we have

k—1
B [Z a1 (V (@) = V()0 - x*>]

:E7§f+1 ]Eff+1

k-1
Z ai+1<@f(xi+l) _ Vf(m“l)mi _ xﬂ}] =0.

=0

For the same reason, we have

E

k—1
ZAi+1<Vf(yi+1) Vf( ity i+1xi+1>]

=0

=E_ev | |Eer,,

k—1
ZAH_1<vf(yi+1) Vf( z+1) i+1 zi+1>]] =0.

i=0

Thus

IV - (o) <3k |27

0<i<k i=0 i

We will apply Lemma and to obtain the final complexity. Note that k* = arg min —%—.

Applying Lemma 3] we obtain that:

3 )X & T )3 4D 4D
k:’z* - < (55)2 "% loge(5;)* < (132)2F logetBe (65)
Y " 2
Thus, for £*, combining the inequality (63) and Lemma|[T1] it holds that
Ew@“ﬂ—wmﬂ
8 A
2 2
< §E D ( 1 ) ]
im0 Ti 66)
v - - 4D)3x | 2
< 2E[(2 TN, DY ETE + 25k Do) (T)Q& ]
8 2k
AD 1 o, 4D M,D“"'k*3™ + k3 Do
<36( )* log e— 2
D 5 4D M,D*" Do

< 36( )* log? e ).

= (W+ﬁ

where we use the facts {3; };cn is nondecreasing and the random variable B is independent of both &
and D.

Finally, it remains to use z*¥ = y*~ by definition. O
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The following lemma is used to show that the balance equation admits a closed-form solution.
Lemma 12. Let 8,1,d > 0 and r > 0. Then the equation

(B4 = B)r = [l — B4d]+ (67)
has a unique solution given by
5. g l=pdle )
" r+d

This auxiliary result has been used in [[34]], Lemma E.1]. We give proof for completeness.

Proof. First, the equation has a unique solution since the left-hand side increases from zero to infinity
monotonically with respect to 5 while the right-hand side decreases from a nonnegative number to
zero monotonically with respect to ..

We show that the 8, in (68) is the very solution of (67).

When! — 3d <0,8, =8. LHS = (B4 —B)r=0and RHS = [l — B4d]L = [l — 8d]+ <0
which implies RH S = 0. Therefore, LHS = RHS and f34 is the solution.

When | — 8d > 0, B = 8+ =24 then LHS = (84 — B)r = (8 + [S24], — f)r = rl2d

and RHS = [l — B4d]y = [l — 54 — E8d), = [25(1 - Bd)]+ = (1 — Bd). Therefore,
LHS = RHS and 4 is the solution as well. O

E Two approaches for automatic initialization of parameters in Algorithm

E.1 Automatic initialization of /3,

In the proof of Proposition and Theorem we assume that 55 < 27IVZT4\1,77”. This is reasonable
since the upper bound of ), increases polynomial in k, it still holds for enough large k. Previous
works often ignore the choice of a legal 3. Nevertheless, we provide a simple method for choosing
an admissible (3.

Algorithm 3 3, Initialization Method
Input: 20, 7, any other point ' € R? that satisfies ||’ —2°| < 7and f(z')— f(2°) —(V f(2°), 2’ —
2%) > 0;
Output: 3 < 271, M, 7;
I: Sete = min{[ (2") = f(2°) = (Vf(a"), 2" —)]/7, 3k
and M = 9LG@=1E")~ (V)20 ") —er 2/2

0 —a|1?

2: Let3 = FmaX{S\/2M, 128 M} min{1, ﬁ};

Proposition 2. Suppose f(-) is locally Holder smooth and f(-) is not a linear function in dom g. If
T is small enough such that ¥ < 4Dy, then Algorithm[3|can generate a (3 that satisfies

Bo < 271, M, (69)

and this method can be implemented in one operation.

Proof. Since

M:2f(x’)—f( ) = (Vf(2?),2° —a') — %5 >0,
[l
we have 72
F@') = f@%) + (Vf(®),a” — ') + %Hm(’ /| + e (70)

The equation is tight and 2°, 2" € Bsp, (z*), so that we have

].—V 1 1y —~-2
o) M (71)

M < ~(M,,c?) = (
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c*Fmin{(12801)2, 1280} < 2" 7(128M) " 7128(1Jr )= M, (72)
v
Thus
c?Fmin{(128M)?,128M} < 271, M, 7. (73)
So we can initialize Sy = ¢2 7 min{(128M )z, 128M }. O

E.2 Automatic initialization of 7

As mentioned in the context, Algorithm [I] requires an input 7 as a guess of 4D that satisfies
7 < 4Dg. Setting a small enough 7 to meet 7 < 4D, will incur a multiplicative cost of (%)H”
in the convergence rate for other algorithms without distance adaptation. In contrast, we reduce the
multlphcatlve cost to log (4D 2). Moreover, we provide a simple method for obtaining an admissible
7 < 4Dg in some special cases.

Proposition can handle the cases where we can choose z° and make sure f(-) + g(-) is weakly
smooth on one of its neighborhoods. Then we can modify the problem by setting f/(z) = f(z)+g(x)
and ¢’'(z) = 0 to get a legal 7.

