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Abstract

We revisit nonlinear factor analysis from a com-
paratively new perspective given by advance-
ments in causal discovery and deep learning, in-
troducing a framework for Neuro-Causal Factor
Analysis (NCFA). Our approach is fully nonpara-
metric: It identifies factors via latent causal dis-
covery methods and then uses a variational au-
toencoder (VAE) that is constrained to abide by
the Markov factorization of the distribution with
respect to the learned graph. We evaluate NCFA
on real and synthetic data sets, finding that it
performs comparably to standard VAEs on data
reconstruction tasks but with the advantages of
sparser architecture, lower model complexity, and
causal interpretability. Unlike traditional factor
analysis methods, our NCFA method allows learn-
ing and reasoning about the latent factors under-
lying observed data from a justifiably causal per-
spective, even when the relations between factors
and measurements are highly nonlinear.

1. Introduction
Since its development over a century ago, factor analy-
sis (FA) (Spearman, 1904)1has been applied in many sci-
entific fields, including genomics, computational biology
(Pournara & Wernisch, 2007; Velten et al., 2022), economics
(Forni & Reichlin, 1998; Ludvigson & Ng, 2007), sociology
(Bollen, 2012) and many others. The goal of FA is to offer
explanations of variability among correlated (more gener-
ally, dependent) observables via (potentially) fewer latent
variables that capture the degree to which the observables

1Department of Mathematics, KTH Royal Institute of
Technology, Stockholm, Sweden 2University of Chicago,
Chicago, USA. Correspondence to: Alex Markham
<alex.markham@causal.dev>.

Accepted to ICML workshop on Structured Probabilistic Inference
& Generative Modeling. The 40 th International Conference on
Machine Learning, Honolulu, Hawaii, USA. Copyright 2023 by
the author(s).

1We would like to briefly draw the reader’s attention to and
repudiate the historical context within which factor analysis and
related methods were originally developed (e.g. Saini, 2019; Cren-
shaw et al., 1995; Stubblefield, 2007).

Figure 1: Pipeline for learning a neuro-causal factor model.
Given a sample from a suitable data generating process,
NCFA estimates a causal structure, which it then uses to
constrain a VAE that it trains on the sample, resulting in a
causally-interpretable deep generative model.

in the system vary jointly. For the sake of identifiability,
it is common to assume linearity, although in practice it is
well-known that many problems exhibit complex nonlin-
ear latent structures. With the rise of nonparametric deep
generative models that allow representing highly nonlinear
relationships between dependent observables, one might
hope to combine the best of both worlds.

Moreover, within applications such as those listed above,
FA is considered useful because the learned factors (latents)
offer a possible interpretation of relevant observed correla-
tions. Many applied FA studies provide an interpretation of
the learned factors based on the observed variables whose
joint correlation they encode. A natural tendency when
trying to interpret these factors is to assume they reflect pos-
sible common causes linking observed variables. However,
the models used in such studies are not necessarily built
with causality in mind. Collectively, these considerations
purport a need for a framework for nonlinear causal factor
analysis that combines identifiability with flexibility that use
modern advances in deep generative models and causality.

To this end, we propose Neuro-Causal Factor Analysis
(NCFA), augmenting classic FA on both fronts by lever-
aging advancements of the last few decades, including (i)
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Algorithm 1 Neuro-Causal Factor Analysis (NCFA)
input sample S of measurement variables M ,

significance level α,
latent degrees of freedom λ;

1: Estimate undirected dependence graph U , via pairwise
marginal independence tests with threshold α;

2: Identify minimum edge clique cover C of U and con-
struct corresponding minimum MCM graph G;

3: Assign the remaining λ− |C| latents to the cliques in C
to produce the NCFA-graph G̃;

4: Estimate functions f[n] using a VAE constrained by G̃,
with residual measurement errors ϵ;

output neuro-causal factor model ⟨G̃, f[n], ϵ⟩, with NCFA
graph G̃, loading functions f[n], and residual measure-
ment errors ϵ;

causal discovery (Spirtes et al., 2000; Pearl, 2009) and (ii)
deep generative models, such as variational autoencoders
(VAEs) (Kingma & Welling, 2014). Our main contribution
is the NCFA framework (Figure 1) for modeling such situ-
ations so as to yield causally interpretable, identifiable FA
models with the flexibility and data replication capabilities
afforded by deep generative models. In addition to elabo-
rating the general theoretical framework by which NCFA
uses Reichenbach’s common cause principle (Reichenbach,
1956, p. 157) to structure the latent space and architecture
of a VAE, we provide an algorithm and open source imple-
mentation for inference and prediction with NCFA models.
We demonstrate on both synthetic and real data that NCFA
performs comparably to baseline deep generative models,
while also offering the possibility of justifiably causal inter-
pretations of learned factors.

2. NCFA Models
Consider a collection of jointly distributed measurement
variables (M1, . . . ,Mn) for which we assume that all de-
pendences are explained by the existence of a latent com-
mon cause of the measured variables; i.e., that no Mi and
Mj share a direct casual relation. If we were able to ob-
serve these latent confounders and condition upon them
M1, . . . ,Mn would become mutually independent. Hence,
the only causal structure encoded via conditional indepen-
dence in the observed distribution is contained in their
marginal independence structure, which can be encoded
in an undirected graph:

Definition 2.1. The unconditional dependence graph
(UDG) for the jointly distributed random variables
(M1, . . . ,Mn) is the undirected graph U with node set

[n] = {1, . . . , n} and edge set

E = {i −− j : Mi ̸⊥⊥ Mj}.

