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ABSTRACT

Denoising Score Matching with Annealed Langevin Sampling (DSM-ALS) has
recently found success in generative modeling. The approach works by first
training a neural network to estimate the score of a distribution, and then using
Langevin dynamics to sample from the data distribution assumed by the score
network. Despite the convincing visual quality of samples, this method appears to
perform worse than Generative Adversarial Networks (GANs) under the Fréchet
Inception Distance, a standard metric for generative models. We show that this
apparent gap vanishes when denoising the final Langevin samples using the score
network. In addition, we propose two improvements to DSM-ALS: 1) Consistent
Annealed Sampling as a more stable alternative to Annealed Langevin Sampling,
and 2) a hybrid training formulation, composed of both Denoising Score Matching
and adversarial objectives. By combining these two techniques and exploring
different network architectures, we elevate score matching methods and obtain
results competitive with state-of-the-art image generation on CIFAR-10.

1 INTRODUCTION

Song and Ermon (2019) recently proposed a novel method of generating samples from a target
distribution through a combination of Denoising Score Matching (DSM) (Hyvirinen, 2005; Vincent,
2011; Raphan and Simoncelli, 2011) and Annealed Langevin Sampling (ALS) (Welling and Teh,
2011; Roberts et al., 1996). Since convergence to the distribution is guaranteed by the ALS, their
approach (DSM-ALS) produces high-quality samples and guarantees high diversity. Though, this
comes at the cost of requiring an iterative process during sampling, contrary to other generative
methods. These generative methods can notably be used to diverse tasks like colorization, image
restoration and image inpainting (Song and Ermon, 2019; Kadkhodaie and Simoncelli, 2020).

Song and Ermon (2020) further improved their approach by increasing the stability of score matching
training and proposing theoretically sound choices of hyperparameters. They also scaled their
approach to higher-resolution images and showed that DSM-ALS is competitive with other generative
models. Song and Ermon (2020) observed that the images produced by their improved model were
more visually appealing than the ones from their original work; however, the reported Fréchet
Inception Distance (FID) (Heusel et al., 2017) did not correlate with this improvement.

Although DSM-ALS is gaining traction, Generative adversarial networks (GANs) (Goodfellow
et al., 2014) remain the leading approach to generative modeling. GANs are a very popular class
of generative models; they have been successfully applied to image generation (Brock et al., 2018;
Karras et al., 2017; 2019; 2020) and have subsequently spawned a wealth of variants (Radford
et al., 2015a; Miyato et al., 2018; Jolicoeur-Martineau, 2018; Zhang et al., 2019). The idea behind
this method is to train a Discriminator (D) to correctly distinguish real samples from fake samples
generated by a second agent, known as the Generator (G). GANs excel at generating high-quality
samples as the discriminator captures features that make an image plausible, while the generator
learns to emulate them.

Still, GANs often have trouble producing data from all possible modes, which limits the diversity of
the generated samples. A wide variety of tricks have been developed to address this issue in GANs
(Kodali et al., 2017; Gulrajani et al., 2017; Arjovsky et al., 2017; Miyato et al., 2018; Jolicoeur-
Martineau and Mitliagkas, 2019), though it remains an issue to this day. DSM-ALS, on the other
hand, does not suffer from that problem since ALS allows for sampling from the full distribution



captured by the score network. Nevertheless, the perceptual quality of DSM-ALS higher-resolution
images has so far been inferior to that of GAN-generated images. Generative modeling has since seen
some incredible work from Ho et al. (2020), who achieved exceptionally low (better) FID on image
generation tasks. Their approach showcased a diffusion-based method (Sohl-Dickstein et al., 2015;
Goyal et al., 2017) that shares close ties with DSM-ALS, and additionally proposed a convincing
network architecture derived from Salimans et al. (2017).

In this paper, after introducing the necessary technical background in the next section, we build upon
the work of Song and Ermon (2020) and propose improvements based on theoretical analyses both at
training and sampling time. Our contributions are as follows:

e We propose Consistent Annealed Sampling (CAS) as a more stable alternative to ALS,
correcting inconsistencies relating to the scaling of the added noise;

e We show how to recover the expected denoised sample (EDS) and demonstrate its unequiv-
ocal benefits w.r.t the FID. Notably, we show how to resolve the mismatch observed in
DSM-ALS between the visual quality of generated images and its high (worse) FID;

e We propose to further exploit the EDS through a hybrid objective function, combining
GAN and Denoising Score Matching objectives, thereby encouraging the EDS of the score
network to be as realistic as possible.

