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Abstract

Deep neural networks have revolutionized medical image analysis and disease diagnosis.
Despite their impressive performance, it is difficult to generate well-calibrated probabilistic
outputs for such networks, which makes them uninterpretable black boxes. Bayesian neural
networks provide a principled approach for modelling uncertainty and increasing patient
safety, but they have a large computational overhead and provide limited improvement in
calibration. In this work, by taking skin lesion classification as an example task, we show
that by shifting Bayesian inference to the functional space we can craft meaningful priors
that give better calibrated uncertainty estimates at a much lower computational cost.
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1. Introduction

In computer-aided diagnosis, AI models must not only be accurate, but they should also
indicate when they are likely to be incorrect. For instance, control should be passed on to
human doctors when the confidence of a neural network for disease diagnosis is low. Model
calibration is the degree to which a models predicted probabilities reflect the true correctness
likelihood. Calibrated confidence estimates are also important for model interpretability and
they provide a valuable extra bit of information to establish trustworthiness with the user.
This is important for deep neural networks, whose classification decisions are often and
difficult to interpret.

It is well known that popular neural network frameworks only provide a point estimate
of the true underlying distribution. Furthermore, the typical classification setting of train-
ing the softmax output layer using cross-entropy loss typically gives over-confident (low
entropy) class probability mass distributions, even when there is a classification error. This
is especially concerning for training on medical datasets that are often relatively smaller and
suffer from severe class imbalance (Esteva et al., 2017). In other words, the popular deep
learning models give poorly calibrated uncertainty estimates for cases that are ambiguous,
or difficult, or out-of-distribution (OOD), including those from a new class.

Bayesian modelling offers a set of tools to reason about uncertainty. Existing Bayesian
approaches involve approximate inference using either Markov Chain Monte Carlo (Neal
et al., 2011) or variational inference methods, such as dropout (Gal and Ghahramani, 2016).
This idea has attracted attention of the medical community to ensure that difficult cases
for computer-aided diagnosis are duly flagged for review (Laves et al., 2019). Since most
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Bayesian neural networks (BNNs) have their prior defined on the weight space, the regu-
larization caused by these prior is not able to calibrate the network output, nor do these
priors explicitly make the model under-confident on the OOD samples. We show that by
performing variational inference on the functional space we can craft a prior that is able to
simultaneously calibrate the network as well as ensure the the recognition of OOD samples
as more uncertain. Our method is also significantly less computationally expensive as com-
pared to Bayesian or frequentist approaches. Although our method shares some similarities
with Evidential Deep Learning (EDL) (Sensoy et al., 2018), it has been derived from a vari-
ational Bayesian framework and it can distinguish distributional versus data uncertainties
(shift in distribution versus class confusion, respectively), unlike EDL.

2. Proposed Method

For classification among K classes, deep neural networks represent a function fθ : X → p ∈
[0, 1]K , where X represents the input, and p represents a probability mass function such
that

∑K
i=1 pi = 1. The output distribution p(Y |X, θ) = Cat(Y |p). A prior on θ implicitly

defines a prior measure on the space of f(X), denoted as p(f). Priors of convenience on θ,
such as a fully factorized Gaussian, are often used, and it is difficult to formulate a prior
on the weight space that is informative in the sense that it leads to high uncertainty on
OOD examples. We therefore define a uniform prior on the K-dimensional unit simplex for
the functional space, such that p(f) = D(p|〈1, . . . , 1〉) (completely uncertain prior). While
it seems intuitively satisfying to have a model that is not biased towards “over-confident”
outputs (towards which the usual cross-entropy loss is severely biased), we also empirically
show that such a uniform prior gives well-calibrated outputs.

Given the training data D = (XD, yD) and the test points (x∗, y∗) we have:

p(y∗|x∗, D) =

∫
p(y∗|p) p(p|x∗, D) dp (1)

We assume p(y∗|p) = Cat(y∗|p). We further assume that the neural network estimates a
Dirichlet distribution Dir(p|α) with α > 0, as done by Sensoy et al. (2018), because of its
analytical tractability. In other words, unlike for a standard neural network where p = fθ(x)
is the point estimate output, in our case Dir(p|α) = qθ(f(x)) is the marginal functional
distribution. This is similar to how a Gaussian process has a multivariate Gaussian as its
marginal distribution.

The true functional posterior p(f |D) is intractable, but it can be approximated by
minimizing the functional evidence lower bound (fELBO) as done by (Sun et al., 2019):

L(q) = −Eq(f)[log p(yD|f(XD))] + KL[q(f)||p(f)] (2)

The second term in Equation 2 is the functional KL divergence, which is hard to esti-
mate. Therefore, we shift to a more familiar metric, the KL divergence between the marginal
distributions of function values at finite sets of points x1:n. (Sun et al., 2019) has shown:

KL(q(f)||p(f)) = sup
x1:n

KL [q(f(x1:n)||p(f(x1:n)] =

n∑
i=1

KL[Dir(p|αi)||Dir(p|〈1, . . . 1〉)] (3)

2



Functional Space Variation Inference

A more relaxed way of sampling these measure points” x1:n, is to assume x1:k ∼ XD

(training distribution) and xk+1:n ∼ c where c is a distribution having the same support
as the training distribution, which could be OOD samples, that can be forced to be more
uncertain. This approach is similar to (Hafner et al., 2018), (Malinin and Gales, 2018).