To recover a causal interpretation of the relations that hold
among the measurement variables we extend a UDG graph
to a (minimum) MCM graph. Following the principle of
Occam’s Razor, we would like to explain the observed de-
pendences in (M1, . . . ,Mn) in the simplest possible way,
i.e., using the fewest possible latents to serve as the com-
mon causes of the measurement variables that exhibit depen-
dence. To do so, we identify a minimum edge clique cover
of the UDG U , which is a collection C = {C1, . . . , CK} of
cliques (i.e., complete subgraphs of U) such that for every
i −− j ∈ E the pair i, j is contained in at least one clique in
C and there exists no set of cliques with this property that
has cardinality smaller than |C|.
Definition 2.2. Let U be an undirected graph with minimum
edge clique cover C = {C1, . . . , CK}. The (minimum)
MCM graph G for U and C is the DAG with vertices [n]∪L
where L = {ℓ1, . . . , ℓK} and edge set

E = {ℓi → j : j ∈ Ci ∀i = 1, . . . ,K}.

We call |L| the number of causal degrees of freedom.

An example of a UDG and a corresponding MCM graph
is presented in Figure 3 in the appendix. Minimum MCM
graphs were originally defined in the context of MeDIL
causal models (Markham & Grosse-Wentrup, 2020). A
summary of this theory is given in Appendix B.

Since we assumed all marginal dependencies in
(M1, . . . ,Mn) are explainable by the existence of
a latent common cause, then the observed distri-
bution (M1, . . . ,Mn) is realizable as the marginal
distribution of (M1, . . . ,Mn) in the joint distribution
(M1, . . . ,Mn, L1, . . . , LK) that is Markov to the DAG G,
where Li is the random variable represented by the node
ℓi in G. From a factor analysis perspective, the latents
L1, . . . , LK are the factors to be inferred.

2.1. NCFA graphs and Variational Autoencoders

The construction of a MCM graph from a UDG should also
feel familiar from the perspective of VAEs. A classical VAE
architecture assumes no marginal independencies among
the observed variables and hence begins with a UDG that is
the complete graph. The associated minimum MCM graph
would then have a single latent variable as a parent common
to all observed variables, however, the standard practice is
to add multiple independent latent variables as parents of all
observed variables in the system in order to afford us flexi-
bility in how we model the latent space of the distribution.
To mimic this practice while preserving the causal struc-
ture inherent in a minimum MCM graph G = ⟨[n] ∪ L,E⟩,
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we replace each ℓi with a set of independent latent nodes
Li = {ℓi,1, . . . , ℓi,ki}, for some ki ≥ 1, each with the same
connectivity (i.e. children) as ℓi. The number of latents
to be assigned to each clique in this fashion is a parameter
called the latent degrees of freedom: λ =

∑
Ci∈C ki. We

call the resulting graph a NCFA-graph of G with λ latent
degrees of freedom.

Definition 2.3. Let G be a minimum MCM graph for the
UDG U = ⟨[n], E⟩ and the minimum edge clique cover
C = {C1, . . . , CK} of U . A NCFA graph of G with λ latent
degrees of freedom is a graph G̃ with node set [n] ∪ L̃ and
edge set Ẽ where

L̃ = L1 ∪ · · · ∪ LK

for Li = {ℓi,1, . . . , ℓi,ki}, ki ≥ 1 ∀i ∈ [K], and

Ẽ = {ℓi,j → j : ∀j ∈ Ci, ∀i ∈ [K]}.

Each node ℓi,j represents a latent variable Zi,j . Since the
latent nodes in Li all have the same connectivity as the sin-
gle latent ℓi their joint distribution f(Li) =

∏ki

j=1 f(Zi,j)
represents the common cause of the nodes in Ci, which
was previously only represented by ℓi in G. The factors to
be inferred from a factor analysis perspective are now the
random vectors L1, . . . , LK with Li = (Zi,1, . . . , Zi,ki),
which still have the causal interpretation afforded by the
minimum MCM graph. However, the multiple latents pro-
vide us flexibility to model the effects of the causal factors.

Definition 2.4. A NCFA model is a joint distribution
(M1, . . . ,Mn) for which there is a NCFA-graph G̃ = ⟨[n]∪
L̃, Ẽ⟩ and functions f1, . . . , fn for which Mi := fi(ZpaG̃(i))
for all i ∈ [n].

When modeling a distribution via a NCFA model, the func-
tions fi are treated as unknowns to be inferred via a deep
generative model such as a VAE. The encoder maps the
observations into the latent space as the joint posterior dis-
tribution f(Z|M1, . . . ,Mn) where Z denotes the joint dis-
tribution of the Zi,j , and the decoder maps from the latent
space into the observational space according to the factor-
ization

f(M1, . . . ,Mn|Z) =

n∏
i=1

f(Mi|ZpaG̃(i)).

The joint distribution of the latent space is f(Z) =∏K
i=1 f(Li); i.e., it is a product of the (joint) distributions

we have specified to represent each of the latent causes in
the minimum MCM model G for U . Following training of
the VAE, the model may be used to generate predictions on
observables.

