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Abstract

Multiple benchmarks have been developed to assess the alignment between
deep neural networks (DNNs) and human vision. In almost all cases these
benchmarks are observational in the sense they are composed of behavioural
and brain responses to naturalistic images that have not been manipulated
to test hypotheses regarding how DNNs or humans perceive and identify
objects. Here we introduce the toolbox MindSet: Vision, consisting of a
collection of image datasets and related scripts designed to test DNNs on
30 psychological findings. In all experimental conditions, the stimuli are
systematically manipulated to test specific hypotheses regarding human
visual perception and object recognition. In addition to providing pre-
generated datasets of images, we provide code to regenerate these datasets,
offering many configurable parameters which greatly extend the dataset
versatility for different research contexts, and code to facilitate the testing
of DNNs on these image datasets using three different methods (similarity
judgments, out-of-distribution classification, and decoder method), accessible
via GitHub. We test ResNet-152 on each of these methods as an example of
how the toolbox can be used.

1 Introduction

Deep neural networks (DNNs) provide the best solution for visual identification of objects
short of biological vision, and many researchers claim that DNNs are the best current models
of human vision and object recognition (Kubilius et al., 2019; Mehrer et al., 2021; Zhuang
et al., 2020; Dicarlo et al., 2023; Golan et al., 2023). Key evidence in support of this claim
comes from the finding that DNNs perform the best on various behavioural and brain
benchmarks. In the case of behavioural benchmarks, models are assessed on how well they
account for human (or macaque) errors in classifying a large set of objects (Rajalingham
et al., 2018; Tuli et al., 2021; Hebart et al., 2023), or how well they predict human similarity
judgements (Peterson et al., 2017; Battleday et al., 2020). In the case of brain benchmarks,
models are assessed with regard to how well they predict brain recordings (e.g., single-cell
responses or fMRI data) in response to a set of objects (Schrimpf et al., 2018; 2020; Hebart
et al., 2023; Allen et al., 2022). The general assumption is that the better a model does at
predicting the data, the more similar the model is to biological vision. For instance, the
Brain-Score benchmark is described as “a composite of multiple neural and behavioural
benchmarks that score any [artificial neural network] on how similar it is to the brain’s
mechanisms for core object recognition” (Schrimpf et al., 2018)

A common feature of most benchmark studies is that they treat the to-be-predicted data
as observational. That is, there is rarely an attempt to predict the impact of experimental
manipulation designed to test specific hypotheses about how human or machine vision works.
Rather, observers perform a single task over a set of images that satisfies some general
criterion, such as objects presented in isolation (Kriegeskorte et al., 2008), in naturalistic
contexts (Peterson et al., 2017; Battleday et al., 2020; Allen et al., 2022; Hebart et al., 2023),
or on a range of arbitrary backgrounds (Cadieu et al., 2014; Schrimpf et al., 2018). This
approach is problematic because it is possible to make good predictions on these datasets
even when models identify objects in a qualitatively different way from monkeys or humans
(Dujmović et al., 2024). For example, if the images contain multiple diagnostic cues for object
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classification (e.g., shape and texture both predict object category), then good predictions
might be driven by different features than those that drive human object recognition – that
is, predictions might be driven by confounds. For example, a DNN that classifies objects
by texture might still be able to predict brain activations in a visual system that classifies
objects by shape.

The standard way to rule out confounds in order to determine causal relations (e.g. inferring
that DNNs learn brain-like representations) is to carry out experiments designed to rule
out confounds as the basis of making good predictions. In fact, there is a large literature in
psychology describing experiments designed to test specific hypotheses about how human
vision works, but surprisingly, this literature is often ignored when modellers compare DNNs
to biological vision (for notable exceptions see the review paper Kanwisher et al. (2023)).
Bowers et al. (2023b) reviewed a wide range of psychological phenomena that current DNNs
either fail to capture or that have yet to be considered. Furthermore, when researchers do
consider the psychological literature when making claims regarding DNN-human similarities,
the models are rarely subject to the kind of “severe” tests that are required to make any
strong conclusions, that is tests that are likely to challenge claims in case they are false.
Instead, strong conclusions are often drawn based on superficial similarities (Bowers et al.,
2023a).

There are at least four (related) reasons for this. First, many researchers in computer science
and computational neuroscience may be unfamiliar with the rich set of experiments carried
out in psychology that manipulate independent variables to better understand human vision,
memory, language, etc. Those who are aware of these studies might find it challenging to
engage with them, as psychological datasets are not readily available in formats that the
community is accustomed to working with. Second, it is not always obvious how one should
test a model against psychological data. Hence, it may be easier to focus on improving
performance on the current benchmarks, and this may have discouraged researchers from
exploring data from psychology. A third potential reason is an overall skepticism towards
psychological results, a sentiment that may reflect the well-documented replication crisis in
psychology (Baker, 2015). Forth, there is a strong bias to look for DNN-human similarities
and downplay the differences (Bowers et al., 2023a), and severely testing on psychological
data might not result in similarities. However, characterizing these failures provides key
insights into the ways DNNs need to be improved when modelling biological vision.

Here we present MindSet: Vision, a toolbox aimed at facilitating testing DNNs on visual
psychological phenomena by addressing all the problems presented above: our main contri-
bution is to provide a large, easily accessible, parameterized, set of 30 image datasets (and
related scripts to re-generate and modify them) accounting for a wide array of well-replicated
visual experiment and phenomena reported in psychology. Our stimuli cover aspects of low
and mid-level vision (including Gestalt phenomena), visual illusions, and object recognition
tasks. While our stimuli primarily focus on static vision, reflecting the current emphasis
in DNN/human alignment research, we recognize the importance of other areas of vision,
such as dynamic processes like motion perception. We hope that our work serves as a solid
foundation for further investigation into these complex cognitive processes. We provide
a high-level descriptions of the visual phenomena in the main text (Section 2) and more
detailed descriptions in the Appendix (A).

To facilitate experimentation across a variety of scenarios, each dataset can be easily
regenerated across different configurations (image size, background colour, stroke colour,
number of samples, etc.). To address the difficulty in testing DNNs on these stimuli, we
provide scripts for using one (or more) of three methods: Similarity Judgment Analysis,
Decoder Approach, and Out-of-Distribution classification (Section 3). We provide examples
illustrating how to use these scripts with a classic feed-forward CNN (ResNet-152), and an
extensively documented code (Section 4).

With MindSet: Vision, we aim to bridge the gap between computational modeling and
psychological research, bringing experimental studies that manipulate independent variables
to the forefront of developing and evaluating of DNN models of human vision. We also hope
this initiative will drive further interest in other areas of human psychology, such as memory,
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language, and speech perception when attempting tounderstand and replicate human-like
intelligence in machines.

1.1 Related Work

Several recent studies share some similarities with our project: Roy et al. (2024) propose a
human-validated dataset of five types of brightness illusions and benchmark three DNNs
on their ability to identify and localize these illusions. Zhang et al. (2023) introduced
a new dataset containing five types of visual illusions falling into two categories: color
constancy and geometrical illusions. The authors formulated four tasks specifically designed
to examine the performance of Visual Language Models, finding low alignment with human
responses. Lonnqvist et al. (2024) developed the Good Gestalt datasets, consisting of six
types of datasets covering several types of Gestalt grouping principles, including Closure,
Continuity, and Proximity, aimed at testing a Latent Noise Segmentation Network. Similarly,
Geirhos et al. (2021) developed the model-vs-human benchmark that compares ANN-human
classification errors on various ‘out-of-distribution’ datasets composed of naturalistic images
that were modified in various ways, including low-level feature manipulations of contrast
and spatial frequency, as well as higher-level manipulations, such as generating silhouettes
and sketches of images. Evans et al. (2022) used a dataset of silhouettes, line-drawings, and
contours, to investigate robustness to these stimuli in DNNs pretrained on CIFAR-10, and
Baker et al. (2018) employed a dataset of line drawings and silhouettes from ImageNet classes
to investigate model robustness to local versus global features. In comparison to these works,
we present a toolbox to test DNNs on visual psychological effects, investigating not only a
much richer set of visual phenomena, but providing the code base to regenerate images in
batches, changing the parameters, and testing each one of them on a variety of methods.

2 Datasets

We have included datasets from experiments that characterize a wide range of visual
phenomena, ranging from low- to high-level vision. We grouped the datasets (indicated in
bold) into 3 broad categories (see following Sections) as illustrated in Figure 1. Each dataset
comprised multiple sub-conditions designed to test DNN-human similarities, and in some
cases, image datasets used to train decoders, as described in Section 3.3.

While most of the stimuli are created by us, in a few instances we incorporate stimuli from
external sources (when needed, permission was obtained from the authors). In all cases, the
stimuli have been integrated into a versatile framework which offers significant flexibility in
adjusting parameters such as image size, background, stroke colour, and more, to allow their
application to a variety of models and methodologies. Given the extensive range of datasets
provided, we only offer a brief summary for each in the article, and provide more details in
Appendix A, including details about the suggested way to test each dataset, and the expected
result for model-human perceptual alignment. All resources are open-source and freely
available under the MIT license at https://github.com/MindSetVision/MindSetVision
with additional Kaggle links to datasets we generated provided in the repository README.

2.1 Low and Mid-Level Vision

A fundamental low-level vision phenomena is captured by Weber’s Law (Weber, 1983),
which states that the minimum physical change of a stimulus on some dimension (e.g., its
size) that is noticeable to an observer is a constant ratio of the original stimulus value on
this dimension. For example, it is equally easy to distinguish between line lengths of 1 and 2
cms and between 2 and 4 cms. We created a dataset that can be used to assess this relation
for both line length and stimulus intensity.

Human perception is also sensitive to various Emergent Features in which simple image
features interact to generate “Gestalts" (Pomerantz & Portillo, 2011a). The dataset is
comprised of a set of dots arranged in such a way as to induce the emergent feature of
proximity, orientation, and linearity (Pomerantz & Portillo, 2011b; Biscione & Bowers,
2023). Another Gestalt effect is manifest in the Crowding/Uncrowding phenomenon. In
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Figure 1: Comprehensive overview of the ‘MindSet: Vision’ datasets, arranged in three main
categories. Each panel represents a distinct dataset, which is further divided into conditions.
The images provide examples from these conditions, generated with default parameters.

crowding, the ability to identify an object is compromised by the presence of nearby objects
or visual patterns, but in uncrowding, object identification is improved when additional
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objects or visual patterns are added to the scene and grouped such that they are segregated
from the target. We adapt the dataset from Doerig et al. (2019) so that many crowding
conditions with several different shapes can be investigated.

