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Abstract

In anomaly detection, the degree of irregularity is often summarized as a real-valued anomaly
score. We address the problem of attributing such anomaly scores to input features for inter-
preting the results of anomaly detection. We particularly investigate the use of the Shapley
value for attributing anomaly scores of semi-supervised detection methods. We propose a
characteristic function specifically designed for attributing anomaly scores. The idea is to
approximate the absence of some features by locally minimizing the anomaly score with
regard to the to-be-absent features. We examine the applicability of the proposed charac-
teristic function and other general approaches for interpreting anomaly scores on multiple
datasets and multiple anomaly detection methods. The results indicate the potential utility
of the attribution methods including the proposed one.

1 Introduction

Anomaly detection has been one of the major tasks of machine learning and data mining, and a number
of different methods have been proposed (see, e.g., Chandola et al., 2009; Pimentel et al., 2014). Anomaly
localization (or root cause analysis) is a closely related task whose goal is to identify which features are the
most responsible for the irregularity of anomaly-detected data. It is obviously an essential problem in many
applications; understanding why specific instances have been considered anomalous is highly valuable for
decision-making. Rigorous localization of anomalies is possible only with some physical or causal models
of a data-generating process (Budhathoki et al., 2022). However, such models are not always available for
complex natural and artificial systems, for which learning-based anomaly detection often has a high demand.
Hence, we focus on the latter, that is, the structure-agnostic setting.

We focus on the structure-agnostic interpretation of anomaly detection results, instead of the rigorous
anomaly localization based on causal structures. We particularly study methods for post hoc attribution of
anomaly scores to input features. In recent years, post hoc attribution of machine learning models, not only
in anomaly detection but in general, is an active area of study. One of the most popular approaches refers
to the notion of the Shapley value, which has been originally discussed in game theory (Shapley, 1953) and
applied to machine learning (Lipovetsky, 2006; Štrumbelj & Kononenko, 2014; Datta et al., 2016; Lundberg
& Lee, 2017; Sundararajan et al., 2017; Owen & Prieur, 2017; Ancona et al., 2019; Olsen et al., 2022). It has
also been utilized for anomaly interpretation (Antwarg et al., 2021; Giurgiu & Schumann, 2019; Takeishi,
2019). These studies have concluded affirmatively on the use of the Shapley value for the interpretation of
anomaly detection based on the attribution of anomaly scores.

The previous studies on using the Shapley value for anomaly score attribution adopted general definitions
of the characteristic function of the Shapley value. The characteristic function, namely v : 2d → R, is a
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set function that represents a game’s gain under each coalition of players. In using the Shapley value for
attributing machine learning models, it takes a subset of features (and their values) and should return the
behavior of the model only with the selected features given as the model’s input. Several working definitions
of such a characteristic function for general machine learning models have been studied (see, e.g., Lundberg
& Lee, 2017; Sundararajan & Najmi, 2020). However, when it comes to applying them to the interpretation
of anomaly detection, they do not take into account the specific nature of anomaly scores, which might limit
the utility of the attribution method.

In this paper, we propose a definition of the characteristic function for the Shapley value particularly for
attributing anomaly scores. The idea is to approximate the absence of some features by minimizing an
anomaly score in the proximity of the original data point to be interpreted. As the exact computation
of such a characteristic function is usually prohibitively time-consuming, we also present practical relaxed
definitions. We empirically examine not only the proposed characteristic function but also some existing
definitions of the characteristic function by applying them to anomaly scores. We show the results of
experiments on synthetic and real anomalies with multiple datasets and anomaly detection methods to
discuss the applicability of attribution methods.

2 Background

2.1 Anomaly detection

We focus on the type of anomaly detection methods where some anomaly score is computed. Semi-supervised
anomaly detection1 usually falls into this category, where a mechanism to detect anomalies is sought given
only normal data. A typical solution of semi-supervised anomaly detection consists of two phases (see, e.g.,
Sections 4, 6, and 7 of Chandola et al., 2009). In the first phase (i.e., the training phase), a model, such as
a density estimator, a subspace-based model, and a set of clusters, is learned with the normal data. Then,
in the second phase (i.e., the test phase), an anomaly score

e : X → R

is computed using the learned model, where x ∈ X is a test data sample in some data space X with d
features such as X ⊂ Rd or X ⊂ {0, 1}d. The anomaly score, e(x), should indicate a large value when x is
anomalous. An alarm is issued if e(x) exceeds some threshold value, eth. Semi-supervised anomaly detection
methods are useful in many practices, since they do not assume labeled anomalies and generally do not
require storing all the data after the training phase.

A popular choice of e(x) is the negative log-likelihood, e(x) = − log q(x), where q is some approximation
of data’s density by models such as Gaussian mixture models (GMMs). Another popular choice is the
reconstruction error of dimensionality reduction methods such as principal component analysis (PCA) or
autoencoders, e(x) = ‖x− g(f(x))‖2, where f and g are an encoder and a decoder between the data and
latent spaces, respectively. Moreover, these two views are not mutually exclusive. For example, Zong et al.
(2018) reported a good detection performance by using both the energy of the latent representations and
the reconstruction errors of an autoencoder.

A straightforward way to interpret such anomaly scores is to examine decomposed or marginal values of the
scores. For example, reconstruction errors in Euclidean space are inherently decomposable into the errors
of individual features. We may also refer to the marginal likelihood of each feature if the model admits
such decomposition. However, we cannot always compute such quantities in general; for example, marginal
distributions are usually not tractable for nonlinear generative models.

2.2 Attribution with the Shapley value

The Shapley value (Shapley, 1953) is a concept solution of coalitional games. Let v : 2d → R be a set
function that represents a game’s gain obtained from each coalition (i.e., a subset) of the game’s players, and

1Following the terminology of Chandola et al. (2009); synonymous to novelty detection (e.g., Pimentel et al., 2014).
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let D = {1, . . . , d} denote the set of all players. This function v is called a characteristic function. A game
is defined as a pair (v,D). The Shapley value of (v,D) is to distribute the total gain v(D) to each player in
accordance with each one’s contribution. The Shapley value of the player i ∈ D, namely φi, is the weighted
average of the marginal contributions, that is,

φi =
∑

S⊆D\{i}

|S|!(d− |S| − 1)!
d! (v(S ∪ {i})− v(S)) , (1)

where S denotes a subset of D\{i} = {1, ..., i − 1, i + 1, ..., d}, and the sum is taken over all the subsets.
The Shapley value has been utilized for interpreting outputs of statistical machine learning (e.g., Lipovetsky,
2006; Štrumbelj & Kononenko, 2014; Datta et al., 2016; Lundberg & Lee, 2017; Sundararajan et al., 2017;
Owen & Prieur, 2017; Ancona et al., 2019; Olsen et al., 2022), where the players of a game mean input
features, and the gain of the game means the output of a machine learning model.

Major challenges in utilizing the Shapley value include the following two points:

(i) How to compute the summation for O(2d) terms (i.e.,
∑
S⊆D\{i} in Eq. (1))?