2.2. Identifiability of minimum MCM graphs and
ECC-model Equivalence

While there exist equivalence classes of minimum MCM
graphs containing multiple elements, there also exist classes
that are singletons; in other words, there exist undirected
graphs (UDGs) with a unique minimum edge clique cover.
For such UDGs, the minimum MCM graph is identifiable.

Theorem 2.5. Suppose that the data-generating distribution
is Markov to a minimum MCM graph G such that:

1. The UDG U for G admits a unique minimum edge
clique cover, and

2. Mi ⊥⊥ Mj ⇐⇒ i −− j /∈ EU .

Then G is identifiable.

The identifiability result in Theorem 2.5 applies to models
that are of practical interest. For instance, it follows from
the results in (Deligeorgaki et al., 2022) that whenever a
UDG admits a minimum edge clique cover such that each
clique contains a pure measurement variable (e.g. as in
Donoho & Stodden, 2003; Arora et al., 2012; Bing et al.,
2020; Moran et al., 2023), the minimum edge clique cover
is unique. Hence, the MCM graph is identifiable.

3. Neuro-Causal Factor Analysis
We now present our main contribution, the Neuro-Causal
Factor Analysis (NCFA) algorithm, given in Algorithm 1.
The NCFA algorithm runs by the logic described in Sec-
tion 2: namely, it infers a UDG from data, identifies a min-
imum edge clique cover C = {C1, . . . , CK} for U , builds
the corresponding NCFA-graph G with λ latent degrees of
freedom and then trains a VAE according to the functional
relationships specified by G̃.

To estimate the UDG, marginal independence tests are per-
formed. Starting with the complete graph, the edge i −− j is
removed whenever Mi and Mj are deemed independent, i.e.
according to a test with statistics such as distance-covariance
(Székely et al., 2007; Markham et al., 2022) or Chatterjee’s
coefficient (Chatterjee, 2021; Lin & Han, 2022). A mini-
mum edge clique cover is then identified for the estimated
UDG Û . In general, this is an NP-hard problem, however
there are both exact algorithms that work well for small
graphs and heuristic algorithms that scale to large graphs
(Gramm et al., 2009; Conte et al., 2020; Ullah, 2022).

Once a minimum edge clique cover is identified, the cor-
responding NCFA graph with λ latent degrees of freedom
is constructed. Here, we ensure that at every clique in the
minimum edge clique cover of Û is assigned at least one
latent variable. The remaining λ−K latents are then dis-
tributed uniformly over the cliques. In this implementation
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Figure 2: Results of NCFA on synthetic data sets from randomly generated graphs.

samp size n α λ |L| Training-∆ Validation-∆

MNIST 42000 784 0.05 153664 1 -0.00475 -0.04814
TCGA 632 1000 0.05 250000 8129 0.11488 0.11865

Table 1: Results of NCFA on two real data sets with default parameter values.

of NCFA, we set default λ = ⌊n2/4⌋, a known upper bound
on the number of cliques in a minimum edge clique cover
of a graph on n nodes (Erdős et al., 1966). Finally, a VAE
for the functional relations specified by the NCFA-graph is
trained. One could, in principle, alternatively use any deep
generative model. See Appendix D for further details.

Since NCFA constructs its model via the MCM graph Û ,
the estimated factors (i.e., joint distributions) f(Li) in the
factorization of the latent distribution represent the distribu-
tions for the primary causes of the measurement variables
to which the latent nodes in Li are connected. This yields
a factor analysis model in which the latent factors can jus-
tifiably be causally interpreted. Furthermore, while each
latent variable ℓi,j is assigned a Gaussian prior in the VAE,
by assigning Li = {ℓi,1, . . . , ℓi,ki

} latents to each clique
Ci, instead of a single latent ℓi, each causal latent in the
minimum MCM graph is modeled as a mixture distribution
which can be arbitrarily non-Gaussian. Hence, the estimated
factors have both a causal interpretation while additionally
being as nonlinear as necessary.

4. Applications on Synthetic and Real Data
We now present some results applying NCFA to synthetic
and real data sets, observing that the performance of NCFA
is competitive with classical VAEs while additionally of-
fering a nonlinear, causally interpretable factor model. We
summarize some key results here, while deferring details to

the appendices.

We first tested NCFA on synthetic data, compared to both
a ground truth causal model and a baseline VAE, shown in
Figure 2. Results are grouped according to edge density
of the generating UDG, shown along the x-axis. Figure 2a
contains box plots of distance between the true MCM causal
structure and that learned by NCFA (lower is better). Here,
distance between MCM graphs is measured using the Struc-
tural Frobenius Difference (SFD), which is a modification
of the more common Structural Hamming Distance (SHD)
for graphs with possibly different numbers of nodes (see Ap-
pendix E for more details on SFD and its relation to SHD).
Figure 2b contains box plots of Validation-∆, the difference
between the final validation loss of the baseline VAE and
that of NCFA (higher is better).

We also tested NCFA on two real datasets, MNIST and
TCGA, comparing its performance to a baseline VAE. In
both cases, there is no ground truth causal graph, so we
focus on VAE metrics as a benchmark. We report the re-
sults in Table 1, with additional details in the appendix.
For MNIST, sample size is much larger than number of
measurement variables n, but this is not true of TCGA.
When run using default settings for α, λ, we see that NCFA
achieves comparable training and validation to the baseline
VAE, demonstrating that it learns reasonable constraints (i.e.
causal relations) as well as its ability to scale well to high-
dimensional settings. In fact, for TCGA the training and
validation losses are lower for NCFA, suggesting that incor-



Neuro-Causal Factor Analysis 5

porating the causal structure learned by NCFA improved
model performance. Curiously, for MNIST, the minimum
MCM graph consisted of just a single latent, suggesting the
causal structure in this dataset is limited, which matches
expectations. This does not mean that there are not multiple,
interpretable latents to be discovered as is well-documented
in the literature, but perhaps that these latents do not have a
strong causal interpretation.

