
Under review as submission to TMLR

Circuit Explained: How Does a Transformer Perform
Compositional Generalization

Anonymous authors
Paper under double-blind review

Abstract

Compositional generalization — the systematic combination of known components into novel1

structures — is fundamental to flexible human cognition, yet the mechanisms that enable2

it in neural networks remain poorly understood in both machine learning and cognitive3

science. Lake & Baroni (2023) showed that a compact encoder-decoder transformer can4

achieve simple forms of compositional generalization in a sequence arithmetic task. In this5

work, we identify and mechanistically interpret the circuit responsible for this behavior in6

such a model. Using causal ablations, we isolate the circuit and show that this understanding7

enables precise activation edits to steer the model’s outputs predictably. We find that the8

circuit performs function composition without encoding the specific semantics of any given9

function — instead, it leverages a disentangled representation of token position and identity10

to apply a general token remapping rule across an entire family of functions. Our findings11

advance the understanding of how compositionality can emerge in transformers and offer12

testable hypotheses for similar mechanisms in other architectures and compositional tasks.13

Code will be released after double-blind review.14

Keywords: Transformer; Mechanistic Interpretability; Compositionality15

1 Introduction16

Humans excel at compositional generalization—the ability to combine known components to solve novel17

problems. For example, once we learn the concept of "swap," we can apply it to any two objects, regardless18

of their identity. This capacity for relational abstraction appears early: even infants generalize rules like19

same-different or before-after to unfamiliar contexts (Gentner, 1983; Holyoak & Thagard, 1994; Marcus et al.,20

1999). While cognitive science has long studied this ability, its neural basis remains unknown.21

In parallel, compositional generalization has posed a longstanding challenge in machine learning. Building22

flexible, general-purpose systems requires models to go beyond memorization and exhibit systematic gen-23

eralization. Classic critiques, such as those by Fodor (1979), argued that connectionist models lack the24

structure required for compositionality. While this concern shaped decades of skepticism, recent advances25

with transformer-based models (Vaswani et al., 2017)—and large-scale training paradigms (Kaplan et al.,26

2020; Bubeck et al., 2023) have provided substantial counterexamples.27

In recent work, Lake & Baroni (2023) demonstrated that a compact encoder-decoder transformer can achieve28

human-like compositional generalization in a symbolic sequence arithmetic task. Here, we leverage the small29

scale of this model and provide an end-to-end mechanistic interpretation of how it solves this compositional30

generalization task. We trace the model’s behavior to a minimal, interpretable circuit and reverse-engineer31

the attention dynamics into a human-readable algorithm. We validate the circuit’s role by predictably32

steering the model’s output.33

This study reveals two core principles underlying the model’s success:34

1. The model relies on disentangled representations of position (slot) and token (content) embeddings.35

1

Under review as submission to TMLR

2. Functions operate on disentangled position embeddings, allowing generalized transformations of36

arbitrary token identities.37

Previous studies have identified function vectors in transformers — semantically meaningful activations that38

represent abstract transformations (Todd et al., 2023; Stoehr et al., 2024). In contrast, we uncover a different39

mechanism: the circuit applies functions to new arguments by remapping the output pattern through token-40

routing, without encoding the actual semantics of the functions themselves. While our model and task are41

intentionally specific, the mechanism we identify may underlie similar forms of compositional generalization42

that involve sequence remapping, such as word completion (Olsson et al., 2022), object identification (Wang43

et al., 2022), and code completion (Husein et al., 2025).44

We discuss Related Work on Transformer Circuit Interpretation and Compositional Generalization in45

Transformers in the Appendix.46

2 Experimental Setup47

Our experimental setup involves a synthetic function composition task (Figure 1) designed to probe compo-48

sitional generalization in a compact Transformer (Lake & Baroni, 2023). We outline the task structure, the49

Transformer basics (including attention mechanisms), and the training protocol.50

2.1 Task Structure51

Encoder

Layer 1

Self-attention

MLP

Layer 0

Self-attention

MLP

Decoder

Layer 1

Cross-attention

MLP

Self-attention

Layer 0

Cross-attention

MLP

Self-attention

A S B = ?

B S D =

D S A =

A = D = B =

A S B =

Support:

Question:

SOS (Start of Sentence)

 S | = red blue EOS A A | S D = | B = | | D = pink B pink B
Prompt:

Output:

question support set

 EOS blue SOS

 blue pink

 red blue

Figure 1: Top, schematic of the transformer model and
task. Bottom, the prompt and output format for the
compositional generalization task.

Each episode consists of a Support Set and a52

Question (Figure 1):53

Support Set:54

Specifies (i) how the Primitives are symbol-to-color55

mappings (e.g., B maps to blue, written as [B] =56

blue, with [] as an interpretation function for57

translating inputs to outputs; or D maps to pink,58

written as [D] = pink). The Support Set also spec-59

ifies (ii) Functions as symbolic operations that take60

primitives as arguments, and calls the interpreta-61

tion function on those arguments in a new order.62

For instance, the function S might take two argu-63

ments and evaluate them in the order of (e.g., [B S64

D] = [D][B][D] = pink blue pink. The 2nd to-65

ken is always the function token; the 1st and 3rd66

tokens are always the argument tokens to the func-67

tion. The length of function output ranges from 268

to 5. Function generation rule is further described69

in A.3.70

Question:71

Presents a new composition of primitives and func-72

tions defined in the Support Set.73

The model generates answers to the Question as74

token sequences emitted from the decoder, with a75

SOS (start of sentence) token as the first input to the decoder and an EOS (end of sentence) marking the end76

of the emission. The model operates strictly via in-context learning—weights remain frozen during inference,77

and test episodes are disjoint from training data. The model must infer latent variable bindings (primitives78

and functions) from the Support Set and dynamically compose these bindings to solve the novel Question.79

2

Under review as submission to TMLR

2.2 Model80

2.2.1 Transformer Basics81

Our transformer uses an encoder-decoder architecture that involves two types of attentions:82

• Self-Attention: Captures within-sequence interactions. The token embedding matrix X ∈83

Rninput×dmodel is projected into Queries, Keys, and Values:84

Q = XWQ, K = XWK , V = XWV ,

where WQ, WK , WV ∈ Rdmodel×dhead are learnable weight matrices.85

• Cross-Attention: Enables the decoder to attend to encoder outputs. Here, the Queries (Q) come86

from the decoder tokens, while the Keys (K) and Values (V) come from the encoder tokens. We87

denote the different tokens used to compute Q K V as XQ XK XV .88

The attention mechanism operates through two separate circuits on embedding X ∈ Rninput×dmodel for each89

attention head:90

• QK Circuit (WQW ⊤
K): Determines from where information flows to each token by computing atten-91

tion scores between token pairs, with higher scores indicating stronger token-to-token relationships:92

Attention(Q, K) = softmax
(

XQWQ(XKWK)⊤
√

dhead

)
∈ Rnquery×nkey ,

where softmax is applied along the Key dimension and independently for each head.93

