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Abstract

In recent years, solving inverse problems for black-box simulators has become a point of focus
for the machine learning community due to their ubiquity in science and engineering scenarios.
In such settings, the simulator describes a forward process f : (ψ,x)→ y from simulator
parameters ψ and input data x to observations y, and the goal of the inverse problem is to
optimise ψ to minimise some observation loss. Simulator gradients are often unavailable
or prohibitively expensive to obtain, making optimisation of these simulators particularly
challenging. Moreover, in many applications, the goal is to solve a family of related inverse
problems. Thus, starting optimisation ab-initio/from-scratch may be infeasible if the forward
model is expensive to evaluate. In this paper, we propose a novel method for solving classes
of similar inverse problems. We learn an active learning policy that guides the training of
a surrogate and use the gradients of this surrogate to optimise the simulator parameters
with gradient descent. After training the policy, downstream inverse problem optimisations
require up to 90% fewer forward model evaluations than the baseline.

1. Introduction and related work

Across many science and engineering fields, practitioners are required to deduce unknown
properties or parameters of a system from observed data (Cranmer et al., 2020). Such problem
settings are known by the name of inverse problems. They are encountered in fields such as
particle physics (Stakia, 2021), wireless applications (Orekondy et al., 2023; Pezeshki et al.,
2022), medical imaging (Pineda et al., 2020; Bakker et al., 2020, 2022), molecular dynamics
(Jonas, 2019) and design (Schwalbe-Koda et al., 2021), and they even find applications in
sustainability (Bliek, 2022).

Typically, such settings involve a forward simulator model fs : (ψ,x) → y that maps
continuous simulator parameters ψ and input data x to observations y. For instance, in a
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particle physics setting, fs may simulate the detection of muons y, given properties of particles
entering the detector x and detector settings ψ. Performing optimisations in simulation can
be an important step in designing real-life experiments, potentially strongly accelerating
experimental research. However, as simulators often require expensive computation, it is
often necessary to perform such optimisations with as few simulator calls as possible.

When objective functions are (approximately) differentiable, gradients can be used to guide
the optimisation process. For appropriate loss landscapes, notably those that are convex,
this can achieve strong optimisation performance (Williams, 1992; Grathwohl et al., 2018;
de Avila Belbute-Peres et al., 2018; Hu et al., 2019; Degrave et al., 2019; Mohamed et al.,
2020). However, many applications involve non-differentiable simulators or simulators that
are complete black-boxes from the perspective of the practitioner (Lei et al., 2017; Cranmer
et al., 2020; Omidvar et al., 2022). In this work, we focus on the subset of inverse problems
where the goal is to optimise the parameters ψ of some black-box simulator fs under some
loss function L(y). Continuing the particle physics example, such an optimisation could
correspond to minimising the number of muon detection events (considered noise) (Shirobokov
et al., 2020; Baydin et al., 2021).

In the absence of differentiability or (known) tractable likelihoods, optimisation may be
performed using numerical differentiation (Alarie et al., 2021; Shi et al., 2023), evolutionary
strategies (Banzhaf et al., 1998; Maheswaranathan et al., 2019), or Bayesian Optimisation
(Oh et al., 2018; Daxberger et al., 2020). An alternative is to do gradient-based optimisation
using a surrogate model. After training a differentiable surrogate to approximate the black-
box simulator, the gradients of the surrogate may be used for optimisation (Shirobokov et al.,
2020). These methods start each inverse problem optimisation ab initio/from scratch, which
is expensive if the goal is to solve multiple related inverse problems. For instance, we may
want to efficiently solve the particle physics inverse problem for many different potential
input distributions over muon properties x. In this work, we aim to solve efficiently inverse
problems for such settings. In particular:

1. We propose a simple heuristic for local surrogate optimisation that performs ab-initio
optimisation in 50%-75% fewer simulator calls.

2. We train active learning policies to guide the local surrogate optimisation, leading to a
further reduction in the number of simulator calls at the cost of an increased fraction
of failed optimisations.