References
Adachi, K. Factor analysis: Latent variable, matrix decom-

position, and constrained uniqueness formulations. Wiley
Interdisciplinary Reviews: Computational Statistics, 11
(3):e1458, 2019.

Arora, S., Ge, R., and Moitra, A. Learning topic models–
going beyond svd. In 2012 IEEE 53rd annual symposium
on foundations of computer science, pp. 1–10. IEEE,
2012.

Bing, X., Bunea, F., Ning, Y., and Wegkamp, M. Adaptive
estimation in structured factor models with applications
to overlapping clustering. Annals of Statistics, 48(4),
2020.

Bollen, K. A. Instrumental variables in sociology and the
social sciences. Annual Review of Sociology, 38:37–72,
2012.

Chatterjee, S. A new coefficient of correlation. Journal
of the American Statistical Association, 116(536):2009–
2022, 2021.

Chatterjee, S. A survey of some recent developments in mea-
sures of association. arXiv preprint arXiv:2211.04702,
2022.

Comon, P. Independent component analysis, a new concept?
Signal processing, 36(3):287–314, 1994.

Conte, A., Grossi, R., and Marino, A. Large-scale clique
cover of real-world networks. Information and Com-
putation, 270:104464, Feb 2020. ISSN 0890-5401.
doi: 10.1016/j.ic.2019.104464. URL http://dx.doi.
org/10.1016/j.ic.2019.104464.

Crenshaw, K., Gotanda, N., Peller, G., and Thomas, K.
Critical race theory: The Key Writings that formed the
Movement. The New Press, 1995.

Deligeorgaki, D., Markham, A., Misra, P., and Solus, L.
Combinatorial and algebraic perspectives on the marginal
independence structure of bayesian networks. arXiv
preprint arXiv:2210.00822, 2022.

Donoho, D. and Stodden, V. When does non-negative matrix
factorization give a correct decomposition into parts?
Advances in neural information processing systems, 16,
2003.
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A. Linear Factor Models
We now give a brief introduction to (linear) factor analysis, focusing on the key terms and mathematical ideas2 that we
connect to latent causal discovery and deep generative models, but for a more in-depth introduction and discussion about FA,
see Mulaik (2009).

Definition A.1. A factor model represents a random (row) vector M ∼ N (0,Σ) consisting of n measurement variables
as a linear transformation of a standard jointly normal random vector L ∼ N (0, IK) of K < n latent factors via factor
loading weights W ∈ RK×n plus a jointly normal random vector of n error terms ϵ ∼ N (0, D), where D ∈ Rn×n

+ is a
diagonal matrix, using the equation

M = LW + ϵ.

Given a sample M ∈ Rs,n ∼ M and assuming that L and ϵ are probabilistically independent, the factor model can be
estimated (Adachi, 2019) from the empirical covariance matrix Σ̂ = 1

sM
⊤M by finding Ŵ and D̂ that minimize the

squared Frobenius norm

∥Σ̂− Ŵ⊤Ŵ − D̂∥2F .

Such a solution is unique only up to orthogonal transformations of Ŵ , and so without further (e.g., in our case, causal)
assumptions, finding a solution does not always warrant a meaningful interpretation of the resulting factor model. This
unidentifiability especially poses a problem in exploratory FA, where there is no prior knowledge about Σ̂, Ŵ or D̂, but less
so in confirmatory FA, where experts can incorporate domain knowledge to constrain and interpret the possible solutions as
well as test specific hypotheses.

Additionally, there are possibilities for either restricting or relaxing the FA model and methods of solving it, including
closely related methods like PCA (Pearson, 1901; Hotelling, 1933; Jolliffe, 2002), ICA (Comon, 1994; Hyvärinen & Oja,
2000), and many others beyond our scope. Notably, compared to other related work, sparse FA (Ning & Georgiou, 2011;
Trendafilov et al., 2017; Yamamoto et al., 2017), which penalizes Ŵ according to the number of nonzero entries, produces
solutions more closely related to those we find with NCFA. The two main differences between sparse FA and NCFA are that
(i) rather than explicitly penalizing the solution to encourage sparsity, NCFA simply learns a causal structure that exhibits a
structure typically sought in sparse FA, and (ii) like most FA methods, sparse FA still assumes linearity and Gaussianity,
whereas NCFA can be highly nonlinear and nonparametric.

B. MeDIL Causal Models
The NCFA models used in this paper are a subfamily of the models known as MeDIL causal models, originally introduced in
(Markham & Grosse-Wentrup, 2020). For contextualization purposes, we give a brief description of MeDIL causal models
here.