Human perception is highly sensitive to non-accidental image features, that is features that
are largely invariant to changes in viewpoint when projected on to the retina (Biederman,
1987), as opposite to accidental features (e.g., degree of curvature) in which the projected
image varies with viewpoint. Human vision is known to be more sensitive to changes in
images that alter non-accidental compared to accidental properties (Amir et al., 2012; 2014).
We use two datasets to examine model sensitivity to these features: one with 3D geons
(Amir et al., 2012) and another with 2D line segments (based on Kubilius et al., 2017).
Similarly, we present a dataset to compare Relational Changes with Coordinate changes
between object parts. DNNs are commonly insensitive to relational change, even after being
explicitly trained on these relations (Malhotra et al., 2023), whereas human perception is
highly sensitive to relational changes (Hummel & Stankiewicz, 1996).

To identify partly occluded objects, the human visual system groups contours and surfaces
through an amodal completion process (Nakayama & Shimojo, 1992). The Amodal Com-
pletion dataset (based on Rensink & Enns, 1998) enables the investigation of these processes
using images with shapes that are either occluded, unoccluded, or “notched”. These latter
shapes are unoccluded but notched in such a way as to maintain a high degree of feature
similarity with their occluded counterparts.

With the Decomposition dataset we provide a mean to test the extent to which DNNs
group object parts in a human-like fashion. We designed familiar and unfamiliar objects
composed of two conjoined parts that undergo what humans would perceive as a “natural”
or “unnatural” break (inspired by Jacob et al., 2021). In the same work, Jacob et al. (2021)
showed that VGG-16 trained on ImageNet did not possess human-like sensitivity to images
that could be interpreted as 3D-shapes by using a set of stimuli based on Enns & Rensink
(1991). Accordingly, we reconstructed this Depth Drawings dataset.

2.2 Visual Illusions

Visual illusions are not mere curiosities, but often arise from adaptive perceptual processes
(Gregory, 1997). Detailed computational models of multiple illusions have been advanced
providing theoretical insights into the mechanisms that underlie them (e.g., Grossberg, 2017).
We provide datasets exploring illusions related to size perception, orientation, and lightness
contrast.

Several illusions relate to size perception. In the Müller-Lyer illusion (Day & Knuth, 1981),
arrow-like segments at the ends of equal-length lines impact our perception of length. In the
Ponzo illusion (Ponzo, 1910), two equal-length horizontal lines cross a pair of converging
lines. In this configuration, the top line looks longer, an illusion often explained as related to
the process of inferring depth. In the Ebbinghaus illusion (Aglioti et al., 1995), the size of
a circle is perceived differently depending on the size of surrounding circles. Similarly, in the
Jastrow illusion (Jastrow, 1892; Day & Knuth, 1981), a specific arrangement of identical
objects affects our perception of their relative size. For all these illusions, we provide both an
illusory condition and a condition in which all elements of the original illusion are “scrambled
up”, so that a decoder can be trained to predict a specific feature (e.g. the size of the centre
circle in the Ebbinghaus illusion) and subsequently tested on illusory configurations.

In the Tilt illusion (Gibson & Radner, 1937), the orientation of a central grating is perceived
as being repulsed from or attracted to the orientation of a surrounding grating. In this case,
we provide conditions with either central or background gratings (configurations which do
not support the illusion in humans and could be used for training a decoder), and a condition
with both (eliciting the illusion in humans) for testing the model. Another orientation illusion
is the Thatcher Effect (Thompson, 1980). This is a phenomenon where local changes
in facial features (like inverted eyes or mouth) are less noticeable when the entire face is
upside down, highlighting our sensitivity to orientation in face perception. An interesting
unresolved issue is the extent to which this inversion effect is specific to faces (Boutsen et al.,
2006; Wong et al., 2010). Together with a dataset of faces and their Thatcherized version,
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we also include a dataset of Thatcherized Words, that is a dataset of images containing
words in which one or more letters are rotated by 180 degrees (Wong et al., 2010).

The lightness contrast effect (Von Helmholtz, 1867) and the Adelson Checker shadow
(Adelson, 2005) illusions reveal how our visual system perceives color and lightness based on
context. We provide a Grayscale Shapes dataset to train a decoder to output estimates of
lightness at a given location of an image (indicated by a small white arrow). After training,
the network is presented with test images that induce illusions and help assess whether DNNs
show similar effects by pointing the arrow at the relevant parts of the images (see Appendix
C.2.6 for a detailed description of this approach).

It is important to note that there is no accepted account for some of the illusions described
above. However, even when we have no good understanding of the functional role or the
mechanism that drives an illusion, a DNN model of human vision should show similar effect.
Indeed, understanding the conditions under which DNNs show an illusion may advance
our understanding of why the phenomenon is observed in humans. There are now several
articles exploring such illusions in various types of DNNs trained in different ways, with some
highlighting similarities (e.g., Benjamin et al., 2019; Storrs et al., 2021; Watanabe et al.,
2018) others reporting mixed or discrepant results (e.g., Gomez-Villa et al., 2019; Ward,
2019; Zhang et al., 2023); for a review of the relevant findings, see Kanwisher et al. (2023).

2.3 Shape and Object Recognition

DNN object recognition is much more sensitive than human vision to distributional shifts
from the training set. For instance, humans can easily identify line drawings the first time
they are exposed to them (Hochberg & Brooks, 1962), whereas DNNs perform poorly under
these conditions (Evans et al., 2022) and need to be trained on line drawings in order to
recognize them at human levels (Singer et al., 2022). We have included the line drawing and
silhouettes datasets (from Baker et al., 2018; Baker & Elder, 2022) and also manipulated
them in various ways to construct additional datasets. The line drawings were converted
into dotted contours (Dotted line drawings), line segments (Segments line drawings)
(Biederman & Cooper, 1991), or “texturized” (Texturized line drawings). The texturized
images are composed of oriented lines/characters applied to either/both the background
or/and the inside area of the line drawing. In all these cases, the resulting images are easily
identifiable by human observers due to various Gestalt rules that organize the image features
into boundaries. We also apply the same texturization technique outlined above on unfamiliar
“blob”-like shapes (Texturized Unfamiliar dataset). Human observers have no difficulty
matching a novel “blob” object to its texturized counterpart. In addition, we provide a
dataset of fragmented images based on Baker & Elder (2022) in which the global features
of silhouettes or line drawing are modified by reflecting the top part of an object along its
vertical axis, leaving the local features mostly unchanged (Global Modifications dataset).
Human performance on these stimuli is greatly reduced but typically DNN performance is
largely unchanged, suggesting that human vision is more sensitive to global object structure
and DNN vision is more sensitive to local features.

The Embedded Shapes Dataset (inspired by de-Wit et al., 2017) provides another
condition that greatly impacts on human perception, by embedding geometric shapes within
complex arrays of lines in ways that camouflage the original shape. We include both the
original images from de-Wit et al. (2017) and a procedurally generated dataset in which
random polygons are embedded into a configuration that makes recognition challenging for
humans.

The human visual system supports object recognition following a wide variety of transforma-
tions (Tanaka, 1996; Blything et al., 2021). Importantly, this extends to cases in which an
object has only been viewed at one pose. Previous works suggest a complex link between
DNN pretraining and their object recognition capabilities under object transformations
(Biscione & Bowers, 2021; 2022). To test whether DNNs share these capacities, we provide a
dataset in which translations, plane rotations, and scale changes (2D Transformations) are
applied to line drawings. To test for Viewpoint Invariance (e.g. the ability to recognize
an object from a new viewpoint after a rotation in depth) we adapt the ETH-80 dataset,
(Chen et al., 2020a) allowing for controlled variation in azimuth and inclination.
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Finally, we provide a dataset to test whether DNNs possess the ability to solve a basic form
of visual reasoning task, namely, the Same/Different task. Drawing from Puebla & Bowers
(2022), our dataset comprises images composed of pairs of objects, which may be identical
or different. These images are organized into ten conditions that vary in their visual form,
such as ‘filled polygons’, ‘open squares’, and ‘colored shapes’. While humans effortlessly
accomplish this task across all conditions without training, DNNs often struggle when the
training and test images come from different conditions.

3 Testing methods.

Each dataset is designed to align with at least one of three methods of testing, but other
approaches can be used as well. We discuss further possibilities in Appendix B.

3.1 Out-of-Distribution Classification

In this approach, a DNN pretrained on one dataset is tested on a new dataset composed
of out-of-distribution images taken from the trained classes (e.g., a DNN pre-trained on
ImageNet is tested on line drawings taken from the same categories). This approach is well
suited for most of the Shape and Object Recognition datasets that use images from ImageNet
categories modified in such a way that human observers have no trouble recognizing them,
even without training. We provide scripts to test a wide variety of vision models.

3.2 Similarity Judgment Analysis

This method involves assessing the pairwise similarity of activation patterns in DNNs (using a
Cosine Similarity or an Euclidean Distance metric) evoked by pairs of images and comparing
these similarities to human performance. This method has been used to assess how well
DNNs capture human similarity judgments (Peterson et al., 2017) and response times to
identify target stimuli from foils (Biscione & Bowers, 2023). It is often useful to carry out
these analyses across multiple layers of DNNs given that some psychological phenomena are
known to manifest at earlier or later stages of visual processing. A DNN mimicking human
perception should show relevant similarity effects at the relevant layers. One key advantage
of this approach is that it can be applied to novel images that cannot be classified by a DNN.

To illustrate, we applied this method to the Texturized Unfamiliar dataset (Figure 2). The
human visual system groups elements in a scene by texture (Beck et al., 1983) and classify
objects by their shapes (Biederman, 1987). Accordingly, texturized versions of the same
shape should be judged as more similar than texturized versions of different shapes. To
explore if DNNs exhibit similar behaviour, we input pairs of images into a ImageNet pre-
trained ResNet-152 and, for each pair, we computed the Euclidean Distance between their
internal activations at every processing level. A human-like response is indicated by a smaller
distance for pairs of the same compared to different shapes. ResNet-152 exhibited a weak
manifestation of this pattern in the early layers, a reduced effect in the later layers, and
no effect in the output layer. By contrast, the human visual system supports similarity
judgements on the basis of shape-based representations that are computed following the
early stages of visual processing.