2. Background

We aim to optimise the parameters of a stochastic black-box simulator by stochastic gradient
descent. Since black-box simulators are not amenable to automatic differentiation methods,
we build on the idea to train surrogate neural networks to locally (in ψ) mimic the simulator
(Shirobokov et al., 2020). Gradients of these local surrogates may then be used to perform the
optimisation over ψ. We write y = fs(ψ,x) for a stochastic simulator, where y ∼ p(y|ψ,x)
is a random variable and x ∼ q(x) is a stochastic input. The goal is now to minimise an
expected observation loss L as a function of the simulator parameters ψ. As the functional
form of the simulator is generally unknown, this expectation cannot be evaluated exactly,
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Figure 1: Pareto front for Rosenbrock problem on simulator calls and τ -fraction. Upper-
left corners of plots show the best-performing models; lower-right corners show the worst
models. q(x) is fixed for the left plot and changes every episode on the right. “-E” denotes
runs where a surrogate ensemble is used to capture uncertainty. Evaluation is performed
over 32 episodes per seed. Error bars denote the standard error of the mean (SEM) over 3
seeds (B.5 for seed details).

and is instead estimated using N Monte Carlo samples:

ψ∗ = argmin
ψ

E [L(y)] = argmin
ψ

∫
L(y) p(y|ψ,x) q(x) dx dy, (1)

≈ argmin
ψ

1

N

N∑
i=1

L(fs(ψ,xi)). (2)

After training a neural network surrogate fϕ : (ψ,x, z)→ y on data generated with fs, the
optimisation may be performed following gradients of this surrogate. Here z is a randomly
sampled latent variable that accounts for the stochasticity of the simulator. Gradients are
then computed as:

∇ψE [L(y)] ≈ 1

N

N∑
i=1

∇ψ L (fϕ(ψ,xi, zi)) . (3)

Running a simulator forward is often an expensive procedure, so the goal is to minimise the
number of simulator calls required (Shirobokov et al., 2020). Local surrogate methods have
been shown to outperform optimisation based on numerical gradient estimation (Shi et al.,
2023), guided evolutionary strategies (Maheswaranathan et al., 2019), Learning to Simulate
(Ruiz et al., 2019), LAX gradients (Grathwohl et al., 2018), and Cylindrical Kernel Bayesian
Optimisation (Oh et al., 2018) on this metric.
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3. Method

Following Shirobokov et al. (2020), we perform an iterative optimisation based on gradients
of equation 3. At each point in the optimisation, Shirobokov et al. (2020) sample ψj values
in a fixed-size box Uψϵ – with sides 2ϵ – around the current ψ, obtain xi samples, run the
simulator forward to obtain y samples and store these samples in a history H. They train
the surrogate from scratch on data extracted from H using a trust-region approach: obtain
all samples (ψj ,xi,yji) for which ψj lies inside the box Uψϵ centred on the current parameter
value. In the following, we will name this procedure a simulator call.

We propose to reduce the number of simulator calls required for an optimisation run further
with two separate methods that control when data is gathered from the simulator and the local
surrogate is retrained. The first method is a simple heuristic, which we name TrustRegion,
that only performs a simulator call once the current ψ value is outside of the trust-region
box Uψ

′
ϵ . Here ψ′ is the parameter value at the last-performed simulator call. This heuristic

is based on the intuition that the local surrogate should approximate the simulator well for
values inside Uψ

′
ϵ . Occasionally, repeated gradient steps using the same surrogate lead to

loops in the optimisation path. To prevent this issue, TrustRegion also performs a simulator
call after υ consecutive steps (30 in our experiments) of not performing one.

The second method uses a learned policy πθ, parameterised by θ, to decide whether a
simulator call is performed or not. The policy is trained as an online actor-critic reinforcement
learning agent with Proximal Policy Optimisation (PPO) (Schulman et al., 2017), using
Generalised Advantage Estimation (GAE) (Schulman et al., 2016). We formalise the sequential
optimisation as an episodic Markov Decision Process (MDP). The state st (at timestep t) is
given by a tuple (ψt, t, lt, σt), where ψt is the current parameter value, lt is the number of
simulator calls already performed this episode, and σt is some notion of uncertainty produced
by the surrogate. Actions at consist of a binary random variable b ∈ {0, 1}, where 1 represents
the decision to do a simulator call. Actions optionally include a value ϵt, which determines
the size of the trust region for sampling new training values ψ. Transitions T (st, at, st+1)
consist of a single step of the Adam optimiser (Kingma and Ba, 2014) with learning rate 0.1
using local surrogate gradients computed by equation 3 with N = 104.