A MCM graph is a triple G = ⟨M,L,E⟩ where M = {1, . . . , n} and L = {ℓ1, . . . , ℓK} are disjoint sets of vertices
corresponding, respectively, to observed variables and latent variables, and E is the collection of directed edges between the
nodes. In a MCM graph we require that the nodes in M are all sinks (i.e., have out-degree 0) and that the edges E are such
that G is a directed acyclic graph (DAG). A distribution belongs to the Measurement Dependence Inducing Latent (MeDIL)
Causal Model if it factors according to G; i.e., the probability density function (or probability mass function) satisfies

f(x1, . . . , xn, xℓ1 , . . . , xℓK ) =

n∏
i=1

f(xi|xpaG(i))

K∏
j=1

f(xℓj |xpaG(ℓi)).

Since we do not observe the latent variables, but only the observed variables, X1, . . . , Xn the distributions of interest
factorizes as

f(x1, . . . , xn) =

∫
XL

n∏
i=1

f(xi|xpaG(i))

K∏
j=1

f(xℓj |xpaG(ℓi))dxL =

n∏
i=1

φi(xi). (1)

2In case of conflicting notational conventions, e.g., L to denote a loading matrix in FA literature versus denoting a set of latent variables
in the causal graphical model literature, we favor the latter.
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Figure 3: A UDG U on measurement variables M1,M2,M3,M4 and a corresponding minimum MCM graph G for the
minimum edge clique cover C = {C1 = {M1,M2,M3}, C2 = {M2,M3,M4}}. G̃ is the NCFA-graph for G with λ = 4
latent degrees of freedom. Note that all three graphs encode the exact same set of (marginal) independencies among the
measurement variables M1,M2,M3,M4.

Note that since all observed variables are sink nodes in G, integration over the latents yields a factorization of the distribution
into a product of potential functions, one for each observed variable Xi that depends only on xi. The MeDIL model M(G)
consists of all observable distributions that arise according to this factorization.

In general, MCM graphs may have a complex directed acyclic structure over the latents that induce correlations amongst the
observables. However, since we only consider the observed variables, we may reduce to a minimum MCM representation of
the distribution. In a minimum MCM graph, we further assume that the latent variables are source nodes (i.e., have in-degree
0) and out-degree at least 1. Hence, a minimum MeDIL model; i.e., a MeDIL model that factorizes as in equation (1) explains
the associations amongst the observed variables in the simplest possible way: via a collection of independent latents. These
independent latents can be thought of as source nodes in the original MCM graph G, and the associated minimum MCM
graph as the graph produced after we marginalize out all non-source latent variables. While learning the complex causal
structure on the latents in a general MCM graph may be intractable, one can apply existing methods to estimate the simpler
minimum MCM structure. Intuitively, one can think of learning the minimum MCM graph of a model as identification of
the ”primary causes” of the associations between the observed variables.

It follows from the factorization of a distribution according to a minimum MCM graph that the only conditional independence
constraints amongst the observed variables are marginal independence constraints. These, in turn, encode the condition
that two nodes do not have a shared (latent) parent. From the causal perspective, we see that two nodes in the system are
marginally independent if and only if they share a latent common cause. Hence, minimum MeDIL models are the natural
representation of Reichenbach’s Common Cause Principle.

It follows that a natural representation of the model using only the observed variables is via an undirected graph U = ⟨M,E⟩,
where i− j /∈ E if and only if i and j are independent in the joint distribution of the observed variables. We call this graph
the unconditional dependence graph (UDG) of the model. A minimum edge clique cover of the undirected graph U is a
collection of cliques C = {C1, . . . , CK} for which every pair i, j satisfying i− j ∈ E is contained in at least one clique in
C and there exists no set of cliques with this property that has cardinality smaller than |C|. Since a UDG depends only on
the observed variables, it is possible to learn a UDG from the available data via pairwise marginal independence tests. A
minimum MCM graph that captures the marginal independence structure encoded via the UDG is then the minimum MCM
graph where we have one latent ℓi for each clique Ci ∈ C and ℓi has a directed arrow to each node j ∈ Ci (and no other
adjacencies).

To learn the assignment of latents producing a minimum MCM graph from a UDG U , we must learn a minimum edge clique
cover of U . The problem of identifying a minimum edge clique cover of an undirected graph is NP-hard. There are exact
algorithms (Gramm et al., 2009; Ullah, 2022) showing it to be NP-complete and fixed-parameter tractable. However, there
are also polynomial-time heuristic algorithms (Conte et al., 2020) that can efficiently handle very large graphs.

C. Identifiability of minimum MCM graphs: Examples and Counterexamples
An example of a minimum MCM graph that cannot be identified because it admits multiple edge clique covers is the graph:
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Figure 4: A MCM graph G1 with observed variables m1,m2,m3,m4, a minimum MCM graph G2 representing the same set
of observable distributions (M1,M2,M3,M4) and the associated UDG U . The (unique) minimum edge clique cover of U is
C = {{m1,m2,m3}, {m2,m3,m4}}. Hence, G2 has exactly one latent variable for each of these two cliques, connected to
exactly the nodes in a single clique in C. The NCFA-graph G̃2 is an augmentation of G2 for λ = 4 latent degrees of freedom
(see Section 2). All four graphs encode a single marginal independence constraint, M1 ⊥⊥ M4, and hence represent the same
family of observed distributions.

G
m1 m2 m3 m4 m5 m6

l1 l2 l3 l4

.