3.3 Decoder Method

In this method a small, often single-layer, “decoder” network is attached to a layer of a
frozen DNN and trained on a task designed to reveal how the DNN encodes a specific type
of information. For instance, a frozen DNN might be presented with a set of images that
contain a target object varying in size, colour, and orientation, and a decoder is trained to
output the value of one or more of these properties at a given layer. We provide scripts
for both classification and regression training, and scripts to train and test a series of five
decoders at varying levels of a ResNet-152 model. Although these scripts are tailored to
ResNet-152, they can easily be used as a template to streamline the adaptation of this
technique for different networks.
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To illustrate, consider the Ebbinghaus Illusion. The Ebbinghaus dataset we provide consists
of three conditions: two illusory conditions in which a red centre circle (at different radii)
is surrounded by either small or large white circles (flankers) in a configuration that, in
humans, induces a biased size estimation of the centre circle: the circle appears larger when
surrounded by small flankers, everything else being equal. Another condition again contains
a red centre circle of different sizes, but the surrounding circles are placed randomly on the
canvas so that they would not elicit any illusion on a human observer. We use the latter
condition to train decoders attached to a ImageNet pre-trained ResNet-152 model with frozen
weights. The task consists of estimating the size of the centre circle. After training, we feed
the illusory images to the decoders. For a network to exhibit the Ebbinghaus visual illusion,
the size of the centre circle should be overestimated for small flankers and underestimated
for big flankers. We did not find this pattern in ResNet-152 and, indeed, no significant
difference across prediction errors for the different conditions was observed (result for one
decoder shown in Figure 2).

Figure 2: Depiction of two of the three proposed methods of evaluating DNNs in the context
of two representative datasets. The first method, out-of-distribution classification, is not
depicted here. The Similarity Judgment Analysis (top panel) involves feeding pairs of images
to DNNs and comparing the elicited internal representations. We illustrate this method
via the ‘Texturized Unfamiliar’ dataset, showing that the network possesses human-like
responses in earlier layers which diminish in the later ones. The Decoder Method (bottom
panel) involves training and testing a simple linear layer attached to different stages of a
frozen network. In the given example, we assess the response to the Ebbinghaus illusion.
Our findings indicate an absence of illusory perception. Both examples use an ImageNet
pre-trained ResNet-152.

4 Code and Resources

We provide both ready-to-use datasets and scripts to generate them with varying parameters.
Most of the ready-to-use datasets’ size span to around 5,000 images per condition, and
larger dataset can easily be generated using the provided scripts. To separate code and
configuration, each dataset generation script relies on a configuration file, consisting of a
plain-text file in TOML format specifying all the available parameters for that dataset. Some
parameters are used across most datasets, such as image size, background colour, and number
of samples. Other parameters are dataset-specific, for example the size and distance of dots
in the Dotted line drawing dataset. For convenience, the same configuration file can specify
the configuration for multiple (or all) datasets, so that they can be generated in batches.
The “default” configuration file we used to generate the ready-to-use versions is included,
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which can be used as a template. The output of each script is the dataset itself (with several
sub-conditions depending on the dataset) together with a CSV annotation file, containing
the path and parameters of each generated image.

We also provide the code and utilities to evaluate DNNs using the three methods noted
above. Each method is highly configurable through TOML files, with options including the
type of data-augmentation to apply, the network architecture, the metric to use for the
similarity judgments and more. Users have the flexibility to choose specific factors from this
file for analysis, extending beyond the factors that we deemed the most relevant for each task.
For example, in the script testing the Ebbinghaus Illusion used for Section 3.3, a decoder is
trained to predict the normalized size of the centre circle. However, a different research goal
might involve predicting the size of the flankers. This can be achieved by simply specifying
the corresponding column (‘NormSizeFlankers’) in the annotation file, without needing to
re-generate the dataset or change the code.

Each method produces pandas DataFrames (McKinney, 2010) as its output, which can be
independently analyzed. Additionally, supplementary files containing simple tests and com-
parisons that serve as a springboard for further and more detailed analysis are automatically
generated. Comprehensive documentation for every configurable option across all datasets
and methods. Additionally, we offer guidance on the general usage of various scripts and
utilities through several examples and multiple README files on the GitHub page.

For licencing details see Appendix D.

5 Limitations

While MindSet: Vision offers a valuable resource for exploring visual psychological phenomena
using deep neural networks, there are several limitations to consider. Firstly, our focus is
primarily on static visual tasks that do not involve high levels of reasoning and are not
directly connected with other areas of cognition such as language and memory.

Secondly, the methodology for comparing DNN performance to human participants often
allows only for qualitative comparisons, as quantitative comparisons may not be feasible
with the current analysis methods.

Thirdly, we did not conduct extensive testing on a range of model architectures. We do
cite many articles reporting failures of models to replicate human behaviour, and two of the
stimulus conditions included in the toolkit came first and second place in the behavioral
benchmark track of Brain-Score competition. The competition awarded benchmarks which
produced the poorest overall alignment with human behavior across 21 models12. But our
goal in introducing the toolkit is not to highlight failures of many models nor to provide a
single benchmark score that characterizes how human-like a model is overall. Rather, it is to
better understand how models fail or succeed in manifesting specific visual phenomena, and
this will involve extensive experiments using each of the provided datasets. We hope the
toolkit inspires these research programs.

Lastly, while we have selected phenomena based on well-replicated and famous visual
experiments, there may be additional phenomena that are not covered by our selection, even
within the realm of static vision. These limitations underscore the need for further research
and development in the field of computational modeling of human vision to address these
gaps and enhance the utility of MindSet: Vision as a comprehensive toolbox for studying
visual perception.

6 Conclusion

There is much interest in DNNs as models of human vision, but relatively little research
is concerned with how DNNs capture key psychological findings. When DNNs are tested
against key psychological findings, they often fail (Bowers et al., 2023b). And when they do

1BrainScore Competition website
2YouTube re-stream of the Competition Event at CCN 2024
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succeed, it is often because the DNNs have not been severely tested (Bowers et al., 2023a). In
our view, to better characterize DNN-human alignment, and to build better DNN models of
human vision, it is necessary to systematically test models against key experiments reported
in psychology. The MindSet: Vision dataset is designed to facilitate this.

Currently it is quite common to rank models in term of how well they perform across several
datasets or tasks. For example, the Brain-Score benchmark (Schrimpf et al., 2018) provides
an overall leaderboard that scores any DNN in terms of how good they are at explaining
neural activity variance for core object recognition, and the “model-vs-human” benchmark
(Geirhos et al., 2021) ranks and scores models in terms of their behavioural overlap with
humans in identifying a range of out-of-distribution object datasets. We do not propose to
rank models in this way as each experiment in MindSet: Vision tests a specific hypothesis
regarding how DNNs and humans perceive and encode visual inputs. It makes little sense to
provide a score that averages across qualitatively different hypotheses. By making stimuli
underlying psychological experiments more accessible, easy to generate, configure, and modify,
and by providing ready-to-use scripts to test existing models, we hope that the MindSet:
Vision toolbox encourages computational modelling researcher to focus on testing their
models on key experiments rather than competing on observational datasets that do not
support any conclusions regarding the mechanistic similarity of DNNs and brains.
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Appendices

A General Dataset Info

A.1 Pre-Generated Datasets

In the pre-generated dataset, we use 224x224 pixel images, and a variable number of samples
depending on the task and condition (see section below on the number of samples). However,
image size and dataset sizes are parameters that the user can easily modify if needed. The
images in the datasets all have 3 channels (RGB). For almost all datasets, the user can
specify the background color (either a uniform value, or request a different RGB value for
every image), whether to use antialiasing, and the size of the item in the image relative to
the whole canvas.

A.2 Data Augmentation

We do not apply any affine transformation or other data augmentation techniques during
the dataset generation phase. For instance, in the majority of Shape and Object Recogni-
tion datasets, a sample typically comprises a modified line drawing or silhouette centrally
positioned on a canvas without rotation. We deliberately avoid creating replicas of the same
sample with additional transformations. This approach prevents unnecessary expansion of
the dataset’s size, as most popular deep learning libraries allow for an easy application of
data augmentation. Furthermore, our testing methods allow for the application of affine
transformation during testing through the configuration file, again avoiding the need to
generate pre-augmented datasets.

A.3 Number of Samples and procedural generations

Some datasets contain a fixed and limited number of samples. For example, the “NAP vs
MP: line segments” dataset, recreating the stimuli used in Kubilius et al. (2011), contains 3
conditions with 26 items each. This can be potentially expanded by changing the line stroke,
the background color, or by applying dataset augmentation separately. For other datasets
much larger samples with extremely low probability of repetition are easily constructed. For
example, most Visual Illusions contain a “scrambled” condition in which the elements of the
illusions are presented “scrambled up” on the canvas, with varying positions and orientation
of each different element. A virtually limitless number of samples can be generated for
these conditions, which is important since they are often used for training decoders. The
pre-generated dataset typically includes approximately 5,000 samples for these conditions.
For users requiring larger sample sizes, they can generate the dataset by changing the
configuration argument relative to sample size (e.g., num_samples_scrambled) depending
on their needs.

B Other Testing Methods

The datasets featured in MindSet: Vision are suitable for a range of experimental approaches
beyond the ones suggested in Section 3. For example, the relational reasoning capabilities
needed to solve the Same/Different task could be tested by training a network (which
does not need to be pre-trained) on one or a few of the ten available conditions in the
Same/Different dataset, and then testing the network on the remaining conditions (as in
Puebla & Bowers, 2022)). In a similar vein, the 2D transformations and Viewpoint datasets
could be approached by training a network on certain transformations/viewpoints and then
testing it on the others, as demonstrated in Biscione & Bowers (2021).

Another efficient method to gain deeper insights into model performance is conducting
through ablation: by systematically removing or altering specific components of a neural
network, researchers can evaluate the contribution of each specific layers, connections, or
whole network components, providing a more nuanced understanding of the network’s
functioning (Pang et al., 2021; Zeiler & Fergus, 2014; Chen et al., 2020b).
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A further method that extends beyond our provided scripts is to input images into Multimodal
Large Language Models (LLMs) and query them about what they see (Zhang et al., 2023).
Assuming that the language output of the LLM provides a reliable window into its perceptual
processes, this approach allows for an interactive examination of the LLM’s understanding
of the images.