Episodes end when A: the optimisation reaches a parameter for which E [L(y)] is below a
target value τ (we call this termination), B: the maximum number of timesteps T has been
reached, or C: the maximum number of simulator calls L has been reached. To incentivise
reducing simulator calls, rewards r(st, at, st+1) are 0 if b = 0 and −1 if b = 1. To incentivise
termination, a reward penalty is added when B or C holds: the penalty is −(L − lt) − 1
when B occurs and −1 when C occurs. This ensures the sum-of-rewards for non-terminating
episodes is −L − 1. We have observed that primarily using reward penalties based on lt,
rather than t, improves training stability.

As discussed in the introduction, we are often interested in solving multiple related inverse
problems together. We therefore train our approach on a family of related inverse problems,
such that it generalises effectively to test-time problems. In particular, we vary the input
distribution q(x) between episodes, which corresponds to, e.g., different potential input
distributions over muon properties x, such as incident angle and energy. The decision to
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Figure 2: Pareto front for ThreeHump problem on simulator calls and τ -fraction. Upper-
left corners of plots show the best-performing models; lower-right corners show the worst
models. q(x) is fixed for the left plot and changes every episode on the right. “-E” denotes
runs where a surrogate ensemble is used to capture uncertainty. Evaluation is performed
over 32 episodes per seed. Error bars denote the standard error of the mean (SEM) over 3
seeds (B.5 for seed details).

perform a simulator call or not should depend on the quality of the local surrogate. A
surrogate that is well-fitted to the simulator at the current parameter value will presumably
provide useful gradients, so gathering additional data and retraining is unnecessary. Vice-
versa, a badly fitted surrogate will likely not provide useful gradients and may be worth
retraining, even if a simulator call is expensive. We use the uncertainty feature σ to
provide this information. To construct σ, we replace the local surrogate with an ensemble
of local surrogates, all trained on and applied to the same input data. We compute mean
predictions per surrogate on D samples as ȳ = 1

D

∑D
i=1 [fϕ(ψ,xi)], and construct σ as the

standard deviation over these mean predictions. We use three surrogates and D = 100 for
all experiments that employ the ensemble. See Supplementary B for details.

We have described methods for deciding when to do a simulator call, but not how to do one:
e.g., how to sample data from the simulator for surrogate retraining. To investigate this
question, we train policies to additionally output the ϵ for constructing the trust-region Uψϵ ,
which serves as our data acquisition function. As ϵ parameterises this acquisition function,
such policies are an example of active learning (Settles, 2009). In particular, these policies
are instances of learning active learning (Hsu and Lin, 2015; Konyushkova et al., 2017; Fang
et al., 2017; Ravi and Larochelle, 2018; Pang et al., 2018; Liu et al., 2018; Konyushkova et al.,
2018; Bakker et al., 2023), as they learn a distribution over ϵ: see Supplementary B.3.

4. Experiments

We perform experiments on two stochastic simulator functions: the two-dimensional Three-
Hump problem, and the ten-dimensional Rosenbrock problem. See Supplementary B.1 for

5



details. Results are shown in Figures 1 and 2. Here we have plotted the Pareto front of
L-GSO (Shirobokov et al., 2020), TrustRegion, and various policy methods on two perfor-
mance metrics. Our primary goal is to reduce the number of simulator calls for optimisation.
However, due to the stochastic nature of the optimisation, some optimisation episodes do
not reach the target loss value within the allotted budget and have to be manually ended.
We call the fraction of runs that reach the target loss value τ the ‘τ -fraction’ (plotted on the
y-axis). On the x-axis, we plot the number of simulator calls; as such, points further towards
the top-left correspond to better overall performance.

We observe that TrustRegion outperforms L-GSO across settings, achieving fewer simulation
calls in all cases, and higher τ -fraction in almost all cases. Policy methods often require
fewer simulation calls than TrustRegion at the cost of τ -fraction. Both of these effects are
more pronounced when q(x) varies between episodes, i.e., when the input distribution varies.
In the running example of muon detection, this would correspond to doing simultaneous
optimisation for various input distributions over muon properties x, such as incident angle
and energy. In that setting, performance of most methods drops slightly in simulator calls
and more significantly in τ -fraction.