In addition, we show that the network architecture used used by Ho et al. (2020) significantly
improves sample quality over the RefineNet (Lin et al., 2017a) architecture used by Song and Ermon
(2020). In an ablation study performed on CIFAR-10 and LSUN-church, we demonstrate how these
contributions bring DSM-ALS in range of the state-of-the-art for image generation tasks w.rz. the
FID. The code to replicate our experiments is publicly available at [Available in supplementary
material].

2 BACKGROUND

2.1 DENOISING SCORE MATCHING

Denoising Score Matching (DSM) (Hyvirinen, 2005) consists of training a score network to approxi-
mate the gradient of the log density of a certain distribution (V4 log p(x)), referred to as the score
function. This is achieved by training the network to approximate a noisy surrogate of p at multiple
levels of Gaussian noise corruption (Vincent, 2011). The score network s, parametrized by 6 and
conditioned on the noise level o, is tasked to minimize the following loss:
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where p(Z,x,0) = ¢, (Z|z)p(x)p(c). We define further ¢, (Z|x) = N (&|z, 0>I) the corrupted
data distribution, p(«) the training data distribution, and p(o’) the uniform distribution over a set {c; }
corresponding to different levels of noise. In practice, this set is defined as a geometric progression
between o and o, (with L chosen according to some computational budget):
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Rather than having to learn a different score function for every o;, one can train an unconditional
score network by defining sy (&, 0;) = s¢(&)/0;, and then minimizing Eq. 1. While unconditional
networks are less heavy computationally, it remains an open question whether conditioning helps
performance. Li et al. (2019) and Song and Ermon (2020) found that the unconditional network
produced better samples, while Ho et al. (2020) obtained better results than both of them using a
conditional network. Additionally, the denoising autoencoder described in Lim et al. (2020) gives
evidence supporting the benefits of conditioning when the noise becomes small (also see App. D
and E for a theoretical discussion of the difference). While our experiments are conducted with
unconditional networks, we believe our techniques can be straightforwardly applied to conditional
networks; we leave that extension for future work.



2.2 ANNEALED LANGEVIN SAMPLING

Given a score function, one can use Langevin dynamics (or Langevin sampling) (Welling and Teh,
2011) to sample from the corresponding probability distribution. In practice, the score function is
generally unknown and estimated through a score network trained to minimize Eq. 1. Song and
Ermon (2019) showed that Langevin sampling has trouble exploring the full support of the distribution
when the modes are too far apart and proposed Annealed Langevin Sampling (ALS) as a solution.
ALS starts sampling with a large noise level and progressively anneals it down to a value close to 0,
ensuring both proper mode coverage and convergence to the data distribution. Its precise description
is shown in Algorithm 1.

Algorithm 1 Annealed Langevin Sampling Algorithm 2 Consistent Annealed Sampling

Require: sy, {0;}7 . €, n,. Require: s, {0;}2 |, 7,6,0011 =0
1: Initialize = 1: Initialize x
2
2: fori < 1to L do 235%\/1—(1—6/0%) /7
33 a; < ea?/o? 3: fori < 1to Ldo
4 for n, steps do 4 a; < ea?/o?
5: Draw z ~ N(0,1) 5. Draw z ~ N(0,1)
6: T+ x+ a;sp(x,0;) + 202 6: T+ T+ a;sp(x,0;) + Boi12z
return x return x

2.3 EXPECTED DENOISED SAMPLE (EDS)

A little known fact from Bayesian literature is that one can recover a denoised sample from the score
function using the Empirical Bayes mean (Robbins, 1955; Miyasawa, 1961; Raphan and Simoncelli,
2011):
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where H*(Z,0) £ Eqny, (z|3)[x] is the expected denoised sample given a noisy sample (or Empirical
Bayes mean), conditioned on the noise level. A different way of reaching the same result is through
the closed-form of the optimal score function, as presented in Appendix D. The corresponding result
for unconditional score function is presented in Appendix E for completeness.

The EDS corresponds to the expected real image given a corrupted image; it can be thought of as
what the score network believes to be the true image concealed within the noisy input. It has also
been suggested that denoising the samples (i.e., taking the EDS) at the end of the Langevin sampling
improves their quality (Saremi and Hyvarinen, 2019; Li et al., 2019; Kadkhodaie and Simoncelli,
2020). In Section 4, we provide further evidence that denoising the final Langevin sample brings it
closer to the assumed data manifold. In particular, we show that the Fréchet Inception Distance (FID)
consistently decreases (improves) after denoising. Finally, in Section 5, we build a hybrid training
objective using the properties of the EDS discussed above.

