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Abstract
Optimizing objective functions subject to con-
straints is fundamental in many real-world ap-
plications. However, these constraints are often
not readily defined and must be inferred from ex-
pert agent behaviors, a problem known as Inverse
Constraint Inference. Inverse Constrained Rein-
forcement Learning (ICRL) is a common solver
for recovering feasible constraints in complex en-
vironments, relying on training samples collected
from interactive environments. However, the effi-
cacy and efficiency of current sampling strategies
remain unclear. We propose a strategic explo-
ration framework for sampling with guaranteed
efficiency to bridge this gap. By defining the fea-
sible cost set for ICRL problems, we analyze how
estimation errors in transition dynamics and the
expert policy influence the feasibility of inferred
constraints. Based on this analysis, we introduce
two exploratory algorithms to achieve efficient
constraint inference via 1) dynamically reducing
the bounded aggregate error of cost estimations or
2) strategically constraining the exploration policy
around plausibly optimal ones. Both algorithms
are theoretically grounded with tractable sample
complexity, and their performance is validated
empirically across various environments.

1. Introduction
Constrained Reinforcement Learning (CRL) tackles sequen-
tial decision-making problems with safety constraints and
has achieved considerable success in various safety-critical
applications (Gu et al., 2022). However, in many real-world
environments, such as robot control (Garcı́a & Shafie, 2020;
Thomas et al., 2021) and autonomous driving (Krasowski
et al., 2020), specifying the exact constraint that can con-
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sistently guarantee safe control is challenging, which is
further exacerbated when the ground-truth constraint is time-
varying and context-dependent.

Instead of utilizing a pre-defined constraint, an alterna-
tive approach, Inverse Constrained Reinforcement Learning
(ICRL) (Malik et al., 2021; Liu et al., 2025), seeks to learn
constraint signals from the demonstrations of expert agents
and imitate their behaviors by adhering to the inferred con-
straints. ICRL effectively incorporates expert experience
into the online CRL paradigm and thus better explains how
expert agents optimize cumulative rewards under their em-
pirical constraints. Under this framework, existing ICRL
algorithms often assume the presence of a known dynamic
model (Scobee & Sastry, 2020; McPherson et al., 2021), or
a generative transition model that responds to queries for
any state-action pair (Papadimitriou et al., 2023; Liu et al.,
2023). However, this setting has a considerable gap with
real-world scenarios where such global transition models
are often unavailable or even time-varying. In such cases,
agents have to physically navigate to new states to learn
about transition dynamics through exploration.

To mitigate the gap, some recent studies (Malik et al., 2021;
Baert et al., 2023) explicitly maximized the policy entropy
throughout the learning process, yielding soft-optimal pol-
icy representations that favor less-selected actions. However,
this strategy often induces overly conservative constraints
that forbid any behavior not present in the expert demon-
strations. Moreover, such an uncertainty-driven exploration
ignores the potential estimation errors in dynamic models
and expert policies. To date, a theoretical framework is
still lacking to demonstrate how well such exploration ap-
proaches facilitate the accurate estimation of constraints.

This paper introduces a strategic exploration framework
for sampling to solve ICRL problems with guaranteed effi-
ciency. Recognizing the inherent challenge of pinpointing
the exact constraint that expert agents adhere to in their
demonstrations (Ng et al., 2000), the objective of our frame-
work is to recover a set of feasible constraints, rather than to
specify a unique constraint with pre-defined heuristics or re-
strictions. This approach has the advantage of analyzing the
intrinsic sample complexity of ICRL problems only, without
being obfuscated by other factors (Lazzati et al., 2024b). By
representing constraints with reward advantages, we bound
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estimation errors for feasible cost functions to the discrep-
ancy between estimated and ground-truth ones regarding
dynamics and the expert policy. Based on this quantifiable
measure of estimation errors, a tractable upper bound for
sample complexity can be derived.

Under our framework, we design two strategic exploration
algorithms for solving ICRL problems: 1) a Bounded Error
Aggregate Reduction (BEAR) algorithm, which guides the
exploration policy to minimize the upper bound of cost esti-
mation errors, and 2) a Policy-Constrained Strategic Explo-
ration (PCSE) algorithm, which reduces the estimation error
by selecting an exploration policy from a set of candidate
policies. This collection of policies is rigorously established
to encompass the optimal policy, thereby promising to ac-
celerate the training process significantly. We provide a
rigorous sample complexity analysis for both algorithms,
furnishing deeper insights into their training efficiency.

To empirically study how well our method captures the
accurate constraint, we conduct evaluations under different
environments. The experimental results show that PCSE
significantly outperforms other exploration strategies and
applies to continuous environments.

2. Related Work
This section reviews the previous works that are most closely
related to ours. Appendix B provides further discussions.

Exploration in Inverse Reinforcement Learning (IRL).
Compared with the exploration strategies in RL for forward
control (Amin et al., 2021; Ladosz et al., 2022), the ex-
ploration algorithms in IRL have relatively limited studies.
Balakrishnan et al. (2020) utilized Bayesian optimization
to identify multiple IRL solutions by efficiently exploring
the reward function space. To learn a transferable reward
function, Metelli et al. (2021) introduced an active sampling
methodology that targets the most informative regions with
a generative model to facilitate effective approximations of
the transition model and the expert policy. A subsequent
research (Lindner et al., 2022) expanded this concept to
finite-horizon MDPs with non-stationary policies, crafting
innovative strategies to accelerate the exploration process.
To better quantify the precision of recovered feasible re-
wards, Metelli et al. (2023) recently provided a lower bound
on the sample complexity for estimating the feasible reward
set in the finite-horizon setting with a generative model.
However, these methods study only reward functions under
a regular MDP without considering the safety of control or
the constraints in the environment.

Inverse Constrained Reinforcement Learning (ICRL).
Inverse Constraint Learning (ICL) extended the IRL
paradigm to account for safety issues. This line of research
encompasses several notable works. Hugessen et al. (2024)

simplify inverse constraint inference to a variant of IRL by
jointly identifying the cost function and Lagrange parame-
ters, which are assumed to form a convex cone. Kim et al.
(2024) generalized the IRL framework to infer tight safety
constraints from multi-task expert demonstrations, offer-
ing both performance and constraint satisfaction guarantees.
Building on this work, Qadri et al. (2025) revealed that in-
verse constraint inference recovers a dynamic-conditioned
and failure-inevitable constraint set, rather than the origi-
nal ground-truth constraint set. Another line of research
in classical ICRL algorithms updated the cost functions by
maximizing the likelihood of generating the expert dataset
under the maximum (causal) entropy framework (Scobee
& Sastry, 2020). This method has been scaled to both dis-
crete (McPherson et al., 2021) and continuous state-action
spaces (Malik et al., 2021; Baert et al., 2023; Liu et al., 2023;
Qiao et al., 2023; Xu & Liu, 2024a;b; Zhao et al., 2025). To
improve training efficiency, recent studies combined ICRL
with bi-level optimization techniques (Liu & Zhu, 2022;
Gaurav et al., 2023). However, neither have these ICRL
methods investigated exploration strategies based on estima-
tion errors nor conducted theoretical studies on the sample
efficiency of their algorithms.

3. Preliminaries
Notation. Let X and Y be two sets. YX represents the
set of functions f : X → Y . Let ∆X denote the set
of probability measures over X . Let ∆X

Y denote the set
of functions: Y → ∆X . We define the vector infinity
norm as ||a||∞ = maxi|ai| and the matrix infinity norm
as ||A||∞ = maxi

∑
j |Aij |. We define min+x∈X f(x) to re-

turn the minimum positive value of f over X . The complete
notation is reported in Appendix A.

Constrained Markov Decision Process (CMDP). We
model the environment as a stationary CMDP M∪ c :=
(S,A, PT , r, c, ϵ, µ0, γ), where S and A are the finite state
and action spaces, with each cardinality denoted as S= |S|
and A = |A|; PT (s

′|s, a) ∈ ∆S
S×A defines the transition

distribution; r ∈ [0, Rmax]
S×A and c ∈ [0, Cmax]

S×A de-
note the reward and cost functions; ϵ defines the threshold
(budget) of the constraint; µ0∈∆S denotes the initial state
distribution; γ ∈ [0, 1) is the discount factor. M denotes
the CMDP without knowing the cost (i.e., CMDP\c). The
agent’s behavior is modeled by a policy π ∈∆A

S . Π∗
M∪c

denotes the set of all optimal policies for CMDPM∪c. The
expert policy πE is optimal in the sense that πE maximizes
the rewards while adhering to constraints, i.e., πE ∈ Π∗

M∪c.
Let f ∈ RS and g ∈ RS×A, we slightly abuse PT and π
as operators: (PT f)(s, a) =

∑
s′∈S PT (s

′|s, a)f(s′) and
(πg)(s) =

∑
a∈A π(a|s)g(s, a). We define the occupancy

measure as ρπM(s, a) = (1− γ)
∑∞

t=0 γ
tPπ

µ0
(st = s, at =

a) where Pπ
µ0

denotes the probability at (s, a) at timestep
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t under the policy π and the initial distribution µ0. We fo-
cus on a discrete finite state-action space within an infinite
planning horizon in this work.

Constrained Reinforcement Learning (CRL). Within a
CMDP, CRL learns a policy π that maximizes the dis-
counted cumulative rewards subject to a known constraint:

argmax
π

Eµ0,π,pT

[ ∞∑
t=0

γtr(st, at)
]
, (1)

s.t. Eµ0,π,pT

[ ∞∑
t=0

γtc(st, at)
]
≤ ϵ, (2)

where ϵ = 0 indicates a hard constraint and ϵ > 0 represents
a soft constraint since c is non-negative.

Value and advantage functions. We distinguish two cases
where the first superscript r or c specifies the actual rewards
or costs evaluated and the subscriptM orM∪c specifies the
environment. We denote the reward action-value function
as Qr,π

M (s, a) = Eπ,PT [
∑∞

t=0 γ
tr(st, at)|s0 = s, a0 = a] ,

and the reward advantage function as Ar,π
M (s, a) =

Qr,π
M (s, a) − V r,π

M (s), where the reward state-value func-
tion V r,π

M (s) = Eπ[Q
r,π
M (s, a)]. Likewise, we de-

note the cost action-value function as Qc,π
M∪c(s, a) =

Eπ,PT [
∑∞

t=0 γ
tc(st, at)|s0 = s, a0 = a] and the cost state-

value function as V c,π
M∪c(s) = Eπ[Q

c,π
M∪c(s, a)].

4. Learning Feasible Constraints
This section formally defines the feasible cost set and inves-
tigates how estimation errors of the inferred cost functions
can be bounded by imperfections in the estimates of both
transition dynamics and the expert policy.

Figure 1. Trajectories of the expert policy (black) and exploratory
policies (red and blue) in a Gridworld. The constraint (gray) is
not observable. On the left, exploratory policies reach the goal
in shorter paths and thus have larger rewards. In the middle, the
rewards of exploratory policies are equal to the rewards of the
expert policy. Their trajectories can either overlap with the con-
straint (red) or simply mismatch the expert’s (blue). On the right,
exploratory policies result in longer paths that gain fewer rewards.

4.1. Feasible Costs in CMDP

Since the expert policy maximizes rewards within certain
constraints, two key insights emerge 1) if a policy achieves

higher rewards than the expert policy (shorter path in Fig-
ure 1, left), the underlying constraints must be violated, and
we can detect unsafe state-action pairs by examining these
infeasible trajectories; 2) if a policy achieves the same or
lower rewards than the expert policy (equal or longer path
in Figure 1, middle & right), this suggests an absence of
notable constraint-violating actions, implying that the under-
lying constraints may or may not be violated. To effectively
prevent overfitting and mitigate the combinatorial explosion
of the constraint space, ICRL focuses on identifying the
minimal set of constraints necessary to explain expert be-
haviors (Scobee & Sastry, 2020). In this sense, only the first
insight is utilized to expand the cost set.

Lemma 4.1. Suppose the expert policy πE of a CMDP
M∪ c is known, and the current state is s. Let AE(s) de-
note the set containing all expert actions at state s, i.e.,
AE(s) = {a ∈ A | πE(a|s) > 0}. Then, at least one
of the following two conditions must be satisfied: 1) the
cost function satisfies Eµ0,πE ,PT

[∑∞
t=0 γ

tc(st, at)
]
= ϵ;

2) ∀a′∈ A\AE(s), Ar,πE

M (s, a′) ≤ 0.

Intuitively, if there is some unused constraint budget and a
better action, there must exist a chance for policy improve-
ment, which violates the optimality of the expert policy.
The above lemma shows that cumulative costs of the expert
policy must reach the threshold, i.e., use all the budget, if
there exists a non-expert action yielding greater rewards
than the expert policy (the first condition must be satisfied if
the second condition is not satisfied). Thus, enforcing that
any higher-reward action incurs greater costs than the expert
policy suffices to establish a constraint-violation condition.

LetQc = {(s, a)|Qc,πE

M∪c(s, a)−V c,πE

M∪c(s) > 0} denote the
set of state-action pairs with higher costs than the expert,
given a cost function c. In scenarios with hard constraints,
it simplifies to: Qc = {(s, a)|c(s, a) > 0}. We formally
formulate the ICRL problem (Malik et al., 2021) as follows.

Definition 4.2. An ICRL problem is a pair P = (M, πE).
A cost function c ∈ [0, Cmax]

S×A is feasible for P if πE is
an optimal policy for the CMDPM∪ c, i.e., πE ∈ Π∗

M∪c.
Let FP = {c|πE ∈ Π∗

M∪c} denote a general set of feasible
cost functions. ICRL problem seeks to recover the minimal
set of feasible cost functions for P, named feasible cost set
that satisfies CP =

{
c∗|c∗ =argminc∈FP

|Qc|
}

.

We have defined the Q-function for non-expert actions.
However, for stochastic expert actions under soft constraints,
we only know that Ea′∼πE [Qc,πE

M∪c(s, a
′)] = V c,πE

M∪c(s) ≥ 0.
To determine the exact value of the Q-function for expert
actions, the following assumption is required.

Assumption 4.3. (i) The expert policy πE is optimal w.r.t
rewards among all safe policies;
(ii) The expert policy πE is deterministic for soft constraints.
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Based on these findings, we establish the feasible cost set.

Lemma 4.4. (Feasible Cost Set Implicit). Under Assump-
tion 4.3, c is a feasible cost function for an ICRL problem
P, i.e., c ∈ CP if and only if ∀(s, a) ∈ S ×A:

(i) If πE(a|s) > 0, i.e., (s, a) follows the expert policy:

Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) = 0. (3)

(ii) If πE(a|s) = 0 and Ar,πE

M (s, a) > 0, i.e., (s, a) vio-
lates the constraint:

Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) > 0. (4)

(iii) If πE(a|s) = 0 and Ar,πE

M (s, a) ≤ 0, i.e., (s, a) is in
the non-critical region:

Qc,πE

M∪c(s, a)− V c,πE

M∪c(s) ≤ 0. (5)

Lemma 4.5. (Feasible Cost Set Explicit). Under Assump-
tion 4.3, c is a feasible cost function for an ICRL problem
P, if and only if there exists ζ ∈ RS×A

>0 and V c ∈ RS
≥0:

c = Ar,πE

M ζ + (E − γPT )V
c, (6)

where E : RS → RS×A is the expansion operator that
satisfies (Ef)(s, a) = f(s). Furthermore, ∥V c(s)∥∞ ≤
Cmax/(1− γ) and ∥ζ∥∞ = Cmax/max+(s,a) |A

r,πE

M |.

Intuitively, the first term in (6) penalizes constraint-violating
actions that deviate from the expert’s policy yet achieve
higher rewards (i.e., Ar,πE

M (s, a) > 0). This penalty ensures
these actions violate the constraint in (2). The second term
V c ∈ RS can be interpreted as a cost-shaping operator
that plays the role of translating the Q-function values by a
fixed quantity. By utilizing the Bellman equation, we obtain
that V c(s) = 0 for hard constraints and V c(s) = V c,πE

M∪c(s)
for soft constraints. Proofs of the above and the following
theoretical results can be found in Appendix C.