Policy methods are split into those that only output when to do a simulator call (Policy),
and those that also output how to do one by providing a trust-region ϵ that parameterises
the acquisition function (ALPolicy). L-GSO, TrustRegion and Policy use a fixed value for ϵ
that depends on the problem (Supplementary B.1). The active learning policies typically
achieve higher τ -fraction than the non-AL policies, but require a few more simulator calls.
For fair comparison, we also show results for L-GSO and TrustRegion using the ensemble as
their local surrogate model.

Finally, ALPolicyWarm is a version of ALPolicy where the surrogate ensemble is always warm-
started from the previous training step, such that the surrogate is continuously improved
along the observed trajectories through ψ-space (Supplementary B.3). This leads to a Pareto-
improvement over ALPolicy on the ThreeHump problem. The improvement on Rosenbrock
is less definitive, but ALPolicyWarm lies on the Pareto front here as well. Supplementary C
provides some visualisations of resulting optimisation paths.

5. Conclusion and discussion

We have proposed two novel methods for local surrogate-based inverse problem optimisation
of black-box simulators that aim to minimise the number of simulator calls. Our first
contribution – TrustRegion – is a simple heuristic that reduces the required number of
simulator calls during optimisation by 50%-75% compared to the L-GSO baseline. Our second
proposal is to reinforcement learn an active learning policy that controls when the simulator
is used and how to sample data. These policy methods often require even fewer simulator
calls than TrustRegion – up to 90% – at the cost of τ -fraction. Our results suggest that
inverse problem optimisation may benefit from guidance by both simple policies and learned
acquisition functions. We refer to Supplementary A for a discussion of limitations.
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Appendix A. Limitations and future work

The primary limitation of our current work is the lack of evaluation on real-life simulators.
We are currently aiming to apply our work to the muon detection particle physics problem
mentioned in the main text, using the GEANT4 simulator (Agostinelli et al., 2003).

Gradient-based optimisation may get stuck in local optima of the loss surface Ep(y|ψ,x) [L(y)].
Investigating whether introducing a policy into the optimisation can help avoid such local
minima, is an interesting direction of future research. The ThreeHump problem has no
local minima but does contain a few flat regions, where gradient-based optimisation is more
challenging. Exploratory experience have provided weak evidence that the policy may learn
to avoid such regions.

Hyperparameter tuning has mostly involved reducing training variance through tuning the
number of episodes used for a PPO iteration, as well as setting learning rates and the KL-
threshold. Little effort has been spent optimising the policy or surrogate architectures; we
expect doing so to further improve performance. Similarly, while PPO with a value function
critic is a widely used algorithm, more recent algorithms may offer additional advantages,
such as improved planning and off-policy learning for more data-efficient training (Haarnoja
et al., 2018; Neumann et al., 2023).

Appendix B. Implementation details

B.1 Simulators

Our experiments use two stochastic simulator functions: ThreeHump and Rosenbrock.
ThreeHump is a two-dimensional problem that lends itself well to visualisation, while the N -
dimensional Rosenbrock problem is used to test our method in a higher-dimensional setting.
We choose N = 10 in our implementation. Both of these simulators have scalar output values
y = y.

ThreeHump: Find the 2-dimensional ψ that optimises:1

ψ∗ = argmin
ψ

E [L(y] = argmin
ψ

E [σ(y − 10)− σ(y)] , s.t.

y ∼ N (y|µi, 1), i ∈ {1, 2}, µi ∼ N (xi h(ψ, 1), x1 ∼ U [−2, 2], x2 ∼ U [0, 5], (4)

P (i = 1) =
ψ1

||ψ||2
= 1− P (i = 2), h(ψ = 2ψ2

1 − 1.05ψ4
1 + ψ6

1/6 + ψ1ψ2 + ψ2
2.

