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Abstract

The diagram is a visual representation of a relationship il-
lustrated with edges (lines or arrows), which is widely used
in industrial and scientific communication. Although rec-
ognizing diagrams is essential for vision language models
(VLMs) to comprehend domain-specific knowledge, recent
studies reveal that many VLMs fail to identify edges in im-
ages. We hypothesize that these failures stem from an over-
reliance on textual and positional biases, preventing VLMs
from learning explicit edge features. Based on this idea,
we empirically investigate whether the image encoder in
VLMs can learn edge representation through training on a
diagram dataset in which edges are biased neither by tex-
tual nor positional information. To this end, we conduct
contrastive learning on an artificially generated diagram–
caption dataset to train an image encoder and evaluate its
diagram-related features on three tasks: probing, image re-
trieval, and captioning. Our results show that the finetuned
model outperforms pretrained CLIP in all tasks and sur-
passes zero-shot GPT-4o and LLaVA-Mistral in the cap-
tioning task. These findings confirm that eliminating tex-
tual and positional biases fosters accurate edge recognition
in VLMs, offering a promising path for advancing diagram
understanding.

1. Introduction
Diagram is a simplified and structured visual representation
of relationships using shapes connected by edges (lines or
arrows). Flowcharts, electronic circuits, and chemical struc-
ture diagrams are all examples of diagrams, and they play a
major role in industrial and scientific communication. For a
vision language model (VLM) to fully understand the con-
text and knowledge in such domains, it is critical to accu-
rately recognize diagram images.

However, recent studies suggest that VLMs might not
accurately recognize edges in diagram images. Yoshida et
al. [24] have indicated that the feature representations of the
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CLIP [19] encoder, widely used in VLMs, may not contain
sufficient information to classify the presence and direction
of arrows in diagram images. From a similar motivation,
Rahmanzadehgervi et al. [20] proposed a VLM benchmark
that requires the model to answer questions about lines and
shapes, demonstrating even large VLMs such as GPT-4o
[17] and Gemini-1.5 Pro [23] can sometimes fail on even
simple questions.

One reason VLMs often fail to recognize edges is that
their visual training relies too heavily on positional or tex-
tual biases, hindering VLMs from learning edge features.
This can be demonstrated through a simple experiment
shown in Fig. 2; GPT-4o succeeds in describing a diagram
when it can rely on common-sense biases derived from node
positions (a) or textual cues (b), but fails when no such clues
are available (c). Recent benchmarks on visual math prob-
lems [26] and flowchart VQA [22] have also shown that
VLMs tend to rely on textual and positional biases.

Based on these observations, this study experimentally
demonstrates that eliminating textual and positional biases
during training enables visual models to learn edge features.
To this end, we artificially generate a dataset of diagram
images and text captions designed so that the presence and
direction of edges cannot be inferred from text or position.
We train CLIP, a common image encoder in VLMs, through
contrastive learning on this dataset, then evaluate how well
it captures edge information using three tasks: linear prob-
ing, image retrieval, and a newly proposed task called di-
agram captioning. In the linear probing, we classify edge
existence and direction with acquired features, while the
image retrieval evaluates the model’s ability to find images
representing the identical graph with possibly different vi-
sual layout. In our diagram captioning, we train a text de-
coder on the image encoder to predict the edge sets that
appear in given diagram images.

Results from all three tasks show that our finetuned
model substantially outperforms the original pretrained
CLIP, indicating that our approach encourages acquiring
edge representations invariant with textual and positional
information. On our diagram captioning, the finetuned
models also exceed the zero-shot performance of GPT-4o
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Figure 1. Examples of diagram captioning by GPT-4o [17]: (a) inferring relationships based on conventional top-down hierarchies, (b)
leveraging semantic relationships between node labels, and (c) struggling when neither positional nor textual biases are available. All
results were produced by gpt-4o-2024-08-06 with temperature 0.

and LLaVA-Mistral, highlighting the current limitation of
large VLMs and the effectiveness of our approach.

2. Related Work

Recently, large vision language models (LVLMs) have
achieved human-level performance on a variety of VQA
tasks [6, 11, 17, 23], yet it has become clear that they rely
heavily on textual content and positional layout to answer.

Chen et al.[5] demonstrated that GeminiPro [23] solves
42.90% of MMMU tasks [25] without any image inputs.
This reveals that existing results of common VQA bench-
marks might not reflect the actual vision capability of
LVLMs. Further, in visual math benchmarks [4, 13, 25], re-
moving problem texts regarding visual information substan-
tially drops performance [26], indicating that many LVLMs
merely rely on textual information. The limited capabil-
ity in figure recognition is further illustrated by Rahman-
zadehgervi et al. [20], who reveal that even state-of-the-art
models like GPT-4V [16] fail at simple visual tasks such as
counting overlapping shapes or determining line segment
intersections. LVLMs also tend to rely on layout informa-
tion. In a flowchart VQA task, simply flipping the layout
vertically significantly degrades performance [22].