4.2. Estimating Transition Dynamics and Expert Policy

Recall that our primary objective is to minimize the estima-
tion errors of feasible cost functions. To obtain this error,
we first introduce how we estimate the transition dynamics
and the expert policy. We consider a model-based setting
where the agent strategically explores the environment to
learn the transition dynamics and the expert policy. We
record the returns from querying a state-action pair (s, a) by
observing a next state s′ ∼ P (·|s, a), and the preferences
of expert agents aE ∼ πE(·|s) in each visited state. At
iteration k, we denote by nk(s, a, s

′) the number of times
we observe the transition tuple (s, a, s′). We further denote
nk(s, a) =

∑
s′∈S nk(s, a, s

′). At iteration k, we denote
by nE

k (s, a) the number of times we observe action a as

an expert decision at state s. We further denote nE
k (s) =∑

a∈A nE
k (s, a). We define four cumulative counts from

iteration 1 to k as Nk(s, a, s
′) =

∑k
j=1 nj(s, a, s

′) and

Nk(s, a) =
∑k

j=1 nj(s, a), NE
k (s, a) =

∑k
j=1 n

E
j (s, a)

and NE
k (s) =

∑k
j=1 n

E
j (s). Eventually, the transition

model and the expert policy for a state-action pair at it-
eration k are estimated as:

P̂T k(s
′|s, a) = Nk(s, a, s

′)

N+
k (s, a)

, π̂E
k (a|s) =

NE
k (s, a)

NE
k

+
(s)

, (7)

where x+ = max{1, x}.

4.3. Error Propagation

Building on the above estimations and the definition of
cost functions, we obtain a set of estimated feasible cost
functions. Next, we investigate the estimation error for the
feasible cost function and analyze its underlying sources.
Lemma 4.6. (Error Propagation). Let P = (M, πE)

and P̂ = (M̂, π̂E) be two ICRL problems where M̂ =

(M\PT ) ∪ P̂T . For any c ∈ CP satisfying c = Ar,πE

M ζ +
(E − γPT )V

c and c ∈ [0, Cmax]
S×A, there exists ĉ ∈ CP̂

and ĉ ∈ [0, Cmax]
S×A, ∀(s, a) ∈ S ×A:

|c− ĉ| (s, a) ≤ 2(χ(s, a) + χ)

1 + (χ(s, a) + χ)/Cmax
, (8)

where χ = max(s,a)∈S×A χ(s, a) and

χ(s, a)=γ
∣∣∣(PT −P̂T )V

c
∣∣∣ (s, a)+∣∣∣Ar,πE

M −Ar,π̂E

M̂

∣∣∣ ζ(s, a).
χ(s, a) is the distance at (s, a) between the ground-truth
cost function and a pseudo-estimated cost function with the
same ζ and V c, but does not necessarily fall into [0, Cmax].
The first part of χ(s, a) reflects the estimation error of the
transition model, while the second part depends on the esti-
mation error of the advantage function, which can be further
decomposed as follows:

Lemma 4.7. Let P = (M, πE) and P̂ = (M̂, π̂E) be two
ICRL problems. Then, we have∣∣∣Ar,π

M −Ar,π̂

M̂

∣∣∣ ≤ (9)

2γ

1− γ

∣∣∣(P̂T − PT )V
r,π̂E

M̂

∣∣∣+ γ(1 + γ)

1− γ

∣∣∣(π − π̂)PT V
r,πE

M

∣∣∣.
To relate these error sources to the sample size, we derive
confidence intervals for the transition model and expert
policy using the Hoeffding inequality (see Lemma C.5). We
show that the true transition model and expert policy lie
within these intervals with high probability. Based on these
results, we derive an upper bound on the estimation errors
of feasible cost functions and prove that this upper bound is
guaranteed with high probability as follows:
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Lemma 4.8. Let δ ∈ (0, 1), with probability at least 1− δ,
for any pair of cost functions c ∈ CP and ĉk ∈ CP̂k

at
iteration k, we have

|c(s, a)− ĉk(s, a)| ≤ Ck(s, a) = (10)

min


2σ

(√
ℓk(s,a)

2N+
k (s,a)

+max
(s,a)

√
ℓk(s,a)

2N+
k (s,a)

)
1+ σ

Cmax

(√
ℓk(s,a)

2N+
k (s,a)

+max
(s,a)

√
ℓk(s,a)

2N+
k (s,a)

) , Cmax

.

where σ =
γCmax

(
Rmax(3+γ)/max+

∣∣Ar,πE

M

∣∣+(1−γ)
)

(1−γ)2 and

ℓk(s, a) = log
(

36SA(N+
k (s,a))2

δ

)
.

Intuitively, as the sample size grows, Ck(s, a) decreases,
progressively reducing the estimation errors of feasible cost
functions towards zero. However, this error does not nec-
essarily need to be infinitesimal for the estimated feasible
cost functions to sufficiently explain the expert’s behavior.
Next, we define a Probably Approximately Correct (PAC)
optimality criterion for the estimated cost. The estimated
feasible set CP̂ is considered ’close’ to the exact feasible
set CP, if for every cost function c ∈ CP, there exists one
estimated cost function ĉ ∈ CP̂ such that their Q-functions
diverge within ε, and vice versa.

Definition 4.9. (Optimality Criterion). Let CP be the ex-
act feasible set and CP̂ be the feasible set recovered after
observing n ≥ 0 samples collected in the sourceM and
πE . We say that an algorithm for ICRL is (ε, δ, n)-correct
if with probability at least 1− δ, it holds that:

inf
ĉ∈C

P̂

sup
π∗∈Π∗

M∪c

∣∣∣Qc,π∗

M∪c(s0, a)−Qĉ,π∗

M∪ĉ(s0, a)
∣∣∣ ≤ ε, ∀c ∈ CP,

inf
c∈CP

sup
π̂∗∈Π∗

M̂∪ĉ

∣∣∣Qc,π̂∗

M∪c(s0, a)−Qĉ,π̂∗

M∪ĉ(s0, a)
∣∣∣ ≤ ε, ∀ĉ ∈ CP̂,

where π∗ is an optimal policy inM∪c and π̂∗ is an optimal
policy in M̂ ∪ ĉ.

The criterion ensures estimation errors of feasible cost func-
tions do not compromise the optimality of the expert policy.
The first condition ensures completeness, requiring the re-
covered feasible cost set to track every true cost function.
The second condition guarantees that there exists a true cost
function close to every recovered cost function. This pre-
vents the recovery of an excessively large feasible set that
would overly prioritize completeness.

5. Efficient Exploration for ICRL
In this section, we introduce two algorithms for efficient
exploration, addressing the challenge of collecting high-
quality samples through interactions with the environment,
thereby increasing the accuracy of our cost set estimations.

Unlike most existing ICRL works (Papadimitriou et al.,
2023; Liu et al., 2022a; Yue et al., 2025) that rely on a
generative model for sample collection, our exploration
strategy must determine which states need more frequent
visits and how to traverse to them from the initial state. We
propose a Bounded Error Aggregate Reduction algorithm
(BEAR, Section 5.1) and a Policy-Constrained Strategic
Exploration algorithm (PCSE, Section 5.2) for solving ICRL
problems in Algorithm 1.

Algorithm 1 BEAR and PCSE for ICRL in an unknown
environment

Input: significance δ ∈ (0, 1), target accuracy ε, maxi-
mum number of samples per iteration nmax;
Initialize k ← 0, ε0 = 1

1−γ ;
while εk > ε do

Solve RL problem defined byMCk to obtain the ex-
ploration policy πk;
Solve optimization problem in (15) to obtain the explo-
ration policy πk;
Explore with πk for ne episodes;
For each episode, collect nmax samples from S ×A;
Update accuracy εk+1 =

max(s,a)∈S×A Ck+1(s, a)/(1− γ);
Update accuracy εk+1 =
∥µT

0 (IS×A − γPT π)
−1Ck∥∞;

Update π̂E
k+1 and P̂T k+1 in (7);

k ← k + 1.
end while

5.1. Exploration via Reducing Bounded Errors

To fulfill the optimality criterion in Definition 4.9, we begin
by relating it to the cost estimation error.

Lemma 5.1. Let ek(s,a;π∗)= |Qc,π∗

M∪c(s,a)−Q
c,π∗

M∪ĉk
(s,a)|

define the optimality error of state-action pair (s, a) at iter-
ation k for π∗ ∈ Π∗

M∪c. We upper bound it as follows:

∥ek(s, a;π∗)∥∞≤
∥∥µT

0 (IS×A−γPT π)
−1Ck

∥∥
∞ . (11)

We show in the lemma below that the exploration algorithm
converges (satisfies Definition 4.9) at iteration k if either
one of the following statements is satisfied:

Lemma 5.2. Let CP be the ground-truth feasible set and
CP̂k

be the recovered feasible set after k iterations. The
conditions of Definition 4.9 are satisfied if either of the
following statements are satisfied:

(1)
1

1− γ
max
(s,a)
Ck(s, a) ≤ ε; (12)

(2) max
π∈Π†

max
µ0∈∆S

∣∣µT
0 (IS×A − γPT π)

−1Ck
∣∣ ≤ ε, (13)
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Π† =

 ⋂
c∈CP

Π∗
M∪c

 ∪
 ⋂

ĉ∈C
P̂k

Π∗
M̂k∪ĉk


Based on (12), we introduce BEAR in Algorithm 1 (high-
lighted in teal), which derives the k-th iteration exploration
policy πk by solving the RL problem where the reward func-
tion r = Ck. In practice, any RL solver can be applied
to determine the exploration policy. Next, we analyze the
sample complexity of BEAR.

Sample Complexity. Due to stochasticity in the environ-
mental dynamics, we employ pseudo-counts to calculate
the number of visitations to state-action pairs during traver-
sal induced by the exploration policy. Let ηhk (s, a|s0), h ∈
[nmax] be the probability of state-action pair (s, a) reached
in the h-th step following a policy πk ∈ ΠMCk starting in
state s0. We can compute it recursively

η0k(s, a|s0) := πk(a|s)1{s=s0},

ηh+1
k (s, a|s0) :=

∑
a′,s′

πk(a|s)PT (s|s′, a′)ηhk (s′, a′|s0),

Definition 5.3. (Pseudo-counts). We introduce the pseudo-
counts of visiting a specific state-action pair (s, a) after k
iterations as:

N̄k(s, a) = µ0

nmax∑
h=1

k∑
i=1

ηhi (s, a|s0).

Similar to (7), we define N̄+
k (s, a) = max{0, N̄k(s, a)}.

The following lemma provides an upper bound on the actual
error in terms of the error induced by pseudo-counts.

Lemma 5.4. With probability at least 1− δ/2, ∀s, a, h, k ∈
S ×A× [nmax]× N+, we have:

min

{
σ

√
ℓk(s, a)

2N+
k (s, a)

, Cmax

}
≤ σ̌

√
2ℓ̄k(s, a)

N̄+
k (s, a)

, (14)

where ℓ̄k(s, a) = log(36SA(N̄+
k (s, a))2/δ) and σ̌ =

max{σ,
√
2Cmax}.

Subsequently, we derive the sample complexity of BEAR:

Theorem 5.5. (Sample Complexity of BEAR). If Algo-
rithm BEAR terminates at iteration K with the updated
accuracy εK , then with probability at least 1− δ, it fulfills
Definition 4.9 with a number of samples upper bounded by

n ≤ Õ
(
σ̌2(2Cmax − εK(1− γ))2

(1− γ)2ε2KC2
max

)
.

The above theorem has taken into account the sample com-
plexity of the RL phase. In fact, further improvements can
be made to enhance the algorithm’s performance.

5.2. Exploration via Constraining Candidate Policies

The above exploration strategy has limitations, as it aims to
minimize uncertainty across all policies, whereas it could
be more effective by focusing on reducing uncertainty only
for potentially optimal policies. To address this, we propose
PCSE for ICRL in Algorithm 1 (highlighted in purple). At
each iteration, we intentionally restrict the search to policies
that yield a value function close to the estimated optimal
one regarding both rewards and costs. This allows us to
focus solely on plausibly optimal policies, and we formulate
the optimization problem as follows:

εk+1 = sup
µ0∈∆S

π∈Πk

µT
0 (IS×A − γPT π)Ck+1, (15)

s.t. Πk = Πc
k ∩Πr

k,

Πc
k =

{
π : sup

µ0∈∆S
µT
0

(
V c,π

M̂k∪ĉk
−V c,∗

M̂k∪ĉk

)
≤ 4εk+ϵ

}
,

Πr
k =

{
π : inf

µ0∈∆S
µT
0

(
V r,π

M̂k
−V r,π̂∗

k

M̂k

)
≥ Rk

}
,

where Rk = 2γRmax

(1−γ)2 ∥PT −P̂T k∥∞+ γRmax

(1−γ)2 ∥(π
∗−π̂∗

k)∥∞.

The rationale in Πk can be attributed to two aspects: 1) Πc
k

constrains exploration policies to visit states within an addi-
tional cost budget, thereby ensuring resilience to estimation
error when searching for optimal policies; 2) Πr

k states that
exploration policies should focus on states with potentially
higher cumulative rewards, where possible constraints lie.
As the estimation error decreases, the gap (i.e., Rk) also
diminishes, eventually converging to zero, which ensures
the optimality of constrained policies. We have shown in
Appendix C.12 that optimal policies in basic environments
are captured by Πk.

To solve the optimization problem (15), we express its La-
grangian objective as L(ρπM, λ) =

− ⟨ρπM, Ck+1⟩+ λ2

(
(1− γ)(V

r,π̂∗
k

M̂k
+Rk)− ⟨ρπM, r⟩

)
+ λ1

(
−(1− γ)(V c,∗

M̂k∪ĉk
+ 4εk + 2ϵ) + ⟨ρπM, ĉk⟩

)
,

where λ = [λ1, λ2]
T records two Lagrangian multipliers.

The dual problem of (15) can be defined as

min
ρπ
M

max
λ≥0

L(ρπM, λ). (16)

To solve this dual problem, we assume that Slater’s condi-
tion is fulfilled, and we follow the two-timescale stochastic
approximation (Borkar & Konda, 1997; Konda & Tsitsiklis,
1999). The following two gradient steps alternated until
convergence.

ρπM,k+1 = ρπM,k − ak(L
′
ρ(ρ

π
M,k, λk) +Wk),
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λk+1 = λk + bk(L
′
λ(ρ

π
M,k, λk) + Uk),

where coefficients ak ≪ bk, satisfying
∑

k ak =
∑

bk =
∞,

∑
a2k < ∞ and

∑
b2k < ∞; Wk and Uk are two

zero-mean noise sequences. Under this condition, the con-
vergence is guaranteed in the limit (Borkar, 2009). At
each iteration k, the exploration policy is calculated as:
πk(a|s) = ρπM,k(s, a)/

∑
a ρ

π
M,k(s, a).

Sample Complexity. The convergence condition for PCSE
for ICRL, given by (13), determines its sample complexity.
To present this result, we additionally define the cost advan-
tage function as Ac,∗

M̂∪c̃
(s, a) = Qc,∗

M̂∪c̃
(s, a)−V ∗,c

M̂∪c̃
(s), in

which c̃ ∈ argminc∈CP
max(s,a)∈S×A |c(s, a)− ĉK(s, a)|

is the cost function in the true feasible cost set CP closest to
the estimated cost function ĉK(s, a) at iteration K.

Theorem 5.6. (Sample Complexity of PCSE). If Algorithm
PCSE terminates at iteration K with accuracy εK and the
accuracy of previous iteration is εK−1, then with probability
at least 1 − δ, it fulfills Definition 4.9 with the number of
samples upper bounded by

n ≤ Õ

(
min

{
Õ
(
σ̌2(2Cmax − εK(1− γ))2

(1− γ)2ε2KC2
max

)
,

σ2(6εK−1 + ϵ)2SA

min(s,a)

(
Ac,∗

M̂∪c̃
(s, a)

)2
ε2K

})
.

The first term matches the sample complexity of the BEAR
strategy since the convergence of BEAR is stricter than
PCSE, i.e., (13) is always satisfied if (12) is satisfied. As a
result, the sample complexity of BEAR constitutes a lower
bound for that of PCSE. The second term depends on the
ratio (6εK−1 + ϵ)/εK and the minimum cost advantage
function min(s,a) A

c,∗
M̂∪c̃

. On one side, the ratio depends
on both nmax and ne. If the two values are high, the ratio
is high because the accuracy reduces faster from iteration
K − 1 to K with more collected samples. Otherwise, the
ratio is small because the accuracy remain similar between
two iterations. A smaller ϵ, namely a tighter constraint,
benefits the sample efficiency. On the other side, the cost
advantage function min(s,a) A

c,∗
M̂∪c̃

shows that the larger the
suboptimality gap, the easier to infer the constraint.