(ii) How to define a characteristic function v?

The former challenge, the exponential complexity, is a general difficulty and not limited to machine learn-
ing interpretation. A common remedy is Monte Carlo approximations (see, e.g., Castro et al., 2017, and
references therein). In this work, we also use a Monte Carlo approximation and compute {φi} using the
reformulation of Eq. (1) as a weighted least squares problem (Charnes et al., 1988; Lundberg & Lee, 2017).
We will describe its concrete procedures later in Section 3.2.

The latter challenge, the definition of v, rises specifically in interpreting machine learning because v(S)
should simulate the “absence” of the features not in S for a machine learning model. It is, in principle, a
question that admits no unique solutions; the most straightforward definition would be based on re-training
of models for all subsets of D, which is not realistic in practice. We will see the existing approaches in the
next subsection, Section 2.3.

2.3 Approaches to defining characteristic function

In the use of the Shapley value for machine learning model attribution in general, a characteristic function
v has often been defined in either of the following two approaches:

Reference-based approach replaces the values of “absent” features by some reference values (Sundarara-
jan et al., 2017; Lundberg & Lee, 2017; Ancona et al., 2019). Suppose x = [x1, . . . , xd] ∈ Rd. Let us denote
the subvector of x corresponding to index set S ⊂ {1, . . . , d} by xS ∈ R|S|. Let Sc := {1, . . . , d}\S be the
complement of S. Then, the value of v for a machine learning model h : Rd → Y, where Y is some output
space, is defined as the value of h on a sample where xSc is replaced by some reference value rSc ∈ R|S|.
A challenge here is to choose a good reference vector rSc . rSc is often set to be zero or average of xSc ,
but there is no unique definition.

Marginalization-based approach marginalizes out “absent” features (Štrumbelj & Kononenko, 2014;
Datta et al., 2016; Lundberg & Lee, 2017; Olsen et al., 2022). That is, v is computed as the condi-
tional expectation of h(x) given xS , where xSc is marginalized over some distribution p(xSc | xS). A
challenge here is the computation of the conditional expectation, which is intractable in general. Typically,
it is approximated via nearest neighbors in training data. Meanwhile, Sundararajan & Najmi (2020) ar-
gues that the marginalization-based approach loses some nice properties as attribution because it depends
not only on the target function h but also on the data distribution. If the features are independent, this
approach reduces to (the average of) the reference-based one with multiple reference vectors.

Apart from the general point of view, we now briefly review how the Shapley value has been used for
attributing anomaly scores. Giurgiu & Schumann (2019) and Antwarg et al. (2021) adopted the reference-
based approach to defining v for anomaly scores. Since a good reference vector r· depends on a query data
point x and a target feature set S, it should be determined adaptively to both x and S. However, in Antwarg
et al. (2021), the reference does not depend on x nor S in principle. Giurgiu & Schumann (2019) proposed to
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e : X → R
e(x)

v(S; x) := e(x?(S; x))

Mx

xS xSc

x
x?(S; x)

Figure 1: Proposed characteristic function, v(S;x) in Eq. (2), for attributing an anomaly score e : X → R.
x has d features, which are split into disjoint sets S ⊂ {1, . . . , d} and Sc = {1, . . . , d}\S. v(S;x) is defined
as a local minimum of e(x) in the proximity of x (i.e., Mx) with xS fixed at the original. Although the axes
of xS and xSc are depicted as one dimension, they are |S|- and |Sc|-dimensional in general.

choose a reference value adaptively using the influence weights between a query data point x and a training
dataset. Such a reference is adaptive to x but not to S, meaning the same reference value is used for every S.
We also note that their method requires storing enough portion of training data, which may be undesirable
in some applications of semi-supervised anomaly detection.

Takeishi (2019) adopted the marginalization-based approach to defining v for the anomaly score computed
with the probabilistic principal component analysis. Because the conditional expectation is available for the
probabilistic PCA models, the marginalization can be computed exactly. This approach is free from choosing
a reference value, but the type of applicable anomaly detection models is obviously restrictive. Moreover,
considering conditional distributions under the presence of anomalies is not necessarily meaningful because
the learned distribution is no longer reliable for out-of-distribution data points.

3 Anomaly score attribution with the Shapley value

We propose a definition of the characteristic function that takes into account the nature of anomaly scores.
We take the reference-based approach; differently from the existing studies, the proposed method determines
the reference value, r·, adaptively to both x and S and without referring to training data.

3.1 A characteristic function for anomaly scores

Let e : X → R be an anomaly score function that outputs a large value when the input, x ∈ X ⊂ Rd, is
anomalous. We propose to define a characteristic function, which we will denote by v(S;x) to manifest the
dependency on x, for an anomaly score e as follows. Recall that we want to design v(S;x) that simulates the
“absence” of the features not in S. In other words, v(S;x) should represent how anomalous xS is with the
remaining features xSc ignored. To this end, we define v(S;x) as the smallest value of the anomaly score,
e, achieved in a neighborhood of x with xS being fixed. Rephrasing the idea, v(S;x) is defined as follows:

v(S;x) := e(x?(S;x)), where x?(S;x) := arg min
y

e(y) s.t. y ∈Mx ⊂ X , yS = xS . (2)

The constraint of the optimization, Mx ⊂ X , is some compact neighborhood of x ∈ X . Figure 1 illustrates
the idea; while xS is fixed at the original value, xSc is moved within Mx so that the value of e is minimized.

The characteristic function in Eq. (2) enables us to examine how e(x) becomes large solely due to the features
in S. Although it falls in the category of reference-based characteristic functions, it is different from the
general methods in which the absence of features is simulated by the replacement with predefined reference
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values (Antwarg et al., 2021; Giurgiu & Schumann, 2019). The proposed method automatically determines
the reference values depending on xS via solving the optimization problem in Eq. (2).

Practically, it is unrealistic to determine Mx manually because it should depend both on the geometry of
X and on the property of e(x). Hence, we propose a variant of Eq. (2) that admits less complexity of
manual tuning. Instead of taking a minimum in a compact neighborhood, we consider a local minimum of
e regularized by the distance from the original xS . That is, we define a variant of v, namely v̂, as follows:

v̂(S;x) := e(x̂?(S;x)), where x̂?(S;x) := arg min
y

`S,x(y) s.t. y ∈ X , yS = xS ,

and `S,x(y) := e(y) + γ

|Sc|
∑
i∈Sc

dist(yi, xi).
(3)

The second term of `S,x is a regularizer. The hyperparameter, γ ≥ 0, controls how far xSc can move from
the original value and semantically corresponds to the radius of Mx in Eq. (2). Selecting the value of γ is
not straightforward in general because it depends on the geometry of the data space. A practical suggestion
is to roughly set a reference value of γ such that the magnitude of the two terms of `S,x become similar and
try different values around it. To evaluate each γ, one can create anomalous data artificially based on prior
knowledge and see how well the artificial anomalies are attributed. Meanwhile, we empirically found that the
performance of the attribution method was not so sensitive to the value of γ, as reported in Appendix B.1.
dist(·, ·) is some dissimilarity function in each dimension of X . It is to be defined by a user in accordance
with the nature of the data space, X . We set it as the Euclidean distance in the experiments in Section 5.
Comparing Eq. (2) and Eq. (3), we can understand that the constraint in Eq. (2) (i.e., y ∈ Mx) is relaxed
to be the regularizer in Eq. (3) (i.e., the second term of `S,x).