• OV Circuit (WV WO): Controls what information gets written to each token position. Combined94

with the QK Circuit, this produces the output of the attention head:95

Z = Attention(Q, K) · XV WV WO ∈ Rnquery×dmodel ,

where WO ∈ Rdhead×dmodel is a learnable weight matrix.96

Following attention blocks, each transformer layer includes a position-wise MLP block, which applies a97

non-linear transformation to each token embedding independently. However, prior work by Wang et al.98

(2022) demonstrated that MLPs are less relevant for induction tasks. Therefore, our circuit analysis focuses99

exclusively on attention heads.100

2.2.2 Model Training101

We adopt an encoder-decoder Transformer with 2 layers in the encoder and 2 layers in the decoder (Figure102

1) with each layer containing 8 attention heads. Further model details appear in the Appendix. We have103

also experimented with different model hyperparameters, see Appendix A.6.104

We train on 10,000 such episodes for 50 epochs and evaluate on 2,000 test (held-out) episodes. The model105

achieves 94% accuracy on this test set, indicating strong compositional generalization capabilities. In the106

test set, primitive assignments and function definitions are conjunctively different from those in the training107

set (i.e., some primitives or some functions might be in the training set, but not the whole combination of108

them), preventing a memorization strategy. Please refer to the Appendix for additional details.109

3 Results110

We first outline the high-level algorithm the model appears to implement. We then describe our circuit dis-111

covery process, using causal methods to isolate the attention heads driving compositional behavior. Finally,112

we validate the mechanism through targeted interventions that predictably steer model outputs. Throughout,113

we use 1-indexing (count from 1) for tokens.114

3

Under review as submission to TMLR

3.1 The High-Level Algorithm115

The overall algorithm the model implements can be described in terms of three logical steps (Figure 2).116

1. Unbind: The function output in the Support is coded in terms of an array of positions associated117

with the argument tokens.118

2. Rebind: The new argument tokens in the Question bind with the original argument positions in119

the Support forming new position-token pairs.120

3. Produce: Reapply the function coded in terms of positions to the new position-token pairs to form121

an array of output tokens.122

In essence, the model uses token-independent positions as a pointer system that through unbinding and123

rebinding can generalize to different token identities.124

Support
A = , D = , B =

B S D =

B = = idx1, D = = idx3

idx1 S idx3 = [idx3] [idx1] [idx3]

B S D =

A S B = ?
idx3 = B = idx1 = A = ,

idx1 S idx3 = [idx3] [idx1] [idx3]

idx1 S idx3 =

2. Rebind 3. Produce1. Unbind

Figure 2: Schematic of the compositional algorithm. For Unbind, in ’B S D’, B is the 1st token (idx1), and
’B=blue’, so ’B=blue=idx1’; similar for ’D’. For Rebind, in ’A S B’, A is the 1st token (idx1), and ’A=red’,
so ’idx1=A=red’; similar for ’B’.

3.2 Transformer Solution with Attention Operations125

Next, we map each step to specific attention heads and walk through the attention operations with a guidance126

episode in Figure 3.127

Nomenclature: given a function definition in the prompt (e.g., ’...| B S D=pink blue pink|...’), function128

Left-Hand-Side (LHS) refers to tokens on the left (e.g., ’B S D’); function Right-Hand-Side (RHS) refers to129

tokens on the right (e.g., ’pink blue pink’). Index-on-LHS/RHS refers to the relative position of tokens on130

the LHS/RHS, (e.g., ’B=1st, pink=1st’). Similarly, index-in-question refers to a token’s relative position in131

the Question. The attention heads are named by their interpreted roles, which are detailed in the Circuit132

Discovery section.133

Step 1: Unbind134

• Primitive- and Function-Retrieval Heads (Figure 3a): Color tokens on the function RHS135

(pink) attend to their associated primitive tokens on the function LHS (D), inheriting the latter’s136

index-on-LHS (3rd). The heads are detailed in Figure 9.137

Step 2: Rebind138

• Question-Broadcast Head (Fig. 3b): Primitive input tokens in the Support (e.g., B) attend to139

the same primitive tokens in the Question (B), inheriting the latter’s index-in-question (3rd). The140

head is detailed in Figure 6b.141

• Primitive-Pairing Head (Fig. 3c): Color tokens (blue) attend to their associated primitive tokens142

(B), inheriting the latter’s index-in-question (3rd). The head is detailed in Figure 6a.143

Step 3: Produce144

• RHS-Scanner Head (Fig. 3d): The 1st token in the Decoder (SOS) attends to the 1st tokens on145

the function Right Hand Side (RHS) (pink), inheriting the latter’s former-inherited index-on-LHS146

(3rd). The head is detailed in Figure 8.147

4

Under review as submission to TMLR

• Output Head (Fig. 3e): SOS token (with inherited index-on-LHS=3rd) attends to color tokens148

(blue) with the same index-in-question (3rd), inheriting the latter’s token identity (blue), and149

generates the next prediction (blue). The head is detailed in Figure 5. Then the 2nd token in150

the Decoder (blue) repeats the operation with the RHS-Scanner Head until completion of function151

RHS.152

Together, these heads form a modular circuit that performs compositional generalization via pointer-based153

binding, mirroring symbolic execution through argument extraction, rebinding, and output generation.154

a. Primitive-Retrieval &
 Function-Retrieval

 B
 S
 D
 =

 pink

 ...

idx=1st (RHS) idx=3rd (LHS)

idx=3rd (LHS)

 Q

 K

 ...

 V

 blue

[1]*

idx=3rd
 S
 A

 B Emb=B

b. Question-Broadcast

 |

 B
 ...

Emb=B idx=3rd
 =

 ...

 Q

 K
 V

 blue

 S

 |

 A

 B

c. Primitive-Pairing

 B
 =

 ...

 ...

Emb=B

Emb=blue idx=3rd

idx=3rd
 V

 Q

 K
[2]*

 blue

 S | = red blue EOS A A | S D = | B = | | D = pink B pink B
Prompt:

Output:
question support set

 EOS blue SOS

 blue pink

 red blue

 ...

 =
 pink

 ...

idx=1st (RHS) idx=3rd (LHS)

 SOS idx=1st idx=3rd (LHS)

 ...
Emb=blue idx=3rd

 B
 S
 D

 blue

 Q

 K

 V

d. RHS-Scanner

 blue
 ...

 =
 pink

 ...

 SOS idx=1st idx=3rd (LHS)

 ...
Emb=blue idx=3rd

 B
 S
 D

 blue

 Q

 K

Emb=blue

 V

e. Output

 blue
next token

 blue

Figure 3: Summary of circuit for compositional generalization. Top, the example episode’s input and
output. For a-e, the yellow boxes indicate self-attention heads and the blue boxes indicate cross-attention
heads. Titles refer to the functional attention heads that execute the steps (details in Circuit Discovery
section). We unfold all relevant information superimposed in tokens’ embeddings and highlight their roles
in attention operations. [1]∗, the QK alignment discussed in Primitive-Retrieval Head section. [2]∗, the QK
alignment discussed in Primitive-Pairing Head section.

