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Abstract

Recent advancements in vision-language models (VLMs) have been driven by1

contrastive models like CLIP [39], which learn to associate visual information with2

their corresponding text descriptions. However, these models have limitations in3

understanding complex compositional scenes involving multiple objects and their4

spatial relationships. To address these challenges, we propose a novel approach that5

diverges from traditional data-centric methods of enhancing model performance6

with hard negatives examples. Our work instead focuses on integrating sufficient7

inductive biases into pre-trained CLIP-like models to improve their compositional8

understanding without using additional data annotations. We introduce a binding9

module that connects a scene graph of the text with an induced graph-like represen-10

tation of the image, facilitating a structured similarity assessment. We also leverage11

relationships as text-conditioned visual constraints, thereby capturing the intricate12

interactions between objects and their contextual relationships more effectively.13

Our resulting model (OC-CLIP) not only enhances the performance of CLIP in14

multi-object compositional understanding but also paves the way for more accurate15

and efficient image-text matching in complex scenes.16

1 Introduction17

Recent advancements in multi-modal representation learning have primarily been enabled by the18

introduction of CLIP [39]. CLIP learns aligned image-text representations from Internet-scale data.19

Despite its success, CLIP exhibits limitations in understanding complex scenes composed of multiple20

objects [23, 47, 11, 36]. For instance, while capable of recognizing individual objects, CLIP struggles21

with interpreting spatial relationships among objects in the scene [] (e.g., “the cat is to the left of the22

mat” vs. “the cat is to the right of the mat”) and adequately associating objects with their corresponding23

attributes (e.g., “a red square and a blue circle” vs. “a blue square and a red circle”). The process24

of acquiring this compositional understanding of the world is known as the binding problem in the25

literature, and may be decomposed into segregation, representation, and composition problems [17].26

Efforts to improve the compositional understanding of CLIP-like models have largely relied on27

leveraging hard negative examples, either in the text space [22, 48, 54, 11, 36] – to improve sensitivity28

to the order of words and subtle textual differences – or the image space [3, 25, 53] – to improve29

sensitivity to subtle visual differences. Although these methods have somewhat improved CLIP-like30

models’ performance on scene compositionality benchmarks [37, 55, 48, 18], they do not explicitly31

address the binding problem as they focus mainly on enhancing the model’s representation capabilities32

with additional data, hindering their generalization to unseen scene compositions.33

Yet, the object-centric representation learning literature [13, 16, 31, 46, 43] has long focused on34

developing methods to address the segregation and representation problems as a way to facilitate the35
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subsequent compositional processing of images. This has led to the development of inductive biases36

to segregate different objects in a scene into distinct representational slots, which have been shown to37

naturally scale to an increasing number of visual objects and relations [31, 44, 34, 12].38

In this paper, we focus on enhancing the compositional scene understanding of CLIP-like models39

by leveraging the advances from object-centric representation learning. In particular, we propose40

to endow CLIP-based vision-language architectures with segregation, representation and composition41

capabilities. Our core idea is to adapt the slot-centric representation paradigm for CLIP architectures42

and dynamically align each representational slot with the object entities mentioned in the text. To43

do so, we design a binding module that connects a scene graph, derived from the textual description,44

with a slot-structured image representation. We utilize the scene graph’s relationships as constraints45

to effectively capture the complex interactions among the visual entities represented as slots. Our46

enhanced model, which we refer to as Object-Centric CLIP (OC-CLIP), not only boosts CLIP’s47

performance in understanding multi-object compositional scenes but also improves the accuracy48

and efficiency of image-text matching in complex and highly compositional visual scenarios.49

2 OC-CLIP50

Our goal is to enhance CLIP-based architectures with segregation and composition capabilities. Our51

method starts by extracting representations of distinct objects and relationships in a textual description,52

as well as representations of patches in an image. Next, a binding module matches the text represen-53

tation of objects to the relevant image patches, producing a slot-centric representation of the image.54