6. Empirical Evaluation
We empirically compare our algorithms against other meth-
ods in both discrete and continuous environments, where the
agent navigates from a starting location to a target location
(receiving a positive reward) while satisfying the constraints.
Our implementation of code for discrete environments is
adapted from (Liu et al., 2023), and for continuous environ-
ments, it is adapted from (Lazcano et al., 2024).
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Figure 2. Four different Gridworld environments with white, red,
and black markers indicating the starting, target, and constraint
locations, respectively.

Experiment Settings. The evaluation metrics include: 1)
discounted cumulative rewards, which measure the opti-
mality of the learned policy; 2) discounted cumulative
costs, which assess the safety of the learned policy; and
3) Weighted Generalized Intersection over Union (WGIoU)
(refer to Appendix D.2 for details), which robustly evaluates
the similarity between inferred cost functions and ground-
truth cost functions.

Comparison Methods. We compare BEAR and PCSE
with four other exploration strategies: random exploration,
ϵ-greedy exploration, maximum-entropy exploration, and
upper confidence bound exploration.

6.1. Evaluation under Discrete Environments

Figure 2 illustrates four discrete environments, each charac-
terized by distinct constraints. The expert policy is trained
under ground-truth constraints, while two ICRL algorithms
and four baselines operate without knowledge of these con-
straints. These environments are stochastic, with the envi-
ronment executing a randomly sampled action with proba-
bility p = 0.05. Figure 3 and 5 (in Appendix) demonstrate
the training process of three metrics for six exploration
strategies in four Gridworld environments, along with the
performance of expert policy (represented by the grey line).
It can be shown that the performance of the optimal policy
inM∪ ĉ gradually converges to the performance of the op-
timal policy inM∪c. Also, we find that PCSE (represented
by the red curve) converges the fastest among the six explo-
ration strategies. In Gridworld-2 and Gridworld-4, WGIoU
converges to a degree of similarity less than 1 (ground-truth).
This is because some of the ground-truth constraints lie in
non-critical regions, and ICRL infers the minimal set of con-
straints required to explain expert behavior. We demonstrate
constraint learning processes of six exploration strategies
for four Gridworlds in Appendix Figure 7, 8, 9, and 10,
respectively. These learned constraints are recovered as vis-
iting these states leads to higher cumulative rewards, while
other unrecovered constraints do not impact the optimality
of expert behaviors.
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Figure 3. Training curves of discounted cumulative rewards (top), discounted cumulative costs (middle), and WGIoU (bottom) for four
exploration strategies in four Gridworld environments, respectively.

6.2. Evaluation under Continuous Environments

Figure 4 (leftmost) shows the Point Maze environment,
where the green agent has a continuous state space. The
agent’s goal is to reach the red ball inside the maze with pink
walls. The environment is stochastic due to the noises im-
posed on the observed states. Figure 4 (middle left) demon-
strates the inferred constraints (represented by blue dots)
obtained through PCSE, with the center of the entire maze
at (0, 0). Figure 4 (middle right and rightmost) reports the
discounted cumulative rewards and costs during training.

For all the experiments discussed above, please check Ap-
pendix D and E for more experimental details.

7. Conclusions
Summary. This paper introduces a strategically efficient
exploration framework for ICRL problems. We conduct the-
oretical analysis to investigate the influence of estimation er-
rors in expert policy and environmental dynamics on the es-
timation of feasible constraints. Building upon this, we pro-
pose two exploration algorithms, namely BEAR algorithm
and PCSE. BEAR explores the environment to minimize
the aggregated bounded error of cost estimations. Moreover,
PCSE algorithm goes a step further by constraining the ex-
ploration policies to plausibly optimal ones, thus enhancing
the overall sample efficiency. We provide tractable sample
complexity analyses for both algorithms. To validate the ef-

fectiveness of our method, we perform empirical evaluations
in various environments.

Limitations and Future Work. As is also a pressing chal-
lenge in the field, our method faces the limitation of strug-
gling to scale to problems with large or continuous state
spaces. This is due to the fact that our sample complexity is
directly dependent on the size of the state space, and real-
world problems often involve large or continuous spaces.
Several future research directions warrant attention. First,
extending the analysis to finite-horizon settings and deriv-
ing lower bounds for sample complexities would provide
a more comprehensive understanding of the performance
limits. Second, investigating the transferability of feasible
constraints across different environments would be valuable
in determining the generalizability of our approach. Addi-
tionally, relaxing the assumption that the expert policy is
safe and reward optimal, either to a safe expert policy (not
necessarily optimal) or offline expert demonstrations, would
be an interesting direction for future work. We believe it
is also valuable to investigate how the sub-optimality of
expert agents influences inverse constraint inference and
transferability. Finally, it is also intriguing if the hypothesis
space of admissible constraint functions can be restricted
in the first place, leading to more practical, scalable, and
efficient constraint inference.
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Figure 4. Point Maze environment (leftmost), inferred constraints (middle left), discounted cumulative rewards (middle right) and
discounted cumulative costs (rightmost).

8. Discussions
Set-recovery Framework. In contrast to prior ICRL meth-
ods, our set-recovery framework defers the commitment
to specific constraints until a later stage, thereby exposing
the fundamental complexity of inverse constraint inference.
Building on this perspective, we characterize two distinct
modes of constraint selection for the downstream optimiza-
tion procedure on a novel task. For hard constraints, all
feasible constraints in the set are equivalent for a novel
task, as the cost function value does not matter (c(s, a) = 1
and c(s, a) = 2 both prohibit (s, a)). Thus, any feasible
constraint can be selected for transfer. For soft constraints,
feasible constraints in the set differ for a novel task. The
value of each cost function matters due to task differences in
dynamics and rewards. Therefore, the generalizable learned
constraints should come from the intersection of feasible
sets from old and novel tasks. The selection criterion should
depend on differences in dynamics and rewards.

Affine Space Perspective. Linear algebraic analyses pro-
vide a more rigorous and inherent framework for this set-
recovery approach, making them valuable for investigat-
ing ICRL theories. For instance, by defining a subspace
U = im(E − γPT ), the cost functions within a feasible
cost set become equivalent on the quotient space RS×A/U .
Furthermore, we can measure the distance between the re-
covered and expert costs within this quotient space.

Scaling to Practical Environments. Sample complex-
ity analysis has primarily focused on discrete state-action
spaces (Agarwal et al., 2019). Existing algorithms for learn-
ing feasible sets (Metelli et al., 2023; Zhao et al., 2023;
Lazzati et al., 2024a) struggle to scale effectively to prob-
lems with large or continuous state spaces. This limitation
arises because their sample complexity depends directly
on the size of the state space, and real-world problems fre-
quently involve large or continuous spaces. Scaling feasible
set learning to practical problems with large state spaces re-
mains a pressing challenge in the field (Lazzati et al., 2024b).

One critical issue is the exploration challenge where algo-
rithms need to specify where and how to explore at each
iteration. Another key difficulty is the estimation of the
ground-truth expert policy, which is hard to obtain in an
online setting. A potential solution involves extracting the
expert policy from offline datasets of expert demonstrations.
However, these datasets often contain a mix of optimal and
sub-optimal demonstrations, leading to sub-optimal expert
policies. Addressing this issue could involve i) treating the
dataset as noisy and applying robust learning algorithms
designed to handle noisy demonstrations or ii) combining
offline demonstrations with online fine-tuning, where fea-
sible, to refine the learned policy. Finally, the scalability
of learning in continuous spaces is frequently hindered by
the curse of dimensionality. Dimensionality reduction tech-
niques can mitigate this challenge by simplifying state and
action representations while retaining the features essential
for effective policy learning.
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A. Notation and Symbols
In Table 1, we report the explicit definition of notation and symbols applied in our paper.

Table 1. Overview of notation and symbols

Symbol Name Signature

M CMDP without knowing the cost (CMDP\c) (S,A, PT , r, ϵ, µ0, γ)
M∪ c CMDP (S,A, PT , r, c, ϵ, µ0, γ)
S State space /
A Action space /
PT Transition dynamics ∆S

S×A
s0 Initial state S
π Policy ∆A

S
πE Expert policy ∆A

S
r Reward function [0, Rmax]

S×A

c Cost function [0, Cmax]
S×A

ϵ Threshold of constraint or budget RS

V r,π
M Reward state-value function for r of π inM RS

Qr,π
M Reward action-value function for r of π inM RS×A

Ar,π
M Reward advantage function for r of π inM RS×A

V c,π
M∪c Cost state-value function for c of π inM∪ c RS

Qc,π
M∪c Cost action-value function for c of π inM∪ c RS×A

CP Ground-truth feasible cost set /
CP̂ Recovered feasible cost set /

ηhk (s, a|s0) State action pair visitation frequencies ∆S×A

ρπM Occupancy measure of π inM ∆S×A

ε Target accuracy R+

δ Significancy (0, 1)
ne Number of exploration episodes N+

E Expansion operator RS → RS×A

IS×A Identity matrix on S ×A /
IS Identity matrix on S /
[a] Set that contains integers from 0 to a {0, 1, . . . , a}, a ∈ N

B. Extra Related Works
Sample Efficiency. Sample-efficient algorithms have been explored across various RL directions, yielding significant
advancements. To find the minimal structural assumptions that empower sample-efficient learning, (Jin et al., 2021)
introduced the Bellman Eluder (BE) dimension and proposed a sample-efficient algorithm for problems with low BE
dimension. (Liu et al., 2024) introduced a sample-efficient RL framework called Maximize to Explore, which reduces the
computational cost and enhances compatibility. In the field of imitation learning, (Liu et al., 2022b) addressed both online
and offline settings, proposing optimistic and pessimistic generative adversarial policy imitation algorithms with tractable
regret bounds. In the realm of model-free RL, (Jin et al., 2018) developed a Q-learning algorithm with upper confidence
bound exploration, achieving a regret bound of

√
T in episodic MDPs. (Wachi et al., 2018) modeled state safety values using

a Gaussian Process and proposed a more efficient approach to balance the trade-off between exploring the safety function,
exploring the reward function, and exploiting knowledge to maximize rewards. In the context of (CRL), (Miryoosefi & Jin,
2022) bridged reward-free RL and CRL, providing sharp sample complexity results for CRL in tabular MDPs. Focusing on
episodic finite-horizon Constrained MDPs (CMDPs), (Kalagarla et al., 2021) established a probably approximately correct
guarantee on the number of episodes required to find a near-optimal policy, with a linear dependence on the state and action
spaces and a quadratic dependence on the time horizon. From a meta-learning perspective, (Liu & Zhu, 2023) framed
the problem of learning an expert’s reward function and constraints from a few demonstrations as a bi-level optimization,
introducing a provably efficient algorithm to learn a meta-prior over reward functions and constraints. In terms of sample
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efficiency in IRL, (Lazzati et al., 2024a) redefines offline IRL by introducing the feasible reward set to address limited data
coverage, proposing approaches to ensure inclusion monotonicity through pessimism. (Lazzati & Metelli, 2024) extends
IRL to Utility Learning, introducing a framework for capturing agents’ risk attitudes via utility functions. (Lazzati et al.,
2024b) tackles scalability in online IRL by introducing reward compatibility and a state-space-independent algorithm for
Linear MDPs, bridging IRL and reward-free exploration. For misspecification in IRL, (Skalse & Abate, 2023) provides
a framework and tools to evaluate the robustness of standard IRL models (e.g., optimality, Boltzmann rationality) to
misspecification, ensuring reliable inferences from real-world data. (Skalse & Abate, 2024) quantifies IRL’s sensitivity to
behavioral model inaccuracies, showing that even small misspecifications can result in significant errors in inferred reward
functions.

Constraint Inference. Constraint learning in reinforcement learning has advanced significantly to address safety require-
ments and extend application scenarios. Chou et al. (2018) introduced a method to infer shared constraints across tasks using
safe and unsafe trajectories, leveraging hit-and-run sampling and integer programming with theoretical guarantees. Kim &
Oh (2022) proposed a sample-efficient RL method with CVaR constraints that addresses distributional shift via surrogate
functions and trust-region constraints, achieving high returns and safety in complex tasks. To ensure stable convergence,
Moskovitz et al. (2023) developed ReLOAD, which guarantees last-iterate convergence and overcomes limitations of
gradient-based methods in CRL. For scenarios with unknown rewards and dynamics, Lindner et al. (2024) introduced a
CMDP method that constructs a convex safe set from safe demonstrations, enabling task transferability and outperforming
IRL-based approaches. Kim et al. (2024) extended IRL framework to infer tighter safety constraints from diverse expert
demonstrations, addressing the ill-posed nature of constraint learning and enhancing multi-task generalization. These
prior works either require multiple demonstrations across diverse environments or rely on additional settings to ensure
the uniqueness of the recovered constraints. In contrast, our approach infers a feasible cost set encompassing all cost
functions consistent with the provided demonstrations, eliminating reliance on additional information to address the inherent
ill-posedness of inverse problems.

Bayesian IRL. In Bayesian IRL, posterior sampling over reward functions serves as a foundational mechanism to guide
policy inference (Ramachandran & Amir, 2007). In contrast, PCSE shifts the focus from reward estimation to constraint-
based reasoning by leveraging a structured policy set to guide exploration. Additionally, Balakrishnan et al. (2020) employed
Bayesian optimization to facilitate active exploration of reward functions in IRL. PCSE extends this idea to the ICRL setting
by actively exploring constraint structures rather than rewards, and crucially, it removes reliance on generative models. This
design directly addresses scalability limitations highlighted by (Chan & van der Schaar, 2021), where traditional Bayesian
IRL methods relying on Markov Chain Monte Carlo (MCMC) sampling exhibited poor scalability in high-dimensional state
spaces.

C. Proofs of Theoretical Results in the Main Paper
In this section, we provide detailed proofs of theoretical results in the main paper.

C.1. Proof of Lemma 4.1

Proof. If neither case happens, i.e., Eµ0,πE ,PT

[∑∞
t=0 γ

tc(st, at)
]
< ϵ and ∃ a′ ∈ A that satisfies both a′ /∈ AE(s)

and Ar,πE

M (s, a′) > 0, we can always construct a new policy, which only differs from the expert policy πE in state

s, as π′(a|s) =

{
θ , a = a′

1− θ, a ∼ πE
. There must ∃ θ ∈ (0, 1] that uses some (or all) of the leftover budget τ = ϵ −

Eµ0,πE ,PT

[∑∞
t=0 γ

tc(st, at)
]

while having a larger cumulative reward, which makes πE not an optimal policy. This makes
a contradiction.

The existence of such θ can be proved as follows. By recursively using the Bellman Equation, we can obtain

Eµ0

[
V c,πE

M∪c(s0)
]
= α(PT , π

E , γ, c) + β(PT , π
E , γ, c) · EπE

[
Qc,πE

M∪c(s, a
E)
]
. (17)

where coefficients α ≥ 0, β > 0. β can not equal to 0, since state s has to be visited with at least some probability.
Otherwise, we do not need to explain πE(s). Note that if Qc,πE

M∪c(s, a
′) ≤ EπE

[
Qc,πE

M∪c(s, a
E)
]
, π′ is a strictly better policy

than the expert policy for any θ ∈ (0, 1] (larger rewards with equal or less costs). This clearly makes a contradiction. Hence,
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we focus on Qc,πE

M∪c(s, a
′) > EπE

[
Qc,πE

M∪c(s, a
E)
]
. In this case, we can always obtain a θ > 0, by letting

Eµ0

[
V c,πE

M∪c(s0)
]
+ τ ′ = α(PT , π

E , γ, c) + β(PT , π
E , γ, c) ·

[
(1− θ)EπE

[
Qc,πE

M∪c(s, a
E)
]
+ θQc,πE

M∪c(s, a
′)
]
, (18)

where τ ′ ∈ [0, τ) denotes the leftover budget after applying π′. By subtracting Eq. (17) from Eq. (18), we have
∀ Qc,πE

M∪c(s, a
′) > EπE

[
Qc,πE

M∪c(s, a
E)
]
,

θ =
τ ′

β(PT , πE , γ, c)
[
Qc,πE

M∪c(s, a
′)− EπE

[
Qc,πE

M∪c(s
′, aE)

]] . (19)

With this analysis, if Ar,πE

M (s, a′) > 0 , which indicates 2) of Lemma 4.1 is not satisfied so 1) must be satisfied,

Qc,πE

M∪c(s, a
′) > EπE

[
Qc,πE

M∪c(s, a
E)
]
= V c,πE

M∪c(s) suffices to let Eµ0,π′′,PT

[∑∞
t=0 γ

tc(st, at)
]
> ϵ with π′′ only dif-

fers from πE at state s where π′′(s) = a′, which is a constraint-violating condition.