We consider an episode terminated when E [L(y] = 1
N

∑N
i=1 L(fs(ψ,xi)) ≤ τ = −0.8, which

we evaluate after every optimisation step using N = 104 samples. Following (Shirobokov
et al., 2020), we use ϵ = 0.5 as the trust-region size. The optimisation is initialised at
ψ0 = [2.0, 0.0]; this is a symmetry point in the ThreeHump function such that optimisation
with stochastic gradients can fall into either of the two wells around the two minima of the

1. Here the upper bound of x1 and lower bound of x2 are switched compared to the notation in Equation
(3) of (Shirobokov et al., 2020). These bounds match the official implementation of L-GSO as of August
2023. Private correspondence with the authors has confirmed that this is the intended implementation.
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Figure 3: Schematic for the surrogate architecture. The surrogate is an MLP trained to
mimic the simulator. It takes (ψ,x, z) as input and outputs y. The ensemble consists of 3
of these, trained on the same data with different seeds.

function. This requires our methods to learn good paths to both of these optima, making
the task more interesting. In principle, optimisation could be initialised at any ψ0.

To test the generalisation behaviour of our method, we parameterise this target function
further, by placing distributions on the bounds of the Uniform distributions that x1 and x2
are sampled from. We sample new bounds every episode, such that the policy sees multiple
related – but different – simulators during training (and evaluation).

In particular, we sample lower and upper bounds of x1 from respectively N (−2, 0.5) and
N (2, 0.5). For x2 we instead use N (0, 1) and N (5, 1). Note that this occasionally means
episodes cannot terminate, as the specified termination value τ is below the minimum loss
value for some samplings.

Rosenbrock: Find the N-dimensional ψ that optimises:

ψ∗ = argmin
ψ

E [L(y] = argmin
ψ

E [y] , s.t.

y ∼ N

(
y

∣∣∣∣∣
N−1∑
i=1

[
(ψi − ψi+1)

2 + (1− ψi)2
]
+ µ, 1

)
, µ ∼ N(µ|x, 1), x ∼ U [−10, 10]. (5)

We consider an episode terminated when E [L(y] = 1
N

∑N
i=1 L(fs(ψ,xi)) ≤ τ = 3.0, which

we evaluate after every optimisation step using N = 104 samples. Following (Shirobokov
et al., 2020), we use ϵ = 0.2 as the trust-region size. The optimisation is initialised at
−→
2.0 ∈ R10. When testing generalisation behaviour, we sample lower and upper bounds of x
from respectively N (0, 2) and N (10, 2).

B.2 Surrogate

The surrogate consists of ReLU MLP with 2 hidden layers of 256 neurons that takes as
input (ψ,x, z) and outputs y. z is sampled from a 100-dimensional diagonal unit Normal
distribution. The surrogate architecture is schematically depicted in Figure 3.

Surrogates are trained on data generated from fs. Following Shirobokov et al. (2020), we
sample M values ψj inside the box Uψϵ around the current parameter value using an adapted
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Parameter value:  

Timestep: 

Sim. calls: 
MLP Actions: 

Actor

Uncertainty: 

(a) Actor.

Parameter value:  

Timestep: 

Sim. calls: 
MLP Values: 

Critic

Uncertainty: 

(b) Critic.

Figure 4: Schematic for the policy architecture. The policy consists of a separate Actor and
Critic, which are both MLPs. They take (ψ, t, l, σ) as input and output the actions and
value function estimates. Actions always contain the decision b to do a simulator call or not,
and may optionally also contain a value ϵ used for surrogate training data sampling.

Latin Hypercube sampling algorithm. For each of those ψj , we then sample N = 3 · 103 x-
values. We use M = 5 for the ThreeHump problem and M = 16 for the Rosenbrock problem.
As in Shirobokov et al. (2020), this means a single ‘simulator call’ consists of 1.5 ·104 function
evaluations for ThreeHump, and 4.8 · 104 for Rosenbrock.

Surrogates are trained with the Adam optimiser for 2 epochs with a learning rate of 10−3

and batch size 512. The ensembles consist of 3 surrogates, each trained on the same data,
but a different random seed.

B.3 Policy

The policy πθ consists of a separate Actor and Critic neural network. Both are ReLU MLPs
with a single hidden layer of 256 neurons, schematically depicted in Figure 4. Both networks
take as input a tuple (ψt, t, lt, σt), where ψt is the current parameter value (at timestep t),
lt is the number of simulator calls already performed this episode, and σt is the standard
deviation over average surrogate predictions in the ensemble.