Finally, a structured similarity score compares the slot-centric representation with the textual represen-55

tations of different objects, and leverages the extracted relationships as constraints applied to the visual56

slots. Our key contributions lie in the design of the binding module and the proposal of the structured57

similarity score, which we detail below. Figure 1 presents an overview of the proposed approach.58

Notation. We denote as x an image of shape Rh×w×3 and as x̄ = [x̄1, ..., x̄N ] = Eϕ(x) ∈ RN×d59

its patch-level encoding, where Eϕ is an image encoder – typically a pre-trained ViT [] – N is60

the number of patches and d the dimensionality of the patch embeddings. We denote as t the text61

description, or caption, associated with x. We extract a scene graph, G from t by leveraging an62

LLM-based parsing approach. G is composed of a set of nodes N = {N1, ..., NM} representing63

the M objects in t and of a set of edges E = {(r1, s1, o1), ..., (rP , sP , oP )} representing the P64

relationships in t. Each relationship is represented by a tuple (r, s, o), where r is the embedding65

of the predicate, s the subject and o the object of the relationship. For example, the scene graph of “A66

red apple to the left of a blue car” will be represented with the set of nodes {“red apple”, “blue car”}67

and the set of edges {(“to the left of”, “red apple”, “blue car”)}. In practice, we represent N as a68

matrix of node features N, where each row contains the embedding of a node in the graph. Moreover,69

we represent each si and oi in the relationship tuples as indices referencing the nodes (rows) in N.70

Binding Module Our first contribution resides in the binding module. The idea is that when71

comparing the content of a caption and an image we do not want the features of different objects72

to interfere with each other but rather keep them separate at a representational level. The role of73

the binding module is thus to extract a slot-centric representation of an image where the content74

of the slots are pushed to represent the nodes of the associated scene graph.75

To do so, we implement the binding module using a inverted cross-attention layer [45], where the76

queries are the nodes from our scene graph and the keys and values are the image patches. We normal-77

ize the attention coefficients over the queries’ dimension in order to introduce a competition between78

queries to explain different parts of the visual input. We follow common practice and set the attention’s79

softmax temperature to
√
D, with D being the dimensionality of the dot-product operation. Applying80

the softmax along the queries’ dimension pushes all the candidate keys to be softly matched to at least81

one query. However, captions mostly describe specific parts of the image, and rarely capture all the vi-82

sual information. Since we want only the relevant visual information to be captured by the queries, we83

add a set of default query tokens, stored in a matrix Qdefault, which participate in the competitive atten-84

tion mechanism – with the goal of absorbing the visual information not captured in the caption. These85

default query tokens are dropped in the subsequent computation steps of our model (akin to registers86

in ViT backbones [10]). We find the default query tokens crucial to stabilize the training our model.87
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The binding module computations are formalized as follows:88

Q,K,V = WqN,WkN,Wvx̄ (1)

Q′ = [Q;Qdefault],

Attention(Q′,K,V) = softmax
(
Q′ ·KT

√
D

, dim=’queries’
)
·V,

S,Sdefault = Attention(Q′,K,V). (2)

Here, Wq, Wk, and Wv are the linear projection weight matrices for the queries, keys, and values,89

respectively, S are the visual slots, Sdefault are the visual slots from default query tokens, which are90

discarded for subsequent steps, and [.] denotes the concatenation operation.91

Thus, the output of this binding module are the visual slots S. Intuitively, these slots are pushed92

to represent the visual objects, or entities, that correspond to the nodes of the scene graph. Their93

object-centric learning is driven by the structured similarity that we detail in the next section.94

Structured similarity score Our second contribution resides in the introduction of a structured95

similarity score, whose goal is to promote the constraints imposed by the scene graph on the learnable96

visual slots. Our proposed structured similarity score is composed of an object scoring function97

and a relationship scoring function. The object scoring function assesses the presence of each98

node in the scene graph (objects present in the caption). We model this function as the sum of the99

cosine similarity between each textual node representation Ni and its assigned visual slot Si. The100

relationship scoring function encourages the relational constraints imposed by each edge in the scene101

graph and is defined as a learnable function fϕ of the relationship embedding ri, and the visual slot102

representations Ssi and Soi corresponding to the subject and object of the relationship, respectively.103