There are interesting links to be made between ALS and the RED algorithm (Romano et al., 2017;
Reehorst and Schniter, 2018). The RED algorithm attempts to find the maximum a posteriori
probability (MAP) denoised sample (i.e., the most plausible real data) given a noisy sample. It does
so by solving an optimization problem to obtain a sample close to the noisy sample for which the
EDS is a fixed point (denoising the sample does not change it because it is a real sample). Thus, just
like ALS, the RED algorithm generates plausible real data given a score network. However, this
algorithm does not ensure that we sample from the distribution and obtain full mode coverage. Thus,
ALS’s key benefit is ensuring that we sample from the full support of the distribution.

3 CONSISTENT SCALING OF THE NOISE

In this section, we present inconsistencies in ALS relating to the noise scaling and introduce Consistent
Annealed Sampling (CAS) as an alternative.



3.1 INCONSISTENCIES IN ALS

One can think of the ALS algorithm as a sequential series of Langevin Dynamics (inner loop in
Algorithm 1) for decreasing levels of noise (outer loop). If allowed an infinite number of steps n,,
the sampling process will properly produce samples from the data distribution.

In ALS, the score network is conditioned on geometrically decreasing noise (o;). In the unconditional
case, this corresponds to dividing the score network by the noise level (i.e., sg(&, 0;) = so(&)/0:).
Thus, in both conditional and unconditional cases, we make the assumption that the noise of the
sample at step i will be of variance o7, an assumption upon which the quality of the estimation of
the score depends. While choosing a geometric progression of noise levels seems like a reasonable
(though arbitrary) schedule to follow, we show that ALS does not ensure such schedule.

Assume we have the true score function s* and begin sampling using a real image with some added
zero-centered Gaussian noise of standard deviation oy = 50. In Figure 1a, we illustrate how the
intensity of the noise in the sample evolves through ALS and CAS, our proposed sampling, for a
given sampling step size € and a geometric schedule in this idealized scenario. We note that, although
a large n, approaches the real geometric curve, it will only reach it at the limit (n, — oo and € — 0).
Most importantly, Figure 1b highlights how even when the annealing process does converge, the
progression of the noise is never truly geometric; we prove this formally in Proposition 1.
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Figure 1: Standard deviation during idealized sampling using a perfect score function s*. The black
curve in (a) corresponds to the true geometric progression, as demonstrated in Proposition 2.

Proposition 1. Let s* be the optimal score function from Eq. 3. Following the sampling described
in Algorithm 1, the variance of the noise component in the sample  will remain greater than o? at
every step t.

The proof is presented in Appendix F. In particular, for n, < oo, sampling has not fully converged
and the remaining noise is carried over to the next iteration of Langevin Sampling. It also follows
that for any sy different from the optimal s*, the actual noise at every iteration is expected to be even
higher than for the best possible score function s*.

3.2 ALGORITHM

We propose Consistent Annealed Sampling (CAS) as a sampling method that ensures the noise level
will follow a prescribed schedule for any sampling step size € and number of steps L. Algorithm 2
illustrates the process for a geometric schedule. Note that for a different schedule, 5 will instead
depend on the step ¢, as in the general case, ; is defined as o411 /0.

Proposition 2. Let s* be the optimal score function from Eq. 3. Following the sampling described in
Algorithm 2, the variance of the noise component in the sample x will consistently be equal to o? at
every step t.

The proof is presented in Appendix G. Importantly, Proposition 2 holds no matter how many steps
L we take to decrease the noise geometrically. For ALS, n, corresponds to the number of steps



per level of noise. It plays a similar role in CAS: we simply dilate the geometric series of noise
levels used during training by a factor of n, such that Lempiing = (Liraining — 1)7¢ + 1. Note that
the proposition only holds when the initial sample is a corrupted image (i.e., To = Z + 09=20)-
However, by defining o as the maximum Euclidean distance between all pairs of training data points
(Song and Ermon, 2020), the noise becomes in practice much greater than the true image; sampling
with pure noise initialization (i.e., xy = 0oz) becomes indistinguishable from sampling with data
initialization.