Despite the relaxation from v in Eq. (2) to v̂ in Eq. (3), the computation can still be prohibitively heavy for
a moderate number of features (e.g., d & 10) because computing v̂ needs to run the local minimization for
O(2d) times. We suggest a heuristic relaxation that reduces the number of minimization runs to O(d). The
bottleneck lies in computing x̂?(S;x), a local minimum of `S,x. Hence, instead of x̂?, we define an “ansatz”
x? as follows:

x?(S;x) := z s.t. zS = xS and zSc = 1
|S|+ 1

(
x̂?(∅;x) +

∑
i∈S

x̂?({i};x)
)
. (4)

The computation process in Eq. (4) can be rephrased in words as follows. The subvector of x?(S;x)
corresponding to S (which we will call the S-subvector of x?) is from the original x (i.e., xS). This is
the same with the S-subvector of x̂?, and the difference between x̂? and x? lies in the remaining part, the
Sc-subvector. While the Sc-subvector of x̂? is defined directly as a minimizer of `S,x, the Sc-subvector of x?
is defined as the average of x̂? computed for the singletons of S’s elements and the empty set. It means that
we need to compute the minimization in Eq. (3) only for |S|+ 1 times and that we can reuse its results for
every S afterward to compute x?. Consequently, we define a relaxed characteristic function, namely v, as

v(S;x) := e(x?(S;x)). (5)

The relaxation from x̂? in Eq. (3) to x? in Eq. (4) is heuristic, and the latter is not necessarily an approxi-
mation of the former in a proper sense. Meanwhile, we empirically found that the heuristic relaxation still
works to some extent, as reported in Section 5. We note the idea of the relaxation as follows. First, recall
that the original definition in Eq. (3) is the solution of the minimization problem with all the elements of
x indexed in S fixed. Then, in Eq. (4), we try to make its surrogate by averaging the local solution of
minimization problems with each element of x indexed in S fixed in each problem. We also counted the
empty set as one of the cases of this process, thus the |S|+ 1 cases in Eq. (4) appeared.

3.2 Overall algorithm

The main contribution of this paper lies in the definition of the characteristic function for attributing anomaly
scores, which we have presented so far. Meanwhile, we note the overall algorithm to approximately compute
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Algorithm 1 Shapley value approximation for anomaly score attribution
Input: Anomaly score function e, query data point x, hyperparameter γ ≥ 0, number of MC samples m
Output: Shapley values for each feature, {φ1, . . . , φd}
1: for s = ∅, {1}, . . . , {d} do
2: x̂?(s;x)← arg min

y∈X ,ys=xs

`s,x(y) . `S,x in Eq. (3)

3: end for
4: for j = 1, . . . ,m do
5: Sj ← Draw a random subset S of {1, . . . , d} with probability ∝ (d− 1)|S|!(d− |S| − 1)!/d!
6: x?(Sj ;x)← Eq. (4)
7: end for
8: {φ}←arg minφ′

∑
j

(
e(x?(Sj ;x))−(

∑
i∈{0}∪Sj φ

′
i)
)2

. Charnes et al. (1988); Lundberg & Lee (2017)

the Shapley value, in Algorithm 1, for the completeness of the paper. The following are some notes on the
algorithm:

• It does not assume any specific types of anomaly detectors as long as a (sub)differentiable anomaly score
function is defined. The model can be GMMs, autoencoders, their combinations or ensembles, or anything
else, and the anomaly score can be negative log-likelihoods, reconstruction errors, or others.

• Lines 4–8 of Algorithm 1 perform the Monte Carlo approximation of the Shapley value computation. Upon
the approximation, we utilize the weighted least squares formulation of the Shapley value (Charnes et al.,
1988; Lundberg & Lee, 2017; Aas et al., 2021).

• The only hyperparameter specific to the proposed method is γ. We found that the performance was not
sensitive to γ (see the appendix). m is a hyperparameter generally present in Shapley value approximation,
and we used the value recommended in Lundberg & Lee (2017), m = 2d+ 211.

4 Related Work

As mentioned earlier, anomaly score attribution with the Shapley value has already been studied (Antwarg
et al., 2021; Giurgiu & Schumann, 2019; Takeishi, 2019), though the characteristic functions used in these
studies are not necessarily specialized for anomaly scores. We will also try general methods of the Shapley
value-based attribution in our experiments in Section 5 for comparison.

For semi-supervised anomaly detection, other types of interpretation methods, not explicitly based on the
Shapley value, have also been proposed. Siddiqui et al. (2019) formulated the sequential feature explanation,
in which they seek a most convincing order of features to explain an anomaly. Zhang et al. (2019) suggested
using a linear surrogate model learned via perturbation around a data point for explaining why the data
point was regarded anomalous. We will also examine these methods in Section 5.

The anomaly attribution method of Idé et al. (2021) is notable for its conceptual similarity with ours. Their
method is for attributing anomalies found in a regression model x 7→ y, where y is the regressed variable.
It seeks a local correction δ of x such that x+ δ maximizes the likelihood p(y | x+ δ) under the regression
model, and the elements of δ are regarded as attributions. While the targeted type of anomaly detection is
different from ours, their idea reminds us of the intermediate quantity of our approach, x?, in Eq. (2); we
seek x? such that it minimizes the anomaly score in the vicinity of the original input. The method of Idé
et al. (2021) could be roughly understood as using δ = x?(∅;x)−x as attribution. In contrast, we compute
the attribution based on the values of x?(S;x) not only for S = ∅ but also for different configurations of S.

Apart from the semi-supervised setting, many studies have been done on the interpretation of unsupervised
anomaly detection (e.g., Knorr & Ng, 1999; Kriegel et al., 2012; Keller et al., 2012; Dang et al., 2016; Vinh
et al., 2015; Liu et al., 2018; Yepmo et al., 2022) or outlier detection. These methods could be adjusted
for the semi-supervised setting, but how it should be done depends on each method. We did not include
these methods in the comparison in Section 5, since there already are several methods (as exemplified above)
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Table 1: Datasets properties. d is the number of features. Note that |Dtest| = 2|Dnorm
test | = 2|Danom

test |.

Name d Type |Dtrain| |Dvalid| |Dtest|
Thyroid 6 real 2869 717 186
BreastW 9 real 164 41 478

U2R 10 real 12310 3078 420
Lympho 59 binary 109 27 12
Musk 166 real 2294 574 194

Arrhythmia 274 real 256 54 132

that directly fit the semi-supervised setting. Adapting the interpretation methods for outlier detection to
semi-supervised anomaly detection would be an independent study.