C.2. Proof of Lemma 4.4

Proof. In this proof, we distinguish two cases according to Assumption 4.3.
In the first case, the constraint (2) is hard, i.e., ϵ = 0.

(i) By definition of expert policy πE , we have V c,πE

M∪c(s) = 0. On one hand, if c is feasible, V c,πE

M∪c = EπE [Qc,πE

M∪c] = 0.

Also, since c ∈ [0, Cmax]
S×A, Qc,πE

M∪c ≥ 0. As a result, Qc,πE

M∪c = 0 = V c,πE

M∪c . On the other hand, any c ∈
[0, Cmax]

S×A that satisfies Qc,πE

M∪c = V c,πE

M∪c = 0 makes πE an optimal policy under this condition.

(ii) By definition of expert policy πE , we have V c,πE

M∪c(s) = 0. On one hand, since Ar,πE

M (s, a) > 0, if c is feasible,

Qc,πE

M∪c(s, a) > 0, otherwise πE is not optimal. On the other hand, any cost function c ∈ [0, Cmax]
S×A that satisfies

Qc,πE

M∪c(s, a) > 0 = V c,πE

M∪c(s) ensures action a violates the constraint, and makes πE an optimal policy under this
condition.

(iii) By definition of expert policy πE , we have V c,πE

M∪c(s) = 0. On one hand, since Ar,πE

M (s, a) ≤ 0, any c ∈ [0, Cmax]
S×A

ensures the expert’s optimality. However, in terms of the minimal set CP in Definition 4.2, c(s, a) = 0 and

Qc,πE

M∪c(s, a) = 0 = V c,πE

M∪c(s). On the other hand, any c(s, a) ∈ [0, Cmax]
S×A that satisfies Qc,πE

M∪c(s, a) = 0 =

V c,πE

M∪c(s) ensures πE an optimal policy under this condition.

In the second case, the constraint in (2) is soft, i.e., ϵ > 0, and the expert policy is deterministic.

(i) Since the expert policy πE is deterministic, we have Qc,πE

M∪c(s, a) = V c,πE

M∪c(s). On one hand, if c is feasible,

Qc,πE

M∪c(s, a) = V c,πE

M∪c(s). On the other hand, any c ∈ [0, Cmax]
S×A that satisfies Qc,πE

M∪c(s, a) = V c,πE

M∪c(s) makes πE

an optimal policy under this condition.
(ii) In this case, since Ar,πE

M (s, a) > 0, situation 2) of Lemma 4.1 is not satisfied. As a result, 1) of Lemma 4.1

must be satisfied. On one hand, if c is feasible, Qc,πE

M∪c(s, a) > Qc,πE

M∪c(s, a
E) = V c,πE

M∪c(s) suffices to let

Eµ0,πE ,PT

[∑∞
t=0 γ

tc(st, at)
]

> ϵ. On the other hand, any cost function c ∈ [0, Cmax]
S×A that satisfies

Qc,πE

M∪c(s, a) > V c,πE

M∪c(s) ensures action a violates the constraint, and makes πE an optimal policy under this condition.

(iii) On one hand, since Ar,πE

M (s, a) ≤ 0, any relationship between Qc,πE

M∪c(s, a) and V c,πE

M∪c(s) ensures the expert’s

optimality. However, in terms of the minimal set CP in Definition 4.2, Qc,πE

M∪c(s, a) ≤ V c,πE

M∪c(s). On the other hand,

any c ∈ [0, Cmax]
S×A that satisfies Qc,πE

M∪c(s, a) ≤ V c,πE

M∪c(s) ensures πE an optimal policy under this condition.
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C.3. Proof of Lemma 4.5

Lemma C.1. Let P = (M, πE) be an ICRL problem. A Q-function satisfies the condition of Lemma 4.4 if and only if there
exist ζ ∈ RS×A

>0 and V c ∈ RS
≥0 such that:

Qc
M∪c = Ar,πE

M ζ + EV c, (20)

where the expansion operator E satisfies (Ef)(s, a) = f(s).

Here, the term ζ ensures 1) (when Ar,πE

M > 0) the constraint condition in (2) is violated at (s, a) pairs that achieve larger

rewards than the expert policy, and 2) (when Ar,πE

M ≤ 0) only necessary cost functions are captured by feasible cost set CP.

Proof. We prove both the ’if’ and ’only if’ sides.

To demonstrate the ”if” side, we can easily see that all the Q-functions of the form Qc
M∪c(s, a) = Ar,πE

M (s, a)ζ(s, a) +
EV c(s) satisfies the conditions of Lemma 4.4 in the following:

1) Let s ∈ S and a ∈ A such that πE(a|s) > 0, then we have Qc
M∪c(s, a) = V c(s) = V c

M∪c(s). This is the condition (i)
in Lemma 4.4. Note that V c(s) = V c

M∪c(s) holds true for the following two cases since each state s ∈ S has an expert
policy such that πE(a|s) > 0.

2) Let s ∈ S and a ∈ A such that πE(a|s) = 0 and Qr,πE

M (s, a) > V r,πE

M (s), then we have Qc
M∪c(s, a) =

Ar,πE

M (s, a)ζ(s, a) + V c(s) = Ar,πE

M (s, a)ζ(s, a) + V c
M∪c(s) > V c

M∪c(s). This is the case (ii) in Lemma 4.4.

3) Let s ∈ S and a ∈ A such that πE(a|s) = 0 and Qr,πE

M (s, a) ≤ V r,πE

M (s), then we have Qc
M∪c(s, a) = Ar,πE

M (s, a)ζ +

V c(s) = Ar,πE

M (s, a)ζ(s, a) + V c
M∪c(s) ≤ V c

M∪c(s). This is the case (iii) in Lemma 4.4.

To demonstrate the ”only if” side, suppose that Qc
M∪c satisfies conditions of Lemma 4.4, we take V c(s) = V c

M∪c(s) since
we are proving the existence of V c ∈ RS

≥0.

1) In the critical region and follows the expert policy, where Qr,πE

M (s, a) = V r,πE

M (s), 0ζ(s, a) = Qc
M∪c − EV c

M∪c = 0.
Hence, there definitely exists ζ(s, a) > 0.

2) In the constraint-violating region with more rewards, where Qr,πE

M (s, a) > V r,πE

M (s), Ar,πE

M (s, a)ζ(s, a) = Qc
M∪c −

EV c
M∪c > 0. Hence, there definitely exists ζ(s, a) > 0.

3) In the non-critical region with fewer rewards, where Qr,πE

M (s, a) ≤ V r,πE

M (s), Ar,πE

M (s, a)ζ(s, a) = Qc
M∪c−EV c

M∪c ≤
0. Hence, there definitely exists ζ(s, a) > 0.

Final proof of Lemma 4.5

Proof. Recall that Qc
M∪c = (IS×A − γPT π

E)−1c and based on Lemma C.1, we can show that:

c =
(
IS×A − γPT π

E
)(

Ar,πE

M ζ + EV c
)

= Ar,πE

M ζ + EV c − γPT π
EAr,πE

M ζ − γPT π
EEV c

Since πEAr,πE

M = 0S and πEE = IS ,

c = Ar,πE

M ζ + (E − γPT )V
c

We now bound the infinity norm of ζ and V c. First, from Eq. (20), we know that EV c(s) = Qc
M∪c(s, a

E). Hence, intuitively
∥V c(s)∥∞ ≤ Cmax

1−γ . Second, from Eq. (6), c(s, a) = Ar,πE

M (s, a)ζ(s, a) + (E − γPT )V
c(s). 1) When Ar,πE

M (s, a) > 0,

since for everyAr,πE

M (s, a) > 0, ζ(s, a) should satisfy the existence of a cost function in [0, Cmax]
S×A, ζ(s, a) = (c(s, a)−

(E − γPT )V
c(s))/Ar,πE

M (s, a) ≤ Cmax/max+(s,a) A
r,πE

M (s, a). 2) When Ar,πE

M (s, a) < 0, ζ(s, a) = (−c(s, a) + (E −

γPT )V
c(s))/(−Ar,πE

M (s, a)). Since (E − γPT )V
c(s) = c(s, aE) ≤ Cmax, ζ ≤ Cmax/

(
− max+(s,a) A

r,πE

M (s, a)
)
. 3)

When Ar,πE

M = 0, we define ζ(s, a) = 0. To combine all the three conditions, ∥ζ∥∞ = Cmax/max+(s,a) |A
r,πE

M |.
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C.4. Proof of Lemma 4.6

Proof. From Lemma 4.5, ∀(s, a) ∈ S ×A, we can express the cost functions belonging to CP as:

c(s, a) = Ar,πE

M ζ(s, a) + (E − γPT )V
c(s, a).

Regarding π̂E and P̂T , we can express the estimated cost function belonging to CP̂ as:

ĉ(s, a) = Ar,π̂E

M̂
ζ̂(s, a) + (E − γP̂T )V̂

c(s, a),

What we need to do first is to provide a specific choice of ζ̂ and V̂ under which ĉ ∈ [0, Cmax]
S×A. We construct

c̃(s, a) = Ar,π̂E

M̂
ζ(s, a) + (E − γP̂T )V

c(s, a).

We now define the absolute difference between c̃(s, a) and c(s, a) as

χ(s, a)= |c̃(s, a)− c(s, a)| =γ
∣∣∣(PT − P̂T )V

c
∣∣∣ (s, a)+∣∣∣Ar,πE

M −Ar,π̂E

M̂

∣∣∣ ζ(s, a),
χ= max

(s,a)∈S×A
χ(s, a).

∀(s, a) ∈ S ×A, since c(s, a) ∈ [0, Cmax] and c̃(s, a)− c(s, a) ∈ [−χ, χ],we have:

c̃(s, a) = c(s, a) + (c̃(s, a)− c(s, a)) ∈ [−χ,Cmax + χ] (21)

Therefore, there is always a state-action pair (s′, a′) such that

min
(s,a)∈S×A

c̃(s, a) = c̃(s′, a′) = Ar,π̂E

M̂
ζ(s′, a′) + (E − γP̂T )V

c(s′, a′) ≥ −χ.

To obtain ĉ(s, a) ∈ [0, Cmax], we distinguish two cases: 1) c̃(s′, a′) < 0 and 2) c̃(s′, a′) ≥ 0.

Case one: c̃(s′, a′) < 0:

By subtracting c̃(s′, a′) from all c̃(s, a), we have

c̄(s, a) = c̃(s, a)− c̃(s′, a′)

= Ar,π̂E

M̂
ζ(s, a) + (E − γP̂T )V

c(s, a)−Ar,π̂E

M̂
ζ(s′, a′)− (E − γP̂T )V

c(s′, a′)

= Ar,π̂E

M̂

ζ(s, a)− Ar,π̂E

M̂
(s′, a′)

Ar,π̂E

M̂
(s, a)

ζ(s′.a′)

+ (E − γP̂T )
[
V c(s, a)− V c(s′, a′)

]
≥ 0

Also, note that ∀(s, a) ∈ S ×A, we have:

c̃(s′, a′) < 0, c̄(s, a) = c̃(s, a)− c̃(s′, a′) ≤ |c̃(s, a)|+ |c̃(s′, a′)| ≤ Cmax + χ(s, a) + χ

Hence, ∀(s, a) ∈ S ×A, c̄(s, a) ∈ [0, Cmax + χ(s, a) + χ]. Because we are looking for the existence of ĉ ∈ CP̂ satisfying

ĉ ∈ [0, Cmax]
S×A, we can now provide a specific choice of ζ̂ and V̂ under which ĉ ∈ [0, Cmax]

S×A:

ζ̂(s, a) =

ζ(s, a)−
Ar,π̂E

M̂
(s′,a′)

Ar,π̂E

M̂
(s,a)

ζ(s′, a′)

1 + (χ(s, a) + χ)/Cmax
, V̂ c(s, a) =

V c(s, a)− V c(s′, a′)

1 + (χ(s, a) + χ)/Cmax
, ĉ(s, a) =

c̄(s, a)

1 + (χ(s, a) + χ)/Cmax
(22)

We then quantify the estimation error between ĉ(s, a) and c(s, a).

|c(s, a)− ĉ(s, a)| =
∣∣∣∣c(s, a)− c̄(s, a)

1 + (χ(s, a) + χ)/Cmax

∣∣∣∣
18
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=
1

1 + (χ(s, a) + χ)/Cmax

[
|c(s, a)− c̄(s, a)|+ ((χ(s, a) + χ)/Cmax)|c(s, a)|

]
=

1

1 + (χ(s, a) + χ)/Cmax

[
|c(s, a)− c̄(s, a)|+ ((χ(s, a) + χ)/Cmax)|c(s, a)|

]
≤ 1

1 + (χ(s, a) + χ)/Cmax

[
|c(s, a)− c̃(s, a)|+ |c̃(s, a)− c̄(s, a)|+ ((χ(s, a) + χ)/Cmax)|c(s, a)|

]
≤ χ(s, a) + χ+ ((χ(s, a) + χ)/Cmax)Cmax

1 + (χ(s, a) + χ)/Cmax

≤ 2χ(s, a) + 2χ

1 + (χ(s, a) + χ)/Cmax

Case Two: c̃(s′, a′) ≥ 0:

Note that ∀(s, a) ∈ S ×A, we have:

c̃(s′, a′) ≥ 0, c̄(s, a) = c̃(s, a)− c̃(s′, a′) ≤ c̃(s, a) ≤ Cmax + χ(s, a) (23)

Hence, ∀(s, a) ∈ S × A, c̄(s, a) ∈ [0, Cmax + χ(s, a)]. Because we are looking for the existence of ĉ ∈ CP̂ satisfying

ĉ ∈ [0, Cmax]
S×A, we can now provide a specific choice of ζ̂ and V̂ under which ĉ ∈ [0, Cmax]

S×A:

ζ̂(s, a) =
ζ(s, a)

1 + χ(s, a)/Cmax
, V̂ c(s, a) =

V c(s, a)

1 + χ(s, a)/Cmax
, ĉ(s, a) =

c̃(s, a)

1 + χ(s, a)/Cmax
. (24)

We then quantify the estimation error between ĉ(s, a) and c(s, a).

|c(s, a)− ĉ(s, a)| =
∣∣∣∣c(s, a)− c̃(s, a)

1 + χ(s, a)/Cmax

∣∣∣∣
=

1

1 + χ(s, a)/Cmax

[
|c(s, a)− c̃(s, a)|+ (χ(s, a)/Cmax)|c(s, a)|

]
≤ χ(s, a) + (χ(s, a)/Cmax)Cmax

1 + χ(s, a)/Cmax

≤ 2χ(s, a)

1 + χ(s, a)/Cmax

≤ 2χ(s, a) + 2χ

1 + (χ(s, a) + χ)/Cmax
(25)

Combine the upper bound of the estimation error for cost functions in both cases, we finally derive:

|c(s, a)− ĉ(s, a)| ≤ 2χ(s, a) + 2χ

1 + (χ(s, a) + χ)/Cmax
=

2(χ(s, a) + χ)

1 + (χ(s, a) + χ)/Cmax

C.5. Proof of Lemma 4.7

Lemma C.2. (Simulation Lemma for action-value function.) LetM = (S,A, PT , r, µ0, γ) and M̂ = (S,A, P̂T , r, µ0, γ)
be two MDPs. Let π̂ ∈ ∆A

S be a policy. The following equality holds element-wise:

Qr,π̂
M −Qr,π̂

M̂
= γ(IS×A − γPT π̂)

−1(PT − P̂T )V
r,π̂

M̂
(26)

Proof. The proof can be shown as follows:

Qr,π̂
M −Qr,π̂

M̂
= (IS×A − γPT π̂)

−1r − (IS×A − γPT π̂)
−1(IS×A − γPT π̂)Q

r,π̂

M̂

= (IS×A − γPT π̂)
−1(IS×A − γP̂T π̂)Q

r,π̂

M̂
− (IS×A − γPT π̂)