3.3 Circuit Discovery155

Nomenclature. For attention heads, Enc-self-0.5 stands for Encoder, self-attention, layer 0, head 5 ;156

similarly, Dec-cross-1.5 stands for Decoder, cross-attention, layer 1, head 5.157

Minimal Sufficient Circuit. Circuit interpretation studies often find that a given behavior is supported158

by multiple redundant or compensating circuits. We observe this redundancy in our model as well (Lieberum159

et al., 2023; Conmy et al., 2023). To facilitate clear mechanistic interpretation, we focus our analysis on160

a minimal sufficient circuit, defined by two criteria: (1) this circuit alone can account for the behavior of161

interest, and (2) the circuit is pruned based on each head’s contribution until all included heads perform162

functionally unique roles.163

We first present the full diagram of the key attention heads to illustrate their relationships (Figure 4). We164

then describe the detailed role of each head with reference to this diagram in the corresponding sections that165

follow. The circuit is also replicated in another model with different hyperparameters (Appendix A.6).166

3.3.1 Output Head (Dec-cross-1.5; Figure 5)167

We discovered the model’s circuit backwards from the unembedding layer using logit attribution (nostal-168

gebraist, 2020), which measures each decoder attention head’s linear contribution to the final token logits169

(adjusted by the decoder’s output LayerNorm). We identified Dec-cross-1.5 (decoder cross attention layer170

1 head 5) as the primary contributor (Figure 5a).171

Dec-cross-1.5’s Q tokens always attend to the K tokens from the Encoder that are the next predicted ones.172

For example, in Figure 5b, the SOS token attends to instances of red in the Support Set, which is indeed the173

5

Under review as submission to TMLR

Dec-cross-1

To Output logits

0

0.04

0.08

0.12

0.16

H0 H1 H2 H3 H4 H5 H6 H7

Dec-self-1

Dec-cross-0

Dec-self-0

H0 H1 H2 H3 H4 H5 H6 H7

Enc-self-0

Enc-self-1

0.1

0.8

0.5

To Dec-cross-1.5 (Output Head) K

0.1

0.5

0.3

H0 H1 H2 H3 H4 H5 H6 H7

Enc-self-0

To Enc-self-1.1 (Primitive-Pairing) V

To Dec-cross-1.5 (Output Head) Q

0.15

0.25

0.35

H0 H1 H2 H3 H4 H5 H6 H7

Dec-self-0

Dec-cross-0

Dec-self-1

H0 H1 H2 H3 H4 H5 H6 H7

Enc-self-0

Enc-self-1

To Dec-cross-0.6 (RHS-Scanner) V

0.02

0.06
0.1

To Dec-cross-1.5 (Output Head) Q

�������������

�����������������������

�������������
�������

	����
����������

����������	�������������
���
�����	�������������

������������� �������������

Figure 4: Circuit diagram of the key attention heads. Green circles indicate attention heads that contribute
most significantly to downstream nodes. Green arrows denote the flow of contributions from upstream nodes
to each attention head. The main sub-circuits highlighted are the K -circuit and Q-circuit leading to the
Output Head.

correct next output prediction. This attention accuracy (i.e., max-attended token being the next-emitted174

token) of Dec-cross-1.5 remains above 90% for the first three tokens in the responses across all test episodes175

(Figure 5c), with Dec-cross-1.1 and -1.3 partially compensating beyond that point.176

These observations suggest that Dec-cross-1.5’s OV circuit feeds token identities directly to the decoder177

unembedding layer (output layer). Specifically, we observe that the output of the OV circuit, XWvWo,178

align closely (strong inner product) with the unembedding vectors of the corresponding tokens (Figure 5d).179

Hence, we designate Dec-cross-1.5 as the Output Head (while Dec-cross-1.1 and -1.3 perform similar but less180

dominant roles).181

Next, we show how the Output Head identifies the correct token through QK interactions.182

� �

��
Cross-1.5 to
umembed

Shu�e

-0.5 0 0.5 1
Inner product

Fr
eq

ue
nc

y

0.14

0.10

0.06

0.02
0.2

0.6

1

Ac
cu

ra
cy

0.8

0.4

Nth output
0 1 2 3 4

Output Head (Decoder-cross-1.5)
SOS

EOS 0

1

Q
ue

ry

A F C | B = | C F B = | B F C = | C F A = | C = | A = | B D C = | EOS

Key

Dec-cross-1

To Output logits

0

0.04

0.08

0.12

0.16

H0 H1 H2 H3 H4 H5 H6 H7

Dec-self-1

Dec-cross-0

Dec-self-0

�������������

������������� �������������

Figure 5: (a) Logit contributions of each decoder head to the logits of correct tokens (fraction to total
logits). (b) Attention pattern of Dec-cross-1.5. (c) For Dec-cross-1.5, the percentage of attention focused
on the next predicted token. (d) For Dec-cross-1.5, alignment (inner product) between its OV output (e.g.,
xredWvWo) and the corresponding unembedding vector (e.g., Unembred). We estimated the null distribution
by randomly sampling unembedding vectors.

3.3.2 The K-Circuit to the Output Head183

We first determine which encoder heads critically feed into the Output Head’s K. To do this, we performed184

path-patching (Wang et al., 2022) by ablating all but one single encoder head (keep-only-one-head) and then185

6

Under review as submission to TMLR

measuring how much of Output Head’s QK behavior (i.e., attention accuracy) remained. During these186

experiments, Output Head’s Q were frozen using clean-run activations. Here we report patching results with187

mean-ablation (qualitative similar to random-sample ablation) (details in Appendix).188

Through this process, we identified Enc-self-1.1 and Enc-self-0.5 as the primary contributors to Output189

Head’s K, acting in a sequential chain (Figure 6a). Next, we show how they sequentially encode symbols’190

index-in-question critical for the QK alignment.191

Primitive-Pairing Head (Enc-self-1.1; Figure 6b) This head exhibits a distinct attention pattern192

that pairs each color token with its associated primitive symbol token (e.g., in the Support Set, all instances193

of red attend to C). In other words, Enc-self-1.1 relays information (described below, as computed by e.g.,194

Enc-self-0.5) from the primitive symbols to their corresponding color tokens via its QK circuit. Hence, we195

call Enc-self-1.1 the Primitive-Pairing Head.196

To investigate which upstream heads feed into the OV circuit of the Primitive-Pairing Head, we applied a197

sequential variant of path-patching, isolating the chain:198

Upstream heads (e.g. Enc-self-0.5) −→ Primitive-Pairing Head (V) −→ Output Head (K),199

while mean-ablating all other direct paths to Output Head’s K. We identified Enc-self-0.5 as the most200

contributing node (Figure 6c).201

Question-Broadcast Head (Enc-self-0.5; Figure 6c) All input symbol in the Support Set attend202

to their copies in the input Question. In other words, Enc-self-0.5 broadcasts question-related information203

(including token identity and position) across symbols in the Support Set (henceforth the Question-Broadcast204

Head). We hypothesize that the primitive symbols’ index-in-question is the critical information passed from205

the Question-Broadcast Head’s Z through the Primitive-Pairing Head’s Z and lastly into the Output Head’s206

K.207

Key

Q
ue

ry

Primitive-Pairing Head (Encoder-self-1.1)