Budhathoki et al. (2022) address a related problem with a fundamentally different assumption; they assume
to have the knowledge of the causal structure behind data. They compute the Shapley value of anomaly
scores by referring to a functional causal model. While their method is not applicable to our setting as we
assume rather the absence of causal knowledge, exploring new problem settings between the two extrema
(complete presence or absence of causal knowledge) would be an interesting future direction.

5 Experiments

We present the empirical performance of the proposed method and baseline methods for different datasets
and anomaly detectors. We will summarize the implications of the results later in Section 6.

5.1 Experimental setting

5.1.1 Datasets

We used six public datasets with different numbers of features as listed in Table 1. The U2R dataset is a subset
of the NSL-KDD dataset (Tavallaee et al., 2009), which is a modified version of the KDDCup’99 data. We
created the U2R dataset by extracting the U2R attack type from the NSL-KDD dataset and by eliminating
categorical and constant-valued features. The other datasets are from the ODDS repository (Rayana, 2016).
For the Lympho dataset, we converted the categorical features into binary by one-hot encoding, which resulted
in the 59-dimensional dataset.

We split each dataset into a training set Dtrain, a validation set Dvalid, and a test set Dtest = Dnorm
test ∪Danom

test .
We used the whole anomaly part of each dataset as Danom

test and randomly chose the same size of normal
data as Dnorm

test . Dtrain and Dvalid were created from the remaining normal data. We used Dtrain and Dvalid
for training and selection of anomaly detectors, respectively, whereas Dnorm

test and Danom
test were secured for

measuring the performance of attribution methods. We normalized the real-valued datasets using each
training set’s mean and standard average.

5.1.2 Anomaly scores

We examined the following types of anomaly detectors with corresponding e(x) (details are in the appendix):

GMM e(x) as the energy (i.e., negative log-likelihood) of GMM.
VAE-r e(x) as the reconstruction error of VAE.
VAE-e e(x) as the negative empirical lower bound of VAE.
DAGMM e(x) as the energy of the deep autoencoding Gaussian mixture models (Zong et al., 2018).

5.1.3 Attribution methods

We tried the following three baseline methods:
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marg Marginal scores of individual features. We examined the energy of marginal distributions for GMM
and the reconstruction error of each feature for VAE-r. In principle, this baseline is not applicable to
VAE-e and DAGMM as they do not admit straightforward decomposition of the anomaly scores.

SFE The sequential feature explanation (Siddiqui et al., 2019). We used the greedy algorithm named
“sequential marginal”. This method is applicable only to GMM and VAE-r, as with marg.

ACE The anomaly contribution explainer (Zhang et al., 2019).

We also tried the following variants of the general Shapley value-based methods:

IG The integrated gradients (Sundararajan et al., 2017), which can be regarded as a realization of the
Aumann–Shapley value. We used the mean of training data as a reference value.

KSH The kernel SHAP (Lundberg & Lee, 2017). As suggested by the authors’ implementation, we used
the cluster centers computed by k-means (k = 8) on training data as reference values. We note that
Antwarg et al. (2021) also used the kernel SHAP for anomaly scores.

wKSH A variant of the kernel SHAP, namely weighted kernel SHAP, in which we selected reference
values by x’s k-nearest neighbors from training data with k = 8. This approach is similar to the method
proposed by Giurgiu & Schumann (2019), where they used the influence weights instead.

Finally, with regard to our proposed method, we tried two variants:

comp Attribution as the absolute value of each element of δ = x̂?(∅;x)−x, where x̂? is the intermediate
quantity of the proposed method in Eq. (3). This is conceptually similar to the method of Idé et al.
(2021) (anomaly compensation).

ASH The full proposed method, namely anomaly Shapley, as outlined in Algorithm 1. We used the most
relaxed definition of our characteristic function, v in Eq. (5), and set γ = 0.01, unless otherwise stated.

5.2 Attribution for synthetic anomaly

We investigated the performance of the attribution methods under controlled conditions using the normal
half of test data, Dnorm

test . We generated synthetic anomalies by perturbing some features of the normal data
and then tried to localize them with attribution results. We synthesized the anomalies as follows: for every
data point of Dnorm

test , we selected a set of danom features, and perturbed the values of the selected features
by adding noise drawn uniformly from [−2,−1] ∪ [1, 2] (for real-valued datasets). We set this magnitude
of the noise because the real-valued datasets were normalized to have the unit standard deviation. For the
binary-valued dataset (i.e., Lympho), instead of adding the real-valued noise, we flipped the values of the
selected features.

All the anomaly detectors resulted in similarly good detection performances probably because the synthesized
anomalies were obvious, so we focus only on the attribution performance. We defer the results with danom > 1
to the appendix, though the overall tendency is the same as what we observed from the results with danom = 1.

For danom = 1, we report the mean reciprocal rank (MRR) of the attribution of the perturbed feature. This
is the average of the reciprocal of the rank of the perturbed feature’s attribution in the descending order,
so, if the largest value is attributed to the perturbed feature for every data point, then the MRR becomes
1. The MRR values are detailed for all the datasets and the detectors in Table 2. The proposed approach,
ASH, is better than or comparable with the other methods in many dataset-detector pairs. It is worth
noting that the simple strategy, marg, works to some extent in most cases when it is applicable, though an
obvious drawback is the limited applicability. We report the result with another criterion, Hits@3 (i.e., the
proportion of samples where the perturbed feature was in the top-3 attribution), in Table 3 for completeness,
where we observe the same tendency.
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Table 2: MRR (the larger, the better) of the synthetic anomalies, for danom = 1. The percentiles shown at
the bottom of the table are statistics of the values of all the dataset-detector pairs. We show the percentiles
for marg and SFE just for information and do not compare them with the other methods’ statistics because
the applicable detectors are different. The same applies to the following tables.

Setting MRR
Dataset Detector marg SFE ACE IG KSH wKSH comp ASH

Thyroid
GMM 0.57 0.59 0.73 0.70 0.48 0.71 0.48 0.78
VAE-r 0.75 0.75 0.77 0.75 0.58 0.77 0.75 0.75
VAE-e — — 0.74 0.76 0.56 0.77 0.46 0.75

DAGMM — — 0.39 0.23 0.38 0.46 0.66 0.51

Breastw
GMM 0.78 0.79 0.77 0.78 0.42 0.76 0.47 0.78
VAE-r 0.67 0.67 0.71 0.83 0.66 0.81 0.77 0.77
VAE-e — — 0.72 0.86 0.66 0.80 0.52 0.85

DAGMM — — 0.37 0.13 0.38 0.68 0.49 0.57

U2R
GMM 0.84 0.82 0.70 0.86 0.36 0.90 0.57 0.86
VAE-r 0.84 0.84 0.88 0.87 0.36 0.91 0.81 0.89
VAE-e — — 0.83 0.89 0.37 0.90 0.41 0.88