In this work, we show that by removing biases tied to
text or positional information, VLMs can learn to recognize
lines and arrows purely from visual inputs.

3. Learning with Debiased Diagram Dataset

As shown in Fig. 2, our approach consists of artificially gen-
erating diagram–text pairs that exclude text and positional
biases (Sec. 3.1), followed by contrastive learning to fine-
tune CLIP (Sec. 3.2).

3.1. Diagram Dataset without Positional and Tex-
tual Biases

We aim to build an image dataset with captions that elimi-
nate biases arising from text and positional information. To
have such a dataset with sufficient diversity, we generate
diagram images and their Mermaid-style captions from ran-
domly generated directed graphs. Note that we use ”graph”
to refer to the abstract mathematical structure and ”dia-
gram” to denote its visual representation.

Each sample in our dataset pairs an image with text rep-
resenting a directed graph containing different numbers of
alphabet-labeled nodes. The directed graphs are generated
so that their edges are generated independently with a fixed
probability for each pair among eight nodes, excluding self-
loops and bidirectional edges. When a generated graph has
more than one weakly connected component, we keep only
the largest one, having graphs with different numbers of
nodes (two to eight). For each graph, we draw a diagram
image as in Fig. 2 whose node positions are laid out by the
force-directed placement [8] with a random initial node lay-
out. This initialization ensures that the same graph can pro-
duce diagram images with different layouts. The captions
describe the generated directed graph in Mermaid format,
where each line denotes a directed edge; e.g., A --> B
indicates an edge from node “A” to node “B”. We generate
100k image–caption pairs and use 10% of them as a test set.

3.2. Training Encoders via Contrastive Learning

We finetune pretrained CLIP models using contrastive
learning on our artificially generated dataset. CLIP [19] is
a dual-encoder architecture, comprising an image and text
encoder, that learns joint representations from pairs of im-
ages and their captions. During training, CLIP minimizes
a contrastive loss that brings the embeddings of matching
image–text pairs closer while pushing apart the embeddings
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Figure 2. Overview of our approach: (a) training a CLIP model with diagram–caption pairs that eliminate positional and textual biases,
and (b) evaluating the model on three tasks: linear probing, image retrieval, and diagram captioning.

of non-matching pairs. We specifically target CLIP for our
approach because its image encoders serve as foundational
components in numerous state-of-the-art large vision lan-
guage models [2, 10, 11, 27].

For our experiments, we adopt two pretrained CLIP
models with different image encoder sizes: CLIP-ViT-
B/32 [14] and CLIP-ViT-L/14 [15]. CLIP-ViT-B/32 has
12 hidden layers and outputs 512-dimensional embeddings,
whereas CLIP-ViT-L/14 has twice as many hidden layers
and outputs 768-dimensional embeddings. We implement
standard contrastive learning using our artificial dataset
with a sufficiently large number of training steps.

4. Evaluation of Image Encoder

We evaluate the finetuned image encoder on three tasks
that rely on diagram recognition: the linear probing
(Sec. 4.1), image retrieval (Sec. 4.2), and diagram caption-
ing (Sec. 4.3).

4.1. Linear Probing

Linear probing [1, 7] measures how well the extracted fea-
tures encode information through classification tasks on
features. In this study, we train and evaluate a simple logis-
tic regression on top of the frozen image encoder to quantify
the recognition capability of nodes and edges.

We define three binary classification tasks: node exis-
tence, edge existence, and edge direction classification. In
node existence classification, for a given node label (“A” to
“H”), we predict whether it appears in the diagram. Edge
existence classification is a task to predict if an undirected
edge exists between a given pair of nodes (ignoring direc-
tion). If either node is missing from the graph, that test
sample is excluded to purely evaluate the edge recognition
ability. Finally, in edge direction classification, we check
whether a specific directed edge exists (e.g., from A to B).
If no edge exists in either direction between the given two
nodes, we skip that sample to solely evaluate the direction-
related performance. We compute the accuracy for every

possible label, node pair, or directed edge to report the av-
erage. For all tasks, we use balanced undersampling to en-
sure that the accuracies of all tasks can be compared to the
chance rate (0.5).

To see the effect of our additional contrastive learning,
we adopt pretrained CLIP-ViT-B/32 and CLIP-ViT-L/14
without additional contrastive training as baselines. As
shown in Tab. 1, the pretrained baseline models perform
poorly at edge direction classification (roughly at chance
level), although they excel at text recognition (node la-
bels). In contrast, both finetuned models show signifi-
cant improvements from their baselines, especially in edge-
direction classification (e.g., ViT-L/14 jumps from near-
chance to 86% accuracy). These results indicate that remov-
ing textual and positional biases via contrastive learning lets
the image encoder acquire edge-related features.

4.2. Image Retrieval
Our image retrieval task requires the model to retrieve all
diagram images that represent the same directed graph as a
given query image, which falls within the broader task cate-
gory called content-based image retrieval [3, 21]. This task
tests whether the learned features are invariant to node po-
sitions, as the query and target diagrams can have different
layouts while representing identical graph structures.