�

A F C | B = | C F B = | B F C = | C F A = | C = | A = | B D C = | EOS

A
F
C
 |
B
=

 |
C
F
B
=

 |
B
F
C
=

 |
C
F
A
=

 |
C
=

 |
A
=

 |
B
D
C
=

 |
EOS

Key

Q
ue

ry

Question-Broadcast Head (Encoder-self-0.5)�
A
F
C
 |
B
=

 |
C
F
B
=

 |
B
F
C
=

 |
C
F
A
=

 |
C
=

 |
A
=

 |
B
D
C
=

 |
EOS

A F C | B = | C F B = | B F C = | C F A = | C = | A = | B D C = | EOS

H0 H1 H2 H3 H4 H5 H6 H7

Enc-self-0

Enc-self-1

0.1

0.8

0.5

To Dec-cross-1.5 (Output Head) K

0.1

0.5

0.3

H0 H1 H2 H3 H4 H5 H6 H7

Enc-self-0

To Enc-self-1.1 (Primitive-Pairing) V

�������������

����������������������� ��������
����	��������

�������������
�������������

	

Figure 6: (a) Top, contributions to Output Head’s performance (percentage of attention on the correct
next token) via K. Bottom, attention pattern of Enc-self-1.1. (b) Top, contributions to the Output Head’s
performance through the Primitive-Pairing Head’s V . Bottom, attention pattern of Enc-self-0.5.

7

Under review as submission to TMLR

Index-In-Question Tracing To validate this hypothesis, we examined the Question-Broadcast Head’s Z208

for each primitive-symbol token. We reduced these outputs to two principal components and colored each209

point by its index-in-question. As illustrated in Figure 7a, the Question-Broadcast Head’s Z exhibit clear210

clustering, indicating that the index-in-question is robustly encoded at this stage (quantified by the R2 score,211

i.e., the amount of variance explained by index identity, details in Appendix). We further confirmed that the212

Primitive-Pairing Head’s Z preserves index-in-question (Figure 7b) and that the resulting Output Head’s K213

also reflect the same clustering (Figure 7c).214

Figure 7: Principal Components Analysis (PCA) of token embeddings, colored by their associated index-in-
question. Concretely, for a prompt like ’A S B | A=red | B=blue | ...’, in (a), points are the Z of ’A’
and ’B’ in the Support (A labeled 1st, B labeled 3rd); in (b), points are the Z of ’red’ and ’blue’ in the
Support (red labeled 1st, blue labeled 3rd); in (c), points are the K of ’red’ and ’blue’ in the Support
(red labeled 1st, blue labeled 3rd). The distinct clusters suggest strong index information. R2 score
quantifies the percentage of total variance explained by the index identity.

Causal Ablation Finally, we verified that this circuit indeed causally propagates index-in-question. Ablat-215

ing the Question-Broadcast Head’s Z (together with the similarly functioning Enc-self-0.7) obliterates the216

clustering in the Primitive-Pairing Head’s Z; ablating the Primitive-Pairing Head’s Z (together with similarly217

functioning Enc-self-1.0) disrupts the clustering in the Output Head’s K (Figure 7). We therefore conclude218

that the Question-Broadcast Head, the Primitive-Pairing Head and heads with similar functions form a219

crucial K-circuit pathway, passing index-in-question information from primitive tokens to their associated220

color tokens in the Output Head’s K.221

3.3.3 The Q-Circuit to the Output Head222

Having established the role of the K-circuit, we next investigate where its Q originates. We again relied223

on sequential path-patching to pinpoint which decoder heads ultimately provide the Output Head’s Q. We224

identified Dec-cross-0.6 as the main conduit for the Q values of the Output Head. Enc-self-1.0 and -1.2225

supply positional embeddings that enable the decoder to track primitive symbol’s index-on-LHS, thereby226

completing the QK alignment for correct predictions (Figure 4).227

RHS-Scanner Head (Dec-cross-0.6; Figure 8) We identify Dec-cross-0.6 as the dominant contribu-228

tor to the the Output Head’s Q (Figure 8a). Analyzing Dec-cross-0.6’s attention patterns reveals that each Q229

token (from Decoder in the cross-attention) sequentially attends to the color tokens (in the Support Set) on230

the function’s RHS (Figure 8b). For example, the first Decoder token (SOS) attends to the first RHS tokens231

(purple, red, yellow), and the second query token (red) attends to the second RHS tokens (red, purple,232

red), and so on. This iterative scanning mechanism enables the decoder to reconstruct the transformation233

defined by the function. Hence we call Dec-cross-0.6 the RHS-Scanner Head.234

8

Under review as submission to TMLR

RHS-Scanner Head (Decoder-cross-0.6)
SOS

EOS

A F C | B = | C F B = | B F C = | C F A = | C = | A = | B D C = | EOS

Q
ue

ry

Key

�

�

�������������

�������������
To Dec-cross-1.5 (Output Head) Q

0.15

0.25

0.35

H0 H1 H2 H3 H4 H5 H6 H7

Dec-self-0

Dec-cross-0

Dec-self-1

H0 H1 H2 H3 H4 H5 H6 H7

Enc-self-0

Enc-self-1

To Dec-cross-0.6 (RHS-Scanner) V

0.02

0.06
0.1

To Dec-cross-1.5 (Output Head) Q

����������������
�����������������������

�����	����������������

�������������

Figure 8: (a) Contribution to Output Head’s performance via Q.(b) Attention pattern of Dec-cross-0.6.

Primitive-Retrieval Head (Enc-self-1.0; Figure 9b) and Function-Retrieval Head (Enc-self-1.2;235

Figure 9c) Next, we looked for critical encoder heads that feeds to the RHS-Scanner Head and finally236

contributes to the Output Head’s Q. Unlike the K-circuit discovery, where “keep-only-one-head” ablations237

is sufficient, multiple heads appear to contribute partial but complementary information. To isolate their238

roles, we measured drops in the output head’s accuracy when ablating each encoder head individually while239

keeping the others intact (the “ablate-only-one-head” approach, more discussion in A.4).240

This analysis highlighted Enc-self-1.0 and Enc-self-1.2 as the most critical (Figure 9a). In Enc-self-1.0,241

within the Support Set, each color token on the RHS attends back to its corresponding symbol on the LHS,242

inheriting that symbol’s token and positional embedding (henceforth the Primitive-Retrieval Head; Enc-self-243

1.4 shows a similar but less dominant role) (Fig. 9b). Meanwhile, Enc-self-1.2 is similar, such that each244

color token on the RHS attends back to its function symbol on the LHS, passing that token and positional245

embedding on to the color token (henceforth the Function-Retrieval Head) (Fig. 9c).246

Why do the color tokens on the RHS attend back to both kinds of information on the LHS? We reason247

that if a color token on the RHS were to encode it’s primitive symbol’s index-on-LHS: for example, in ’...|248

D=pink | B S D=pink blue pink |...’, pink were to encode 3rd inherited from D (D is 3rd in ’B S D’),249

the absolute position of D must be compared with the absolute position of the S to yield a relative position.250

Now that with the Primitive- and Function-Retrieval Heads, each RHS color token carries two positional251

references: (1) the associated LHS primitive, and (2) the function symbol, we hypothesize that by comparing252

these references, the model can infer the primitive symbols’ index-on-LHS for each of the associated color253

tokens on the RHS. This computation is illustrated in Fig. 10a.254

Index-On-LHS Tracing To confirm that our discovered circuit genuinely encodes the index-on-LHS in255

the Output Head’s Q, we conducted three complementary ablation experiments summarized in Figure 10b:256