DAGMM — — 0.58 0.11 0.29 0.74 0.78 0.71

Lympho
GMM 0.48 0.56 0.16 0.89 0.08 0.08 0.15 0.73
VAE-r 0.92 0.92 0.16 0.66 0.08 0.08 0.03 0.87
VAE-e — — 0.16 0.69 0.08 0.08 0.03 0.83

DAGMM — — 0.08 0.12 0.08 0.08 0.16 0.37

Musk
GMM 0.08 0.10 0.24 0.28 0.20 0.92 0.11 0.97
VAE-r 0.98 0.98 0.60 0.80 0.54 0.98 0.20 0.98
VAE-e — — 0.61 0.80 0.54 0.98 0.11 0.97

DAGMM — — 0.10 0.03 0.06 0.47 0.11 0.28

Arrhythmia
GMM 0.22 0.24 0.25 0.42 0.09 0.48 0.08 0.49
VAE-r 0.72 0.72 0.35 0.54 0.36 0.58 0.17 0.71
VAE-e — — 0.35 0.54 0.36 0.58 0.18 0.72

DAGMM — — 0.13 0.00 0.06 0.22 0.08 0.17
25th percentile (0.55) (0.58) 0.22 0.27 0.09 0.47 0.11 0.67
50th percentile (0.73) (0.73) 0.48 0.69 0.36 0.72 0.30 0.76
75th percentile (0.84) (0.82) 0.72 0.81 0.49 0.83 0.53 0.86

5.3 Comparison to attribution of supervised classifier

For assessing the performance of the attribution methods in a more realistic situation, we use another half
of the test data, Danom

test . Although we know that Danom
test comprises somewhat anomalous data points, we

do not know which features are most anomalous for each data point, so the ground truth of anomaly score
attribution is not available. Hence, we resort to comparing the attributions of the semi-supervised anomaly
scores with the attribution of a supervised classifier’s outputs, expecting that the supervised model can
capture richer information on the data than the semi-supervised models can do, since the former is explicitly
informed by both normal and anomalous labeled data, while the latter is only informed by normal data.

For each dataset, we first train a binary classifier (specifically, SVM with the RBF kernel) using all the data,
with the two classes being normal (Dtrain ∪Dvalid ∪Dnorm

test ) and anomalous (Danom
test ).2 As the two classes are

imbalanced, we preprocessed the data using SMOTE (Chawla et al., 2002). We then compute the attribution
of the classifier’s output for each data point of Danom

test using kernel SHAP (Lundberg & Lee, 2017) and choose
the feature with the largest absolute value of the attribution as the most anomalous feature for each data
point. We only use instances for which the following holds:

|φsup
i1
| ≥ 2|φsup

i2
|, (6)

2We use Danom
test both for training and attribution, which is not problematic because our purpose does not lie in predicting

the label by the supervised classifier; it just works as a reference of attribution.
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Table 3: Hits@3 (the larger, the better) of the synthetic anomalies, for danom = 1.

Setting Hits@3
Dataset Detector marg SFE ACE IG KSH wKSH comp ASH

Thyroid
GMM 0.79 0.81 0.85 0.89 0.66 0.89 0.46 0.88
VAE-r 0.86 0.86 0.88 0.86 0.78 0.84 0.86 0.86
VAE-e — — 0.85 0.85 0.72 0.85 0.44 0.85

DAGMM — — 0.39 0.15 0.48 0.47 0.79 0.57

Breastw
GMM 0.85 0.90 0.85 0.88 0.55 0.82 0.44 0.88
VAE-r 0.78 0.78 0.76 0.92 0.71 0.89 0.89 0.80
VAE-e — — 0.78 0.95 0.72 0.88 0.51 0.93

DAGMM — — 0.32 0.03 0.37 0.69 0.53 0.68

U2R
GMM 0.97 0.93 0.74 0.97 0.47 0.91 0.57 0.97
VAE-r 0.97 0.97 0.94 0.96 0.47 0.90 0.97 0.96
VAE-e — — 0.95 0.96 0.49 0.90 0.41 0.96

DAGMM — — 0.60 0.00 0.28 0.74 0.93 0.83

Lympho
GMM 0.41 0.63 0.14 0.98 0.06 0.06 0.14 0.98
VAE-r 0.95 0.95 0.14 0.73 0.06 0.06 0.00 0.96
VAE-e — — 0.14 0.82 0.06 0.06 0.00 0.84

DAGMM — — 0.06 0.13 0.06 0.06 0.14 0.46

Musk
GMM 0.05 0.07 0.24 0.28 0.25 0.93 0.14 0.97
VAE-r 0.98 0.98 0.64 0.82 0.60 0.99 0.24 0.99
VAE-e — — 0.63 0.82 0.59 0.99 0.14 0.97

DAGMM — — 0.10 0.03 0.04 0.56 0.14 0.30

Arrhythmia
GMM 0.21 0.23 0.27 0.49 0.07 0.57 0.07 0.53
VAE-r 0.75 0.75 0.41 0.70 0.45 0.71 0.18 0.78
VAE-e — — 0.41 0.70 0.45 0.71 0.22 0.79

DAGMM — — 0.14 0.00 0.04 0.26 0.06 0.17
25th percentile (0.67) (0.72) 0.21 0.25 0.07 0.54 0.14 0.76
50th percentile (0.82) (0.83) 0.51 0.82 0.46 0.78 0.32 0.85
75th percentile (0.95) (0.94) 0.80 0.90 0.59 0.89 0.54 0.96

Table 4: MRR of the most-attributed features by the supervised classifier for real anomalies.

Setting MRR
Dataset Detector marg SFE ACE IG KSH wKSH comp ASH

Thyroid
GMM 0.52 0.44 0.64 0.57 0.54 0.75 0.68 0.91
VAE-r 0.87 0.87 0.86 0.87 0.71 0.76 0.87 0.87
VAE-e — — 0.82 0.87 0.77 0.75 0.68 0.87

DAGMM — — 0.47 0.18 0.42 0.36 0.64 0.68

U2R
GMM 0.72 0.69 0.48 0.73 0.37 0.45 0.82 0.73
VAE-r 0.64 0.64 0.70 0.65 0.38 0.37 0.71 0.66
VAE-e — — 0.69 0.69 0.39 0.40 0.14 0.66

DAGMM — — 0.55 0.13 0.54 0.43 0.70 0.51

Musk
GMM 0.02 0.03 0.26 0.01 0.05 0.16 0.64 0.04
VAE-r 0.06 0.06 0.24 0.14 0.20 0.12 0.63 0.10
VAE-e — — 0.18 0.14 0.20 0.12 0.64 0.01

DAGMM — — 0.24 0.01 0.02 0.18 0.64 0.14
25th percentile (0.17) (0.15) 0.26 0.14 0.20 0.17 0.64 0.13
50th percentile (0.58) (0.54) 0.52 0.38 0.39 0.39 0.66 0.66
75th percentile (0.70) (0.68) 0.69 0.70 0.54 0.53 0.70 0.77

where φsup
i1

and φsup
i2

respectively denote the largest and the second-largest elements of a set {φsup
1 , . . . , φsup

d },
which is the set of the supervised classifier’s attribution to the d features. With Eq. (6), we can only use
instances for which the i1-th feature is significantly more attributed than the runner-up i2-th feature. We
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finally evaluate how well such features can be localized by the attributions of the semi-supervised anomaly
scores by methods listed in Section 5.1.3.