The Actor outputs either one or three values. The first is passed through a sigmoid activation
and treated as a Bernoulli random variable from which b (the decision to do a simulator call
or not) is sampled. If the policy outputs three values, the second and third are treated as
the mean and standard deviation of a lognormal distribution from which we sample ϵ for the
current timestep. The value corresponding to the standard deviation is first passed through
a softplus activation, to ensure it is positive.

The critic outputs a value-function estimate Vθ(s), where θ are policy parameters, that we
use for computing advantage estimates in PPO. See section B.4 for details. Since rewards
have unity order of magnitude, we expect return values to be anywhere in [−T, 0]. To prevent
scaling issues, we multiply the critic output values by T before using them for advantage
estimation.

The ALPolicyWarm method: When optimising a policy for downstream optimisation
of many related inverse problems, it may be useful to simultaneously train a global surrogate
for such a problem setting. Such a global surrogate may provide better gradients for inverse
problem optimisation, especially if it has been jointly optimised with the policy. To test this,
we have implemented the ALPolicyWarm method. Here the policy outputs both the decision

13



to do a simulator call and the trust-region ϵ, just as in ALPolicy. Here however, the surrogate
ensemble is warm-started from the previous training step every time a retraining decision is
made. This results in a surrogate ensemble that is continuously optimised for trajectories
seen during training. In order for the surrogate to not forget old experience too quickly, we
employ a replay buffer that undersamples data from earlier iterations geometrically. I.e.,
when training the surrogate with trust-region Uψϵ , we include all data inside Uψϵ for the
current episode, half the data inside Uψϵ from the previous episode, a quarter of the data
seen two episodes ago, etc. We train this model only for settings with varying q(x), as only
these provide information about the generalisation of the learned policies.

B.4 Training

We train our policy in episodic fashion by accumulating sequential optimisation episodes and
updating the policy using PPO (Schulman et al., 2017) with GAE advantages (Schulman
et al., 2016) (discount factor γ = 1.0, GAE λ = 0.95. Episodes terminate once A: the target
loss value τ has been reached, B: the number of timesteps T = 1000 has been reached, or
C: the number of simulation calls L = 50 has been reached. Every training iteration we
accumulate 4 episodes before doing PPO updates. We train for a total of 100 iterations.

Actor updates are performed using the PPO-clip objective (with clip value 0.2) on full
trajectories with no entropy regularisation. We perform multiple Actor updates with the
same experience until either the empirical KL-divergence between old and new policy reaches
a threshold (3 · 10−3 for simulator-call decision actions, 10−2 for trust-region size ϵ actions),
or 20 updates have been performed. In practice, we rarely perform the full 20 updates.
Updates use Adam with learning rate 3 · 10−4.

Similarly, we perform multiple Critic updates using the Mean-Squared Error (MSE) between
the estimated values Vθ(st) and the observed return (sum of rewards, as γ = 1.0) Rt at every
timestep. We keep updating until either MSE ≤ 30.0 or 10 updates have been done. This
helps the critic learn quickly initially and after seeing very surprising episodes, but prevents
it from over-updating on very similar experience (as MSE will be low for those iterations).
Updates use Adam with learning rate 10−4.

See algorithm 1 for training pseudo-code. Evaluation is performed using algorithm 2 on 32
optimisation episodes.

B.5 Crashed seeds

Results depicted in Figures 1 and 2 are generally the average of 3 seeds. However, some runs
crashed, resulting in fewer seeds averaged. In Figure 2 on the right, ALPolicy has 1 seed and
ALPolicyWarm has 2 seeds. In Figure 1 on the right, ALPolicy has 2 seeds.

Appendix C. Additional analyses

Figures 5 and 6 depict examples of learned optimisation trajectories by the ALPolicy method
on the ThreeHump problem. Example learning curves are depicted in Figure 7.
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Algorithm 1: Training the (active learning) policy.
Data: Simulator fs(ψ,x); surrogate fϕ(ψ,x); observation loss function L; policy πθ;

number N of ψ to sample when training the surrogate; number M of of x to
sample for each ψ; distributions Q(q) over distributions q(x) to sample x
from; initial value ψ0; target function value τ ; number T of timesteps to run
each simulation for (episode-length); maximum number of simulator calls L;
ψ optimiser optimψ with learning rate λ; number of policy training
iterations K; number of episodes to accumulate for a PPO step G; policy
optimiser optimπ; reward function R; experience buffer B; discount factor γ.

for k ∈ (1, ...,K) do
Empty experience buffer B.
for _ ∈ (1, ..., G) do

Initialise number of simulator calls done: l← 0.
Set return: R← 0.
Sample x-distribution q ∼ Q.
for t ∈ (1, ..., T ) do

Sample x ∼ q(x).
Obtain surrogate features σ (e.g., ensemble uncertainty) from surrogate
fϕ(ψt,x).