• Retaining only the Primitive- and Function-Retrieval Heads When all other encoder heads257

are ablated, the RHS-Scanner Head’s Z still carries index-on-LHS that propagate to the Output258

Head’s Q, indicating that these two heads alone provide sufficient index information.259

• Ablating the Primitive- or Function-Retrieval Head individually Ablating either head dis-260

rupts the clustering by index-on-LHS in the RHS-Scanner Head’s Z, demonstrating that both heads261

are necessary to preserve the full index information.262

• Ablating the RHS-Scanner Head (together with Dec-cross-0.0 and -0.3) These decoder263

heads share similar attention patterns that track color tokens on the function’s RHS. When all three264

are ablated, clusterings by index-on-LHS are eliminated from the Output Head’s Q (Figure 10c).265

Thus, we conclude that the Q-circuit depends on the RHS-Scanner Head to capture the index-on-LHS266

information supplied by the Primitive- and Function-Retrieval Heads. By aligning these Q signals with the267

K, the model consistently determines which token to generate next.268

9

Under review as submission to TMLR

�

�

Q
ue

ry

Primitive-Retrieval (Encoder-self-1.0)
A
F
C
 |
B
=

 |
C
F
B
=

 |
B
F
C
=

 |
C
F
A
=

 |
C
=

 |
A
=

 |
B
D
C
=

 |
EOS

A F C | B = | C F B = | B F C = | C F A = | C = | A = | B D C = | EOS

Q
ue

ry

Key

Function-Retrieval (Encoder-self-1.2)
A
F
C
 |
B
=

 |
C
F
B
=

 |
B
F
C
=

 |
C
F
A
=

 |
C
=

 |
A
=

 |
B
D
C
=

 |
EOS

A F C | B = | C F B = | B F C = | C F A = | C = | A = | B D C = | EOS

�

�
������������� �������������

To Dec-cross-1.5 (Output Head) Q

0.15

0.25

0.35

H0 H1 H2 H3 H4 H5 H6 H7

Dec-self-0

Dec-cross-0

Dec-self-1

H0 H1 H2 H3 H4 H5 H6 H7

Enc-self-0

Enc-self-1

To Dec-cross-0.6 (RHS-Scanner) V

0.02

0.06
0.1

To Dec-cross-1.5 (Output Head) Q

����������������

�������������������
����

�����	������������
����

�������������

Key

Figure 9: (a) Contribution to Output Head’s performance via Q. (b) Contribution to Output Head’s
performance via the RHS-Scanner’s V . (c) Attention pattern of Dec-cross-0.6. (d) and (e) Attention patterns
of Enc-self-1.0 and Enc-self-1.2.

3.4 Targeted Perturbation Steers Output269

Our circuit analysis indicates that the Output Head’s K -circuit encodes the primitive symbols’ index-in-270

question, while its Q-circuit encodes their index-on-LHS. If the model indeed relies on this positional indexing271

for token prediction, then perturbing (i.e., swapping) this index information should systematically alter the272

attention patterns and consequently the model’s behavior.273

Perturbation Alters Attention Patterns Concretely, consider an input like ’A S B | A=red | B=blue274

| ...’, where ’red’ inherits 1st (from A) and ’blue’ inherits 3rd (from B) in the K -circuit. If the Q-275

circuit expects a token with index value of 1st (’red’ in this case), swapping these positional embeddings276

between A and B at the earliest node (Question-Broadcast Head’s V) of the K -circuit—while freezing the277

Q-circuit—should revert the Output Head’s attention from ’red’ to ’blue’ (Figure 11a).278

Indeed, performing this targeted swap of positional embeddings caused the Output Head to shift its attention279

predictably from ’red’ to ’blue’, corresponding precisely to their swapped positions (Figure 11b). A control280

experiment using random positional embedding shuffles did not produce this systematic attention shift,281

confirming the causal role of positional indexing in the Output Head’s QK alignment.282

Perturbation Partially Alters Model Outputs We further assessed whether this targeted perturbation283

affects the final output logits. Post-perturbation, model accuracy dropped from 94% to 76%, remaining284

above chance but far below the original performance. Correspondingly, the logits for originally correct tokens285

decreased while those for swapped tokens increased (Figure 11c). The partial logit swap aligns with earlier286

observations (Figure 5), where Dec-cross-1.1 and -1.3 also provide significant contributions to final token287

logits. Again, random positional embedding shuffles did not replicate this systematic logit alteration.288

10

Under review as submission to TMLR

Figure 10: The computation pipeline for index-on-LHS. (a), In the Primitive-Retrieval head, the pink
token retrieves the absolute position of the D token; in the Function-Retrieval head, the pink token retrieves
the absolute position of the S token; then the RHS-Scanner head computes the difference of the two values
to get the relative position of D on the function LHS. (b) and (c), Ablation results for token embeddings
labeled by index-on-LHS. Concretely, for an episode with prompt ’A S B | A=red | B=blue | D=pink |
B S D=pink blue pink | ...’ and prediction ’SOS blue red blue EOS’, in (b), points are the Z of ’SOS’
and ’blue’ in the decoder input tokens (SOS is labeled 3rd, because SOS attends to the pink on function RHS,
and D is the 3rd on the LHS; similarly, blue is labeled 1st); in (c), points are the Q of decoder input tokens
(SOS is labeled 3rd, blue is labeled 1st). R2 score quantifies the percentage of total variance explained by
the index identity.

Together, these targeted perturbations confirm the causal role of the identified compositional circuit, demon-289

strating that precise manipulation of internal activations can systematically steer model outputs.290

 S | = red A A | B
Encoder residual stream

V: ‘3rd’ V: ‘1st’

swap pos emb

�

0

0.2

0.6

0.4

0.8

1.0 clean run swap
pos emb

co
rre

ct

th
e oth

er

co
rre

ct

th
e oth

er

A
tt

en
tio

n
w

ei
gh

t

���������������������������

co
rre

ct

th
e oth

er

shu�e
pos emb

-10

-5

0

5

10 clean run swap
pos emb

co
rre

ct

th
e oth

er

co
rre

ct

th
e oth

er

Lo
gi

t

	�������	��������
shu�e

pos emb

co
rre

ct

th
e oth

er

Figure 11: (a) Schematic illustrating the targeted swap of position embeddings. (b) Attention weights from
the Output Head comparing the original correct token and swapped token across three conditions: unper-
turbed (left), targeted position swap (middle), and random shuffle control (right). (c) Similar comparison
as (b), but for final output logits rather than attention weights.