In Table 4, we report the MRR of the attribution of the semi-supervised anomaly scores, with the features
most attributed in the supervised classifier being the golden standard. The reciprocal rank is 1 when the
attribution of the supervised classifier and that of the semi-supervised anomaly score assign the largest value
to the same feature. Although ASH is competitive or better compared to other methods for the Thyroid
and U2R datasets, it (as well as the other methods except comp) fails for the Musk dataset. Meanwhile, the
comp baseline method is still successful to some extent for the Musk dataset. This is interesting, but the
current data resource does not allow further analysis of why this was the case. We report the results only
for the three datasets because, for the remaining datasets, only a few instances of each of them sufficed the
condition in Eq. (6), and thus the performance comparison for those datasets was less reliable.

In Fig. 2, we show examples of the anomaly score attributions. The right panel of the figure reports the
normalized absolute values of the attributions for the GMM detector on the Thyroid dataset. Each row
corresponds to each of four data points, which are emphasized in the scatter plot matrix in the left panel
by the associated markers ( , , , and ). Here, we note that all of these four points are anomalous data
points; attributing anomaly scores only makes sense for anomalous queries. In the first two examples ( and
), the largest attribution by ASH successfully coincides with that of the supervised classifier. In contrast,

they do not match in the last two examples ( and ). We would note the following observations:

• The Shapley-value-based attributions (i.e., IG, KSH, wKSH, and ASH) tend to give relatively (close
to) sparse attributions compared to the other methods. This tendency was commonly observed in other
examples not shown here, too.

• The attributions by KSH for the first two examples, and , are similar. In contrast, the attributions
by wKSH and ASH are very different between these examples. Such a difference of the behavior can
be explained by the fact that while KSH uses the fixed reference value in computing the characteristic
function, the reference values used by wKSH and ASH are adaptive to the query data point.

• In the third example ( ), the attribution by ASH significantly deviates from the supervised classifier’s
attribution. This may be due to the extreme value of the corresponding data point, the point in the
scatter plot matrix. At the same time, the ASH’s attribution (largest for Feature #3) is not necessarily
meaningless because the point exhibits an extreme value also for Feature #3.

• In contrast to the third example ( ), the data point of the fourth example ( ) has no clear extreme values
and rather lies in the proximity of points and . This fact makes the reason why ASH failed with the
point less clear. Meanwhile, the failure is lighter than in the previous case because Feature #0 has the
second largest value in the attribution by ASH.

5.4 Validity of heuristic relaxation

Recall that in Section 3.1, we introduced a heuristic relaxation of the characteristic function. We investigated
the validity of the relaxation by comparing the original relaxed characteristic function (i.e., v̂ in Eq. (3))
and the heuristically approximated one (i.e., v in Eq. (5)). In Table 5, we compare the Shapley value-based
attribution using v̂ and v. In terms of the computation time for each x, the attribution with v is significantly
faster than that with v̂, which is a natural consequence of the definitions. Meanwhile, the resulting MRRs
with each characteristic function (in the setting of synthetic anomaly experiment in Section 5.2) are similar
to each other. We report the comparison only for the two datasets in Table 5 because the computation of v̂
for datasets with more features was basically infeasible.

6 Discussion

The proposed strategy, ASH, resulted in a relatively stably good performance. Nonetheless, it sometimes
failed while others were good (though the same could be said for all the methods; no one wins always). These
observations tell us that using multiple attribution methods with multiple detection methods in ensembles
may be good practice for interpreting anomaly detection.
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Sup MARG SFE ACE IG KSH WKSH COMP ASH

Figure 2: (Left) Scatter plot matrix of the Thyroid dataset (d = 6). The blue and orange points are from
Dnorm

test and Danom
test , respectively. The labels from 0 to 5 are the feature index. (Right) Examples of the

anomaly score attributions for the GMM detector. The normalized absolute values of the attributions are
reported. “Sup” refers to the reference attribution of the supervised classifier, {φsup

i }. Each row corresponds
to a data point of the Thyroid dataset. The associated markers ( , , , and ) point to the location of the
corresponding data points in the left panel. Note that the points with those markers are anomalous data.

Table 5: Comparison of the two definitions of the characteristic functions for anomaly scores, v̂ (without
the heuristics, in Eq. (3)) and v (with the heuristics, in Eq. (5)). The per-sample computation time and the
performance of the attribution for the synthetic anomaly with danom = 1 are reported.

Setting Average computation time (STD)
[sec/sample] MRR

Dataset Detector with v̂ with v with v̂ with v

Thyroid
d = 6

GMM 26.40 (13.19) 6.19 (3.05) 0.76 0.78
VAE-r 23.50 (12.06) 5.58 (3.04) 0.75 0.75
VAE-e 23.81 (13.50) 5.42 (3.28) 0.75 0.75

DAGMM 51.52 (37.19) 12.45 (8.43) 0.57 0.51

Breastw
d = 9

GMM 278.84 (169.07) 7.10 (4.28) 0.78 0.78
VAE-r 397.87 (235.73) 14.76 (8.21) 0.81 0.77
VAE-e 478.76 (272.03) 15.86 (8.94) 0.84 0.85

DAGMM 1071.99 (596.88) 18.37 (12.48) 0.57 0.57

Analysis of each method’s failure is an important question, though it is out of the scope of this paper because
such failure analysis is meaningful only with in-depth experimentation for each particular anomaly detector,
characteristic function, data, and anomaly type. This paper, instead, has provided a general overview
of the relevant attribution methods to investigate their applicability. Although we provided examples of
attributions in Fig. 2, we think it is not safe to say anything more detailed than what we listed in Section 5.3
because the visualization reveals only limited aspects of the dataset, and the true cause of anomalies cannot
necessarily be ascribed to a single feature as we did.

In the experiment, we also observed that the simplest approach, marg, worked well in some cases. It is,
in a sense, reassuring because marg has been the only way of anomaly attribution practiced in many use
cases for a long time. However, it was sometimes substantially outperformed by other methods and can only
be computed for limited types of anomaly scores, which motivates the use of the other attribution methods
including the proposed one.
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Another general observation is that the anomaly score by DAGMM was relatively difficult to attribute,
especially when d > 10, probably because of its strong non-additive nature. Such “attribution hardness”
would be an interesting topic of future studies.

Finally, as stated earlier, the evaluation using the real anomaly data has inherent limitations (as is often the
case with the evaluation of interpretation methods), since the ground truth was a surrogate. More specific
evaluations with real anomalies should be done in each application domain with experts’ supervision.