4 BENEFITS OF THE EDS ON SYNTHETIC DATA AND IMAGE GENERATION

As previously mentioned, it has been suggested that one can obtain better samples (closer to the
assumed data manifold) by taking the EDS of the last Langevin sample. We provide further evidence
of this with synthetic data and standard image datasets.

It can first be observed that the sampling steps correspond to an interpolation between the previous
point and the EDS, followed by the addition of noise.

Proposition 3. Given a noise-conditional score function, the update rules from Algorithm I and
Algorithm 2 are respectively equivalent to the following update rules:
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The demonstration is in Appendix H. This result is equally true for an unconditional score network,
with the distinction that  would no longer be independent of ¢; but rather linearly proportional to it.

Intuitively, this implies that the sampling steps slowly move the current sample towards a moving
target (the EDS). If the sampling behaves appropriately, we expect the final sample x to be very close
to the EDS, i.e., « ~ H(x, o). However, if the sampling step size is inappropriate, or if the EDS
does not stabilize to a fixed point near the end of the sampling, these two quantities may be arbitrarily
far from one another. As we will show, the FIDs from Song and Ermon (2020) suffer from such
distance.

From Proposition 3, we see that CAS shares some similarities with the algorithm by Kadkhodaie
and Simoncelli (2020). While the weight we give to the denoiser (1) decreases geometrically (by its
linearity in o), their schedule appears to be much steeper. They also estimate the residual noise in
their samples by the /5 norm instead of determining it through a schedule, as CAS strives to do. As a
note, we had found weak evidence during development that estimating the residual noise worsened
the FID.

The equivalence showed in Proposition 3 suggests instead to take the expected denoised sample at
the end of the Langevin sampling as the final sample; this would be equivalent to the update rule
x < H(xz,oy) at the last step. Synthetic 2D examples shown in Figure 2 demonstrate the immediate
benefits of this technique.

Final samples Denoised samples Final samples Denoised samples
.J* ‘,‘é
e oy N PEE 0 gre e e w
L) 1
"N A% e
2 g ? § & > ¢ o o
3 $ L I
1‘. [ & Y Ll TR B b ¢ ¢ @
» ) 4
‘&}‘j‘. '~u.."-' ¢ 3 y e« ¢ o i &
(a) Swiss Roll dataset (b) 25 Gaussians dataset

Figure 2: Langevin sampling on synthetic 2D experiments. Circles are real data points, crosses are
generated data points. On both datasets, taking the EDS brings the samples much closer to the real
data manifold.
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Figure 3: Partial estimate of FID (lower is better) as a function of the sampling step size on CIFAR-10,
with n, = 1. The interactions between consistent sampling and denoising are shown.

We train a score network on CIFAR-10 (Krizhevsky et al., 2009) and report the FID from both ALS
and CAS as a function of the sampling step size and of denoising in Figure 3. The first observation
to be made is just how critical denoising is to the FID score for ALS, even as its effect cannot be
perceived by the human eye. For CAS, we note that the score remains small for a much wider range
of sampling step sizes when denoising. Alternatively, the sampling step size must be very carefully
tuned to obtain results close to the optimal.

Figure 3 also shows that, with CAS, the FID of the final sample is approximately equal to the FID
of the denoised samples for small sampling step sizes. Furthermore, we see a smaller gap in FID
between denoised and non-denoised for larger sampling step sizes than ALS. This suggests that
consistent sampling is resulting in the final sample being closer to the assumed data manifold (i.e.,
x~ Hy(x,0L)).

Interestingly, when Song and Ermon (2020) improved their score matching method, they could not
explain why the FID of their new model did not improve even though the generated images looked
better visually. To resolve that matter, they proposed the use of a new metric (Zhou et al., 2019) that
did not have this issue. As shown in Figure 3, denoising resolves this mismatch.

5 ADVERSARIAL FORMULATION

The score network is trained to recover an uncorrupted image from a noisy input minimizing the [,
distance between the two. However, it is well known from the image restoration literature that /5 does
not correlate well with human perception of image quality (Zhang et al., 2012; Zhao et al., 2016).
One way to take advantage of the EDS would be to encourage the score network to produce an EDS
that is more realistic from the perspective of a discriminator. Intuitively, this would incentivize the
score network to produce more discernible features at inference time.