3.5 No Linearly Decodable Function Vectors291

Our task tests compositional generalization over functions. To check whether the model encodes explicit292

function vectors (as in Todd et al. (2023)), we probed whether the hidden states contain linearly decodable293

information about each function’s identity. Using the full validation set, we trained linear probes on all294

residual streams and attention embeddings across all token positions.295

Decoding accuracy remained at chance level, suggesting that no explicit function vector is stored. This296

supports our main finding that function tokens act as pointers for output remapping, and that generalization297

arises through a slot–content routing mechanism rather than dedicated semantic embeddings.298

11

Under review as submission to TMLR

4 Discussion299

In this work, we investigated how a compact transformer model performs compositional generalization on a300

synthetic sequence arithmetic task. Using path-patching and causal ablations, we uncovered a detailed QK301

circuit that encodes index information from both the Question and the function’s LHS. We further showed302

that precisely swapping these positional embeddings predictably alters the model’s behavior, confirming the303

causal role of this circuit in supporting compositional generalization. These results demonstrate that even304

for complex functions, transformers can implement structured and interpretable mechanisms.305

4.1 Limitations and Future Work306

Limited Model and Dataset. We performed circuit interpretation on a single model instance. To test307

whether the discovered circuit mechanism is robust across different configurations, we trained an additional308

model with different hyperparameters and an expanded dataset. Specifically, we increased the number of309

encoder and decoder blocks from 2 to 3 and reduced the number of attention heads per layer from 8 to 4.310

For the dataset, we increased the number of arguments per function from 2 to a maximum of 5 and extended311

the maximum output length from 5 to 16 tokens. The new model achieves 96.0% accuracy on the test set.312

Applying the same circuit discovery approach, we identified a similar circuit in this new model, with all key313

functional attention heads replicated (see Appendix A.6). This result supports that the identified mechanism314

is not specific to a single architecture. However, determining whether similar interpretable mechanisms exist315

in large-scale, real-world LLMs remains an important open question for future work.316

Redundant Circuits. Although our targeted activation edits successfully influenced the Output Head’s317

behavior, they did not fully control the predicted tokens. This is due to the presence of redundant circuits318

with overlapping functions in the model (Lieberum et al., 2023; Conmy et al., 2023). We performed a319

head-by-head ablation experiment and found that removing any single head does not significantly degrade320

performance, indicating that each algorithmic step is supported by multiple functional heads. To enable321

precise output steering in larger models, it will be essential to develop systematic approaches for identifying322

and modifying all redundant pathways simultaneously.323

Specialized Compositional Generalization The identified circuit is brittle and highly specialized to the324

sequence remapping tasks we defined. Indeed, simply repositioning the function symbol (e.g., ’A S B’ to325

’S A B’) completely disrupts performance to chance level, which indicates that the model always assumes326

the function symbol to be on the 2nd position, lacking flexibility in symbol recognition. More flexible327

compositionality involving multiple or recursive functions clearly requires more complex circuit mechanisms,328

which remains an important direction for future exploration.329

4.2 Broader Implications330

Despite these limitations, our study advances interpretability methods and deepens our under-331

standing of compositional generalization in transformers.332

First, we present a rigorous, end-to-end circuit analysis methodology for a transformer solving a non-trivial333

compositional task. We demonstrate that such interpretability can enable targeted steering of model outputs334

through precise activation-level edits. This circuit-tracing workflow can serve as a template for future335

interpretability studies across different transformer architectures and tasks.336

Second, we provide a new perspective on how ’functions’ are instantiated in transformers. Through probing337

experiments, we confirm that the hidden embeddings do not encode the function semantics per se. Instead,338

the model’s operation resembles Searle’s “Chinese Room”: it (1) leverages disentangled representations of339

token identity (content) and token position (slot), and (2) follows syntactic routing rules without forming340

an internal semantic concept of the function itself. This insight complements the ’function vector’ view and341

demonstrates that transformers can generalize by exploiting structural routing rather than explicit function342

embeddings. It also generates testable hypotheses for other neural architectures—for example, whether343

similar routing mechanisms exist in recurrent networks or diffusion models when solving in-context learning344

problems.345

We hope this study inspires further work on the mechanistic foundations of compositionality in large-scale346

models across broader task domains.347

12

Under review as submission to TMLR

References348

Adithya Bhaskar, Alexander Wettig, Dan Friedman, and Danqi Chen. Finding transformer circuits with edge349

pruning. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, November350

2024.351

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter352

Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro, and353

Yi Zhang. Sparks of artificial general intelligence: Early experiments with GPT-4. arXiv [cs.CL], March354

2023.355

Arthur Conmy, Augustine N Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-Alonso.356

Towards automated circuit discovery for mechanistic interpretability. arXiv [cs.LG], April 2023.357

DeepSeek-AI, Aixin Liu, Feng, and Others. DeepSeek-V3 technical report. arXiv [cs.CL], December 2024.358

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda Askell,359

Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,360

Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom361

Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A mathematical framework for362

transformer circuits. https://transformer-circuits.pub/2021/framework/index.html, 2021. Ac-363

cessed: 2025-2-4.364

Jerry A Fodor. The language of thought. The Language and Thought Series. Harvard University Press,365

London, England, July 1979.366

D Gentner. Structure-mapping: A theoretical framework for analogy. Cogn. Sci., 7(2):155–170, June 1983.367

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model behavior with368

path patching. arXiv [cs.LG], April 2023.369

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does GPT-2 compute greater-than?: Interpreting370

mathematical abilities in a pre-trained language model. In Thirty-seventh Conference on Neural Informa-371

tion Processing Systems, November 2023.372

Stefan Heimersheim and Jett Janiak. A circuit for python docstrings in a 4-layer attention-only transformer.373

2023.374

Felix Hofstätter. Explaining the transformer circuits framework by example. 2023.375

Keith J Holyoak and Paul Thagard. Mental Leaps: Analogy in creative thought. The MIT Press, December376

1994.377

Aliyah R Hsu, Georgia Zhou, Yeshwanth Cherapanamjeri, Yaxuan Huang, Anobel Y Odisho, Peter R Carroll,378

and Bin Yu. Efficient automated circuit discovery in transformers using contextual decomposition. arXiv379

[cs.AI], June 2024.380

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: how do381

neural networks generalise? arXiv [cs.CL], August 2019.382

Rasha Ahmad Husein, Hala Aburajouh, and Cagatay Catal. Large language models for code completion: A383

systematic literature review. Comput. Stand. Interfaces, 92(103917):103917, March 2025.384

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,385

Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv [cs.LG],386

January 2020.387

Brenden M Lake and Marco Baroni. Human-like systematic generalization through a meta-learning neural388

network. Nature, October 2023.389

13

https://transformer-circuits.pub/2021/framework/index.html

Under review as submission to TMLR

LawrenceC, Adrià Garriga-alonso, Nicholas Goldowsky-Dill, ryan_greenblatt, Ansh Radhakrish-390

nan, Buck, and Nate Thomas. Causal scrubbing: a method for rigorously testing inter-391

pretability hypotheses [redwood research]. https://www.lesswrong.com/posts/JvZhhzycHu2Yd57RN/392

causal-scrubbing-a-method-for-rigorously-testing, 2022. Accessed: 2025-2-5.393

Tom Lieberum, Matthew Rahtz, János Kramár, Neel Nanda, Geoffrey Irving, Rohin Shah, and Vladimir394

Mikulik. Does circuit analysis interpretability scale? evidence from multiple choice capabilities in chin-395

chilla. arXiv [cs.LG], July 2023.396

G F Marcus, S Vijayan, S Bandi Rao, and P M Vishton. Rule learning by seven-month-old infants. Science,397