−1(IS×A − γPT π̂)Q
r,π̂

M̂

19
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= γ(IS×A − γPT π̂)
−1(PT − P̂T )π̂Q

r,π̂

M̂

= γ(IS×A − γPT π̂)
−1(PT − P̂T )V

r,π̂

M̂

Lemma C.3. (Simulation Lemma for state-value function.) LetM = (S,A, PT , r, µ0, γ) and M̂ = (S,A, P̂T , r, µ0, γ)
be two MDPs. Let π̂ ∈ ∆A

S be a policy. The following equality holds element-wise:

V r,π̂
M − V r,π̂

M̂
= γ(IS − γπ̂PT )

−1π̂(P̂T − PT )V
r,π̂

M̂
(27)

Proof. The proof can be shown as follows:

V r,π̂
M − V r,π̂

M̂
= (IS − γπ̂PT )

−1r − (IS − γπ̂PT )
−1(IS − γπ̂PT )V

r,π̂

M̂

= (IS − γπ̂PT )
−1(IS − γπ̂P̂T )V

r,π̂

M̂
− (IS − γπ̂PT )

−1(IS − γπ̂PT )V
r,π̂

M̂

= γ(IS − γπ̂PT )
−1π̂(PT − P̂T )V

r,π̂

M̂

= γ(IS − γπ̂PT )
−1π̂(PT − P̂T )V

r,π̂

M̂

Lemma C.4. (Policy Mismatch Lemma.) LetM = (S,A, PT , r, µ0, γ) be an MDP. Let π, π̂ ∈ ∆A
S be two policies. The

following equality holds element-wise:

V r,π
M − V r,π̂

M = γ(IS − γπ̂PT )
−1(π − π̂)PT V

r,π
M

Proof. The proof can be shown as follows:

V r,π
M − V r,π̂

M = (IS − γπ̂PT )
−1(IS − γπ̂PT )V

r,π
M − (IS − γπ̂PT )

−1r

= (IS − γπ̂PT )
−1(IS − γπ̂PT )V

r,π
M − (IS − γπ̂PT )

−1(IS − γπPT )V
r,π
M

= γ(IS − γπ̂PT )
−1(π − π̂)PT V

r,π
M

Final proof of Lemma 4.7

Proof. By utilizing the triangular inequality of norms, we can obtain:∣∣∣Ar,πE

M −Ar,π̂E

M̂

∣∣∣ ≤ ∣∣∣Ar,π̂E

M −Ar,π̂E

M̂

∣∣∣+ ∣∣∣Ar,πE

M −Ar,π̂E

M

∣∣∣
I,II

≤ 2γ

1− γ

∣∣∣(P̂T − PT )V
r,π̂E

M̂

∣∣∣+ γ(1 + γ)

1− γ

∣∣∣(πE − π̂E)PT V
r,πE

M

∣∣∣ , (28)

where the second inequality is derived by the following two parts.

Part I. Let’s consider the first part.∣∣∣Ar,π̂E

M −Ar,π̂E

M̂

∣∣∣ (i)= ∣∣∣(Qr,π̂E

M −Qr,π̂E

M̂

)
− E

(
V r,π̂E

M − V r,π̂E

M̂

)∣∣∣
(ii)

≤
∣∣∣(Qr,π̂E

M −Qr,π̂E

M̂

)
|+ |E

(
V r,π̂E

M − V r,π̂E

M̂

)∣∣∣
(iii)
= γ

∣∣∣(IS×A − γPT π̂
E)−1(P̂T − PT )V

r,π̂E

M̂

∣∣∣+ γ
∣∣∣(IS − γπ̂EPT )

−1π̂E(P̂T − PT )V
r,π̂E

M̂

∣∣∣
(iv)
= γ

∥∥(IS×A − γPT π̂
E)−1

∥∥
∞

∣∣∣(P̂T − PT )V
r,π̂E

M̂

∣∣∣+ γ
∥∥(IS − γπ̂EPT )

−1
∥∥
∞ ∥π̂

E∥∞
∣∣∣(P̂T − PT )V

r,π̂E

M̂

∣∣∣
(v)

≤ 2γ

1− γ

∣∣∣(P̂T − PT )V
r,π̂E

M̂

∣∣∣
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• (i) exploits the definition of the advantage function.

• (ii) applies the triangular inequality.

• (iii) applies the simulation Lemma for action-value function in Lemma C.2 (a variant of (Agarwal et al., 2019, Lemma
2.2)) and the simulation Lemma for state-value function in Lemma C.3.

• (iv) exploits Holder’s inequality and the theorem of matrix infinity norm inequalities that ∥AB∥∞ ≤ ∥A∥∞∥B∥∞.

• (v) exploits the fact that ∥(IS×A − γPT π̂
E)−1∥∞ ≤ 1

1−γ , ∥(IS − γπ̂EPT )
−1∥∞ ≤ 1

1−γ , and ∥πE∥∞ ≤ 1.

Part II. Let’s consider the second part:∣∣∣Ar,πE

M −Ar,π̂E

M

∣∣∣ = ∣∣∣(Qr,πE

M −Qr,π̂E

M

)
− E

(
V r,πE

M − V r,π̂E

M

)∣∣∣
(i)
=
∣∣∣γ(PT V

r,πE

M − PT V
r,π̂E

M

)
− E

(
V r,πE

M − V r,π̂E

M

)∣∣∣
(ii)
= γ

∣∣∣PT

(
V r,πE

M − V r,π̂E

M

)∣∣∣+ ∣∣∣E(V r,πE

M − V r,π̂E

M

)∣∣∣
(iii)

≤ (1 + γ)
∣∣∣E(V r,πE

M − V r,π̂E

M

)∣∣∣
(iv)

≤ γ(1 + γ)
∣∣∣(IS − γπ̂EPT )

−1(πE − π̂E)PT V
r,πE

M

∣∣∣
≤ γ(1 + γ)

∥∥(IS − γπ̂EPT )
−1
∥∥
∞

∣∣∣(πE − π̂E)PT V
r,πE

M

∣∣∣
(v)

≤ γ(1 + γ)

1− γ

∣∣∣(πE − π̂E)PT V
r,πE

M

∣∣∣
• (i) applies the Bellman equation Q = r + γPT V .

• (ii) applies the triangular inequality.

• (iii) holds since ∥PT ∥∞ ≤ 1.

• (iv) applies the policy mismatch Lemma for state-value function in Lemma C.4.

• (v) exploits the fact that∥(IS − γπ̂EPT )
−1∥∞ ≤ 1

1−γ

C.6. Proof of Lemma 4.8

Lemma C.5. (Good Event). Let δ ∈ (0, 1), define the good event Ek as the event at iteration k such that the following
inequalities hold simultaneously for all (s, a) ∈ S ×A and k ≥ 1:

∣∣∣(P̂T k − PT
)
V

r,π̂E
k

M̂k

∣∣∣ (s, a) ≤ Rmax

1− γ

√
ℓk(s, a)

2N+
k (s, a)

,

∣∣∣(PT − P̂T k

)
V r,πE

M

∣∣∣ (s, a) ≤ Rmax

1− γ

√
ℓk(s, a)

2N+
k (s, a)

,

∣∣∣(π − π̂E
k

)
PT V

r,πE

M

∣∣∣ (s, a) ≤ Rmax

1− γ

√
ℓk(s, a)

2N+
k (s, a)

,

∣∣∣(π̂E
k − πE

)
P̂T kV

r,π̂E
k

M̂k

∣∣∣ (s, a) ≤ Rmax

1− γ

√
ℓk(s, a)

2N+
k (s, a)

,
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∣∣∣(PT − P̂T k)V
c
∣∣∣ (s, a) ≤ Cmax

1− γ

√
ℓk(s, a)

2N+
k (s, a)

,

∣∣∣(PT − P̂T k)V̂
c
k

∣∣∣ (s, a) ≤ Cmax

1− γ

√
ℓk(s, a)

2N+
k (s, a)

,

where V r,π̂E

M̂k
, V r,πE

M , V c and V̂ c
k are defined in Lemma 4.6 and Lemma 4.7. ℓk(s, a) = log(36SA(N+

k (s, a))2/δ). Then,
Pr(Ek) ≥ 1− δ.

Proof. We show that each statement does not hold with probability less than δ/6. Let us denote β3
N+

k (s,a)
(s, a) =

Cmax

1−γ

√
ℓk(s,a)

2N+
k (s,a)

and β3
m(s, a) = Cmax

1−γ

√
ℓk(s,a)
2m . Consider the second to last inequality. The probability that it does not

hold is:

Pr
[
∃k ≥ 1,∃(s, a) ∈ S ×A :

∣∣∣(PT − P̂T k)V
c
∣∣∣ (s, a) > β3

N+
k (s,a)

(s, a)
]

(a)

≤
∑
(s,a)

Pr
[
∃k ≥ 1 :

∣∣∣(PT − P̂T k)V
c
∣∣∣ (s, a) > β3

N+
k (s,a)

(s, a)
]

(b)
=
∑
(s,a)

Pr
[
∃m ≥ 0 :

∣∣∣(PT − P̂T k)V
c
∣∣∣ (s, a) > β3

m(s, a)
]

(c)

≤
∑
m

∑
(s,a)

Pr
[∣∣∣(PT − P̂T k)V

c
∣∣∣ (s, a) > β3

m(s, a)
]

(d)

≤
∑
m

∑
(s,a)

2 exp

−2(β3
m(s, a))2m2

m
(

Cmax

1−γ

)2


=
∑
m

∑
(s,a)

2 exp (−ℓk(s, a))

=
∑
m

∑
(s,a)

2δ

36SA(m+)2

=
δ

18
(1 +

π2

6
) ≤ δ

6
(29)

• (a) and (c) use union-bound inequalities over (s, a) and m.

• (b) assumes that we visit a state-action pair (s, a) for m times and only focus on these m times that the transition model
is updated.

• (d) applies the Hoeffding’s inequality and ∥V c∥∞ ≤ Cmax/(1− γ) in Lemma 4.6. The factor m2 in the numerator
results from dividing by 1/m to average over samples, and the factor m in the denominator results from the sum over
m in the denominator of Hoeffding’s bound.

Similarly, we have β1,2

N+
k (s,a)

(s, a) = Rmax

1−γ

√
ℓk(s,a)

2N+
k (s,a)

and β1,2
m (s, a) = Rmax

1−γ

√
ℓk(s,a)
2m for Lemma’s first and second, third

and fourth inequalities, respectively. Lemma’s last inequality employs β3
N+

k (s,a)
(s, a) and β3

m(s, a) again. A union bound

over the six probabilities results in Pr(Ēk) ≤ (δ/6 + δ/6 + δ/6 + δ/6 + δ/6 + δ/6) = δ. Thus, Pr(Ek) = 1− Pr(Ēk) ≥
1− δ.

Final proof of Lemma 4.8
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Proof.

χ(s, a)
(a)

≤ γ
∣∣∣(PT − P̂T )V

c
∣∣∣+ ∣∣∣Ar,πE

M −Ar,π̂E

M̂

∣∣∣ ζ
(b)

≤ γ (Rmax(3 + γ)ζ(s, a) + Cmax(1− γ))

(1− γ)2

√
ℓk(s, a)

2N+
k (s, a)

≤ γ (Rmax(3 + γ)∥ζ∥∞ + Cmax(1− γ))

(1− γ)2

√
ℓk(s, a)

2N+
k (s, a)

(c)
=

γCmax

(
Rmax(3 + γ)/max+(s,a) |A

r,πE

M |+ (1− γ)
)

(1− γ)2

√
ℓk(s, a)

2N+
k (s, a)

(30)

= σ

√
ℓk(s, a)

2N+
k (s, a)

(31)

where, for concision, we denote σ =
γCmax

(
Rmax(3+γ)/max+

(s,a)
|Ar,πE

M |+(1−γ)

)
(1−γ)2 .

• (a) uses Lemma 4.6 and the triangular inequality.

• (b) uses Lemma 4.7 and Lemma C.5.

• (c) uses Lemma results of ∥ζ∥∞ in Lemma 4.5

From Lemma 4.6, since 2(χ(s,a)+χ)
1+(χ(s,a)+χ)/Cmax

increases monotonically with χ(s, a) + χ, we have

|c(s, a)− ĉk(s, a)| ≤
2(χ(s, a) + χ)

1 + (χ(s, a) + χ)/Cmax
=

2σ

(√
ℓk(s,a)

2N+
k (s,a)

+ max
(s,a)∈S×A

√
ℓk(s,a)

2N+
k (s,a)

)
1 + σ/Cmax

(√
ℓk(s,a)

2N+
k (s,a)

+ max
(s,a)∈S×A

√
ℓk(s,a)

2N+
k (s,a)

) . (32)

Also, note that

|c(s, a)− ĉk(s, a)| ≤ max{c(s, a), ĉk(s, a)} ≤ Cmax (33)

Thus, the following formula holds true,

|c(s, a)− ĉk(s, a)| ≤ Ck(s, a),∀ (s, a) ∈ S ×A, (34)

Ck(s, a) = min


2σ

(√
ℓk(s,a)

2N+
k (s,a)

+ max
(s,a)∈S×A

√
ℓk(s,a)

2N+
k (s,a)

)
1 + σ/Cmax

(√
ℓk(s,a)

2N+
k (s,a)

+ max
(s,a)∈S×A

√
ℓk(s,a)

2N+
k (s,a)

) , Cmax

, (35)

C.7. Proof of Lemma 5.1

Proof.

∥ek(s, a;π∗)∥∞
(a)

≤
∥∥(IS×A − γPT π

∗)−1|c− ĉk|
∥∥
∞

(b)

≤
∥∥µT

0 (IS×A−γPT π)
−1Ck

∥∥
∞ . (36)

• (a) follows Lemma C.6 (treat π = π∗ and ĉ = ĉk).

• (b) follows Lemma 4.8.
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C.8. Proof of Lemma 5.2

Lemma C.6. For every given policy π, the first inequality below holds element-wise. For every optimal policies π∗ ∈ Π∗
M∪c

and π̂∗ ∈ Π∗
M̂∪ĉ

of CMDPsM∪ c and M̂ ∪ ĉ respectively, the second inequality below holds.∣∣∣Qc,π
M∪c −Qĉ,π

M∪ĉ

∣∣∣ ≤ ∣∣(IS×A − γPT π)
−1|c− ĉ|

∣∣ ,
max

π∈{π̂∗,π∗}

∥∥∥Qc,π
M∪c −Qĉ,π

M∪ĉ

∥∥∥
∞
≤ 1

1− γ
∥c− ĉ∥∞.

Proof. We can show that: ∣∣∣Qc,π
M∪c −Qĉ,π

M∪ĉ

∣∣∣ (a)= ∣∣(IS×A − γPT π)
−1c− (IS×A − γPT π)

−1ĉ
∣∣

=
∣∣(IS×A − γPT π)

−1|c− ĉ|
∣∣ (37)

• (a) results from the matrix representation of Bellman equation, i.e., Qc,π
M∪c = (IS×A − γPT π)

−1c.

By definition of infinity norm, we have

|Qc,π
M∪c −Qĉ,π̂

M∪ĉ| ≤ ∥Q
c,π
M∪c −Qĉ,π

M∪ĉ∥∞. (38)

Further, we derive the error upper bound of the action-value function by that of cost.

∥Qc,π
M∪c −Qĉ,π

M∪ĉ∥∞
(b)
=
∥∥(IS×A − γPT π)

−1|c− ĉ|
∥∥
∞

(c)
=
∥∥(IS×A − γPT π)

−1
∥∥
∞ ∥c− ĉ∥∞

(d)

≤ 1

1− γ
∥c− ĉ∥∞

• (b) uses Eq. (37)

• (c) exploits the theorem of matrix infinity norm inequalities that ∥AB∥∞ ≤ ∥A∥∞∥B∥∞

• (d) results from ∥(IS×A − γπPT )
−1∥∞ ≤ 1

1−γ .