We newly generate 1,000 query graphs using the same
method in Sec. 3.1 ensuring each query graph appears in
our test dataset (but possibly with a different layout). We
encode both the query and all test images with the same
image encoder, rank them by cosine similarity, and measure
Mean Average Precision (MAP) and Mean Reciprocal Rank
(MRR) up to the top 100 results.

As shown in Tab. 1, our finetuned ViT-B/32 and ViT-
L/14 achieve MAP and MRR scores above 0.97, indicating
that they successfully learn diagram features that are invari-
ant to node positions. Fig. 3 shows examples of query im-
ages and retrieval results from finetuned and pretrained ViT-
L/14. The pretrained image encoder mostly tends to focus
on text and layout similarity, and it succeeds only when the



Table 1. Performance comparison of pretrained and finetuned CLIP models on diagram understanding tasks.

Method Linear Probing (Mean Accuracy) Image Retrieval

Node existence Edge existence Edge direction MAP@100 MRR@100

Random 0.500 0.500 0.500 0.0004 0.001

Pretrained ViT-B/32 0.959 0.639 0.518 0.067 0.108
Pretrained ViT-L/14 0.999 0.725 0.509 0.131 0.170
Finetuned ViT-B/32 0.994 0.726 0.857 0.973 0.973
Finetuned ViT-L/14 1.000 0.735 0.860 0.996 0.996
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Figure 3. Examples of query images (top row) and the top re-
trieved images using the pretrained ViT-L/14 (middle row) and
finetuned ViT-L/14 (bottom row). Images surrounded by orange
lines represent true positives that share the same directed graph
structures as the queries.

node layouts are extremely similar. By contrast, the fine-
tuned models correctly retrieve matching graphs even if the
node layouts differ significantly.

4.3. Diagram Captioning
This section proposes a new task called diagram caption-
ing that requires a VLM to describe the edges in a given
diagram image, accompanied by training a text decoder.

Our diagram captioning is a task to predict a Mermaid-
style description of the diagram presented in an input image.
Performance is measured by the micro F1-score of the pre-
dicted edge set, obtained by parsing edge descriptions in the
predicted Mermaid text (e.g., A --> B).

To construct our VLM, we pair CLIP’s image embed-
dings with GPT-2 [9, 18] as a text decoder. Our GPT-2 uses
cross-attention on the image embeddings and previous to-
kens, predicting the next token probabilities. We train on
our artificial image–caption dataset with cross-entropy loss,
freezing the image encoder’s weights, and select check-
points based on validation loss from 1% of the training set.
We compare the finetuned models with baselines that use

Table 2. Diagram captioning performance comparison.

Method F1-score

Llava-Mistral [12] 0.118
GPT-4o [17] 0.500

Pretrained ViT-B/32 (+GPT-2) 0.413
Pretrained ViT-L/14 (+GPT-2) 0.668
Finetuned ViT-B/32 (+GPT-2) 0.516
Finetuned ViT-L/14 (+GPT-2) 0.966

the original CLIP encoders for image features, as well as
with zero-shot inference from large VLMs, namely GPT-4o
[17] (gpt-4o-2024-08-06) and LLaVA-Mistral [12]
(which also uses CLIP-ViT-L/14). Zero-shot inference is
prompted to generate a Mermaid-format caption describing
the given diagram image.

Tab. 2 shows that the finetuned ViT-L/14 encoder
achieves an F1 of 0.966, outperforming pretrained ViT-
L/14 and clearly beating GPT-4o with zero-shot. This in-
dicates that the improved edge representation confirmed by
the linear probing and image retrieval also benefits practical
downstream tasks. The lower performance of the pretrained
ViT-L/14 in both the diagram captioning and linear prob-
ing (Tab. 1) indicates that simply adapting the decoder is
not enough; the bottleneck lies in the image encoder. GPT-
4o and LLaVA-Mistral were shown to struggle with tasks
that have no textual and positional cues to rely on, which
is consistent with our findings in Fig. 2. Although a super-
vised instruction tuning on these models would likely im-
prove performance and provide insightful results, we leave
this for our future work. We also tested our models on
diagram images whose graphs are non-isomorphic to any
training sample (even as unlabeled and undirected). De-
spite a slight performance degradation, our finetuned mod-
els still significantly outperformed the baselines, showing
their strong generalization to unseen graph structures.



5. Conclusion
We showed that removing textual and positional biases en-
ables VLMs to learn edge recognition in diagrams. Us-
ing a synthetic dataset and contrastive learning on CLIP-
based encoders, our finetuned models outperformed pre-
trained baselines across linear probing, image retrieval, and
diagram captioning. This highlights the effectiveness of re-
moving textual and positional biases for teaching VLMs to
capture diagram structure.
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sha Nagrani, Hexiang Hu, Mandar Joshi, Bo Pang, Ceslee
Montgomery, Paulina Pietrzyk, Marvin Ritter, Alexander J.
Piergiovanni, Matthias Minderer, Filip Pavetić, Austin Wa-
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