We propose to do so by training the score network to simultaneously minimize the score-matching loss
function and maximize the probability of denoised samples being perceived as real by a discriminator.
We use alternating gradient descent to sequentially train a discriminator for a determined number of
steps at every score function update.

In our experiments, we selected the Least Squares GAN (LSGAN) (Mao et al., 2017) formulation as
it performed best (see Appendix B for details). For an unconditional score network, the objective
functions are as follows:
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where Hy(Z,0) = s¢(&,0)o? + & is the EDS derived from the score network. Eq. 4 is the objective
function of the LSGAN discriminator, while Eq. 5 is the adversarial objective function of the score
network derived from Eq. | and from the LSGAN objective function.

We note the similarities between these objective functions and those of an LSGAN adversarial
autoencoder (Makhzani et al., 2015; Tolstikhin et al., 2017; Tran et al., 2018), with the distinction
of using a denoising autoencoder H as opposed to a standard autoencoder. We can highlight this
difference by reformulating Eq. 5 as:

. - A -
min By 2 0) (Do(Ho(®,0)) = 1)* + 55 || Ho (%, ) — z(5|, (6)

As GANSs favor quality over diversity, there is a concern that this hybrid objective function might
decrease the diversity of samples produced by the ALS. In Section 6.1, we first study image generation
improvements brought by this method and then address the diversity concerns with experiments on
the 3-StackedMNIST (Metz et al., 2016) dataset in Section 6.2.

6 EXPERIMENTS

6.1 ABLATION STUDY

We ran experiments on CIFAR-10 (Krizhevsky et al., 2009) and LSUN-churches (Yu et al., 2015) with
the score network architecture used by Song and Ermon (2020). We also ran similar experiments with
an unconditional version of the network architecture by Ho et al. (2020), given that their approach
is similar to Song and Ermon (2019) and they obtain very small FIDs. For the hybrid adversarial
score matching approach, we used an unconditional BigGAN discriminator (Brock et al., 2018). We
compared three factors in an ablation study: adversarial training, Consistent Annealed Sampling and
denoising.

Details on how the experiments were conducted are found in Appendix B. Unsuccessful experiments
with large images are also discussed in Appendix C. See also Appendix I for a discussion pertaining
to the use of the Inception Score (Heusel et al., 2017), a popular metric for generative models.

Results for CIFAR-10 and LSUN-churches with Song and Ermon (2019) score network architecture
are respectively shown in Table 1 and 2. Results for CIFAR-10 with Ho et al. (2020) score network
architecture are shown in Table 3.

Table 1: [Non-denoised / Denoised FID] from 10k samples on CIFAR-10 (32x32) with Song and
Ermon (2019) score network architecture

Sampling Non-adversarial ~ Adversarial
non-consistent (n, = 1) 36.3/13.3 30.0/11.8
non-consistent (n, = 5) 33.7/10.9 26.4/9.5

consistent (n, = 1) 14.7/12.3 11.9/10.8
consistent (n, = 5) 12.7/11.2 9.9/9.7

Table 2: [Non-denoised / Denoised FID] from 10k samples on LSUN-Churches (64x64) with Song
and Ermon (2019) score network architecture

Sampling Non-adversarial ~Adversarial

non-consistent (n, = 1) 432/40.3 40.9/36.7
non-consistent (n, = 5) 42.0/39.2 40.0/35.8

consistent (n, = 1) 41.5/40.7 38.2/36.7
consistent (n, = 5) 39.5/39.1 36.3/354

We always observe an improvement in FID from denoising and by increasing n, from 1 to 5. We
observe an improvement from using the adversarial approach with Song and Ermon (2019) network



Table 3: [Non-denoised / Denoised FID] from 10k samples on CIFAR-10 (32x32) with Ho et al.
(2020) unconditional score network architecture

Sampling Non-adversarial ~ Adversarial
non-consistent (n, = 1) 253/175 21.6/17.5
non-consistent (n, = 5) 20.0/5.6 17.7/6.1

consistent (n, = 1) 7.8/7.1 7.717.1
consistent (n, = 5) 6.2/6.1 6.1/6.5

architecture, but not on denoised samples with the Ho et al. (2020) network architecture. We
hypothesize that this is a limitation of the architecture of the discriminator since, as far as we know, no
variant of BigGAN achieves an FID smaller than 6. Nevertheless, it remains advantageous for more
simple architectures, as shown in Table 1 and 2. We observe that consistent sampling outperforms
non-consistent sampling on the CIFAR-10 task at n, = 1, the quickest way to sample.