Our preliminary investigations with GPT-4 reveal that while these models are proficient
at recognizing silhouettes and line drawings, they struggle with textured representations of
familiar objects. For example, a textured image of a banana was misidentified as either a
crescent moon or a pair of scissors, and an airplane was mistaken for a butterfly. Moreover,
we found instances in which GPT-4 is influenced from images it has previously processed,
that is prior exposure to an image can lead the model to incorrectly identify later, differently
textured images as the same as the initially viewed object. For instance, when the model
is first presented with the silhouette of a banana, followed by a textured depiction of an
airplane, it sometimes erroneously classifies the airplane as a banana.

Figure 3: Samples of GPT4 responses after being prompted by different images from our
silhouettes and texturized datasets, each time spawning a new conversation. The model
accuracy drops significantly with texturized images.

We ran some preliminary tests on the recently released GPT-4o, finding that this model
is much more successful in recognizing textured images, and is able to identify both the
overall shape and the individual characters that compose the shape. Relevantly, this model
is multimodal in the sense that text and vision are processed within the same neural network,
as opposed to GPT-4, in which different networks are used for different modalities.

C Detailed Datasets Information

Below we provide more details about the various conditions included in MindSet: Vision
and their relevance to understanding human vision. We also highlight the most important
parameters for each dataset. For a complete list, refer to the generated HTML page 3 which
additionally contains several samples for each condition and each dataset when generated
using default parameters.

C.1 Low and Mid-level vision

There is no sharp dividing line between early and middle visual processing, but early vision
extracts low level feature information (i.e., color and luminance contrasts, the orientation of
bar and edge segments, and contour segments) from the retinal image. By contrast, mid
level vision encodes more abstract aspects of shape, such as surfaces and parts of objects,
in an increasingly viewpoint invariant manner. This is where representations of 2D and
3D shapes, material properties, and coherence of the substances and surfaces in the world
are computed. That is, mid-level vision builds representations of the distal world from the
proximal stimulus. This is an ill-posed problem, and accordingly, various heuristics (such as

3MindSet: Vision summary HTML
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Gestalt perceptual grouping cues) are employed to provide the best estimate of the distal
world. Illusions are striking examples of failures to correctly encode the distal world from
the proximal stimulus. The experiments we include in MindSet: Vision largely focus on
mid-level vision.

C.1.1 Weber Law

Psychological Significance. The Weber Law (or Weber-Fechner Law) quantifies the
psychophysical relation between changes in the world and changes in perception. The law
states that the minimum physical change of a stimulus on some dimension (e.g., its size)
that is perceptible to an observer is a constant ratio of the original stimulus value on this
dimension. For example, it is easy to distinguish between line lengths of 1 and 2 cm, but
difficult to distinguish between lines of length 100 and 101 cm, despite the fixed difference
in length (1 cm). To make the latter distinction equally salient, the two stimuli should be
100 and 200 cm (a fixed ratio of 2). Although Weber’s Law breaks down at extreme values,
this relationship applies to a wide range of dimensions, from weight, length, size, brightness,
and even numbers. Weber’s Law reflects the more general observation that perception is
often based on relative rather than absolute encoding of stimulus dimensions. Importantly,
Weber’s Law is often manifest in early visual areas (Hess & Hayes, 1993), and indeed, in
some cases, at the level of the retina (Barlow, 1965; Freeman et al., 2010; Treisman, 1964).

Jacob et al. (2021) reported that the convolutional DNN VGG-16 showed a human-like
Weber Law effect when encoding line-lengths. However, the authors only observed Weber’s
Law for line lengths in the late convolutional layers of the network, did not assess whether
discrimination was a constant ratio of the original stimulus (they employed a weaker test),
and failed to observe a reliable effect for image intensity.

Dataset. Images in this dataset are composed of a simple horizontal white line with
varying length and brightness values. Configurable parameters include line width, min/max
values for length and brightness. To assess DNNs sensitivity to Weber’s Law, a similarity
judgment analysis assesses whether the relative change in the perception of these stimuli (as
measured by the level of unit activation in the inner layers of a pre-trained DNN) adheres to
a logarithmic relationship with the stimulus strength (e.g. line length).

C.1.2 Crowding / Uncrowding

Psychological Significance. Our ability to identify objects is impaired by the presence
of nearby objects and shapes, a phenomenon called crowding. At the same time, in some
conditions, the inclusion of additional surrounding objects makes the identification of the
target easier, a phenomenon called uncrowding. This is illustrated in Figure 4, in which
participants are asked to perform a vernier discrimination task by deciding whether the top
vertical line from a pair of vertical lines is shifted to the left or right. When these lines
are surrounded by a square rather than presented by themselves performance is impaired.
However, the inclusion of additional squares dramatically improves performance. This is
thought to reflect a Gestalt process in which the squares are grouped together and then
processed separately from the vernier (Saarela et al., 2009). Standard DNNs are unable to
explain uncrowding (Doerig et al., 2020; Francis et al., 2017), but the DNNs inspired by the
LAMINART model of Grossberg and colleagues (Raizada & Grossberg, 2001) designed to
support grouping processes can capture some aspects of uncrowding.

Dataset. Based on Doerig et al. (2020), with code adapted with authors’ permission. Images
are composed of a ‘vernier’ stimulus (two parallel line segments with some offset) placed
either inside or outside a set of random flankers (squares, circles, hexagons, octagons, stars,
diamonds). Each configuration has from 1 to 7 columns and from 1 to 3 rows of flankers
with a variety of same/different shape patterns used. The vernier can be left/right oriented.
The suggested method for this dataset (as per Doerig et al., 2020) consists of attaching a
decoder at several stages of a pre-trained DNN. The decoder is trained and tested on a
classification task to discriminate between left/right types of vernier but, significantly, during
training, the vernier and the flankers were non-overlapping, whereas during test, the vernier
was often placed inside one of the shapes, allowing the measuring of (un)crowding effect
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Figure 4: Illustration of the Crowding and Uncrowding effect. a. Observers perform a
vernier discrimination task. A standard approach consists of measuring the vernier offset
for which observers correctly discriminate in 75% of the trials. With the vernier alone,
the offset is quite small. b. When a square is added the performance drastically drops
(that is, the threshold-offset increases). This is the classic crowding effect. c. Adding more
flankers increases performance again. This is referred to as uncrowding. d. The magnitude of
crowding and uncrowding effects is contingent upon both short-range and long-range spatial
interactions between visual elements. Furthermore, the specific characteristics and spatial
positioning of flanker stimuli play a crucial role in modulating these effects. For example,
the performance drops again for the depicted pattern.

through change in classification accuracy across test conditions. A model with human-like
visual characteristics should match human perception with regards to both crowding and
uncrowding effects, following the pattern in (Doerig et al., 2020; 2019). Users can specify
whether the size of the flankers varies or is fixed across samples.

C.1.3 Emergent features

Psychological Significance. Emergent features provide a compelling example of “the
whole is different than the sum of its parts”. Pomerantz and colleagues (Pomerantz &
Portillo, 2011a; Pomerantz et al., 1977) relied on a simple visual search paradigm where
participants were asked to identify a target amongst foils. They devised several different
types of target and foil stimuli, but the simplest were composed of dot patterns as depicted
below. Participants viewed a set of 4 panels, each of which contained a single dot. Three of
these panels were identical (dots were in the same location) and one outlier panel (where
the dot was in a different location). The task was to identify the outlier panel as quickly
as possible. In the single dot condition, the outlier was simply the panel with a dot in a
unique position. In the critical emergent feature condition(s), a dot (or more) was added to
the single dot images as context. The context dot(s) was in the same location in all panels.
Because these added dot(s) were identical in all four panels, there were no new features that
could be used to facilitate the identification of the outlier other than configural “emergent”
features. For example, in the top row of Figure 5, the extra dot (depicted in the middle
column) produces the emergent feature of “orientation”, and in the bottom row, the extra
dot produces the emergent feature of proximity. The critical finding was that participants
could identify the location of the outlier panel more quickly in the emergent compared to the
baseline condition. That is, the “whole” was more discriminable than the sum of its parts.

Biscione & Bowers (2023) carried out a series of studies assessing whether DNNs were
sensitive to a range of emergent features that facilitated human performance, including
testing DNNs on the dot stimuli illustrated in Figure 5. It was observed that DNNs did
show some sensitivity to some of the emergent features, but only at the later layers of the
network. This is problematic given that these emergent features are thought to be computed
relatively early in the visual system, such that they support rapid “pop out” search.

Dataset. Adapted from Biscione & Bowers (2023). The dataset consisted of sets of paired
images. Each set includes four conditions: a base condition (single dots), and composite
conditions (orientation, proximity, and linearity). The ‘single dots‘ condition consists of
paired images in which each image contains a single dot placed at a different location. In
the composite conditions, one or more dots are added to both images of the base condition,
in the same locations, in such a way that it would elicit different emergent properties when
combined with the original single dots. In the orientation and proximity conditions, the added
dot results in different orientation/proximity features. In the linearity condition (generated
by adding a dot to the orientation condition), the added dot would either be placed on
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Figure 5: Schematic of the generation procedure for producing a set of dotted stimuli.
Starting with a pair of images in which the only discriminant feature is the location of a
dot (Base Pair), an additional dot is added, yielding the Emergent Feature of proximity or
orientation. The Emergent Feature of linearity is obtained by adding a dot to the orientation
pair. Notice that the added dot is the same to both elements of the pair so it does not add
on its own any discriminative features, but it generates additional features in relation with
the surrounding dots.

a straight line with the other two dots or on a different path. Each dot was constrained
to be located at a distance of at least 20 pixels from one another, and 40 pixels from the
border. By computing the difference in similarity scores between each composite condition
and the base condition, we can compute how much each emergent feature impairs/facilitates
distinction of the additional dots. For example, if the average ‘orientation‘ pair is found to be
easier to distinguish (through a similarity analysis of the internal activations of the network)
than the pairs from the ‘single dot‘ condition, then we can infer that the network is sensitive
to orientation (as the additional dot in the orientation condition was not-diagnostic, e.g. the
same for both images in each pair). The same comparison with the ‘single dot‘ pairs can be
performed for the proximity and linearity conditions. The overall pattern of similarity scores
should match human results, in which the highest effect is obtained through the feature of
proximity, followed by linearity, and then orientation (Pomerantz & Portillo, 2011a; Biscione
& Bowers, 2023).