We get a closed form solution for the first part in Equation 2 by assuming y to be a
one-hot vector as follows:

L1 =

∫ [
K∑
i=1

−yi log pi

]
1

B(α)

K∏
i=1

pαi−1
i dp =

K∑
i=1

yi

z(

K∑
j=1

αj)−z(αi)

 (4)

z(.) is the digamma function. To measure calibration of the proposed model we group
predictions p ∈ [0, 1] into M bins each of size 1

M , and let Bm be the set of indices of samples
whose prediction confidence falls into the interval (m−1M , mM ] for m ∈ {1, . . . ,M}. Now we
define accuracy of Bm as acc(Bm)= 1

|Bm|
∑

i∈BM
1{ŷi=yi}, where ŷ is the predicted outcome

with confidence p, and y is the true label. Similarly, we define the average confidence as
conf(Bm) = 1

|Bm|
∑

i∈Bm
pi. For perfect calibration we expect acc(Bm) = conf(Bm). In order

to quantify how well calibrated our networks are, we use Expected Calibration Error (ECE)

=
∑M

i=1
|Bm|
n |acc(Bm)− conf(Bm)| as the metric. Note ECE = 0 for perfect calibration.

3. Results

We applied our method to the problem of skin lesion classification, using the HAM10000
dataset (Tschandl et al., 2018). ResNet 50 architecture optimized by Adam was used.

From Table 1 we can see that although standard Bayesian approaches do help calibrate
the model, our method has a significantly lower ECE. That too at a much lower computa-
tional cost, approximately 25x less computationally expensive than Dropouts (monte carlo
approximation) and 5x more memory efficient than Ensembles (ensemble size).

Table 1: Comparison of classification accuracy and ECE on HAM10000 dataset

Method Standard NN Dropout Deep Ensemble Functional Space VI

Test Accuracy 84.38% 86.32% 85.21% 84.84%

ECE (M = 15) 7.73% 6.39% 3.12% 1.17%

The entropy H[p(y|x,D)] is a measure of total uncertainty, whereas differential entropy
H[D(p|α)] is a measure of the distributional uncertainty.(See Appendix A for more details)

4. Conclusions

We proposed a novel Bayesian NN framework whose prior explicitly forces OOD samples
to become unconfident as well as allow us to estimate uncertainty analytically at test time,
without needing approximate or expensive algorithms. We have also shown that our model
gives well-calibrated uncertainty outputs, which can increase patient safety and assist a
transfer of AI systems into clinical settings by including trustworthiness as a design factor
in machine learning models for medical diagnosis. Our method is also significantly more
computationally efficient making it a more viable option for resource-constrained problems.
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Appendix A. Quantifying Uncertainty

We use two measures to estimate uncertainty – differential entropy and output entropy.
The output entropy is a measure of the total uncertainty, where as the differential entropy
is a good measure of distributional uncertainty. Output entropy is high whenever we en-
counter overlap between classes or we encounter samples from OOD. On the other hand,
the differential entropy is high only when we encounter OOD samples and remains low even
in case of data uncertainty (Malinin and Gales, 2018).

Output entropy is defined as:

H[p(y|x,D)] = −
K∑
i=1

p(yi|x,D) log(p(yi|x,D)) (5)

where

p(yi|x,D) =

∫
p(yi|p)Dir(p|α)dp =

αi∑K
j=1 αj

(6)

Differential entropy is maximized when all categorical distributions are equiprobable.
i.e. when posterior qθ(f(x)) = D(p|〈1, . . . , 1〉), and it is defined as:

H[D(p|α)] = logB(α) + (

K∑
i=1

αi −K)z(

K∑
i=1

αi)−
K∑
i=1

(αi − 1)z(αi) (7)

(a) High Data Uncertainty (b) High Distributional Uncertainty

Figure 1: (a) implies high data uncertainty so we will have low differential entropy
(b) has high distributional uncertainty so both uncertainty metrics will be high

From Figure 1 it becomes clear that our method allows us to easily distinguish between
Data and Distributional Uncertainty.
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Appendix B. Additional Experiment

We observe our model is very confident on Nevi (NV) class, which is expected since
it make majority of the dataset, this reinforces the importance of well balanced data for
learning. We can also see our OOD samples can be distinctly separated from the in-class
samples. The OOD sample used for training and testing are from different distributions.
For simplicity we used Gaussian Distribution for training OOD samples and Uniform Dis-
tribution for testing OOD samples. Ideally more complex techniques should be used for
generating OOD samples on the decision boundary (Hafner et al., 2018).
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