Broader Impact Statement

This paper presents some methods for interpreting anomaly detection results, which can be utilized in various
real-world domains including industrial sectors. The users must be constantly aware of the heuristic and data-
driven nature of the methods; the correctness of the interpretation can never be guaranteed automatically.
The methods can be useful in helping the user’s decision-making processes but cannot replace any critical
roles of human operators. Moreover, as advised in the paper, multiple attribution methods should be used
together in ensembles for gaining stability.
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A Experimental Settings

A.1 Datasets

Thyroid is originally from the UCI machine learning repository (Dua & Graff, 2017), and we used the
reformatted dataset provided as a part of the ODDS repository (Rayana, 2016). The reformatted dataset
comprises six real-valued features, eliminating the 15 categorical features of the original. The original task
for which the dataset was prepared is to determine whether a patient is hypothyroid or not. For anomaly
detection purposes, within the three classes of normal functioning, subnormal functioning, and hyperfunction,
the first two are used as normal data, and the last is as anomalous data.

BreastW is originally from the UCI machine learning repository, and we used the reformatted dataset provided
as a part of the ODDS repository. The dataset comprises nine features that take categorical values from 1 to
10. The original problem is the classification between benign and malignant classes. For anomaly detection
purposes, the malignant class is used as anomalous data.

U2R is a part of the NSL-KDD dataset (Tavallaee et al., 2009), which is a modified version of the
KDD Cup 1999 dataset. From the NSL-KDD dataset, we used the part of the dataset correspond-
ing to the U2R attack type. We eliminated the six categorical features and a real-valued feature that
does not change in the dataset, which resulted in the following ten features (in the original names):
1. duration
2. hot
3. num_compromised
4. root_shell
5. num_root

6. num_file_creations
7. srv_count
8. dst_host_count
9. dst_host_srv_count

10. dst_host_same_src_port_rate

Lympho is originally from the UCI machine learning repository, and we used the reformatted dataset provided
as a part of the ODDS repository. The dataset comprises 18 categorical features, and we transformed them
by one-hot encoding, which resulted in the 59-dimensional dataset. The original task is the classification
between four classes, two of which are quite small. For anomaly detection purposes, these small classes are
used as anomalous data.

Musk is originally from the UCI machine learning repository, and we used the reformatted dataset provided
as a part of the ODDS repository. The dataset comprises 166 real-valued features. The original task is to
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classify molecules into musk and non-musk classes. For anomaly detection purposes, three non-musk classes
are used as normal data, and two musk classes are as anomalous data.

Arrhythmia is originally from the UCI machine learning repository, and we used the reformatted dataset
provided as a part of the ODDS repository. The reformatted dataset comprises 274 real-valued features.
The original task is a 16-class classification to distinguish between the presence and absence of cardiac
arrhythmia. For anomaly detection purposes, the eight smallest classes are used as anomalous data.

A.2 Anomaly detection methods

A.2.1 Gaussian mixture models (GMMs)

We selected best numbers of mixture components, K, from 2, 3, or 4, based on the validation likelihood.
The corresponding anomaly score is the energy (i.e., negative log-likelihood) of the GMMs:

e(x) = − log
K∑
k=1

πk exp
(
− d log(2π)

2 − 1
2 log det(Σk)− 1

2(x− µk)TΣ−1
k (x− µk)

)
,

where {π1, . . . , πK} is the set of mixture weights, {µ1, . . . ,µK} is the set of means, and {Σ1, . . . ,ΣK} is the
set of covariance matrices.

A.2.2 Variational autoencoders (VAEs)

The encoder is a multilayer perceptron with one hidden layer, whereas the decoder is with two hidden layers.
Every activation function is the softplus function. We selected the best values of the dimensionality of the
latent variable, dim(z), and the number of the hidden units of the multilayer perceptrons, dim(MLP), based
on the validation ELBO. The candidate of dim(z) was the rounded values of 0.2d, 0.4d, 0.6d, and 0.8d, where
d is the dimensionality of each dataset. The candidate of dim(MLP) was the rounded values of 0.5d, d, and
2d. The loss function used for learning was the negative ELBO with the mean squared loss for the real-valued
datasets or with the cross-entropy loss for the binary-valued dataset. We used the Adam optimizer with
the learning rate 0.001 and stopped the optimization observing the validation set loss. The corresponding
anomaly scores are:

e(x) =
∥∥x− f(g(x))

∥∥2

and
e (x) = −Eqψ(z|x)

[
log pθ(x | z) + log p(z)− log qψ(z | x)

]
,

for VAE-r and VAE-e, respectively. θ and ψ denote the sets of parameters of the decoder and the encoder,
respectively. g and f are the decoder and the encoder’s mean parameter function, respectively.

A.2.3 Deep autoencoding Gaussian mixture models (DAGMMs)

The architectures of the encoder and decoder are the same as the VAEs above. What is specific to DAGMMs
is the so-called estimation network that outputs the estimation of cluster assignment of a GMM learned on
the latent representations and the reconstruction error values. In our experiments, the estimation network
is a multilayer perceptron with one hidden layer using the softplus function as activation. The candidates
of the hyperparameters were the same as in the above cases, both for the autoencoder part and the GMM
part. We used the Adam optimizer with the learning rate 0.0001 and stopped the optimization observing
the validation set loss.

B Experimental Results

B.1 Sensitivity to hyperparameter

In Table 6, we report results of the synthetic anomaly experiment (in Section 5.2) using the GMM detector
with γ being varied from 0.001 to 10. We can observe that the performance is insensitive to γ.
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Table 6: MRR for the synthetic anomaly. The values for the GMM detector using different values of γ are
reported.

Dataset MRR
γ = 0.001 γ = 0.01 γ = 0.1 γ = 1.0 γ = 10.0

Thyroid 0.77 0.78 0.78 0.75 0.74
Breastw 0.78 0.78 0.78 0.77 0.78

U2R 0.86 0.86 0.86 0.86 0.86
Lympho 0.73 0.73 0.73 0.73 0.74
Musk 0.98 0.97 0.95 0.93 0.92

Arrhythmia 0.49 0.49 0.49 0.50 0.50

Table 7: Per-sample computation time of the attribution with the proposed characteristic function, v.