C.1.4 Decomposition

Psychological Significance. The visual system represents objects in terms of their parts,
separating regions at points of deep concavity (Hoffman & Richards, 1984). Perceptually,
searching for an object broken into its natural parts among a set of unsegmented versions
of the same object is significantly more challenging than locating the same object when
it is segmented at points that do not correspond to its natural divisions. In other words,
a segmentation at natural points preserves the basic parts which make up the object and
therefore make the segmented version more similar to the uncut object when compared to an
’unnatural’ segmentation. There is good evidence that this occurs relatively early in visual
processing (Xu & Singh, 2002). To assess whether DNNs encode objects into parts in a
similar manner, Jacob et al. (2021) compared the internal representations of a base object
composed of two parts to two segmentations of the object, one natural and one unnatural.
The assumption is that a natural segmentation of the image will be encoded in a more similar
way to the whole object (the segmented images maintain the integrity of parts that compose
the complete object). However, they reported that the VGG-16 did not show this pattern,
suggesting that DNNs do not encode objects by their parts, or at least, not in a way similar
to humans.

Dataset. The dataset consists of a variation of the images used in Jacob et al. (2021):
instead of a single object composed of two parts, we used two objects joined at a single point
of contact. There are three ‘split’ conditions and two ‘familiarity’ conditions. The ‘split’
conditions are: ‘no split‘ in which two parts are touching at one point but not overlapping;
‘natural split‘, in which two parts are separated; ‘unnatural split‘ in which the two parts are
touching each other as in the ‘no split‘ condition, but one of the parts is ‘cut’ and separated
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Figure 6: The dataset features base images depicting two objects in contact at a single point.
It includes two variations: natural and unnatural splits. In natural splits, the objects are
separated, while in unnatural splits, the division occurs within an object itself. Identifying
differences between base images and unnatural splits is simpler than distinguishing between
base and natural splits. The dataset presents examples with both familiar and unfamiliar
shapes, showcasing the diversity in object recognition challenges.

from the rest. The items are silhouettes uniformly coloured on a uniform background, and
they can be either familiar or unfamiliar shapes. The familiar shapes consist of the following
objects: circle, square, rectangle, triangle, heptagon, and a 50-degree arc segment; the
unfamiliar shapes consist of blob-like objects. Within each familiar/unfamiliar condition, all
possible combinations of two shapes are used (e.g. a triangle with a rectangle). Configuration
parameters include the distance between pieces in the ‘unnatural split’ and ‘natural split’
conditions, the colour of items, and the number of different blob-like objects to use for
the unfamiliar condition. Following the test from Jacob et al. (2021), similarity judgments
between pairs composed of base samples and natural/unnatural splits can be computed for
an ImageNet pre-trained network. To match human perception, the natural split samples
should have internal representations that are closer to the base samples than the unnatural
split samples. This should apply regardless of whether the shapes are familiar or unfamiliar.

C.1.5 Encoding relations between object parts

Psychological Significance. Humans not only encode objects in terms of their parts,
but also the relations between parts which are essential for object recognition (Biederman,
1987). Early evidence for this was reported by Hummel & Stankiewicz (1996) who trained
participants to identify a small set of artificial stimuli in which they could easily manipulate
relations between parts. Two types of changes were introduced to create foils for the base
stimuli. First, a coordinate change in which relations between parts were maintained but the
position of a part of the object was changed. And second, a relational change in which there
was a categorical change in relations between object parts. They reported that participants
were much more likely to mistake foil objects for the base object when the relations between
object parts were maintained than when the relations changed (coordinate vs relational change
in Figure 7). By contrast, Malhotra et al. (2023) showed that two standard convolutional
networks are completely insensitive to these relational features, treating Relational and
Coordinate foils equally similar to the Basis objects.

Dataset. We recreated images originally contained in Hummel & Stankiewicz (1996),
Experiment 5, using white strokes on a uniform background. To compare to human perception,
similarity judgments can be computed from pre-trained DNNs by sequentially inputting pairs
of images composed of a base shape and either their corresponding coordinate or relational
change. A pattern that mirrors human perception would result in greater similarity between
the base shapes and their coordinate modifications foils as opposed to their relational change
foils.
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Figure 7: Reproduction of stimuli used in Hummel & Stankiewicz (1996). Starting with
a base shape, the Relational Change variant was created by moving one part of the base
object up or down (red dashed circle). The move was chosen to change the categorical
above/below relation between the circled part and the part to which it is attached. The
coordinate change variant was created by moving the whole horizontal (red circled) segment
up or down, together with the part moved in the relational change. This resulted in no
categorical relations change. Therefore, the perceived difference between a base and its
relational-change pair is greater than the perceived difference between the corresponding
base-coordinate change pair.

C.1.6 Encoding of 3D shapes

Psychological Significance. The human visual system builds 3D representations of images
for the sake of object recognition (Erdogan & Jacobs, 2017; Liu et al., 1995), and some
perceptual illusions of size, such as the Ponzo illusion described below, are thought to be a
by-product of computing depth information. By contrast, there is little evidence that DNNs
infer 3D structure from the 2D images they process. For example, Jacob et al. (2021) tested
VGG-16 on three pairs of objects developed by Enns & Rensink (1991): a pair of objects
composed of three segmented lines (base pair in Figure 8) are transformed in two different
ways (V1 and V2), each time adding the same configuration to both elements of the base
pair. Humans were assessed in how quickly they could discriminate the two V1 images and
the two V2 images. Discrimination was highly improved for the V2 pair, but not for the V1
pair, most likely the result of enhanced 3D cues in the V2 stimuli.

In contrast, Jacob et al. (2021) obtained no evidence that VGG-16 was better at discriminating
the base pair, suggesting a failure to encode their 3D structure.

Dataset. We recreated stimuli appearing in Enns & Rensink (1991), using white strokes
on a uniform background. Using the similarity judgment method on pre-trained DNNs, a
perception akin to humans would result in a significantly lower similarity for the V2 pair
compared to both the base and V1 images.

C.1.7 Amodal completion

Psychological Significance: The visual system needs to identify partly occluded objects
in the 3D world. A key part of the solution for humans is an amodal completion process in
which a surface representation of the occluded object is completed behind the occluder. This
process is called amodal because the visual system builds complete surface forms of occluded
objects without generating a visible experience of the missing shape. Amodal completion
occurs early in the visual system, perhaps as early as V1 (Nakayama & Shimojo, 1992).
Various compelling perceptual effects are associated with amodal completion (for a review
see Nakayama et al., 1995). Here we include the materials from Rensink & Enns (1998)
who showed that humans quickly and automatically encode the shape of partially occluded
objects in a visual search task. Amongst the various conditions in their experiments, two
illustrate the point most clearly. In the ’Target - Notched square’ and ’Target - notched
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Figure 8: Illustration of the 3D Drawing dataset stimuli. One where segmented lines (Base
shapes) are augmented with contextual features to clearly form distinguishable 3D shapes
(V2), and another where the additions do not contribute as strongly to depth perception,
making shape discrimination challenging (V1). Importantly, the identical contextual features
applied to each pair highlight that enhanced discrimination stems solely from the perceived
depth, rather than the features themselves.

circle’ conditions, participants searched for a notched black square or notched white circle,
respectively, among full black square and white circle distractors. None of the objects
overlapped in this condition. In the ‘Occlusion’ condition participants were again searching
for notched squares and circles, but in this case notched squares and circles touched to
give the impression of occlusion. Search was significantly faster in the ‘Notched’ condition
when compared to the ‘Occlusion’ condition. This is because in the ‘Occlusion’ condition
the notched squares were perceived as full squares occluded by white disks due to amodal
completion. This made the notched black squares much more difficult to find among full
black squares. The same was true for the notched white circles in the occlusion condition.
This pattern of results suggests that the notched square in the ’Occlusion’ condition was
encoded as a square early in visual processing (fast visual search is typically characterized as
pre-attentive). Jacob et al. (2021) reported that the DNN VGG-16 network pre-trained on
ImageNet failed to show any evidence for amodal completion with these stimuli.

Figure 9: Illustration of the Occluded Shape stimuli as used in Rensink & Enns (1998). The
experiment compares three conditions: a baseline condition with squares and disks with
no occlusion, an occlusion condition in which one object obscures part of the other, and a
notched condition in which the occluded part of the object in occlusion condition is removed.
This turns the notch into a distinctive feature and effectively creates a differently perceived
shape despite the visible parts being the same as in the occlusion condition. The finding
that notched circles and squares are more easily identified than occluded circles and squares
is taken to reflect amodal completion.
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Dataset. We generated samples that look like the stimuli used in Rensink & Enns (1998).
We generated samples for the distractors (‘unoccluded’), ‘occlusion’, and ‘notched’ conditions,
with either the square occluding the circle or vice versa. The occluding shape is placed at
a variety of degrees from the occluded shape. Each occluded image has a corresponding
notched image (that is, using the same shape configurations) so that they can be directly
compared. The unoccluded condition is generated by using a non-occluded sample in which
the occluding shape is moved radially away from the occluded shape, maintaining the same
orientation.

To align with human similarity judgments as measured in Rensink & Enns (1998), a
DNN should yield internal activations that result in higher similarity scores for distractor
(unoccluded) versus occluded samples (where amodal completion generates representations of
the full shape of the notched stimuli), compared to those for (distractor) unoccluded versus
notched samples.

C.1.8 Non-accidental and Metric Properties for Geons and line stimuli

Psychological Significance: Human object recognition is highly sensitive to non-accidental
properties (NAPs) of an object, that is, visual features that are invariant over rotations in
depth. NAPs are hypothesized to be critical for representing object parts such as Geons
(Biederman, 1987). For example, curvature (as opposed to a stright line) is a NAP because
a curved object in the 3D world will project a curved image on a 2D retina when viewed
from most orientations apart from rare “accidental” viewpoints, as when a curve projects a
straight contour. NAPs are distinguished from metric properties (MP), features of objects
that change continuously with variations over depth orientation when projected on the retina.
For example, a curved object in the world will project different degrees of curvature on the
retina depending on its orientation to the viewer. A variety of research highlights how human
vision is more sensitive to changes in images that alter NAPs (e.g., a change from a curve to
straight line) compared to MPs (e.g., changes in degree of curvature) (Biederman, 1987).
Kubilius et al. (2017) provided evidence that several DNNs are also more sensitive to image
manipulations that alter NAPs, although the effects were most pronounced in later layers of
the networks whereas sensitivity to NAP is thought to occur relatively early in human visual
processing to encode object parts.