Final proof of Lemma 5.2

Proof. For statement (1),

inf
ĉk∈C

P̂k

sup
π∗∈Π∗

M∪c

∣∣∣Qc,π∗

M∪c(s0, a)−Qĉk,π
∗

M∪ĉk
(s0, a)

∣∣∣ ≤ inf
ĉk∈C

P̂k

sup
π∗∈Π∗

M∪c

∥Qc,π∗

M∪c(s, a)−Qĉk,π
∗

M∪ĉk
(s, a)∥∞

(a)

≤ inf
ĉk∈C

P̂k

1

1− γ
∥c(s, a)− ĉk(s, a)∥∞

(b)
=

1

1− γ
max

(s,a)∈S×A
Ck(s, a) ≤ ε,

inf
c∈CP

sup
π̂∗
k∈Π∗

M̂k∪ĉk

∣∣∣Qc,π̂∗
k

M∪c(s0, a)−Q
ĉk,π̂

∗
k

M∪ĉk
(s0, a)

∣∣∣ ≤ inf
c∈CP

sup
π̂∗
k∈Π∗

M̂k∪ĉk

∥Qc,π̂∗
k

M∪c(s, a)−Q
ĉk,π̂

∗
k

M∪ĉk
(s, a)∥∞

(c)

≤ inf
c∈CP

1

1− γ
∥c(s, a)− ĉk(s, a)∥∞
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(d)
=

1

1− γ
max

(s,a)∈S×A
Ck(s, a) ≤ ε,

where steps (a) and (c) use Lemma C.6, and steps (b) and (d) use Lemma 4.8.

For statement (2),

inf
ĉk∈C

P̂k

sup
π∗∈Π∗

M∪c

∣∣∣Qc,π∗

M∪c(s0, a)−Qĉk,π
∗

M∪ĉk
(s0, a)

∣∣∣ (e)≤ inf
ĉk∈C

P̂k

max
π∈Π†

∣∣(IS×A − γPT π)
−1|c− ĉk|

∣∣
(f)

≤ max
π∈Π†

∣∣(IS×A − γPT π)
−1Ck

∣∣
≤ max

π∈Π†
max

µ0∈∆S

∣∣µT
0 (IS×A − γPT π)

−1Ck
∣∣ ≤ ε,

inf
c∈CP

sup
π̂∗
k∈Π∗

M̂k∪ĉk

∣∣∣Qc,π̂∗
k

M∪c(s0, a)−Q
ĉk,π̂

∗
k

M∪ĉk
(s0, a)

∣∣∣ (g)≤ inf
c∈CP

max
π∈Π†

∣∣(IS×A − γPT π)
−1|c− ĉk|

∣∣
(h)

≤ max
π∈Π†

∣∣(IS×A − γPT π)
−1Ck

∣∣
≤ max

π∈Π†
max

µ0∈∆S

∣∣µT
0 (IS×A − γPT π)

−1Ck
∣∣ ≤ ε,

where steps (e) and (g) use Eq. (37) and the fact that each cost function in the feasible cost set must ensure the feasibility of
expert policy, steps (f) and (h) use Lemma 4.8.

C.9. Uniform Sampling Strategy for ICRL with a Generative Model

In this part, we additionally consider the problem setting where the agent does not employ any exploration strategy to
acquire desired information but utilizes a uniform sampling strategy to query a generative model. The problem setting is
based on the following assumption, which is stronger than the assumption in the main paper.
Assumption C.7. The agent have access to the generative model ofM;

More specifically, the agent can always query a generative model about a state-action pair (s, a) to receive a next state
s′ ∼ P (·|s, a) and about a state s to receive an expert action aE ∼ πE(·|s). We first present Alg. 2 for uniform sampling
strategy with the generative model and study the sample complexity of this algorithm in Theorem C.9.

Algorithm 2 Uniform Sampling Strategy for ICRL
Input: significance δ ∈ (0, 1), target accuracy ε, maximum number of samples per iteration nmax

Initialize k ← 0, ε0 = 1
1−γ

while εk > ε do
Collect ⌈nmax

SA ⌉ samples from each (s, a) ∈ S ×A
Update accuracy εk+1 = 1

1−γ max
(s,a)∈S×A

Ck+1(s, a)

Update π̂E
k+1(a|s) and P̂T k+1(s

′|s, a) in (7)
k ← k + 1

end while

Lemma C.8. (Metelli et al., 2021, Lemma B.8). Let a, b ≥ 0 such that 2a
√
b > e. Then, the inequality x ≥ a log(bx2) is

satisfied for all x ≥ −2aW−1

(
− 1

2a
√
b

)
, where W−1 is the secondary component of the Lambert W function. Moreover,

−2aW−1

(
− 1

2a
√
b

)
≤ 4a log(2a

√
b).

Theorem C.9. (Sample Complexity of Uniform Sampling Strategy). If Algorithm 2 stops at iteration K with accuracy εK ,
then with probability at least 1− δ, it fulfills Definition 4.9 with a number of samples upper bounded by,

n ≤ Õ

(
σ2SA

(1− γ)2ε2K

)
, (39)
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where σ =
γCmax

(
Rmax(3+γ)/max+

(s,a)
|Ar,πE

M |+(1−γ)

)
(1−γ)2 and Õ notation suppresses logarithmic terms.

Proof. We start from Lemma 5.2. We further bound:

1

1− γ
max

(s,a)∈S×A
Ck(s, a) =

1

1− γ
max

(s,a)∈S×A
min


2σ

(√
ℓk(s,a)

2N+
k (s,a)

+max
(s,a)

√
ℓk(s,a)

2N+
k (s,a)

)
1+ σ

Cmax

(√
ℓk(s,a)

2N+
k (s,a)

+max
(s,a)

√
ℓk(s,a)

2N+
k (s,a)

) , Cmax


=

1

1− γ
min


4σmax

(s,a)

√
ℓk(s,a)

2N+
k (s,a)

1+ 2σ
Cmax

max
(s,a)

√
ℓk(s,a)

2N+
k (s,a)

, Cmax


(a)
=

1

1− γ
min


4σ

√
ℓk(s′,a′)

2N+
k (s′,a′)

1+ 2σ
Cmax

√
ℓk(s′,a′)

2N+
k (s′,a′)

, Cmax

 (40)

where step (a) supposes at state-action pair (s′, a′), σ
√

ℓk(s′,a′)

2N+
k (s′,a′)

= σ max
(s′,a′)

√
ℓk(s′,a′)

2N+
k (s′,a′)

.

After K iterations, based on uniform sampling strategy, we know that NK ≥ 1 for any (s, a) ∈ S × A. To terminate at
iteration K, it suffices to enforce every (s, a) ∈ S ×A:

1

1− γ

4σ

√
ℓk(s′,a′)

2N+
k (s′,a′)

1+ 2σ
Cmax

√
ℓk(s′,a′)

2N+
k (s′,a′)

= εK

σ

√
ℓk(s′, a′)

2N+
k (s′, a′)

=
CmaxεK(1− γ)

4Cmax − 2εK(1− γ)

By σ =
γCmax

(
Rmax(3+γ)/max+

(s,a)
|Ar,πE

M |+(1−γ)

)
(1−γ)2 , we have

γCmax

(
Rmax(3 + γ)/max+(s,a) |A

r,πE

M |+ (1− γ)
)

(1− γ)3

√
ℓk(s′, a′)

2N+
k (s′, a′)

=
CmaxεK

4Cmax − 2εK(1− γ)

=⇒ NK(s′, a′) =
2γ2(2Cmax − εK(1− γ))2

(
Rmax(3 + γ)/max+(s,a) |A

r,πE

M |+ (1− γ)
)2

ℓk(s
′, a′)

(1− γ)6ε2K

From Lemma C.8, we derive

NK(s′, a′)

=−
4γ2(2Cmax−εK(1−γ))2

(
Rmax(3 + γ)/max+(s,a) |A

r,πE

M |+(1−γ)
)2

(1− γ)6ε2K
×

W−1

− (1− γ)6ε2K

4γ2(2Cmax−εK(1− γ))2
(
Rmax(3+γ)/max+(s,a) |A

r,πE

M |+(1−γ)
)2
√

δ

36SA


≤

8γ2(2Cmax − εK(1− γ))2
(
Rmax(3 + γ)/max+(s,a) |A

r,πE

M |+ (1− γ)
)2

(1− γ)6ε2K
×
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log

4γ2(2Cmax − εK(1− γ))2
(
Rmax(3 + γ)/max+(s,a) |A

r,πE

M |+ (1− γ)
)2

(1− γ)6ε2K

√
36SA

δ


= Õ

γ2(2Cmax − εK(1− γ))2
(
Rmax(3 + γ)/max+(s,a) |A

r,πE

M |+ (1− γ)
)2

(1− γ)6ε2K


= Õ

γ2(2Cmax − εK(1− γ))2
(
Rmax(3 + γ)/max+(s,a) |A

r,πE

M |+ (1− γ)
)2

(1− γ)6ε2K

 (41)

By summing n =
∑

(s,a)∈S×A NK(s, a), we obtain the upper bound.

n ≤ Õ

(
γ2(2Cmax − εK(1− γ))2

(
Rmax(3 + γ)/max+(s,a) |A

r,πE

M |+ (1− γ)
)2
SA

(1− γ)6ε2K

)
(42)

Since σ =
γCmax

(
Rmax(3+γ)/max+

(s,a)
|Ar,πE

M |+(1−γ)

)
(1−γ)2 , we have

n ≤ Õ

(
σ2(2Cmax − εK(1− γ))2SA

(1− γ)2ε2KC2
max

)
. (43)

Regarding the sample complexity in the RL phase, since the reward function is known, according to Corollary 2.7 in Section
2.3.1 from the book ’Reinforcement Learning: Theory and Algorithms’ (Agarwal et al., 2019), the sample complexity of
obtaining a ε-optimal policy is O(SA/(1− γ)3ε2), which is dominated by the sample complexity in Theorem 5.5. Note that
σ also contains 1/(1− γ). As a result, Eq. (43) still holds true after including the sample complexity of the RL phase.

C.10. Proof of Lemma 5.4

Proof. This result generalizes (Kaufmann et al., 2021, Lemma 7) to our setting. We define event Gcnt as:

Gcnt =

{
∀k ∈ N⋆,∀(s, a) ∈ S ×A : Nk(s, a) ≥

1

2
N̄k(s, a)− log

(
2SA

δ

)}
. (44)

We calculate the probability of the complement of event Gcnt.

P
((
Gcnt

)c)
(a)

≤
∑

(s,a)∈S×A

P
(
∃k ∈ N : Nk(s, a) ≤

1

2
N̄k(s, a)− log

(
2SA

δ

))
(b)

≤
∑

(s,a)∈S×A

P

(
∃k ∈ N :

nmax∑
h=1

k∑
i=1

1
(
(shi , a

h
i ) = (s, a)

)
≤ 1

2

∑
s0

nmax∑
h=1

k∑
i=1

µ0(s0)η
h
i (s, a|s0)− log

(
2SA

δ

))
(c)

≤
∑

(s,a)∈S×A

δ

2SA
=

δ

2
, (45)

• (a) results from a union bound over (s, a).

• (b) results from Definition 5.3.

• (c) results from (Kaufmann et al., 2021, Lemma 9).
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As a result, we have with probability at least 1− δ/2:

Nk(s, a) ≥
1

2
N̄k(s, a)− βcnt(δ), (46)

where βcnt(δ) = log (2SA/δ).

The following proof is adapted from Lemma B.18 in (Lindner et al., 2022). Distinguish two cases. First, let βcnt(δ) ≤
1
4N̄k(s, a). Then Nk(s, a) ≥ 1

4N̄k(s, a), and

min

{
σ

√
ℓk(s, a)

2N+
k (s, a)

, Cmax

}
≤ σ

√
ℓk(s, a)

2N+
k (s, a)

= σ

√
log(36SA(N+

k (s, a))2/δ)

2N+
k (s, a)

≤ σ

√
log(36SA(N̄+

k (s, a)/4)2/δ)

N̄+
k (s, a)/2

≤ σ

√
2ℓ̄k(s, a)

N̄+
k (s, a)

, (47)

where we use that log(36SAx2/δ)/x is non-increasing for x > e
√

δ
36SA , where e is Euler’s number.

For the second case, let βcnt(δ) >
1
4N̄k(s, a). Then,

min

{
σ

√
ℓk(s, a)

2N+
k (s, a)

, Cmax

}
≤ Cmax < Cmax

√
4βcnt(δ)

N̄+
k (s, a)

≤ Cmax

√
4ℓ̄k(s, a)

N̄+
k (s, a)

, (48)

where we use ℓ̄k(s, a) = log
(
36SA(N̄+

k (s, a))2/δ
)
= βcnt(δ) + log

(
18(N̄+

k (s, a))2
)
≥ βcnt(δ). By combining the two

cases, we obtain

min

{
σ

√
ℓk(s, a)

2N+
k (s, a)

, Cmax

}
≤ max{σ,

√
2Cmax}

√
2ℓ̄k(s, a)

N̄+
k (s, a)

= σ̌

√
2ℓ̄k(s, a)

N̄+
k (s, a)

, (49)

where we denote σ̌ = max{σ,
√
2Cmax}.

C.11. Proof of Theorem 5.5

Proof. We assume BEAR exploration strategy terminates after K iterations, then

1

1− γ
max
(s,a)
CK(s, a)

(a)
=

1

1− γ
max

(s,a)∈S×A
min


2σ

(√
ℓk(s,a)

2N+
k (s,a)

+max
(s,a)

√
ℓk(s,a)

2N+
k (s,a)

)
1+ σ

Cmax

(√
ℓk(s,a)

2N+
k (s,a)

+max
(s,a)

√
ℓk(s,a)

2N+
k (s,a)

) , Cmax


(b)

≤ 1

1− γ
max

(s,a)∈S×A
min


2σ̌

(√
2ℓ̄K(s,a)

N̄+
K(s,a)

+max
(s,a)

√
2ℓ̄K(s,a)

N̄+
K(s,a)

)
1+ σ̌

Cmax

(√
2ℓ̄K(s,a)

N̄+
K(s,a)

+max
(s,a)

√
2ℓ̄K(s,a)

N̄+
K(s,a)

) , Cmax


(c)
=

1

1− γ
min


4σ̌

√
2ℓ̄K(s′,a′)

N̄+
K(s′,a′)

1+ 2σ̌
Cmax

√
2ℓ̄K(s′,a′)

N̄+
K(s′,a′)

, Cmax


where step (a) follows Lemma 4.8, step (b) results from Lemma 5.4 and step (c) assumes at state-action pair (s′, a′)√

2ℓ̄K(s′,a′)

N̄+
K(s′,a′)

= max
(s,a)

√
2ℓ̄K(s,a)

N̄+
K(s,a)

. Hence, we obtain,

εK =
1

1− γ

4σ̌

√
2ℓ̄K(s′,a′)

N̄+
K(s′,a′)

1+ 2σ̌
Cmax

√
2ℓ̄K(s′,a′)

N̄+
K(s′,a′)

(50)
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CmaxεK
4Cmax − 2εK(1− γ)

=
σ̌

1− γ

√
2ℓ̄K(s′, a′)

N̄+
K(s′, a′)

=
σ̌

1− γ

√
2log(36SA(N̄+

K(s′, a′))2/δ)

N̄+
K(s′, a′)

Thus,

N̄+
K(s, a) ≥

8σ̌2(2Cmax − εK(1− γ))2log(36SA(N̄+
K(s, a))2/δ)

(1− γ)2ε2KC2
max

From Lemma C.8, we have

N̄+
K(s, a) = −16σ̌2(2Cmax − εK(1− γ))2

(1− γ)2ε2KC2
max

W−1

(
− (1− γ)2ε2KC2

max

16σ̌2(2Cmax − εK(1− γ))2

√
δ

36SA

)

≤ 32σ̌2(2Cmax − εK(1− γ))2

(1− γ)2ε2KC2
max

log

(
32σ̌2(2Cmax − εK(1− γ))2

(1− γ)2ε2KC2
max

√
36SA

δ

)

= Õ
(
σ̌2(2Cmax − εK(1− γ))2

(1− γ)2ε2KC2
max

)
(51)

By summing over n =
∑

(s,a)∈S×A N̄+
K(s, a), we obtain the upper bound.

n ≤ Õ
(
σ̌2(2Cmax − εK(1− γ))2

(1− γ)2ε2KC2
max

)
, (52)

where σ̌ = max{σ,
√
2Cmax}.

Regarding the sample complexity in the RL phase, since the reward function is known, according to Corollary 2.7 in Section
2.3.1 from the book ’Reinforcement Learning: Theory and Algorithms’ (Agarwal et al., 2019), the sample complexity of
obtaining a ε-optimal policy is O(SA/(1− γ)3ε2), which is dominated by the sample complexity in Theorem 5.5. Note that
σ also contains 1/(1− γ). As a result, Eq. (43) still holds true after including the sample complexity of the RL phase.