We derive the overall structured similarity score over the visual slots S from an image x and a graph104

G = ({N i}i=1..M , {(ri, si, oi)}i=1..P ) such that:105

S(x,G) =
α
∑

i=1..M cosine(Ni,Si) + β
∑

i=1..P fϕ(r
i,Ssi ,Soi)

αM + βP
, (3)

where α and β are parameters controlling the strength of each score. M and P are the number of106

nodes and relationships in the scene graph G, respectively.107

We define fϕ as follows:108

fϕ(r,S
s,So) = cosine (r, fs([r,Ss]) + fo([r,S

o])) , (4)

where [.] denotes the concatenation of two vectors and fs and fo are MLPs that reduce the dimen-109

sionality of their inputs. Note that we model the relationship scoring function so that it keeps the110

same scale as the object scoring function and can take the order of the relationship into account.111

Training The model is trained using the following loss:112

L = Litc + Lrel. (5)

Litc is the image-text contrastive loss defined to minimize the distance between image and scene113

graph representations from paired text-image data while maximizing the distance between image and114

scene graph representations from unpaired text-image data as:115

Litc = −
B∑
i=1

(
log

expS(xi,Gi)∑B
j=1 exp

S(xj ,Gi)
+ log

expS(xi,Gi)∑B
j=1 exp

S(xi,Gj)

)
, (6)

where B is the number of elements in the batch. Note that the S is the structured similarity score116

defined in Eq. 3. Lrel is the loss that pushes the model to learn a non-symmetric relationship scores:117

Lrel = −
B∑
i=1

log
expS(xi,Gi)

expS(xi,Gi) +expS(xi,Ḡi) +expS(xi,G̃i)
, (7)

where Ḡ and G̃ are altered scene graphs. In Ḡ, we swap the order of the subject and the object of118

a relationship, whereas in G̃, we randomly chose the relationship’s subject and object from the nodes119

in the scene graph.120
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3 Results121

Setting We train OC-CLIP and finetune OpenCLIP in-domain on a set of datasets relevant for122

real-world compositional understanding. The training text descriptions representing positive samples123

are taken from COCO [27], Visual-Genome [24] and GQA [20]. The latter annotates images coming124

from Visual Genome [24] with objects and both spatial and non-spatial relationships, and thus125

contains a high representation of spatial prepositions. We evaluate the different models on the most126

challenging benchmarks representative of compositional understanding, ensuring that we validate127

both their attribute binding and spatial relationship understanding capabilities. In particular, we128

use SugarCrepe [18] and ARO-Attribution (ARO-A) [47] for attribute binding and ARO-Relation129

(ARO-R) [47], COCO-spatial and GQA-spatial [23] for spatial relationship understanding. The130

training of the OC-CLIP’s binding module is done from scratch along with the finetuning of the text131

and vision backbones. The text backbone is initialized from OpenCLIP weights [21]. We consider132

2 different image base ViT backbones, OpenCLIP (ViT-B-16) [21] and Dinov2 (ViT-B-14) [35], to133

show the flexibility of our binding module and learned structured similarity score.134

Attribute Binding We evaluate the attribute binding capabilities of OC-CLIP and baselines on135

SugarCrepe [18] and ARO-A [48] benchmarks. We report the results in Table 1. When comparing136

OpenCLIP-FT to OC-CLIP (both models), we observe notable performance boosts on ARO-A and137

SugarCrepe’s swap-attribute, and swap-object. In particular, OC-CLIP B-14 shows a performance138

boost of +22.1% on ARO-A, whereas in SugarCrepe, our model reaches improvements of +16.1%139

on the swap-attribute split, +17.7% on the swap-object split. When comparing with additional140

contrastive-based models (BLIP and XVLM) finetuned with in-domain data, both OC-CLIP models141

show notable improvements on SugarCrepe’s swap splits – e.g., OC-CLIP B-14 results in +14.6% in142

object-swap and +12.3% in attribute-swap – despite not relying on additional binding annotations,143

nor language modeling losses. The results of BLIP and XVLM on ARO-A may be explained by144

the use of their use of a language modeling prior; It is shown in [18] that language-only models are145

performing well on this benchmark because the negative caption are often not realistic.146