Datasets. We have included images of both 2D line segments based on Kubilius et al.
(2017), and 3D Geon stimuli originally used in Kayaert et al. (2003) to assess the degree
in which DNNs are sensitive to NAP vs MP changes. In the case of the Geon stimuli, we
have provided a version with shade (as in Kubilius et al., 2011), a version in which no shades
are present and the outline is highlighted, and a version in which only the silhouettes are
shown, as one concern with the shaded version is that the similarity judgements produced
by DNNs may reflect differences in shades as opposed to shape. For each Geon or line
segment, a feature dimension (such as the curvature of a Geon) is altered from a singular
value (e.g. straight contour with 0 curvature) to two different values (e.g. slightly curved or
very curved). The ‘reference‘ condition includes items with the intermediate feature value;
in this example, the slightly curved geon. The ‘MP change‘ condition consists of items with
a greater non-singular value; in this case, the greater curvature geon. Finally, the ‘NAP
change‘ condition includes items with the singular value; the straight contour geon from this
example. A human-like similarity judgment would correspond to higher similarity between
the reference object to the MP variants than the NAP variants (that is, NAP changes are
easier to discriminate). Kubilius et al. (2017) provides a more detailed description of human
performance through reaction times that can be directly compared to similarity judgments
in DNNs (where higher reaction times correspond to lower similarity).

C.2 Visual Illusions

There is now a growing number of articles exploring various illusions in various different types
of DNNs trained in different ways. Some of these highlight similarities with human perception
(e.g., Benjamin et al., 2019; Storrs et al., 2021; Watanabe et al., 2018) while others report
mixed or discrepant results (e.g., Gomez-Villa et al., 2019; Gomez-Villa et al., 2020; Ward,
2019; Zhang et al., 2023). For a review of various findings see Kanwisher et al. (2023). The
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conditions in which DNNs ’experience’ human-like illusions may provide insights into why
humans experience these phenomena. For instance, Gomez-Villa et al. (2019) found that
various brightness and color illusions can be induced in CNNs trained for image denoising,
image deblurring, and computational color constancy. They argue that these illusions are a
byproduct of biological processes designed to improve efficiency of low-level visual processes.
In addition, (Storrs et al., 2021) found that unsupervised (as opposed to supervised) learning
led DNNs to factorize images into encoding of reflectance and illumination that resulted in a
human-like perceptual illusion of gloss. Here we consider several classic size, lightness, and
orientation illusions. For most of the Visual Illusions Datasets, we provide both an "illusory"
condition and a corresponding "non-illusory" condition. The non-illusory condition contains
the same basic elements as the illusory one, but they are arranged in such a way that the
illusion is not elicited. Both conditions feature procedurally generated images. In the illusory
conditions, the stimuli are systematically varied to maintain the presence of the illusion.
For example, in the Ponzo illusion dataset, we manipulate factors such as the number of
horizontal "railway" lines, the degree of convergence of the vertical lines, and the length
of each line. However, we carefully constrain these variations to ensure that the illusion
remains effective. We encourage future researchers who wish to modify our scripts or use
non-default parameters to regenerate the datasets to verify that the illusory stimuli continue
to produce the intended perceptual effects.

C.2.1 Müller-Lyer illusion

Psychological Significance. The Müller-Lyer illusion is perhaps the most famous of all
illusions. There is no agreed-upon explanation of the effect but the fact that it is observed
across species, including fish Sovrano et al. (2016), suggests that it reflects something basic
about the architecture of the visual system rather than the training environment. Ward
(2019) reported that VGG-19 showed the illusion (to a rough approximation), although they
only reported the effect at the final stage of the network. A similar result was reported by
Zhang et al. (2022) who reported more robust effects in the higher levels of VGG-19 and
ResNet-101.

Dataset. The Müller-Lyer illusion stimuli were generated in one of two ‘illusory’ configura-
tions (with inward or outward ‘fins’) or in a ‘scrambled’ configuration. In the latter, the fins
are arranged randomly in the canvas, separated from the line segment. In all three conditions,
we vary the line length, the position of the line, and the angle of the fins. A method to
test whether a DNN is susceptible to this illusion involves training a set of decoders to
predict the line length in the scrambled condition set. These decoders are then tested on the
illusory conditions. A human-like response would be evidenced by a consistent pattern of
both overestimating the line length in the outward illusory condition and underestimating it
in the inward illusory condition. Additionally, the illusory effect should be larger for more
acute fin angles.

C.2.2 Ponzo illusion

Psychological Significance. In this classic illusion, two identical horizontal lines cross
a pair of converging lines, a configuration similar to railway tracks. In this configuration,
the top line looks longer. The standard explanation is that the visual system assumes that
the converging lines are receding in depth and that the upper horizontal line is further
away. Given that the two lines project the same length on the retina, the visual system
assumes that the upper line must be longer. That is, the illusion is a by-product of the
visual system attempting to compute size constancy. Interestingly, there is good evidence
that the Ponzo illusion (He et al., 2015), and related size illusions (Sperandio et al., 2012),
alter the activation in V1, although this may reflect top-down activation from higher-level
visual areas (Chen et al., 2019). Ward (2019) failed to observe a Ponzo effect in VGG-19.

Dataset. Two target lines (red and blue) are placed across a railway track pattern. In the
illusory condition, the target lines have the same length (varying across samples). In the
scrambled condition, the target lines have different length, are still placed horizontally one
on top of the other, but all the other segments are randomly placed across the canvas. We
include a third condition in which the railway track pattern is used with target lines which
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differ in length. The railway track pattern for the illusory and different lengths conditions is
composed of converging segments (with a varying degree of convergence), and horizontal
segments (randomly placed at different horizontal positions). For all three conditions, the
user can specify the number of horizontal segments to use.

The suggested way to test whether DNNs perceive the Ponzo Illusion consists of training a
set of decoders on the scrambled condition, to predict either the length of the target lines
or a function of the length (for example, the difference between the top and the bottom
line lengths). Then the decoders can be tested on the illusory condition. The different
lengths condition could be used as a further way of analysing the decoders response. To
match human perception, a decoder should overestimate the length of the top target line (or
underestimate the length of the bottom line, or output a positive difference in top minus
bottom line length, depending on the training setup) in the illusory condition (where the
two target lines have the same length).

C.2.3 Ebbinghaus (or Titchener) illusion.

Psychological Significance: In this classic illusion, the perceived size of a central circle
is altered by the size of surrounding circles. There is evidence that the illusion distorts
the perception of size but not action (Aglioti et al., 1995; Whitwell et al., 2022; but see
Franz et al., 2005) and there is evidence that this illusion is mediated by relatively low-level
(preattentive) vision (Busch & Müller, 2004). Again, there are different explanations for the
phenomena (Rashal et al., 2020). Ward (2019) failed to observe this effect in VGG-19.

Dataset. A red target circle is surrounded by a fixed number of white circles (flankers)
on a uniform background. In the two illusory conditions (‘big’ and ‘small’ flankers) the
flankers surround the target circle, and they all have the same size within each sample.
In the scrambled condition the target circle is placed in the center, but white circles with
random sizes are randomly placed on the canvas. Across illusory samples, we varied the radii
of the flankers, the radius of the target circle, the displacement of the flankers around the
target. To measure illusory effects in DNNs, decoders can be trained on estimating the circle
size or radius in the scrambled condition, and tested on the big/small flankers condition.
Human-like perception should induce overestimating in the small flankers condition and
under-estimating in the big flankers condition (see example in Figure 2).

C.2.4 Jastrow Illusion

Psychological Significance: In the Jastrow Illusion (Jastrow, 1892), two identical-sized
curved segments are perceived as different sizes when one is placed above the other in
certain configurations. There are multiple explanations for the phenomenon, but perhaps
the simplest explanation is that it is a form of a contrast effect. The length of the concave
edge of the upper object in a Jastrow configuration is much shorter than the convex edge of
the bottom object, and this contrast drives the perception of size when the edges are closely
aligned (Rock, 1975). Rhesus monkeys do not appear to be affected (Agrillo et al., 2019),
nor do humans when assessed on grasping behavior (Ozana & Ganel, 2020). As far as we
are aware, no one has reported whether DNNs show a similar pattern.

Dataset. We used a red and a blue arc shape, either one on top of the other at the centre
of the canvas (‘illusory’ and ‘different lengths’ conditions) or randomly placed in the canvas
with a random orientation (‘scrambled’ condition). In the scrambled and different lengths
conditions the two shapes have different sizes. The size is the same (thus eliciting the illusion)
in the illusory condition. To estimate DNNs susceptibility to the illusion the same approach
as the Ponzo Illusion can be used.

C.2.5 Tilt illusion

Psychological Significance: In the tilt illusion, a central grating’s orientation is perceived
as being repulsed from or attracted to the orientation of a surrounding grating. A wide
variety of mechanistic accounts of the illusion have been proposed (for a review see Clifford,
2014), and it is argued to be an adaptive feature rather than a bug of a visual system
optimized for contour detection (Serre et al., 2020). There is evidence that the illusion
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reflects processes in V1 Song & Rees (2018). Linsley et al. (2020) reported that a recurrent
DNN optimized for contour detection produces a tilt illusion.

Dataset. We provide one illusory condition, in which an oriented grating pattern is presented
within a circular mask (‘center grating’) and a differently oriented grating is placed as the
background (‘context’ grating); and two non-illusory conditions: one in which the background
is uniformly colored and only a center mask contains the oriented grating pattern; and vice
versa. The samples are varied in their orientation and spatial frequency of the gratings, and
in the size of the central grating. Our suggested approach to test whether a DNN perceives
the tilt illusion is to train a decoder to estimate the orientation of the center grating, and test
it on the illusory condition to check whether the presence of a context affects performance.
In particular, the decoder should present the largest repulsive bias at around 20° and an
attractive bias at around 70°-80°. Plus, the attractive effect should be much smaller than
the repelling effect, and larger for matching center-surround gratings spatial frequencies.
(Westhhmer, 1990).

C.2.6 Lightness Illusions

Lightness refers to our perception of the reflective surface of an object (a stable property of
an object) whereas brightness is a measure of the amount of light reflected from an object,
something that is affected by both reflectance as well as the lighting source. We include
two famous illusions related to lightness: the Lightness Contrast Illusion and the Adelson
Checker Shadow Illusion. However, to facilitate testing for these and other lightness-related
effects, we created an additional dataset called ‘Grayscale shapes’. The purpose of this
dataset is not to elicit any illusion in humans or in DNNs but to train a network (or, with
our suggested method, a decoder attached to a network) to output the grayscale value of a
target pixel.