283(5398):77–80, January 1999.398

nostalgebraist. interpreting GPT: the logit lens. https://www.alignmentforum.org/posts/399

AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens, 2020. Accessed: 2025-2-5.400

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann,401

Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,402

Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario403

Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. In-context learning404

and induction heads. arXiv [cs.LG], September 2022.405

Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, and Ziyu Yao. A practical review of mechanistic406

interpretability for transformer-based language models. arXiv [cs.AI], July 2024.407

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. Transformers, parallel computation, and logarithmic408

depth. arXiv [cs.LG], February 2024.409

Niklas Stoehr, Kevin Du, Vésteinn Snæbjarnarson, Robert West, Ryan Cotterell, and Aaron Schein. Acti-410

vation scaling for steering and interpreting language models. In Findings of the Association for Computa-411

tional Linguistics: EMNLP 2024, pp. 8189–8200, Stroudsburg, PA, USA, November 2024. Association for412

Computational Linguistics.413

Eric Todd, Millicent L Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau. Function414

vectors in large language models. arXiv [cs.CL], October 2023.415

Ashish Vaswani, Noam M Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz416

Kaiser, and Illia Polosukhin. Attention is all you need. Neural Inf Process Syst, 30:5998–6008, June 2017.417

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Interpretabil-418

ity in the wild: a circuit for indirect object identification in GPT-2 small. In The Eleventh International419

Conference on Learning Representations, September 2022.420

Mingze Wang and Weinan E. Understanding the expressive power and mechanisms of transformer for421

sequence modeling. arXiv [cs.LG], February 2024.422

Dylan Zhang, Curt Tigges, Zory Zhang, Stella Biderman, Maxim Raginsky, and Talia Ringer. Transformer-423

based models are not yet perfect at learning to emulate structural recursion. Trans. Mach. Learn. Res.,424

2024, January 2024.425

Zhongwang Zhang, Pengxiao Lin, Zhiwei Wang, Yaoyu Zhang, and Zhi-Qin John Xu. Complexity control426

facilitates reasoning-based compositional generalization in transformers. arXiv [cs.CL], January 2025.427

A Appendix428

A.1 Related Work429

Transformer circuit interpretation. Mechanistic interpretability of transformers began with analysis430

of simplified models, identifying attention heads as modular components that implement specific functions.431

14

https://www.lesswrong.com/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.lesswrong.com/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.lesswrong.com/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.alignmentforum.org/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens

Under review as submission to TMLR

In their seminal work, Elhage et al. (2021) and Olsson et al. (2022) introduced "induction heads" as critical432

components for in-context learning in small attention-only models. These heads perform pattern completion433

by attending to prior token sequences, forming the basis for later work on compositional generalization. Case434

studies have dissected transformer circuits for specific functions, such as the ’greater than’ circuit (Hanna435

et al., 2023), the ’docstring’ circuit (Heimersheim & Janiak, 2023), the ’indirect object’ circuit (Wang et al.,436

2022), and the ’max of list’ circuit (Hofstätter, 2023). These case studies successfully reverse-engineered the437

transformer into the minimal-algorithm responsible for the target behavior.438

To facilitate identification of relevant circuits, researchers have proposed circuit discovery methods such as439

logit lens (nostalgebraist, 2020), path patching (Goldowsky-Dill et al., 2023), causal scrubbing LawrenceC440

et al. (2022). For large-scale transformers, automated circuit discovery methods are also proposed (Conmy441

et al., 2023; Hsu et al., 2024; Bhaskar et al., 2024). So far, transformer interpretability work still requires442

extensive human efforts in the loop for hypothesis generation and testing. We point to a review paper for a443

more comprehensive review (Rai et al., 2024).444

Compositional generalization in transformers. In their study, Hupkes et al. (2019) evaluated compo-445

sitional generalization ability on different families of models, and found that transformers outperformed RNN446

and ConvNet in systematic generalization, i.e., recombination of known elements, but still incomparable to447

human performance. Zhang et al. (2024) pointed out that transformers struggle with composing recursive448

structures. Recently, Lake & Baroni (2023) showed that after being pre-trained with data generated by a449

’meta-grammar’, small transformers (less than 1 million parameters) can exhibit human-like compositional450

ability in novel in-context learning cases. This is in line with the success of commercial large language models451

(LLM) in solving complex out-of-distribution reasoning tasks (Bubeck et al., 2023; DeepSeek-AI et al., 2024),452

where compositional generalization is necessary.453

Several studies highlighted factors that facilitate transformer’s compositional ability. Wang & E (2024)454

identified initialization scales as a critical factor in determining whether models rely on memorization or455

rule-based reasoning for compositional tasks. Zhang et al. (2025) revealed that low-complexity circuits456

enable out-of-distribution generalization by condensing primitive-level rules. (Sanford et al., 2024) identified457

logarithmic depth as a key constraint for transformers to emulate computations within a sequence. Here, we458

offer a complementary mechanistic understanding of how transformers perform compositional computations.459

A.2 Transformer Model460

We adopt an encoder-decoder architecture, which naturally fits the task by allowing the encoder to process461

the prompt (Question + Support) with bidirectional self-attention and the decoder to generate an output462

sequence with causal and cross-attention. Specific hyperparameters include:463

• Token embedding dimension: dmodel = 128464

• Attention embedding dimension: dhead = 16465

• Eight attention heads per layer (both encoder and decoder)466

• Pre-LayerNorm (applied to attention/MLP modules) plus an additional LayerNorm at the encoder467

and decoder outputs468

• Standard sinusoidal positional embeddings469

The encoder comprises two layers of bidirectional self-attention + MLP, while the decoder comprises two470

layers of causal self-attention + cross-attention + MLP. We train the model by minimizing the cross-entropy471

loss (averaged over tokens) using the Adam optimizer. The learning rate is initialized at 0.001 with a warm-472

up phase over the first epoch, then linearly decays to 0.00005 over training. We apply dropout of 0.1 to473

both input embeddings and internal Transformer layers, and train with a batch size of 25 episodes. All474

experiments are performed on an NVIDIA A100 GPU.475

15

Under review as submission to TMLR

A.3 Task Structure476

In each episode, the Support Set and Question are concatenated into a single prompt for the encoder, with477

question tokens placed at the start. Question, primitive assignments, and function assignments are separated478

by ‘|‘ tokens, while primitive and function assignments are identified by ‘=‘. Overall, there are 6 possible479

colors and 9 symbols that may serve as either color primitives or function symbols. Each episode contains480

2–4 function assignments and 3–4 color assignments.481

A function may be a single-argument (arg func) or double-argument (arg1 func arg2) function. The482

function’s right-hand side (RHS) describes how arguments are transformed, generated by randomly sampling483

the arguments and interpreting them to color tokens. For example, we can define (arg1 func arg2 =484

[arg2] [arg1]) or (arg1 func arg2 = [arg2] [arg1] [arg1] [arg2] [arg2]) by sampling arg1 and485

arg2 certain times. The output length is randomly chosen between 2 and 5 for each function. Each prompt486

ends with an ‘EOS‘ token. During decoding, the model begins with an ‘SOS‘ token and iteratively appends487

each newly generated token until it emits ‘EOS‘.488

We randomly generate 10,000 episodes for training and 2,000 for testing, ensuring that the primitive and489

function assignments in testing episodes do not overlap with those in the training set.490