Spatial Relationship Understanding We also evaluate the spatial relationship understanding147

capabilities of OC-CLIP and baselines on COCO-spatial, GQA-spatial, and ARO-Relation (ARO-R).148

Note that ARO-Relation contains both spatial and non-spatial relations but about half of the test149

examples consists of left/right relationships understanding. We report the results in Table 1 and show150

consistent improvements of both OC-CLIP models over the baseline models and across the 3 datasets.151

In particular, the best OC-CLIP model outperforms OpenCLIP-FT by +47.9% on COCO-spatial,152

+46.6% on GQA-spatial, and +34.7% on ARO-R. When compared to contrastive VLMs finetuned with153

in-domain data (XVLM, BLIP), OC-CLIP models exhibit superior performance, with improvements154

between +10% and +27% over the strongest contrastive finetuned VLM. Finally, when compared155

to baselines leveraging hard-negatives (NegCLIP), OC-CLIP remains the highest performer.156

WhatsUp SugarCrepe ARO
Model COCO-spatial GQA-Spatial swap-obj swap-att Att Rel

OpenCLIP-FT 45.6 49.1 63.1 72.4 59.9 50.1
XVLM [49] 73.6 67 64.9 73.9 86.8 73.4

BLIP 26 56.4 52.6 66.2 76.2 88.0 59.0
NegCLIP [47] 46.4 46.7 75.2 75.4 70.5 80.2

OC-CLIPB-16 90.1 93.9 76.3 87.1 80.3 83.7
OC-CLIPB-14 93.5 95.6 80.8 88.5 82.0 84.8

Table 1: Compositional Understanding: Performance on the hardest SugarCrepe, What’s Up and
ARO Splits. Both OpenCLIP-FT and OC-CLIP are initialized with the same OpenCLIP checkpoints.
OC-CLIP is trained with two ViT base backbones with different resolutions: OpenCLIP’s backbone
(B-16) and Dinov2 (B-14).
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4 Conclusion157

We propose OC-CLIP, a method that enhances the compositional scene understanding of CLIP-158

like models by leveraging object-centric representation learning. The results show that OC-CLIP159

significantly improves performance on challenging real-world compositional image-text matching160

benchmarks, such as SugarCrepe and Whatsup. Future work could explore ways to improve the161

scalability of the approach when trained from scratch with noisy alt-text based datasets.162
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Figure 1: Object-Centric CLIP (OC-CLIP) overview.

A.1 Related Work330

Contrastive Pretraining of VLMs. Vision-language models (VLMs) have made substantial331

strides in both the vision and multi-modal domains. Modern VLMs are pretrained on vast, diverse332

and oftentimes noisy multi-modal datasets [6, 42, 21, 50] and applied to various zero-shot tasks.333

CLIP [39] presented a contrastive learning approach used for pretraining, which involves training334

the model to differentiate between similar and dissimilar image-text pairs. This approach encourages335

the model to learn a shared representation space for images and text, where semantically similar pairs336

are close together and dissimilar pairs are far apart. Following CLIP’s lead, image-text contrastive337

learning has become a prevalent strategy for VLM pretraining [30, 5, 29, 9, 51, 7, 4]. Contrastive338

vision-language pretraining spans numerous downstream applications, including zero-shot image339

classification [52, 39, 32, 14], text-to-image generation [38, 1, 40, 41], as well as assessing text-image340

alignment [33, 8]. In this work we are particularly interested the ability of CLIP-based VLMs to341

evaluate compositional text-image alignment.342

Compositional Understanding Benchmarks. Several benchmarks have been developed to assess343

the compositional understanding of VLMs. In this work, we focus on benchmarks structured as344