Grayscale shapes Dataset. Each image is composed of 20 overlapping items amongst the
following types of shapes (circle, circle sector, circle segment, ellipse, rectangle with straight
and rounded corners, heptagon, irregular polygon composed of a random number of edges
from 3 to 10). Position, dimension, orientation, and grayscale colour value are randomized
for each shape. We place 20 items to be sure that most space in the canvas is filled by an
item, but that only a few of them are fully visible. This results in a chaotic canvas with
many different shapes with varying grayscale colours but with coherent patterns (as opposed
to, for example, having each pixel of a different random grayscale value). In order to target
a specific pixel to be predicted by the decoder, a small white vertical arrow (the ‘marker’)
of fixed size is placed randomly on the canvas. The arrow points to the pixel whose value
can be used for prediction. Notice that while the images are commonly normalized from -1
to 1 before being fed into the network, the targeted pixel value to predict is in the 0-255
range. Once a trained decoder reaches the desired level of accuracy, it can be tested on
other configurations by simply adding the white arrow ‘marker’ into any image. We call this
network with the decoder attached the color-picker. We can then test whether an illusory
configuration impacts performance of the color picker by placing a white arrow marker at
several points of the illusory image and check whether the output is biased in a human-like
fashion. This is the approach we use in the Lightness Contrast Effect and Adelson Checker
Shadow Illusion.

C.2.7 Lightness Contrast effects

Psychological Significance: In the Lightness Contrast effects our perception of two
identical central gray patches is altered by their surround, such that a patch surrounded by
a dark background is perceived as lighter, and the patch surrounded by a light background
is perceived as darker. The standard explanation of this is that lightness perception is
the product of the relative brightness of surfaces across a boundary given that this ratio
will remain constant regardless of the general illumination, allowing lightness (and color)
constancy. However, in the lightness contrast context, the mechanism designed to produce
lightness constancy results in the central grey squares being perceived differently. These
computations are thought to occur in the primary visual cortex (MacEvoy & Paradiso,
2001). Some DNNs can achieve color constancy (Flachot et al., 2022) and other forms of
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Figure 10: Samples of five images from the grayscale dataset, used to train a color-picker, as
detailed in the text.

constancy (Storrs et al., 2021) under some conditions, although there remain questions as to
whether this is achieved in a human-like manner. There are also computational theories of
the lightness contrast effect (Grossberg, 1983), but we are not aware of any demonstrations
that DNNs support this effect.

Dataset. The dataset consists of the standard Lightness Contrast configuration: square
within a uniform canvas of different grayscale values. The user can specify the grayscale
value of the center square, which is kept fixed, while the value of the background is varied.
Importantly, each sample is replicated many times with the white arrow marker placed at
different locations in the canvas. A color picker network can then be queried for the grayscale
value at different locations in order to measure whether the perceived value of the central
square is affected by its surroundings.

C.2.8 Adelson checker shadow illusion

Psychological Significance: In this classic illusion (Adelson, 2005), two squares on a
checkerboard are perceived to have different reflectance due to one being in shadow and the
other in light, despite being the same brightness. This phenomenon is explained with the
ability of the human brain to perceive reflectance of a surface as invariant under variation
of brightness. In this illusion, the patches inside and outside the shadow reflect the same
brightness, and accordingly, the visual system assumes the patch in the shadow must be
lighter.

Dataset. This dataset simply consists of the Adelson Checker Shadow illusory image
replicated many times, grayscaled, with a white arrow systematically placed at different
locations of the canvas, covering the whole checkerboard. A color-picker network (that is a
decoder trained to predict the value of a marked pixel, e.g. trained on the Grayscale shape
dataset, see Appendix C.2.6) is queried at all locations. Critically, the color-picker will show
illusory perception if the pixels in the two target patches are seen as two different colours. In
particular the pixels of the unshaded patch should be seen as darker than the shaded patch
by the network.

C.2.9 Thatcher Illusion

In this illusion the eyes and mouth of upright faces are inverted to produce a grotesque
image of a person. The distinction between a normal face and a distorted face is highly
salient. However, when faces are upside down, the distortions are much less salient. This
effect was originally reported on images of Margret Thatcher, thus the name of the illusion.
This effect is sometimes claimed to be more dramatic for faces compared to other categories,
lending support to the hypothesis that face processing is special (Boutsen et al., 2006).
Other researchers claim that similar effects are observed for other types of objects (Wong
et al., 2010). Jacob et al. (2021) demonstrated that CNNs trained to identify faces exhibit a
Thatcher-like effect, though they did not assess whether this effect extends to other object
categories. The extent to which this effect is specific to faces or can be generalized to non-face
objects remains a subject of debate (e.g., see Wong et al., 2010; Bertin & Bhatt, 2004; Dahl
et al., 2010). To test DNN sensitivity to the Thatcher Effect for both faces and non-face
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dataset, we provide both a Thatcherized dataset of faces and a Thatcherized dataset of words
(in which individual letters are rotated).

Face Dataset. We provide a small dataset of celebrity faces using a subset of CelebA4, but
the user can specify any folder containing images of faces. Each image is resized according to
parameters specified by the user and then reoriented into both an upright and a 180-degree
inverted configuration. Furthermore, it is either ’Thatcherized’ or remains unaltered. To
‘Thatcherize’ an image we compute landmarks of the eyes and mouth, compute the bounding
rectangle for each, and rotate them around their centre of mass. Blurring on the edge is
applied to minimize artefacts. To assess the susceptibility of DNNs to the Thatcher effect
in faces, we propose a similarity judgment analysis. This involves comparing the perceived
similarity between each upright face and its Thatcherized counterpart, as well as each inverted
face with its Thatcherized version. To align with human perception, the latter comparison is
expected to yield a higher similarity score than the former.

Word Dataset. We employ a collection of 1000 English words or artificially generated
sequences of random letters. All entries are uniformly presented in uppercase, covering a
range from 3 to 8 letters in length. Following Wong et al. (2010), to simulate the Thatcher
Effect for words, we rotate one or more letters by 180 degrees. To increase variability, each
word is displayed in one of ten different fonts, with variable font sizes, and includes jitter for
each letter. The configurable parameters include the number of words, the exact or range of
letter counts per word, the number or range of letters to be rotated, the font size, the level
of jitter, and whether to use random strings or English words.

C.3 Shape and object recognition

A key feature of human vision is that we identify objects largely based on their shape.
For example, we can easily identify line drawings of objects with no colour and texture
(Biederman & Ju, 1988). To measure shape bias in DNNs there is now a benchmark that
tests models on “style transfer” images composed of the shape of one category and the texture
of another (Geirhos et al., 2019). Many DNNs, including DNNs that perform at the top of
the leaderboard on Brain-Score, rely primarily on non-shape features, as they classify the
images based on their texture rather than shape. More recent DNNs trained on much larger
datasets have started to show a more human-like shape bias (Dehghani et al., 2023), but
there are many additional attributes of human shape perception that need to be accounted
for by any DNN model of human vision.

C.3.1 Identifying line drawings, dotted line drawings, silhouettes, and
image segments

Psychological Significance: Humans can often identify line drawings of objects as quickly
and accurately as photographs, highlighting the importance of shape for object identification
(Biederman & Ju, 1988). Interestingly, a child who had never previously been exposed to
line drawings can readily identify them, showing that there is no need to be trained on line
drawings to identify them (Hochberg & Brooks, 1962). By contrast, DNNs need to be trained
on line drawings in order to recognize them at human levels (Singer et al., 2022). Similarly,
humans can easily identify silhouettes of objects, whereas DNNs again struggle (although
interestingly, they do better with silhouettes compared to line drawings; Baker et al., 2018).

In addition, by exploiting the Gestalt principle of good continuation, humans can recognise
line drawings with modified local features when the global shape is left intact. In our
experiments, we modified line drawings in three ways: by replacing the continuous line with
dots; by replacing continuous lines with segments; and by texturizing them. These images are
easily identifiable, and accordingly, DNNs should be able to identify these out-of-distribution
images.

Line drawings dataset. We use the line-drawing stimuli from Baker et al. (2018), consisting
of 36 classes from ImageNet (one line-drawing per class). The line-drawings are white stroke
on a uniform canvas (black by default). We used this dataset to build the Dotted line

4https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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drawings and Image Segments datasets. In the former case, the user can specify the
dot size and the distance between dots. In the latter case, we have generated complementary
images that have complementary segments removed (see Figure 11). That is, each line
segment in one image is absent in the other, and together the image is complete. These
stimuli are generated by overlapping a grid on the line drawing and deleting complementary
sections. The user can specify the grid orientation, the distance between each grid row
and column, and thickness of each cell. Participants find these images trivial to identify,
and accordingly, DNNs should also. Importantly, humans find complementary images like
these hard to distinguish, and indeed, complementary images produce equivalent priming to
repeated images, highlighting how the visual system treats them as equivalent (Biederman,
1987). This would also be the case if complementary dots were removed for the dotted line
drawings. Thus a second approach to compare humans to DNNs is through a similarity
judgment analysis across complementary images, which should return very high similarity
value in some hidden layers of DNN.

Figure 11: Example of the complementary segment dataset. Each linedrawing results in two
images with complementary segments removed. The resulting samples are very difficult to
discriminate for humans (Biederman, 1987).

There are many datasets of line drawings available, and the user can specify any folder
containing line drawings, to generate a dotted/segmented dataset. The line drawings are
expected to be composed of a black stroke on a white background, but can otherwise be of
any shape, and the line drawing folder is expected to contain sub-folders for each class (e.g.
‘airplane’) which can contain multiple line drawing instances for that class (this follows the
standard structure used in many deep learning libraries for image classification, e.g. the
ImageFolder dataset in PyTorch). Our script will automatically convert the image to a white
stroke over a uniform background (black by default).

Silhouette dataset. For the Silhouette dataset, we use samples from Baker & Elder (2022);
9 classes from ImageNet, each containing 40 samples. As before, the user can specify any
folder containing silhouettes. Alternatively, the user can also specify a folder containing line-
drawings (following the same constraints as above), which will be converted into silhouettes.
Again, humans find these images easy to identify, so models should as well.

C.3.2 Identifying familiar and unfamiliar images defined by texture
boundaries

Psychological Significance: The human visual system can group elements in scenes
based on texture, with texture regions defined by the similarity of their elements. This
is an example of a Gestalt principle (Similarity) contributing to object recognition (Beck
et al., 1983). One way this manifests is through the ability to identify familiar (texturized
objects) and perceive unfamiliar (texturized unfamiliar) by their texture.