C.12. Theoretical Results on Policy-Constrained Strategic Exploration (PCSE)

Definition C.10. We define the optimal policy w.r.t. cost, reward, and safety as follows:

• The cost minimization policy: πc,∗ = argminπ∈Π E[
∑

t γ
tc(st, at)].

• The reward maximization policy: πr,∗ = argmaxπ∈Π E[
∑

t γ
tr(st, at)].

• The optimal safe policy: π∗ = argmaxπ∈Πsafe
E[
∑

t γ
tr(st, at)] where Πsafe = {π : E[

∑
t γ

tc(st, at)] ≤ ϵ}

Accordingly, we can have the following relations:

• Eµ0
[V c,πc,∗

(s0)] ≤ Eµ0
[V c,π∗

(s0)] ≤ Eµ0
[V c,πc,∗

(s0)] + ϵ where the equality normally holds that V c,πc,∗
(s0) = 0.

• Eµ0 [V
r,π∗

(s0)] ≤ Eµ0 [V
r,πr,∗

(s0)].

Let’s define the following symbols:

• ε0 = 1
4(1−γ) .

• επk = supµ0∈∆S×A µT
0 (IS×A − γPT π)Ck

• εk = maxπ∈Πk−1
επk
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We can construct a set of plausibly optimal policies as

Πk = Πc
k ∩Πr

k

Πc
k =

{
π ∈ ∆A

S : sup
µ0∈∆S

µT
0 (V

c,π

M̂∪ĉk
− V c,∗

M̂∪ĉk
) ≤ 4εk + 2ϵ

}

Πr
k =

{
π ∈ ∆A

S : inf
µ0∈∆S

µT
0

(
V r,π

M̂
− V r,π̂∗

M̂

)
≥ Rk

}
,

where Rk = 2γRmax

(1−γ)2 ∥PT − P̂T ∥∞ + γRmax

(1−γ)2 ∥(π
∗ − π̂∗)∥∞.

Lemma C.11. (π∗ propagation). Under the good event Ek, if π∗, π̂∗
k ∈ Πc

k−1 then π∗ ∈ Πc
k

Proof. Given a c ∈ CP, we can show:

sup
µ0∈∆S

µT
0

(
V c,π∗

M̂∪ĉk
− V c,∗

M̂∪ĉk

)
= sup

µ0∈∆S
µT
0

(
V c,π∗

M̂∪ĉk
− V c,π∗

M̂∪c
+ V c,π∗

M̂∪c
− V c,∗

M̂∪ĉk

)
(53)

(i)

≤ sup
µ0∈∆S

µT
0

(
εk + V c,π∗

M̂∪c
− V c,∗

M̂∪ĉk

)
(ii)

≤ 2εk + 2ϵ,

which demonstrates that π∗ ∈ Πc
k.

• (i) holds since

|V c,π∗

M̂∪ĉk
− V c,π∗

M̂∪c
| ≤ (IS − γπ∗PT )

−1π∗|ĉk − c|

≤ (IS − γπ∗PT )
−1π∗Ck,

where

– The first inequality follows (Metelli et al., 2021, Lemma B.2) (treat r̂k = −ĉk and r = −c).
– The second inequality is due to the good event definition in Lemma C.5.

As a result:

sup
µ0∈∆S

µT
0

(
V c,π∗

M̂∪ĉk
− V c,π∗

M̂∪c

)
= επ

∗

k ≤ max
π∈Πc

k−1

επk = εk (54)

• (ii) holds since

V c,π∗

M̂∪c
− V c,∗

M̂∪ĉk
= V c,π∗

M̂∪c
− V

c,π̂c,∗
k

M̂∪ĉk

≤ V c,πc,∗

M̂∪c
− V

c,π̂c,∗
k

M̂∪ĉk
+ ϵ

= min
π

V c,π

M̂∪c
−min

π
V c,π

M̂∪ĉk
+ ϵ

≤ min
π′∈Πc

k−1

V c,π′

M̂∪c
− min

π′∈Πc
k−1

V c,π′

M̂∪ĉk
+ 2ϵ

≤ max
π∈Πc

k−1

∣∣∣V c,π

M̂∪ĉk
− V c,π

M̂∪c

∣∣∣+ 2ϵ,

where

– The first inequality utilizes Eµ0
[V c,πc,∗

(s0)] + ϵ ≥ Eµ0
[V c,π∗

(s0)].
– The second inequality utilizes ∀c,Eµ0 [V

c,πc,∗
(s0)] ≤ Eµ0 [V

c,π∗
(s0)] ≤ Eµ0 [V

c,πc,∗
(s0)] + ϵ for ϵ > 0 and the

assumption that π∗, π̂∗
k ∈ Πc

k−1.
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– The third inequality results from Lemma C.12.

By following the inequality (54), we have:

max
π∈Πc

k−1

sup
µ0∈∆S

µT
0

(
V c,π

M̂∪ĉk
− V c,π

M̂∪c

)
+ 2ϵ = εk + 2ϵ

Lemma C.12.

max
x

f(x)−max
x

g(x) ≤ max
x

(f(x)− g(x))

min
x

f(x)−min
x

g(x) ≤ max
x

(f(x)− g(x))

Proof. For the first inequality, suppose x1 = argmax f(x) and x2 = argmax g(x), then we have,

max
x

f(x)−max
x

g(x) = f(x1)− g(x2) ≤ f(x1)− g(x1) ≤ max
x

(f(x)− g(x))

For the second inequality, suppose x3 = argmin f(x) and x4 = argmin g(x), then we have,

min
x

f(x)−min
x

g(x) = f(x3)− g(x4) ≤ f(x4)− g(x4) ≤ max
x

(f(x)− g(x))

Lemma C.13. Under the good event Ek, if π̂∗
k, ξ ∈ Πc

k−1 and ξ /∈ Πc
k, then ξ is suboptimal for some cost ĉk′ ∈ RP̂k′

for
all k′ ≥ k.

Proof. Let’s consider the following decomposition:

V c,ξ

M̂∪ĉk′
− V c,∗

M̂∪ĉk′

(i)

≥ V c,ξ

M̂∪ĉk′
− V

c,π̂c,∗
k

M̂∪ĉk′

= V c,ξ

M̂∪ĉk′
− V c,ξ

M̂∪ĉk
+ V c,ξ

M̂∪ĉk
− V

c,π̂c,∗
k

M̂∪ĉk
+ V

c,π̂c,∗
k

M̂∪ĉk
− V

c,π̂c,∗
k

M̂∪ĉk′

(ii)

≥ −4εk + V c,ξ

M̂∪ĉk
− V

c,π̂c,∗
k

M̂∪ĉk

(iii)
> 2ϵ

which indicates that ξ cannot be optimal for k′ ≥ k.

• (i) holds since V
c,π̂c,∗

k

M̂∪ĉk′
≥ V

c,π̂c,∗
k′

M̂∪ĉk′
= V c,∗

M̂∪ĉk′

• (ii) holds by following (Metelli et al., 2021, Lemma B.5) (treat π = π̂c,∗
k and π = ξ respectively, while r̂k = ĉk and

r̂k′ = ĉk′ )

sup
µ0∈∆S

µT
0

(
V

c,π̂c,∗
k

M̂∪ĉk′
− V

c,π̂c,∗
k

M̂∪ĉk

)
≤ 2ε

π̂c,∗
k

k ≤ 2εk

sup
µ0∈∆S

µT
0

(
V c,ξ

M̂∪ĉk
− V c,ξ

M̂∪ĉk′

)
≤ 2εξ ≤ 2εk

• (iii) holds since according to the definition of Πc
k and considering our assumption that ξ /∈ Πc

k, we have:

sup
µ0∈∆S

µT
0

(
V c,ξ

M̂∪ĉk
− V c,∗

M̂∪ĉk

)
> 4εk + 2ϵ
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Lemma C.14. If ε0 = 1
4(1−γ) , then for every k ≥ 0, it holds that π∗, π̂∗

k+1 ∈ Πc
k.

Proof. We prove the result by induction on k. For k = 0, for every policy π ∈ ∆A
S , we have

supµ0∈∆S µT
0

(
V c,π

M̂∪ĉ0
− V c,∗

M̂∪ĉ0

)
≤ 1

1−γ ≤ 4ε0 ≤ 4ε0 + ϵ. Thus, Πc
0 contains all the policies, i.e., Πc

0 = ∆A
S , and

in particular π∗, π̂∗
1 ∈ Πc

0. Suppose that for every 1 ≤ k′ < k the statement holds, we aim to prove that the statement also
holds for k. Let k′ = k − 1, from the inductive hypothesis we have that π∗, π̂∗

k ∈ Πc
k−1. Then, from Lemma C.11, it holds

that π∗ ∈ Πc
k. If π̂∗

k+1 ∈ Πc
k, the proof is finished. If π̂∗

k+1 /∈ Πc
k, we prove by contradiction. Let 1 ≤ j ≤ k be the iteration

such that π̂∗
k+1 ∈ Πc

j−1 and π̂∗
k+1 /∈ Πc

j . Note that this assumption always holds, since Πc
0 contains all policies. Recalling

the inductive hypothesis, we have that π̂∗
j ∈ Πc

j−1. Thus, from Lemma C.13, it must be that π̂∗
k+1 is suboptimal for all j′⩾j,

in particular for j′ = k + 1, which brings about a contradiction.

Lemma C.15. It holds that π∗ ∈ Πr
k, where:

Πr
k =

{
π ∈ ∆A

S : inf
µ0∈∆S

µT
0

(
V r,π

M̂
− V r,π̂∗

M̂

)
≥ Rk

}
where

Rk =
2γRmax

(1− γ)2
∥PT − P̂T ∥∞ +

γRmax

(1− γ)2
∥(π∗ − π̂∗)∥∞

Proof. We should show if π ∈ Πr
k, we will have V r,π

M ≥ V r,π∗

M .

V r,π

M̂
− V r,π̂∗

M̂
= V r,π

M̂
− V r,π

M + V r,π
M − V r,π∗

M + V r,π∗

M − V r,π̂∗

M + V r,π̂∗

M − V r,π̂∗

M̂
(i,ii,iii)

≤ 2γRmax

(1− γ)2
∥PT − P̂T ∥∞ +

γRmax

(1− γ)2
∥(π∗ − π̂∗)∥∞ + V r,π

M − V r,π∗

M

= Rk + V r,π
M − V r,π∗

M

Since infµ0∈∆S µT
0

(
V r,π

M̂
− V r,π̂∗

M̂

)
≥ Rk, it must hold that infµ0∈∆S µT

0

(
V r,π
M − V r,π∗

M

)
≥ 0

• To show (i), we first follow the simulation Lemma for the state-value function:

V r,π

M̂
− V r,π

M = γ(IS − γπP̂T )
−1π(P̂T − PT )V

r,π
M

Then we derive an upper bound for the difference between these state-values as follows:

V r,π

M̂
− V r,π

M ≤ γ

1− γ
∥π(P̂T − PT )V

r,π
M ∥∞

≤ γRmax

(1− γ)2
∥π(P̂T − PT )∥∞

≤ γRmax

(1− γ)2
∥P̂T − PT ∥∞

• (ii) holds due to the policy mismatch Lemma C.4:

V r,π∗

M − V r,π̂∗

M = γ(IS − γπ̂∗PT )
−1(π∗ − π̂∗)PT V

r,π∗

M

Then we derive an upper bound for the difference between these state-values as follows:

V r,π∗

M − V r,π̂∗

M ≤ γ

1− γ
∥(π∗ − π̂∗)PT V

r,π∗

M ∥∞

≤ γRmax

(1− γ)2
∥(π∗ − π̂∗)PT ∥∞

≤ γRmax

(1− γ)2
∥(π∗ − π̂∗)∥∞
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• (iii) holds due to the derivation to (i):

V r,π̂∗

M − V r,π̂∗

M̂
≤ γRmax

(1− γ)2
∥PT − P̂T ∥∞

Since we can guarantee V π
M ≥ V π∗

M , we know π∗ ∈ {π|V π
M ≥ V π∗

M }. Subsequently, according to our Lemma 4.4, to find
the feasible cost set, the exploration policy should follow the π that visits states with larger cumulative rewards.

Lemma C.16. Under the good event Ek, let c̃ ∈ argminc∈CP
max(s,a)∈S×A |c(s, a)− ĉk(s, a)|. If π ∈ Πk and π∗ ∈ Πk−1,

then supµ0∈∆S µT
0

(
V c,π

M̂∪c̃
− V c,∗

M̂∪c̃

)
≤ 6εk + ϵ.

Proof.

sup
µ0∈∆S

µT
0

(
V c,π

M̂∪c̃
− V c,∗

M̂∪c̃

)
≤ sup

µ0∈∆S
µT
0

(
V c,π

M̂∪c̃
− V c,π

M̂∪ĉk

)
︸ ︷︷ ︸

(a)

+ sup
µ0∈∆S

µT
0

(
V c,π

M̂∪ĉk
− V c,∗

M̂∪ĉk

)
︸ ︷︷ ︸

(b)

+ sup
µ0∈∆S

µT
0

(
V c,∗
M̂∪ĉk

− V c,∗
M̂∪c̃

)
︸ ︷︷ ︸

(c)

,

≤ (εk) + (4εk + ϵ) + (εk)

= 6εk + ϵ

where

• (a) holds due to supµ0∈∆S µT
0

(
V c,π

M̂∪c̃
− V c,π

M̂∪ĉk

)
≤ επk ≤ εk.

• (b) results from supµ0∈∆S µT
0

(
V c,π

M̂∪ĉk
− V c,∗

M̂∪ĉk

)
≤ 4εk + ϵ, since π ∈ Πk.

• (c) follows Eq. (54), recalling the definition of c̃.

C.13. Proof of Theorem 5.6

Proof. Suppose we have derived a value of N̄K(s, a) so that for all (s, a) ∈ S ×A (the rationale is discussed later), it holds
that:

CK(s, a) = min

{
σ

√
ℓK(s, a)

2N+
K(s, a)

, Cmax

}
≤ σ̌

√
2ℓ̄K(s, a)

N̄+
K(s, a)

≤
−mina′∈A Ac,∗

M̂∪c̃
(s, a′)εK

6εK−1 + ϵ
. (55)

From Lemma C.8, we obtain

N̄+
k (s, a) =

2σ̌2(6εK−1 + ϵ)2ℓ̄K(s, a)

(mina′∈A Ac,∗
M̂∪c̃

(s, a′))2ε2K

= − 4σ2(6εK−1 + ϵ)2

(mina′∈A Ac,∗
M̂∪c̃

(s, a′))2ε2K
W−1

(
(mina′∈A Ac,∗

M̂∪c̃
(s, a′))2ε2K

4σ2(6εK−1 + ϵ)2

√
δ

36SA

)

=
8σ2(6εK−1 + ϵ)2

(mina′∈A Ac,∗
M̂∪c̃

(s, a′))2ε2K
log

(
4σ2(6εK−1 + ϵ)2

(mina′∈A Ac,∗
M̂∪c̃

(s, a′))2ε2K

√
36SA

δ

)

= Õ

(
σ2(6εK−1 + ϵ)2

(mina′∈A Ac,∗
M̂∪c̃

(s, a′))2ε2K

)
. (56)
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Summing over n =
∑

(s,a)∈S×A N̄+
k (s, a), since the convergence of BEAR is stricter than PCSE, i.e., (13) is always

satisfied if (12) is satisfied, the sample complexity of BEAR constitutes a lower bound for that of PCSE. Recall the sample
complexity of BEAR exploration strategy in Theorem 5.5, we obtain

n ≤ Õ

(
min

{
Õ
(
σ̌2(2Cmax − εK(1− γ))2

(1− γ)2ε2KC2
max

)
,

σ2(6εK−1 + ϵ)2SA

(min(s,a) A
c,∗
M̂∪c̃

(s, a))2ε2K

})
. (57)

Next, we explain the rationale for the assumption in Eq. (55). We have for every π ∈ Πk,

∥ek(s, a;π∗, π̂∗)∥∞
(a)

≤ γµT
0 (IS − γπP̂T )

−1πCk
(b)

≤ γεK
6εK + ϵ

µT
0 (IS − γπP̂T )

−1π
(
−Ac,∗

M̂∪c̃

)
(c)
=

γεK
6εK−1 + ϵ

µT
0

(
V c,π

M̂∪c̃
− V c,∗

M̂∪c̃

) (e)

≤ εK , (58)

• (a) follows the matrix from the Bellman equation for the value function.

• (b) is based on the assumption in Eq. (55).