cross-modal retrieval tasks where the model needs to distinguish between correct and incorrect text345

descriptions given an image, and evaluations are based on accuracy metrics. The majority of these346

benchmarks [55, 47, 37] rely on the rule-based construction of negative captions and the generation347

of their associated image counter-factuals [53, 3]. Yet, many of these benchmarks may be solved348

by leveraging the language prior exclusively [15, 28], hence disregarding the information from the349

visual input. To address this, benchmarks such as SugarCrepe [19] leverage large language models350

to generate plausible and linguistically correct hard negatives, and show that previously introduced351

text-based hard negative strategies are not always effective [48] – e.g., when considering attribute and352

object swaps between textual descriptions. Other benchmarks focus on assessing the VLMs’ spatial353

understanding [23, 48, 53], and propose to finetune CLIP-based models on data containing a high pro-354

portion of spatial relationships since these relationships tend to underrepresented in commonly used355

pretraining datasets. Interestingly, (author?) [23] show that even when finetuning with in-domain356

data with an overrepresentation of spatial relationships, state-of-the-art models still exhibit a close357

to random chance performance. In this work, we test the hypothesis that spatial relationship failures358

are due to the lack composition in the similarity score computation used to train CLIP-like models.359

Object-centric Binding Inductive Biases. CLIP has been shown [47] to be pushed to learn dis-360

entangled, bag-of-words-style representations from the contrastive loss and the easily distinguishable361

negatives typically used for pretraining. Although the learned representations might be effective for362

objects presented in isolation, they struggle with scenes containing multiple objects []. For example,363

consider a simple scene with a green apple and a yellow banana. In this case, the model must maintain364

and correctly link the attributes (“green”, “yellow”) to the objects (“apple”, “banana”), without mixing365

the concepts – e.g., “yellow apple” or ‘green banana”. This exemplifies the importance of devising366

robust mechanisms within the CLIP architecture and/or training to accurately handle multiple objects,367

while preventing feature interferences. In this work, we focus on equipping CLIP with object-centric368

binding inductive biases and take inspiration from the architectures proposed in the unsupervised369
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object-centric visual representation learning literature [31, 46, 43, 2]. Many recent image-only ap-370

proaches follow a simple inductive bias introduced by slot Attention [31], where an image – encoded371

as a set of input tokens – is soft partitioned into K slots. In particular, attention maps are computed via372

a inverted cross attention mechanism [45], where the softmax is applied along the query dimension373

in order to induce a competition between the slots to explain different groups of input tokens. In this374

work, we extend these inductive biases to define text-conditioned visual slots from the input image.375

A.2 More Compositional Results376

We evaluate the attribute binding capabilities of OC-CLIP and baselines on SugarCrepe [18] and377

ARO-A [47] benchmarks. We report the results in Table 2. When comparing OpenCLIP-FT to378

OC-CLIP (both models), we observe notable performance boosts on ARO-A and SugarCrepe’s379

swap-attribute, and swap-object. In particular, OC-CLIP B-14 shows a performance boost of +22.1% on380

ARO-A, whereas in SugarCrepe, our model reaches improvements of +16.1% on the swap-attribute381

split, +17.7% on the swap-object split, and a smaller +4.7% on the replace-relationship split.382

Moreover, both OC-CLIP models perform similarly to OpenCLIP-FT on the remaining SugarCrepe383

splits. This is to be expected since the remaining splits do not require precise binding to distinguish384

between positive and negative captions and may therefore be solved with a bag-of-words-like385

representation. When comparing with additional contrastive-based models (BLIP and XVLM)386

finetuned with in-domain data, both OC-CLIP models show notable improvements on SugarCrepe’s387

swap splits – e.g., OC-CLIP B-14 results in +14.6% in object-swap and +12.3% in attribute-swap –388

despite not relying on additional binding annotations, nor language modeling losses. The results389

of BLIP and XVLM on ARO-A may be explained by the use of their use of a language modeling390

prior; (author?) [19] emphasizes that language-only models are performing well on this benchmark391

because the negative caption are often not realistic. Both OC-CLIP models also improve the results392

of hard-negative-based methods on SugarCrepe’s swap splits as well as ARO-A. In all the remaining393

splits of SugarCrepe, except add-attribute, OC-CLIP models perform similarly to previous works394

leveraging hard-negatives. The results achieved by CE-CLIP and CC-CLIP on the add-attribute split395

could be attributed to an increase of attribute coverage induced by the language model generations.