The UDG of G is the edge graph U of the octahedron which admits exactly two minimum edge clique covers:
C1 = {{1, 3, 4}, {1, 5, 6}, {2, 3, 6}, {2, 4, 5}} and C2 = {{1, 3, 6}, {1, 4, 5}, {2, 3, 4}, {2, 5, 6}}. C1 recovers the mini-
mum MCM graph G, whereas C2 produces the minimum MCM graph H, depicted below:

H
m1 m2 m3 m4 m5 m6

l1 l2 l3 l4

.

This issue arises due to the spherical structure of the UDG U , depicted on the left below. In the remaining two figures, the
each shaded triangle represents the children of a latent node (i.e., a clique in a minimum edge clique cover) of a possible
MCM graph with associated UDG U . The middle figure represents the minimum MCM graph G and the rightmost figure
represents the alternative H.

m1

m6
m3

m4

m5

m2

m1

m6
m3

m4

m5

m2

m1

m6
m3

m4

m5

m2

The spherical structure of this graph creates symmetry allowing for multiple minimum edge clique covers. In particular, this
gives an example to where we lack identifiability and Theorem 2.5 does not apply. Interestingly, we see that this lack of
identifability can be ”worst possible” in the sense that if the true minimum MCM graph is G, but the wrong edge clique
cover is chosen, we could learn H, which captures none of the true latents and instead specifies four completely incorrect
latents. Future work, possibly incorporating interventional knowledge, to address such identifiability concerns would be of
interest.

On the other hand, graphs admitting a pure measurement variable in each clique of a minimum edge clique cover will
have a unique minimum edge clique cover, making the resulting minimum MCM graph identifiable (see Theorem 2.5).
From a graphical perspective, we call this condition the 1-pure child constraint since it insists that each latent node ℓi in the
minimum MCM graph has (at least) one child mi which has no other parents than ℓi (i.e., ℓi → mi is an edge of G and mi

has no other adjacencies in G). However, the 1-pure-child constraint is not necessary for a UDG to have a unique minimum
edge clique cover and hence for identifiability to hold (according to Theorem 2.5). In particular, the following UDG U has
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the unique minimum edge clique cover C = {{1, 4}, {2, 5}, {3, 6}, {4, 5, 6}} and hence the corresponding minimum MCM
graph G is identifiable:

U

m1

m4 m5

m6

m2

m3

G
m1 m2 m3 m4 m5 m6

l1 l2 l3 l4

.

Note here that the latent variables ℓ1, ℓ2 and ℓ3 each have a pure child (m1,m2 and m3, respectively). However, the latent
ℓ4 does not. Hence G is identifiable but does not satisfy the 1-pure-child constraint.

D. NCFA Implementation
We provide a Python implementation (including thorough documentation) of the NCFA algorithm (Algorithm 1) as well as
scripts for reproducing all of our results, released as a free/libre software package: https://after.review.

Our implementation makes use of the following Python packages: NumPy (Harris et al., 2020), PyTorch (Paszke
et al., 2019), dcor (Ramos-Carreño & Torrecilla, 2023), and xicorrelation (https://github.com/jettify/
xicorrelation). Additionally, we provide a Python wrapper of the Java ECC package (https://github.com/
Pronte/ECC).

Further details can be found in our code and documentation, but we summarize the most important implementation details
in the following:

• Marginal independence testing (Step 1, Algorithm 1): We use statistical hypothesis tests of independence (either
using dcor for distance covariance based tests or xicorrelation for Chatterjee’s coefficient based tests) for
specified threshold value α, with the p-values being computed based on the asymptotic theory as opposed to with
permutation tests.

• Edge clique cover (Step 2, Algorithm 1): We use the default heuristic solver of the ECC package, except when making
the 1-pure-child assumption, in which case the corresponding learned UDG Û has equal intersection and independence
numbers, a condition known (Deligeorgaki et al., 2022) to allow for a subcubic time exact solver, which we implement
ourself (see package documentation for further details).

• Assignment of latent degrees of freedom according to λ (Step 3, Algorithm 1): First, each of the K cliques from
the edge clique cover is assigned one latent; then, the remaining λ−K latents are distributed equally over the cliques.

• VAE architecture (Step 4, Algorithm 1): The learned UDG Û induces an NCFA model with NCFA graph Ĝ (cf.
Section 2.1). The NCFA graph encodes the structural connections between the latents and observables as a biadjacency
matrix, which is used to mask the connections in the decoder of the VAE. In this way, each observable only depends on
the latent it is connected to in the learned NCFA graph Ĝ (cf. Definition 2.4). The decoder structure is given by a single
layer of the SparseLinear network with a masked linear activation function. The model was trained using the AdamW
optimizer with a learning rate of 1e-5 and each time run for 200 epochs.

Except for the last experiment, no hyperparameter tuning was performed, and instead default, reasonable choices are used
(e.g. α = 0.05 and λ = ⌊n2/4⌋). We anticipate improvements are possible with careful hyperparameter tuning. All
experiments were run on Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz. Total combined runtime was about 50 hours.

E. Evaluation Metrics
NCFA faces a trade-off between causal constraints and expressivity: an unconstrained, fully connected VAE ignores this
structure, and has free reign to fit the data arbitrarily, at the cost of interpretability and potentially acausal relationships (e.g.
spurious correlations). The additional structure offered by the minimum MCM graph in NCFA brings in causal structure

https://after.review
https://github.com/jettify/xicorrelation
https://github.com/jettify/xicorrelation
https://github.com/Pronte/ECC
https://github.com/Pronte/ECC
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and interpretation, but can hamper training if the structure is incorrect. Of course, when the causal structure is correct,
there should be no significant loss in expressivity. Thus, ideally we will see no significant degradation in the loss, which
is an indicator of structural fidelity. We measure this with the metric ∆ which is the difference between the loss of an
unconstrained, baseline VAE and the NCFA loss. On synthetic data where we know the causal ground truth, we can also
directly measure structural fidelity using graph comparison metrics. See Appendix E for detailed definitions of our metrics.