A.4 Path Patching491

Path patching is a method for isolating how a specific source node in the network influences a particular492

target node. It proceeds in three runs:493

1. Clean Run: Feed the input through the model normally and cache all intermediate activations494

(including those of the source and target nodes).495

2. Perturbed Run: Freeze all direct paths into the target node using their cached activations from496

the clean run. For the source node alone, replace its cached activation with mean-ablated values.497

Record the new, perturbed activation at the target node.498

3. Evaluation Run: Supply the target node with the perturbed activation from Step 2, then measure499

any resulting changes in the model’s output. This quantifies how the source node’s contribution500

(altered via mean-ablation) affects the target node’s behavior.501

Chained Path Patching. When analyzing circuits that span multiple nodes in sequence, we extend path502

patching in a chain-like manner. For instance, to evaluate a chain A → B → C:503

• We first perform path patching on the sub-path B → C as usual.504

• Next, to capture how A specifically influences B, we isolate and record A’s effect on B via mean-505

ablation on all other inputs to B.506

• Finally, we patch that recorded activation into B and evaluate its effect on C.507

For a chain of length N , we run N + 1 forward passes, ensuring the measured impact on the target node508

reflects only the chained pathway. This approach precisely attributes the model’s behavior to the intended509

sequence of dependencies.510

Two Modes of Ablation. To assess how individual heads or nodes contribute to the target node, we use511

two complementary modes:512

1. Keep-only-one-head: Mean-ablate all direct paths to the target node except for one node, which513

retains its clean-run activation.514

2. Ablate-only-one-head: Keep all direct paths to the target except one node, which is mean-ablated.515

16

Under review as submission to TMLR

Head 0 Head 1 Head 2Layer n

Head 0Layer n+1 Needs 100% ‘A’

100% ‘A’ 100% ‘A’ 100% ‘B’

Keep-only-one-head

Ablate-only-one-head ⅹ
�

�

Head 0 Head 1 Head 2Layer n

Head 0Layer n+1 Needs 100% ‘A’ and 100% ‘B’

50% ‘A’ 50% ‘A’ 100% ‘B’

Keep-only-one-head

Ablate-only-one-head

ⅹ
�

�

Head 3
100% ‘B’

100% ‘C’

Figure 12: Two modes of ablation.

We use an illustration to show when and why each ablation mode are used (Figure. 12).516

In case (a), suppose the downstream Head 0 (Layer n+1) needs information A. In Layer n, multiple copies517

of A are provided. In this case, keep-only-one-head can identify which heads gives A. In contrast, ablate-518

only-one-head will not be able to identify which heads give A, because A is always provided by other heads519

that saturates the performance.520

In case (b), suppose the downstream Head 0 (Layer n+1) needs both information A and B. In this case,521

keep-only-one-head will not be able to identify the contributing nodes, because none of the nodes alone522

can support the function of the downstream node. Instead, ablate-only-one-head will identify the nodes523

contributing necessary information to the downstream node (Figure 10).524

Our circuit identification uses keep-only-one-head ablation by default and switches to ablate-only-one-head if525

the former fails to find the dominant head. By combining both modes, we identified the putative QK-circuit526

of the output head. We then validate the circuits by inspecting the information they propagates and causally527

erasing the information by ablating specific upstream nodes.528

A.5 R2 Score529

To quantify how much an activation dataset Y encodes a particular latent variable Z, we compute a linear530

regression of Z (one-hot encoded) onto Y and measure the explained variance:531

R2 = 1 − SSres

SStotal
.

An R2 value of 1.0 indicates that Z fully explains the variance in Y, whereas an R2 near 0.0 implies Z532

provides no information about Y.533

A.6 Replication with Different Architecture534

17

Under review as submission to TMLR

To Output logits

Dec-cross-1

Dec-self-1

Dec-cross-0

Dec-self-0

Dec-cross-2

Dec-self-2

H0H1 H2 H3

0.2

0.1

0

Enc-self-0

Enc-self-1

Enc-self-2

0.15

0.3

0.45

H0H1 H2 H3

To Dec-cross-2.0 K
Dec-cross-1

Dec-self-1

Dec-cross-0

Dec-self-0

Dec-self-2

H0H1 H2 H3
0.15

0.3

0.45

To Dec-cross-2.0 Q

Enc-self-0

Enc-self-1
To Enc-self-2.2 V

H0H1 H2 H3
0.14
0.18
0.22

Enc-self-0

Enc-self-1

Enc-self-2

H0H1 H2 H3

To Dec-cross-1.2 V

0

0.08

0.16

Key
A F C | B = | C F B = | B F C = | C F A = | C = | A = | B D C = | EOS

SOS

EOS

A F C | B = | C F B = | B F C = | C F A = | C = | A = | B D C = | EOS

SOS

EOS

A F C | B = | C F B = | B F C = | C F A = | C = | A = | B D C = | EOS

A
F
C
 |
B
=

 |
C
F
B
=

 |
B
F
C
=

 |
C
F
A
=

 |
C
=

 |
A
=

 |
B
D
C
=

 |
EOS

A
F
C
 |
B
=

 |
C
F
B
=

 |
B
F
C
=

 |
C
F
A
=

 |
C
=

 |
A
=

 |
B
D
C
=

 |
EOS

A
F
C
 |
B
=

 |
C
F
B
=

 |
B
F
C
=

 |
C
F
A
=

 |
C
=

 |
A
=

 |
B
D
C
=

 |
EOSA F C | B = | C F B = | B F C = | C F A = | C = | A = | B D C = | EOS

A F C | B = | C F B = | B F C = | C F A = | C = | A = | B D C = | EOS

Key

Key Key

Key

Q
ue

ry

Q
ue

ry

Q
ue

ry

Q
ue

ry

Q
ue

ry

Dec-cross-2.0 (Output Head)

Enc-self-2.2
(Primitive-Pairing Head)
(Primitive-Retrieval Head)

Enc-self-1.3 (Question-Broadcast Head)

Dec-cross-1.2 (RHS-Scanner Head)

Enc-self-2.3 (Function-Retrieval Head)

Figure 13: Circuit discovery on a different architecture. The model consists of 3 encoder/decoder layers with
4 attention heads in each layer. All the important attention heads are re-discovered in the new model, with
the only exception that the original Primitive-Pairing and Primitive-Retrieval Heads are now merged as a
single head. We speculate that this is due to their similar functions and the reduced number of heads in
each layer.

18

	Introduction
	Experimental Setup
	Task Structure
	Model
	Transformer Basics
	Model Training

	Results
	The High-Level Algorithm
	Transformer Solution with Attention Operations
	Circuit Discovery
	Output Head (Dec-cross-1.5; Figure 5)
	The K-Circuit to the Output Head
	The Q-Circuit to the Output Head

	Targeted Perturbation Steers Output
	No Linearly Decodable Function Vectors

	Discussion
	Limitations and Future Work
	Broader Implications

	Appendix
	Related Work
	Transformer Model
	Task Structure
	Path Patching
	R2 Score
	Replication with Different Architecture