Datasets: Familiar and Unfamiliar Texturized Objects. We provide a dataset of
familiar texturized objects by using line drawings from Baker et al. (2018) as base items.
For unfamiliar shapes, we generated silhouettes of blob-like objects. For the pre-generated
datasets, the texturization consists of masking the internal contour of a line drawing/silhouette
with a pattern of a repeated character with a randomized font size, rotated by a random
degree. The character is randomly selected from letters, digits, or punctuation, and we kept
the background uniformly colored. When generating images, the user can also specify the
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texturization of the background as well, although we have found that doing so will turn
object recognition from trivial to challenging, depending on the selected character.

The same approach is used for the unfamiliar shapes. In this case, the user can specify the
number of blobs to generate and texturize. For both familiar and unfamiliar datasets, the
user can specify how many texturization samples to generate for each input image.

To measure alignment with human visual perception, the different datasets require a different
approach. For familiar shapes, DNNs can be tested by simply assessing classification accuracy.
For unfamiliar shapes, a similarity analysis can be carried out. For example, a DNN should
find a blob and its texturized counterpart more similar than a blob and a differently texturized
blob (see example in Figure 2).

C.3.3 Identifying Embedded Shapes

Psychological Significance: The Embedded Figures Test (EFT, de-Wit et al., 2017)
is a widely utilized tool in research exploring individual differences in perception, with a
particular emphasis on studies of autism spectrum disorder, and as a measure of local versus
global perceptual style (Panton et al., 2016). Subsequently, de-Wit et al. (2017) developed
a set of stimuli in which several Gestalt grouping principles were manipulated in order to
create increasingly difficult matching to sample tasks. They found that the principle of good
continuation (operationalized in terms of the number of continued lines from the original
shape) impacted performance the most. Each target shape was integrated into four distinct
contexts, each exhibiting a progressive increase in the number of lines extending from the
target shape into its surroundings. The higher the number of lines extending the shape,
the lower the performance, highlighting human susceptibility to camouflage and the role of
Gestalt organisation principles in camouflage.

Dataset. We used the dataset from de-Wit et al. (2017) who developed simple stimuli
in which background lines camouflaged geometric shapes to various extent (Figure 12).
Importantly, different embeddings have different levels of continued lines from the original
shape, which strongly affects human performance. Furthermore, we developed our version
by generating 5 irregular polygons, embedding them in a set of lines, some random and
some extending directly from the polygon’s edges (similarly to the original dataset). Many
camouflaging samples can then be procedurally generated from each polygon. Training
decoders to classify the simple geometric forms provides one way to assess the impact of
embedding shapes on DNNs. Decoders would be trained on simple shapes (either our
irregular polygons or the original shapes from de-Wit et al., 2017) and would then be tested
on the embedded version. A DNN with a human-like perceptual system should show reduced
ability to identify the shapes, with the level of impairment being a function of the amount of
lines originating from the polygon (as in de-Wit et al., 2017). Notice in this case, human
alignment requires a degradation of performance after image alteration.

Figure 12: Illustration of one set of items from the embedded shape dataset. These are the
stimuli recreated based on Torfs et al. (2014). A basic shape is camouflaged using a variety
of horizontal and vertical line, and extending the segments composing the shape. We also
provide a variation of this dataset in which, given a set of polygons, camouflaged versions
are procedurally generated.
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C.3.4 Sensitivity to Global Shapes

Psychological Significance: Human object recognition relies more heavily on global shape
representations than on local features, whereas there is evidence that DNNs rely more heavily
on local features (Baker et al., 2018), even when trained to have a shape bias (Baker &
Elder, 2022). In Baker & Elder (2022), humans and DNNs were presented with silhouette
stimuli in their normal format, fragmented, or in a ‘Frankenstein’ format where most of
the local features are preserved but the overall configuration of the image was distorted.
That is, the authors modified global shape while maintaining most of the local features. In
particular, the ‘fragmented‘ condition (see Figure 13) divides the shape into two distinct, yet
adjacent, entities while preserving the local characteristics of the object. The “Frankenstein”
scenario involves adjusting the upper section back into alignment with the lower half, so
that the bottom and top halfs are mirror reversed. This method keeps the object intact
as a single entity. Human performance was much reduced in both the Fragmented and
Frankenstein conditions, but DNNs performed similarly in the Whole and Frankenstein
conditions, highlighting the importance of the local features and the lack of weighting for
more global features in driving their performance. Attempts to train networks to focus on
the more global aspects of the images failed.

Dataset. We provide both the dataset extracted directly from Baker & Elder (2022) and a
a version in which the fragmented and Frankenstein versions are automatically generated
from any silhouettes or line drawing samples. The Baker & Elder (2022) dataset contains
9 classes from ImageNet, each containing 40 samples. A network with visual capabilities
aligned with a humans’ should suffer from performance degradation in both fragmented and
Frankenstein condition, which can be measured through classification accuracy (as usual,
with a network pretrained on ImageNet or some other image dataset).

Figure 13: Example of a stimulus and its transformed version, following Baker & Elder
(2022).

C.3.5 Invariance to Object Transformation

Psychological Significance. Humans possess the remarkable ability to recognize objects
despite the different retinal images the objects project depending on changes in size, ori-
entation, lighting, and placement (Tanaka, 1996). This is performed on-line: an object,
once seen in a new or altered form, can typically be recognized instantly in subsequent
exposures at different angles, without further training. This capability applies irrespective
of the object’s familiarity (Blything et al., 2021; 2020). Previous work (Biscione & Bowers,
2021; 2022) found that none of the 7 tested classic visual DNNs possess on-line invariance
architecturally (that is: training an object at a viewpoint would not automatically support
object recognition at a different viewpoint, even for simple affine transformations such as
translation). However, this ability could be induced by pre-training the model on the specific
transformation of interest, and this would transfer to unfamiliar classes. For example, a
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network pretrained to classify images in which the objects are randomly rotated, develop
on-line invariance to rotation, even for novel objects and novel classes. This partially extends
even in transformation of viewpoint, in which the object is rotated in depth.

Datasets: 2D Affine Transformations and Viewpoint Transformations. We provide
a separate dataset for affine transformations (rotation in picture plane, translation, scale, and
shear) and viewpoint invariance (rotation in depth). The configurable parameters allow for a
fine-grained analysis of the effect of each transformation. For each transformation dimension,
the user can chose one or multiple ranges of training and testing. As in the previous datasets,
the user can specify any folder containing line-drawings or silhouettes (or any image with
a clear contour on a white background). For the viewpoint invariance dataset, we use the
ETH-80 dataset (Chen et al., 2020a)5, which contains 8 categories (apples, cars, cows, cups,
dogs, horses, pears and tomatoes), each consisting of 10 object instances, and each object
captured from 41 different viewpoints. For the pre-generated dataset, we avoided including
views straight from the top. The configurable parameters allow the user to generated dataset
only within a specific azimuth and inclination range.

For both the 2D transformation and viewpoint datasets, there are several ways to test
whether a DNNs possess online invariance to transformation. First, a DNNs (not necessarely
pretrained) could be trained on un-transformed images (e.g. with the object always in the
center, unrotated, unscaled, or from a standard viewpoint). It could then be tested on
various transformations of these objects. This could be used to establish whether the network
is architecturally invariant to some transformations. Several pre-training steps could be used
to test how the training environment affects performance. Another approach avoids training
on the target classes (either because we want to test a pretrained network without altering
its weights, or because we want to test the network on unfamiliar classes): a similarity
judgments analysis is performed on transformed versions of the same object, and is compared
to the similarity of different objects. A human-like DNN will have internal activations that
are more similar for same objects across transformations, than for different objects. This is
the approach used in Biscione & Bowers (2021; 2022).

C.3.6 Same/Different Task

Psychological Significance. Human shape representations not only support object recog-
nition but also a wide variety of additional functions, including visual reasoning. Perhaps
the simplest form of visual reasoning is tested in the same/different task – judging whether
two shapes are identical apart from their spatial location. Although DNNs can solve the
same/different task when training and test images are highly similar to one another, perfor-
mance drops when training/test images are dissimilar (Puebla & Bowers, 2022). By contrast,
humans can make same/different judgements for any visual patterns as long as they are
perceptible.

Same/Different Dataset. The dataset was extracted from (Puebla & Bowers, 2022). This
dataset is composed of 10 conditions. Each image consists of two items placed randomly on
the canvas. The two items can be either the same shape or a different shape and cannot
overlap. Each condition consists of a different type of item used. By default, the items are
composed of white strokes with no fill on a black background. See Figure 14 for a summary
of all the conditions.

The suggested testing methodology for this condition is slightly different than all other
methods, and consists of training a DNN (not necessarily pre-trained) on a subset of
conditions, and testing it on a different subbset (as in Puebla & Bowers, 2022).

D Supplementary Materials: Accessibility and Licensing

Pre-generated datasets are accessible for viewing and download on Kaggle in both a com-
prehensive version and a "lite" version, which can be found at large and “lite" respectively.
Croissant metadata for both versions are automatically generated by Kaggle and can be

5https://github.com/chenchkx/ETH-80/tree/master
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Figure 14: Illustration of the ten conditions used for the Same/Different task. Two items can
be either the same or different shapes up to translation. For the ‘straight lines’ condition,
the “same/different” dimension considered is the line orientation (with length kept fixed).

downloaded from the Kaggle page. These datasets comprise a collection of folders containing
.png images and associated metadata. Notably, each dataset’s root folder includes a .csv
file containing metadata for each individual image, as well as a .toml file detailing the con-
figuration parameters used in dataset generation. This structure enables precise replication
of each dataset published on Kaggle using our provided codebase. The dataset is made
available under the CC 1.0 Universal license.

The codebase for regenerating the dataset with varying parameters is hosted on GitHub,
licensed under MIT. Comprehensive documentation on dataset generation procedures is in-
cluded in the main README file within the repository. Additionally, we provide code for eval-
uating the datasets using three distinct testing methods: out-of-distribution classification, sim-
ilarity analysis, and decoder approach. Each method is documented in a dedicated README
file within the corresponding folder, such as src/utils/similarity_judgment/REAMDE.md,
and examples are provided. The appendix in the main text offers detailed descriptions of each
dataset, emphasizing that each dataset can be regenerated by specifying a set of parameters.
The meaning of each parameter for each dataset is accessible via the -h flag and is also
provided in the accompanying .toml file used for dataset generation. The entire dataset
generation process is tested on Windows Server 2022 (Windows 10/11), macOS 14.4.1, and
Ubuntu 20.04. Authors assume full responsibility in the event of any rights violations.
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