Distance measures Unlike classical VAE methods, NCFA has a causal discovery step in which it infers the UDG upon
which the VAE in the model is based. The structural Hamming distance (SHD) is commonly used to quantify the difference
between graph structures and is simply defined to be the number of edges that appear in one graph but not the other. SHD,
however, is not applicable in our case as (i) it is defined for graphs having the same number of vertices, whereas for a fixed
finite sample from a set of measurement variables, differently estimated minimum MCMs may have differing numbers of
latent variables, and (ii) even if we compute, e.g., the SHD between the undirected graphs U ,U ′ (which do have the same
number of vertices), this aligns poorly with intuitions about distance between their respective generating MCM graphs G,G′.
To remedy this, we introduce the following distance:

Definition E.1. The structural Frobenius (or medil) distance between biadjacency matrices B1 ∈ {0, 1}K1,n and B2 ∈
{0, 1}K2,n, corresponding to minimum MCM graphs G1,G2 each with n = |M | measurement variables and Ki latents,
respectively, for i = 1, 2, is defined as

SFD(B1, B2) := ∥B⊤
1 B1 −B⊤

2 B2∥2F .

Note that, by virtue of being defined using the Frobenius norm, the medil distance is a proper distance metric. The intuition
behind this definition is that we transform a given minimum MCM structure into a weighted undirected graph, allowing it to
be easily compared to other minimum MCM structures over the same set of measurement variables. Via this transformation,
the weights keep track of how many latent parents each pair of measurement variables have in common as the (i, j)-th entry
in the matrix B⊤

1 B1 records the number of colliderless paths between measurement variables i and j in the graph. For our
graphs, two nodes admit such a path between them if and only if they are connected by a latent, and this connection adds
exactly 1 to the (i, j)-th matrix entry. Hence, these matrices will be equal if and only if the MeDIL models are identical
(for a consistent ordering of measurement variables) (Deligeorgaki et al., 2022, Section 2.2). Figure 5 provides an example
comparing the SFD between minimum MCMs and the SHD between their corresponding (unweighted) undirected graphs.

VAE loss function The training and validation losses reported here and in the main paper are standard ELBO metrics (e.g.
Kingma & Welling, 2014) computed using a 70/30 training/validation split.

F. Simulations: Specifications and Additional Results
Data Generation We generated 10 Erdős-Rényi random undirected graphs (Gilbert, 1959) on 10 nodes for each density
value p ∈ {0.1, 0.2, . . . , 0.9}. These are actual density values, not expectations, i.e., for each density value we sample
uniformly from graphs with p

(
10
2

)
edges. These random graphs constitute UDGs, so we compute their minimum edge clique

covers to determine the corresponding MCM structure. Importantly, while this approach lets us sample from the entire space
of minimum MCM structures, it only lets us directly specify the graph density of the UDG over measurement variables and
not the number of latent causal factors or the density of the MCM structure.

Using the ground truth MCM structures as generated above, we construct a linear factor model (Definition A.1) with factor
loading weights drawn from the interval [−2,−0.5) ∪ (0.5, 2] and standard normal error terms, from which we draw 10
different data sets (per edge density p) containing 1000 observations each, totaling 90 different ground truth causal structures
and 900 different data sets.

Model Hyperparameters For each data set, we trained a NCFA model with α = 0.05, λ = 25 (which includes estimating
the causal structure) as well as two baselines: (i) a classic fully connected VAE with the same number of latent degrees of
freedom, and (ii) a NCFA model given the true causal structure and with the latent degrees of freedom λ being set equal to
the true number of causal latent factors K = |L|.

Additional Results As is commonly seen in causal discovery tasks, NCFA recovers causal structure well in the sparse
setting but increasingly less so in denser settings. Causal discovery is notoriously difficult, especially in the small-sample
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Figure 5: Pairwise comparison of structural Hamming distance and medil distance on three causal factor structures, G1,G2,
and G3. For each structure Gi, we also show its associated undirected graph Ui and its biadjacency matrix Bi.
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Figure 6: Results of NCFA on synthetic data sets from randomly generated graphs, in terms of causal structure learning: (a)
shows structural Frobenius distance (SFD) between learned (biadjacency matrix representation of) causal structures and the
ground truth; (b) shows structural Hamming distance (SHD) between (undirected graph representation of) learned causal
structures and the ground truth.

regime, but NCFA benefits from only needing to perform marginal independence tests (so the conditioning set is always
empty). In terms of performance as a generative model, we see that NCFA generally improves the validation loss compared
to the baseline VAE since the median loss difference is above 0 for all edge densities except for p = 0.1, even as the true
graph density increases. This indicates both that the causal structure provides helpful constraints in the NCFA pipeline and
that NCFA is robust in the face of moderate misestimation of the causal structure.
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(b) Validation-∆-True
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(c) Training-∆-Baseline VAE
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(d) Validation-∆-Baseline VAE

Figure 7: Results of NCFA on synthetic data sets from randomly generated graphs, in terms of final loss of the trained deep
generative models: (a) shows Training-∆-True, the difference of training loss between the learned NCFA model and the
NCFA model when given the ground truth causal structure; (b) shows Validation-∆-True, difference between NCFA and
ground truth validation losses; (c) shows Training-∆-Baseline, difference between NCFA and Baseline VAE training losses;
(d) shows Validation-∆-Baseline, difference between NCFA and Baseline validation losses.