• (c) follows (Metelli et al., 2021, Lemma B.3), where we treat r = −c̃ and note that V π
M̂∪(−c̃)

= −V π
M̂∪c̃

, Qπ
M̂∪(−c̃)

=

−Qπ
M̂∪c̃

and Aπ
M̂∪(−c̃)

= −Aπ
M̂∪c̃

.

• (d) results from Lemma C.16 and γ < 1.

C.14. Optimization Problem and the Two-Timescale Stochastic Approximation

We can now formulate the optimization problem.

εk+1 = sup
µ0∈∆S

π∈Πk

µT
0 (IS×A − γPT π)Ck+1

s.t. Πk = Πc
k ∩Πr

k

Πc
k =

{
π ∈ ∆A

S : sup
µ0∈∆S

µT
0 (V

c,π

M̂∪ĉk
− V c,∗

M̂∪ĉk
) ≤ 4εk + 2ϵ

}

Πr
k =

{
π ∈ ∆A

S : inf
µ0∈∆S

µT
0

(
V r,π

M̂
− V r,π̂∗

M̂

)
≥ Rk

}
(59)

where Rk = 2γRmax

(1−γ)2 ∥PT − P̂T ∥∞ + γRmax

(1−γ)2 ∥(π
∗ − π̂∗)∥∞.

Recall that the discounted normalized occupancy measure is defined by

ρπM(s, a) = (1− γ)

∞∑
t=0

γtPπ
µ0
(st = s, at = a), (60)

where the normalizer (1− γ) makes ρπM(s, a) a probability measure, i.e.,
∑

(s,a) ρ
π
M(s, a) = 1.

The promised relationship between reward value function and occupancy measure is as follows:

(1− γ)V r,π
M

(a)
= (1− γ)Eµ0,π,PT

[ ∞∑
t=0

γtr(st, at)
]

= (1− γ)

∞∑
t=0

γt
∑
(s,a)

Pπ
µ0
(st = s, at = a)r(st = s, at = a)
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(b)
=
∑
(s,a)

[
(1− γ)

∞∑
t=0

γtPπ
µ0
(st = s, at = a)

]
·
[
r(st = s, at = a)

]
= ⟨ρπM, r⟩, (61)

where step (a) follows the definition of the reward state-value function, and step (b) exchanges the order of two summations.

Similarly, concerning the cost function, the relationship between the cost value function and (the same) occupancy measure
is as follows:

(1− γ)V c,π
M = (1− γ)Eπ,PT

[ ∞∑
t=0

γtc(st, at)
]

= (1− γ)

∞∑
t=0

γt
∑
(s,a)

Pπ
µ0
(st = s, at = a)c(st = s, at = a)

=
∑
(s,a)

[
(1− γ)

∞∑
t=0

γtPπ
µ0
(st = s, at = a)

]
· [c(st = s, at = a)]

= ⟨ρπM, c⟩. (62)

For simplicity, denote the occupancy measure vector ρπM as vector x. As a result, the optimization problem (59) can be
recast as a linear program.

min
x

− ⟨x, Ck+1⟩

s.t. − (1− γ)(V c,∗
M̂∪ĉk

+ 4εk + 2ϵ) + ⟨x, ĉk⟩ ≤ 0

(1− γ)(V r,π̂∗

M̂
+Rk)− ⟨x, r⟩ ≤ 0

(63)

To solve this linear program, we introduce the Lagrangian function and calculate its saddle points by solving the dual
problem. The Lagrangian of this primal problem is defined as:

L(x, λ) =− ⟨x, Ck+1⟩+ λ1

(
−(1− γ)(V c,∗

M̂∪ĉk
+ 4εk + 2ϵ) + ⟨x, ĉk⟩

)
+ λ2

(
(1− γ)(V r,π̂∗

M̂
+Rk)− ⟨x, r⟩

)
, (64)

where λ = [λ1, λ2]
T is a nonnegative real vector, composed of so-called Lagrangian multipliers. The dual problem is

defined as:

min
x

max
λ≥0

L(x, λ). (65)

To solve this dual problem, we follow a gradient-based approach known as the two-timescale stochastic approximation
(Szepesvári, 2021). At time step k, the following updates are conducted,

xk+1 − xk = −ak(L′
x(xk, λk) +Wk), (66)

λk+1 − λk = bk(L
′
λ(xk, λk) + Uk), (67)

where the two coefficients ak ≪ bk, satisfying
∑

k ak =
∑

bk =∞,
∑

a2k <∞ and
∑

b2k <∞. Under this condition, the
convergence is guaranteed in the limit. As an option, we can set ak = c/k, bk = c/k0.5+κ, with c being a constant and
0 < κ < 0.5. Wk and Uk are two zero-mean noise sequences. The two gradients are:

L′
x(xk, λk) = −Ck+1 + λ1ĉk − λ2r, (68)

L′
λ(xk, λk) =

[
L′
λ1
(xk, λk)

L′
λ2
(xk, λk)

]
=

[
−(1− γ)(V c,∗

M̂∪ĉk
+ 4εk + 2ϵ) + ⟨x, ĉk⟩

(1− γ)(V r,π̂∗

M̂
+Rk)− ⟨x, r⟩

]
. (69)

At each time step k, the exploration policy can be calculated as,

πk(a|s) =
xk(s, a)∑
a xk(s, a)

. (70)
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D. Experimental Details
We ran experiments on a desktop computer with Intel(R) Core(TM) i5-14400F and NVIDIA GeForce RTX 2080 Ti.

D.1. Discrete Environment

More details about Gridworld. In this paper, we create a map with dimensions of 7 × 7 units and define four distinct
settings, as illustrated in Figure 2. We use two coordinates to represent the location, where the first coordinate corresponds
to the vertical axis, and the second coordinate corresponds to the horizontal axis. The agent aims to navigate from a starting
location to a target location while avoiding the given constraints. The agent starts in the lower left cell (0, 0), and it has 8
actions that correspond to 8 adjacent directions, including four cardinal directions (up, down, left, right) as well as the four
diagonal directions (upper-left, lower-left, upper-right, lower-right). The reward and target locations are the same, which is
located in the upper right cell (6, 6) for the first, second, and fourth Gridworld environment or located in the upper left cell
(6, 0) for the third Gridworld environment. If the agent takes an action, then with probability 0.05 this action fails, and the
agent moves in any viable random direction (including the direction this action leads to) with uniform probabilities. The
reward in the reward state cell is 1, while all other cells have a 0 reward. The cost in a constraint location is also 1. The
game continues until a maximum time step of 50 is reached.

Comparison Methods. The upper confidence bound exploration strategy is derived from the UCB algorithm, which selects
an action with the highest upper bound. The maximum-entropy strategy selects an action on a state with the maximum
entropy given previous choices of actions. The random strategy uniformly randomly selects a viable action on a state s.
The ϵ-greedy strategy selects an action based on the ϵ-greedy algorithm, balancing exploration and exploitation with the
exploration parameter ϵ = 1/

√
k.

More details about Figure 3. In Figure 3, we plot the mean and 68% confidence interval (1-sigma error bar) computed
with 5 random seeds (123456, 123, 1234, 36, 34) and exploration episodes ne = 1. The six exploration strategies compared
in Figure 3 include: upper confidence bound, maximum-entropy, random, BEAR, ϵ-greedy, and PCSE. Meanwhile, we
utilize the running score to make the training process more resilient to environmental stochasticity: running score =
0.2 ∗ running score+ 0.8 ∗ iteration rewards (or iteration costs) (Luo et al., 2022).

D.2. Weighted Generalized Intersection over Union (WGIoU)

In this section, we present the methodology for designing the metric that assesses the similarity between the estimated and
ground-truth cost functions, which we refer to as WGIoU. We commence our discussion by explaining IoU, followed by
GIoU, and ultimately introduce the novel concept of WGIoU for ICRL.

Intersection Over Union (IoU) score is a commonly used metric in the field of object detection, which measures how similar
two sets are. The IoU score is bounded in [0, 1] (0 being no overlap between two sets and 1 being complete overlap).
Suppose there are two sets X and Y ,

IoU =
|X ∩ Y |
|X ∪ Y |

.

Note that IoU equals to zero for all two sets with no overlap, which is a rough metric and incurs the problem of vanishing
gradients. To further measure the difference between two sets with no overlap, Signed IoU (SIoU) (Simonelli et al., 2019)
and Generalized IoU (GIoU) (Rezatofighi et al., 2019) are proposed. Both SIoU and GIoU are bounded in [−1, 1]. However,
SIoU is constrained to a rectangular bounding box, which is not the case for the cost function. By contrast, GIoU is not
limited to rectangular boxes. Thus, GIoU is more suitable for comparing the distance between the estimated cost function
and the ground-truth cost function.

GIoU = IoU− |Z\(X ∪ Y )|
|Z|

,

where set Z is the minimal enclosing convex set that contains both X and Y . Taking cost function into account, the
difference between ĉk the estimated cost function at iteration k and c the ground-truth cost function is calculated as,

GIoU =
|c ∩ ĉk|
|c ∪ ĉk|

− |(c⊕ ĉk)\(c ∪ ĉk)|
|c⊕ ĉk|

,
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where ĉk ⊕ c denotes the enclosing convex matrix of c and ĉk.

Note that the estimated cost function ĉk could have different values, but GIoU only reflects spatial relationship and is unable
to represent weight features. To accommodate our settings, weighted GIoU (WGIoU) is proposed, where we measure
the distance between a weighted estimated cost function and a uniformly valued (or weighted) ground-truth cost function.
WGIoU is also bounded in [−1, 1]. To calculate WGIoU, first, remap the cost function to ({0} ∪ [1,+∞))

S×A,

ĉ⋇k (s, a) =
ĉk(s, a)

min
{
min+(s,a)∈S×A ĉk(s, a),min+(s,a)∈S×A c(s, a)

} , (71)

c⋇(s, a) =
c(s, a)

min
{
min+(s,a)∈S×A ĉk(s, a),min+(s,a)∈S×A c(s, a)

} . (72)

where min+(s,a)∈S×A returns the minimum positive value of ĉk or c over all (s, a) pairs. Note that c must exceed 0 at certain
(s, a). Otherwise, the cost function is zero, indicating an absence of constraint anywhere. Also note that if ĉk is zero, let
ĉ⋇k (s, a) = 0 and c⋇(s, a) = c(s, a)/min+(s,a)∈S×A c(s, a). Besides the two trivial situations, the above two equations (71
and 72) can be applied naturally.

Then, WGIoU is defined as:

WGIoU =
⟨ĉ⋇k , c⋇⟩

⟨1,max{ĉ⋇k , c⋇, ⟨ĉ
⋇
k , c

⋇⟩}⟩
+
(
e−⟨1,max{ĉ⋇k ,c⋇}⟩ − 1

)
1
{
⟨ĉ⋇k , c

⋇⟩ = 0
}
,

where 1 denotes the vector with appropriate length whose elements are all 1s. The rationale here can be understood by
distinguishing two cases. For the first case, there is an overlap between ĉk and c, so the second term in WGIoU is 0. For
the first term, for some (s, a), 1) if both ĉ⋇k (s, a) ≥ 1 and c⋇(s, a) ≥ 1, WGIoU approaches 1; 2) if either ĉ⋇k (s, a) = 0
or c⋇(s, a) = 0, WGIoU approaches 0. For the second case, so there is no overlap between ĉk and (s, a), the first term in
WGIoU is 0. The second term is always below 0 and approaches −1 if the estimated and ground-truth cost functions contain
large values.

D.3. Continuous Environment

Density model. Recall that in Definition 5.3, the concept of pseudo-counts is introduced to analyze the uncertainty of the
transition dynamics without a generative model. Here, we abuse the concept of pseudo-counts for generalizing count-based
exploration algorithms to the non-tabular settings (Bellemare et al., 2016). Let ρ be a density model on a finite space X , and
ρn(x) the probability assigned by the model to x after being trained on a sequence of states x1, . . . , xn. Assume ρn(x) > 0
for all x, n. The recoding probability ρ′n(x) is then the probability the model would assign to x if it was trained on that same
x one more time. We call ρ learning-positive if ρ′n(x) ≥ ρn(x) for all x1, . . . , xn, x ∈ X . A learning-positive ρ implies
PGn(x) ≥ 0 for all x ∈ X . For learning-positive ρ, we define the pseudo-count as N̂n(x) = ρn(x) · n,where n is the total
count.The pseudo-count generalizes the usual state visitation count function Nn(x), also called the empirical count function
or simply empirical count, which equals the number of occurrences of a state in the sequence.

Methods. We first train a Deep Q Network (DQN) in advance that stores the Q values of the constrained Point Maze
environment. This DQN induces the expert policy at any given state. We also train a density model that accounts for
calculating the pseudo-count of any given state-action pairs. The agent then collects samples from an unconstrained Point
Maze environment where it could violate constraints. For algorithm BEAR, Proximal Policy Optimization (PPO) is utilized
to obtain the exploration policy πk. For algorithm PCSE, we rank 8 permissible actions for the exploration policy. The
action that has a high estimated cost or a high reward is assigned with more probability to choose from. After the rollout of
this exploration policy, the density model and accuracy are updated for the selection of the next exploration policy. Multiple
rounds of iterations are conducted until the target accuracy is achieved.

Point Maze. In this environment, we create a map of 5m× 5m, where the area of each cell is 1m× 1m. The center of the
map is the original point, i.e. (0, 0). The constraint is initially set at the cell centered at (−1, 0). The agent is a 2-DoF ball,
force-actuated in the cartesian directions x and y. The reward obtained by the agent depends on where the agent reaches a
target goal in a closed maze. The ball is considered to have reached the goal if the Euclidean distance between the ball and
the goal is smaller than 0.5m. The reward in the reward state cell is 1, while all other cells have a 0 reward. The cost in a
constraint location is also 1. The game terminates when a maximum time step of 500 is reached. The state space dimension
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is continuous and consists of 4 dimensions (two as the x and y coordinates of the agent and two as the linear velocity in the
x and y direction). The action space is discrete, and at each state, there are 8 permissible actions (8 directions to add a linear
force), similar to the action space of the Gridworld environment. The environment has a certain degree of stochasticity
because there is a sampled noise from a uniform distribution to the cell’s (x, y) coordinates.

E. More Experimental Results
E.1. Gridworld Environments

Figure 7, 8, 9 and 10 show the constraint learning process of six exploration strategies in four Gridworld environments, i.e.,
Gridwworld-1, 2, 3, and 4. Note that in Figure 8 (Gridworld-2) and Figure 10 (Gridworld-4), only a fraction of ground-truth
constraint is learned. This is attributed to ICRL’s emphasis on identifying the minimum set of constraints necessary to
explain expert behavior. Venturing into unidentified part of ground-truth constraints will not yield any advantages for
cumulative rewards.
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Figure 5. Training curves of discounted cumulative rewards (top), costs (middle), and WGIoU (bottom) for two other exploration strategies
in four Gridworld environments.

E.2. Point Maze Environment

Figure 6 shows the constraint learning process of PCSE in the Point Maze environment.
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Figure 6. Constraint learning performance of PCSE for ICRL in the Point Maze environment.
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Figure 7. Constraint learning performance of six exploration strategies for ICRL in Gridworld-1. PCSE (1st row), BEAR strategy (2nd
row), ϵ-greedy exploration strategy (3rd row), maximum-entropy exploration strategy (4th row), random exploration strategy (5th row),
upper confidence bound exploration strategy (bottom row).
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Figure 8. Constraint learning performance of six exploration strategies for ICRL in Gridworld-2. PCSE (1st row), BEAR strategy (2nd
row), ϵ-greedy exploration strategy (3rd row), maximum-entropy exploration strategy (4th row), random exploration strategy (5th row),
upper confidence bound exploration strategy (bottom row).
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Figure 9. Constraint learning performance of six exploration strategies for ICRL in Gridworld-3. PCSE (1st row), BEAR strategy (2nd
row), ϵ-greedy exploration strategy (3rd row), maximum-entropy exploration strategy (4th row), random exploration strategy (5th row),
upper confidence bound exploration strategy (bottom row).
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Figure 10. Constraint learning performance of six exploration strategies for ICRL in Gridworld-4. PCSE (1st row), BEAR strategy (2nd
row), ϵ-greedy exploration strategy (3rd row), maximum-entropy exploration strategy (4th row), random exploration strategy (5th row),
upper confidence bound exploration strategy (bottom row).
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