Model SugarCrepe – Swap SugarCrepe – Add SugarCrepe – Replace ARO-A

Object Attribute Object Attribute Object Attribute Relation

Zero-shot
OpenCLIP 68.2 66.2 82.7 80.3 93.8 82.8 67.3 58.8

In-domain ft baselines
BLIP 26† 66.2 76.2 - - 96.5 81.9 68.35 88.0
XVLM (author?) 49 † 64.9 73.9 - - 95.2 87.7 77.4 86.8
OpenCLIP-FT 63.1 ±0.6 72.4±1.1 93.4 ±0.2 83.1 ±0.5 95.4 87.0 ±0.6 75.5 ±0.6 59.9 ±0.2

Hard-Negative based baselines
NegCLIP [47]† 75.2 75.4 88.8 82.8 92.7 85.9 76.5 70.5
CE-CLIP [54]† 72.8 77 92.4 93.4 93.1 88.8 79 76.4
CC-CLIP [53]† 68.6 73.6 86.7 90.3 95.9 87.9 76.2 -

Ours
OC-CLIP B-16 76.3 ±0.7 87.1 ±0.2 91.3 83.8 ±1.0 93.9 ±0.4 88.3 ±0.1 77.0 ±0.2 80.3 ±0.1

OC-CLIP B-14 80.8 ±0.7 88.5 ±0.4 93.0±0.3 83.8 ±1.1 95.7 ±0.4 88.8 ±0.6 80.2 ±0.2 82.0

Table 2: Attribute binding: Performance on SugarCrepe and ARO-Attribution (ARO-A). Both
OpenCLIP-FT and OC-CLIP are initialized with the same OpenCLIP checkpoints. OC-CLIP is
trained with two ViT base backbones with different resolutions: OpenCLIP’s backbone (B-16) and
Dinov2 (B-14).

396

For the parsing of the training and testing data we used a llama-3-70b Instruct model with the397

following prompt :398
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Parsing Prompt

Given a caption, your task is to parse it into its constituent noun phrases and relationships.
The noun phrases should represent independent visual objects mentioned in the caption
without semantic oversimplification. For each caption, output the parsed noun phrases (e.g.,
entities) and relationships in JSON format, placing the dictionary between [ANS] and [/ANS]
brackets. In the relationships, use indices to specify the subject and object of the relationship
mentioned in the caption. The indices of the subject and object should be integers. Here are a
few examples:

C a p t i o n : A l a r g e brown box wi th a g r e e n t o y i n i t
Outpu t :
[ANS]
{

" e n t i t i e s " : [
" l a r g e brown box " ,
" g r e e n t o y "

] ,
" r e l a t i o n s h i p s " : [

{
" r e l a t i o n s h i p " : " i n " ,
" s u b j e c t " : 1 ,
" o b j e c t " : 0

}
]

}
[ / ANS]

[ . . . ] More examples

PAY ATTENTION to the following:
- Relationships MUST relate two different entities in the caption and NOT be unary. For
example, in the caption ’red suitcases stacked upon each other’, ’stacked upon each other’ is
not considered a relationship.
- Do not forget any relationships.
- Relationships MUST be directed. ’and’ is not a relationship.
- Pay attention to spatial relationships like ’behind’, ’left of’, ’with’, ’below’, ’next to’, etc.
’and’ is not a relationship.
- Check the right dependencies when the relationships are not direct. In the caption template a
X with a Y in it, it refers to X.
- Pay attention to co-references.

Now, parse the following caption into its constituting entities and relationships. You MUST
place the answer between [ANS] and [/ANS] delimiters.
Caption:

399
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