Figure 6 shows the distances (both SFD and SHD) between the learned and true causal structures, in the form of a box plot
for each different edge density p, demonstrating better performance (in terms of causal structure learning) for sparser graphs.
However, in terms of performance as a generative model, Figures 7 and 8 (respectively showing boxplot summary of the ∆
losses and averaged ∆ losses for different generating edge densities) demonstrate that NCFA generally achieves training
loss comparable to the baseline VAE while improving the validation loss, and at the same time improving both training and
validation loss compared to the ground truth model (owing to NCFA’s more expressive VAE architecture and higher λ).
Together, these results indicate both that the causal structure provides helpful constraints in the NCFA pipeline and that
NCFA is robust in the face of moderate misestimation of the causal structure.
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Figure 8: ∆ curves for NCFA versus baseline and ground truth on synthetic data sets from randomly generated graphs,
averaged over the 100 data sets for each edge density p ∈ (0.1, 0.2, . . . , 0.9).
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samp size n α λ |L| Training-∆ Validation-∆

MNIST 42000 784 0.05 153664 1 -0.00475 -0.04814
TCGA 632 1000 0.05 250000 8129 0.11488 0.11865

MNIST 42000 784 0.001 7800 560 -76.682 -74.163
TCGA 632 1000 0.05 10000 969 -78.721 -68.117

Table 2: Results of NCFA on two real data sets: the first two rows show results for default parameter values, while the
second two show results of tuned parameters, decreasing α for MNIST and λ for both; n reports the number of measurement
variables, |L| the number of learned causal latents, while Training- and Validation-∆ report the differences between NCFA
and baseline VAE losses.

G. Real Data Analysis: Specifications and Additional Results
Model Hyperparameters As noted in Section 4, we used default settings for the first run on MNIST and TCGA (first
and second rows of Table 1, and Figures 9a and 9b). For the second run on each (third and fourth rows of Table 1, and
Figures 9c and 9d), we tuned the hyperparameters slightly, changing α = 0.001 and using distance covariance based
tests3 on MNIST to encourage greater sparsity in the learned NCFA model. Furthermore, for the second run we made the
1-pure-child assumption for both MNIST and TCGA, allowing us to greatly reduce λ and make use of a polynomial time
exact minimum edge clique cover solver (described in Appendix D).

Additional Results On both datasets, the default λ and maximum allowed |L| < λ were quite large, so we also ran
experiments under the 1-pure-child assumption (second two rows of Table 2), which guarantees that |L| ≤ n, allowing
us to safely reduce λ from ⌊n2/4⌋ to, e.g., 10n. Additionally, we decreased α to 0.001 for MNIST, taking advantage of
the large sample size and encouraging NCFA to learn a sparser structure. However, based on the training and validation
differences, NCFA failed to converge properly compared to the baseline VAE. In the case of MNIST, we attribute this to
it arguably being a data set without causally meaningful sparse latents. For TCGA, the performance of NCFA without
the 1-pure-child assumption yielded a better performance than the baseline VAE. Hence, the decrease in performance of
NCFA under this constraint could suggest that the true causal structure of TCGA simply does not abide by the 1-pure-child
assumption. Collectively, these results suggest that NCFA with default parameter specifications appears to yield competitive,
if not improved, performance over baseline VAE models that successfully incorporate causal structure when it is present to
be learned. When NCFA has free reign to learn whatever causal structure (when it exists, as in TCGA) can be gleaned from
the data, it appears to benefit training. However, the second round of experiments suggest that one should take care when
adjusting the algorithm to fit a specified causal structure, such as the 1-pure-child constraint, as forcing possibly nonexistent
causal structure into the model may be detrimental to the models predictive capabilities. This is in line with the observation
at the start of Section 4 that one risks hampering training when the causal structure is misspecified.

Figure 9 shows the ∆ curves corresponding to the runs described in Section 4 and Table 1, demonstrating that NCFA with
default parameter specifications yields competitive, if not improved, performance over baseline VAE models. When NCFA
has free reign (as in the default run) to learn whatever causal structure (when it exists, as in TCGA) can be gleaned from
the data, it appears to benefit training. However, the second round of experiments suggest that one should take care when
adjusting the algorithm to fit a specified causal structure, such as the 1-pure-child constraint, as forcing possibly nonexistent
causal structure into the model may be detrimental to the models predictive capabilities.

3Instead of Chaterjee’s coefficient based tests—it is known that distance covariance can be more powerful when one is concerned with
finding independence, whereas Chatterjee’s coefficient may be preferred for measuring strength of dependence (Chatterjee, 2022; Lin &
Han, 2022).
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Figure 9: ∆ curves for NCFA versus baseline VAE on MNIST and TCGA data sets. (a) and (b) show results of NCFA with
default settings (on MNIST and TCGA respectively), while (c) and (d) show results of NCFA with additional 1-pure-child
assumption (for both) and more sensitive independence tests (for MNIST).