Setting Average computation time (STD)
[sec/sample]Dataset Detector

Thyroid
d = 6

GMM 6.19 (3.05)
VAE-r 5.58 (3.04)
VAE-e 5.42 (3.28)

DAGMM 12.45 (8.43)

Breastw
d = 9

GMM 7.10 (4.28)
VAE-r 14.76 (8.21)
VAE-e 15.86 (8.94)

DAGMM 18.37 (12.48)

U2R
d = 10

GMM 10.35 (7.64)
VAE-r 15.13 (7.30)
VAE-e 11.53 (6.36)

DAGMM 34.69 (18.01)

Lympho
d = 59

GMM 81.41 (33.14)
VAE-r 213.68 (0.17)
VAE-e 226.29 (0.27)

DAGMM 96.68 (32.34)

Musk
d = 166

GMM 217.82 (103.43)
VAE-r 184.01 (62.34)
VAE-e 464.39 (92.27)

DAGMM 503.65 (85.80)

Arrhythmia
d = 274

GMM 1187.44 (418.56)
VAE-r 580.67 (298.37)
VAE-e 1480.86 (161.63)

DAGMM 404.46 (270.18)

B.2 Runtime

With the heuristic relaxation we introduced (i.e., from Eq. (3) to Eq. (4)), the number of the minimization
problems to be solved decreases from O(2d) to O(d). While the overall time complexity of the attribution
algorithm certainly depends on this number, the actual runtime depends also on many other factors. Specif-
ically, each of the minimization problems is solved with gradient descent, whose stopping rule refers to the
empirical convergence of the objective, and thus the number of iterations significantly differs with different
data. We report the average computation time of the attribution method with the proposed characteristic
function (i.e., ASH) for the six datasets. The overall averages of the computation time over the four detec-
tors are summarized in Fig. 3. Note that the evaluation for the last two datasets (d = 166 and d = 274) is
difficult because they show large variances.
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Figure 3: Per-sample computation time reported in Table 7. The overall averages over the four detectors
are plotted. The left panel is for the first three datasets, and the right panel is for the last four datasets.

Table 8: Average AUROC for synthetic anomaly with danom = 2.

Setting AUC
Dataset Detector marg SFE ACE IG KSH wKSH comp ASH

Thyroid
GMM 0.73 0.73 0.78 0.76 0.56 0.73 0.52 0.83
VAE-r 0.82 0.82 0.83 0.82 0.68 0.80 0.82 0.82
VAE-e — — 0.82 0.82 0.67 0.80 0.48 0.82

DAGMM — — 0.43 0.17 0.49 0.54 0.73 0.58

Breastw
GMM 0.90 0.89 0.85 0.89 0.60 0.86 0.48 0.89
VAE-r 0.77 0.77 0.70 0.87 0.81 0.86 0.88 0.83
VAE-e — — 0.68 0.89 0.81 0.85 0.51 0.86

DAGMM — — 0.48 0.13 0.58 0.73 0.53 0.68

U2R
GMM 0.95 0.88 0.68 0.90 0.53 0.86 0.54 0.89
VAE-r 0.91 0.91 0.89 0.92 0.59 0.89 0.94 0.93
VAE-e — — 0.87 0.93 0.60 0.88 0.46 0.92

DAGMM — — 0.59 0.06 0.50 0.71 0.92 0.73

Lympho
GMM 0.89 0.93 0.70 0.97 0.50 0.50 0.63 0.95
VAE-r 0.99 0.99 0.71 0.90 0.50 0.50 0.29 0.95
VAE-e — — 0.71 0.93 0.50 0.50 0.29 0.93

DAGMM — — 0.60 0.40 0.50 0.50 0.71 0.86

Musk
GMM 0.69 0.69 0.65 0.81 0.74 0.95 0.48 0.96
VAE-r 0.99 0.99 0.92 0.95 0.90 0.99 0.75 1.00
VAE-e — — 0.91 0.95 0.90 0.99 0.48 0.99

DAGMM — — 0.64 0.25 0.55 0.75 0.48 0.77

Arrhythmia
GMM 0.90 0.87 0.86 0.90 0.73 0.90 0.48 0.91
VAE-r 0.98 0.98 0.92 0.94 0.89 0.93 0.85 0.96
VAE-e — — 0.92 0.94 0.89 0.93 0.52 0.95

DAGMM — — 0.57 0.11 0.62 0.67 0.48 0.68
25th percentile (0.81) (0.81) 0.65 0.67 0.52 0.70 0.48 0.82
50th percentile (0.90) (0.89) 0.71 0.89 0.60 0.82 0.52 0.89
75th percentile (0.96) (0.94) 0.86 0.93 0.76 0.89 0.73 0.95

B.3 Other performance measures

We show the results of the synthetic anomaly experiment (in Section 5.2) with danom > 1. Since the MRR
and the Hits@3 are not necessarily meaningful when danom > 1, we report the area under the receiver
operator characteristic curve (AUROC) in Tables 8 and 9; given a set of attributions to features, we sweep
a threshold value for the attributions from the largest attribution to the smallest attribution to define the
ROCs. The overall tendency of the performance is the same as we reported in Section 5.2.
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Table 9: Average AUROC for synthetic anomaly with danom = 3.

Setting AUC
Dataset Detector marg SFE ACE IG KSH wKSH comp ASH

Thyroid
GMM 0.74 0.71 0.77 0.75 0.58 0.71 0.50 0.82
VAE-r 0.85 0.85 0.82 0.85 0.66 0.81 0.85 0.85
VAE-e — — 0.82 0.85 0.66 0.80 0.46 0.85

DAGMM — — 0.52 0.16 0.47 0.57 0.75 0.67

Breastw
GMM 0.91 0.89 0.85 0.90 0.63 0.85 0.46 0.91
VAE-r 0.74 0.74 0.63 0.81 0.79 0.79 0.91 0.81
VAE-e — — 0.63 0.84 0.79 0.80 0.53 0.81

DAGMM — — 0.53 0.10 0.60 0.69 0.53 0.66

U2R
GMM 0.96 0.82 0.64 0.87 0.53 0.84 0.48 0.83
VAE-r 0.92 0.92 0.89 0.94 0.57 0.92 0.94 0.94
VAE-e — — 0.85 0.95 0.57 0.91 0.52 0.94

DAGMM — — 0.56 0.06 0.52 0.66 0.92 0.68

Lympho
GMM 0.89 0.91 0.71 0.96 0.50 0.50 0.58 0.93
VAE-r 0.97 0.97 0.71 0.88 0.50 0.50 0.29 0.91
VAE-e — — 0.71 0.91 0.50 0.50 0.29 0.88

DAGMM — — 0.66 0.44 0.50 0.50 0.71 0.82

Musk
GMM 0.68 0.71 0.71 0.83 0.73 0.96 0.47 0.95
VAE-r 1.00 1.00 0.91 0.95 0.90 1.00 0.75 0.99
VAE-e — — 0.91 0.95 0.90 1.00 0.47 0.99

DAGMM — — 0.70 0.25 0.58 0.77 0.47 0.79

Arrhythmia
GMM 0.91 0.88 0.87 0.91 0.71 0.92 0.47 0.91
VAE-r 0.98 0.98 0.91 0.94 0.88 0.95 0.87 0.98
VAE-e — — 0.91 0.94 0.88 0.95 0.53 0.97

DAGMM — — 0.56 0.10 0.61 0.68 0.47 0.69
25th percentile (0.82) (0.80) 0.64 0.67 0.53 0.68 0.47 0.81
50th percentile (0.91) (0.89) 0.71 0.86 0.60 0.80 0.53 0.86
75th percentile (0.96) (0.93) 0.85 0.94 0.74 0.92 0.75 0.94
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