Construct state: s← (ψt, t, l, σ).
Obtain action: a = (do_retrain, trust_region_size)← πθ(s).
if do_retrain then

Obtain N samples ψn from trust region with size trust_region_size.
Obtain M samples xm for each of these ψn.
Combine into dataset {ψ, {x}M}N and optionally filter or include data
from previous timesteps.

Retrain surrogate: fϕ on this dataset.
Increment number of simulator calls: l← l + 1.

end
Obtain surrogate gradients: gt ← ∇ψfϕ(ψ,x)|ψt .
Do optimisation step: ψt+1 ← optimψ(ψt, gt, λ).
terminated← E [L(fs(ψt,x)] ≤ τ
Obtain reward: r ← R(s, a,ψt+1).
Store (s, a, r) and any other relevant information in buffer B.
if terminated then

break
end
if l equals L then

break
end

end
end
Update policy πθ ← optim(πθ, B, γ).

end
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Algorithm 2: Inference with the (active learning) policy.
Data: Simulator fs(ψ,x); surrogate fϕ(ψ,x); observation loss function L; trained

policy πθ; number N of ψ to sample when training the surrogate; number M
of of x to sample for each ψ; distributions q(x) to sample x from; initial
value ψ0; target function value τ ; number T of timesteps to run each
simulation for (episode-length); maximum number of simulator calls L; ψ
optimiser optimψ with learning rate λ.

for t ∈ (1, ..., T ) do
Initialise number of simulator calls done: l← 0.
Sample x ∼ q(x).
Obtain surrogate features σ (e.g., ensemble uncertainty) from surrogate fϕ(ψt,x).
Construct state: s← (ψt, t, l, σ).
Obtain action: a = (do_retrain, trust_region_size)← πθ(s).
if do_retrain then

Obtain N samples ψn from trust region with size trust_region_size.
Obtain M samples xm for each of these ψn.
Combine into dataset {ψ, {x}M}N and optionally filter or include data from
previous timesteps.

Retrain surrogate: fϕ on this dataset.
Increment number of simulator calls: l← l + 1.

end
Obtain surrogate gradients: gt ← ∇ψfϕ(ψ,x)|ψt .
Do optimisation step: ψt+1 ← optimψ(ψt, gt, λ).
terminated← E [L(fs(ψt,x)] ≤ τ
if terminated then

break
end
if l equals L then

break
end

end
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Figure 5: Examples of learned optimisation trajectories on a heatmap of the ThreeHump
problem. Shown is 1

N

∑N
i=1 L(fs(ψ,xi)) for a grid of ψ values (N = 100). The yellow region

denotes values of ψ that lead to termination. The ϵ = 0.5 trust-region box around ψ0 is
visualised by the red box. Trajectories are sampled from the final evaluation iteration of
ALPolicy: shown here are two trajectories that terminate.
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Figure 6: Examples of learned optimisation trajectories on a heatmap of the ThreeHump
problem. Shown is 1

N

∑N
i=1 L(fs(ψ,xi)) for a grid of ψ values (N = 100). The yellow region

denotes values of ψ that lead to termination. The ϵ = 0.5 trust-region box around ψ0 is
visualised by the red box. Trajectories are sampled from the final evaluation iteration of
ALPolicy: shown here are two trajectories that do not terminate.
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(a) ThreeHump.
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(b) Rosenbrock.

Figure 7: Learning curves for ALPolicy on a) ThreeHump and b) Rosenbrock with fixed q(x).
The upper plots show average return and number of simulator calls per iteration (which
consists of multiple episodes). Shaded regions are the min-max of all the episodes for an
iteration. Bottom plots show the fraction of episodes that do not terminate in an iteration.
Note that Rosenbrock seems much easier to learn than ThreeHump.
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