Algorithm 4 7 Initialization Method

Input: z° and an initial guess r for 4D
Output: 7 < 4D,
1: Initialize ¢ +— —1
2: repeat
3: 141+1
4
5

d; + 27'r
Run Algorithmwith parameter d by one iteration and collect the point v} and the coefficient
1,
6:  Denoter;; = |lv} —x
7: until vl-l is an interior point in dom g and 71 ; > d;
8: Setr = dl

gl

Proposition 3. For any x € dom g, g(z) = 0, if there exists § > 0, S = Bs(2°) C dom g, and
let vg be the maximal Holder exponent of f(-) on S with finite local Hélder continuous constant

Ml,s < 400, vg > 0, then Algorlthmlcan generate 7 < 4Dy, and this method can be implemented
in a finite number of iterations.

Proof. Without loss of generality, we assume § < 3Dy, since if 6 > 3Dy, we can always take a
smaller " < 3D, that still satisfies the condition.

Note that Theorem[I] implies that if ¥1; = 71, then ¥ < 71 ; < 4Dy, and this conclusion is
independent of the value of 3;. So we only need to prove that this method completes in a finite
number of operations. Note that ' = 75v° + (1 — 79)y" = 792° + (1 — 79)2° = Y does not depend
on the value of 7p. The condition of this method ensures that there exists an interior point in the
direction of —V f(x0).

Applying Lemma[7] it holds that

lv; = 2% = [lvg — 2],

where we define
_ 02
v =arg min (d i(Vf(xl),x—mJ)—i—M
r€dom g 2
Bollz — =°||?
— \v4 0’ .0 [ | |
argxéﬁléﬂlf f(@"),z —a”) + 5,

(74)
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Applying Lemma agam with h; = 2 &> we have ||v; — 2% — 0as i — +oo. Therefore, there
exists large enough ¢* such that V¢ > ¢* it satisfies that

§ > ||lvj — 2% > [lo} — 2, (75)

Case 1: If this method requires at most ¢* operations. Then we prove it directly.
Case 2: If this method requires more than ¢* operations.

Inequality ( . 75) show that v} € Bs(2°) C dom g, which means v} is an interior point. Then, applying
the first-order optimality condltlon to the interior point v}, we have:

d1Vf($0) + ﬁl,i(vil — mo) =0
V£ (a0) (76)
Bii

1_ .0 _
v, —x =d;

We can adapt the method |§| to obtain a legal 3y to produce 8; < ¢,d? , which is guaranteed by
Lemmal where ¢, = 271, M

Loy g IVIE S IV -

1 =|v; 5 2 .

1

Thus ry ; = dlﬂjw > d; when 27y = d; < (w) " ,v # 0 and this method requires
at most — 2 log (”vf("‘ )”) /log 2 loops. O
F More experiment details

In this section, we provide more details about the experiments.

Softmax problem We first reexamine the softmax problem with more parameter settings. Specifi-
cally, we set 1 € {0.1,0.01,0.001}. In all the results, we find that our AGDA consistently performs
better than the other compared methods.

10t 10t
o100 4 o100 8
o 10 e 10
= =
110! 11071
< <
:g X
= =

1072 =102
—e— AGDA —e— AGDA
3| —= DOG 3| —= DOG
0 FGM o FGM
“ oan  own

0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Steps Steps Steps

Figure 4: Performance of the compared algorithms on the softmax problem. From left to right:
©=0.1, p = 0.01 and p = 0.001.

) = flx")
fixe) = f(x")
fixe) — f(x")

+— AGDA 3 +— AGDA

- DOG \ - DOG
uGM e uGM
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Figure 5: Performance of the compared algorithms on the L, norm problem. Left: p = 1 with
diabetes. Middle: p = 1.5 with boston. Right: p = 2 with boston.
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L, norm problem We consider the following problem as an illustrative example, where the
smoothness property can be directly adjusted by modifying a parameter p € [1, 2]:

min f(z) = ||Az — b||p, (78)
rcRd

where A € R"*? b € R™ are taken from real-world datasets in LIBSVM. It is important to note that
the smoothness of this problem can be controlled by changing the parameter p; as p increases, the
degree of smoothness decreases.

We use the same comparison methods as in the softmax problem, adhering to the same parameter
settings. In this problem, our algorithm significantly outperforms the other methods, especially when
p is small. This suggests that our algorithm is more adaptive in nonsmooth settings and highlights its
greater stability.

Large scale problem Subsequently, we present the efficacy of our method when applied to large-
scale instances. Our main focus is a performance comparison with the UGM algorithm.

F.1 Line-search bisection method

Here we provide the pseudocode of Line-search bisection method for clarification.

Algorithm 5 Two-Stage Line Search

Input: S, function I (-); tolerance eff = %

Output: SBi1

1141

while lk(2i715k) < 0do
1 1+1

end while > Stage 1 complete

i), 1

if i, = 1 then > Case 1: I (B;) >0
iy <0
Br+1 < B

else > Case 2: Need binary search
a < Qig_Qﬁk

11: b+ 2015,

12: while b —a > ¢! do

R A A ol bl

_
e

13: m < (a+b)/2
14: if I;;(m) < 0 then
15: a+—m

16: else

17: b« m

18: end if

19: end while
20: ﬁk+1 b
21: end if
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