We calculated the FID of the non-consistent denoised models from 50k samples in order to compare
our method with the recent work from Ho et al. (2020). We obtained a score of 3.65 for the non-
adversarial method and 4.02 for the adversarial method on the CIFAR-10 task when sharing their
architecture; these scores are close to their reported 3.17. Although not explicit in their approach, Ho
et al. (2020) denoised their final sample. This suggests that taking the EDS and using an architecture
akin to theirs were the two main reasons for outperforming Song and Ermon (2020). Of note, our
method only trains the score network for 300k iterations, while Ho et al. (2020) trained their networks
for more than 1 million iterations to achieve similar results.

6.2 NON-ADVERSARIAL AND ADVERSARIAL SCORE NETWORKS HAVE EQUALLY HIGH
DIVERSITY

To assess the diversity of generated samples, we evaluate our models on the 3-Stacked MNIST
generation task (Metz et al., 2016) (128k images of 28x28), consisting of numbers from the MNIST
dataset (LeCun et al., 1998) superimposed on 3 different channels. We trained non-adversarial and
adversarial score networks in the same way as the other models. The results are shown in Table 4.

We see that each of the 1000 modes is covered, though the KL divergence is still inferior to PACGAN
(Lin et al., 2018), meaning that the mode proportions are not perfectly uniform. Blindness to mode
proportions is thought to be a fundamental limitation of score-based methods (Wenliang, 2020).
Nevertheless, these results confirm a full mode coverage on a task where most GANs struggle and,
most importantly, that using a hybrid objective does not hurt the diversity of the generated samples.

3-Stacked MNIST

Modes (Max 1000) KL

DCGAN (Radford et al., 2015b) 99.0  3.40
ALI (Dumoulin et al., 2016) 16.0 5.40
Unrolled GAN (Metz et al., 2016) 48.7 4.32
VEEGAN (Srivastava et al., 2017) 150.0 2.95
PacDCGAN2 (Lin et al., 2017b) 1000.0  0.06
WGAN-GP (Kumar et al., 2019; Gulrajani et al., 2017) 959.0 0.73
PresGAN (Dieng et al., 2019) 999.6 0.115
MEG (Kumar et al., 2019) 1000.0 0.03
Non-adversarial DSM (ours) 1000.0 1.36
Adversarial DSM (ours) 1000.0 1.49

Table 4: As in Lin et al. (2018), we generated 26k samples and evaluated the mode coverage and KL
divergence based on the predicted modes from a pre-trained MNIST classifier.



7 CONCLUSION

We proposed Consistent Annealed Sampling as an alternative to Annealed Langevin Sampling,
which ensures the expected geometric progression of the noise and brings the final samples closer
to the data manifold. We showed how to extract the expected denoised sample and how to use it
to further improve the final Langevin samples. We proposed a hybrid approach between GAN and
score matching. With experiments on synthetic and standard image datasets; we showed that these
approaches generally improved the quality/diversity of the generated samples.

We found equal diversity (coverage of all 1000 modes) for the adversarial and non-adversarial variant
of the difficult StackedMNIST problem. Since we also observed better performance (from lower
FIDs) in our other adversarial models trained on images, we conclude that making score matching
adversarial increases the quality of the samples without decreasing diversity. These findings imply that
score matching performs better than most GANs and on-par with state-of-the-art GANs. Furthermore,
our results suggest that hybrid methods, combining multiple generative techniques together, are a
very promising direction to pursue.

As future work, these models should be scaled to larger batch sizes on high-resolution images, since
GANSs have been shown to produce outstanding high-resolution images at very large batch sizes
(2048 or more). We also plan to further study the theoretical properties of CAS by considering its
corresponding stochastic differential equation.

REFERENCES

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, pages 11918-11930, 2019.

Aapo Hyvirinen. Estimation of non-normalized statistical models by score matching. Journal of
Machine Learning Research, 6(Apr):695-709, 2005.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661-1674, 2011.

Martin Raphan and Eero P Simoncelli. Least squares estimation without priors or supervision. Neural
computation, 23(2):374-420, 2011.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pages 681-688,
2011.

Gareth O Roberts, Richard L Tweedie, et al. Exponential convergence of langevin distributions and
their discrete approximations. Bernoulli, 2(4):341-363, 1996.

Zahra Kadkhodaie and Eero P Simoncelli. Solving linear inverse problems using the prior implicit in
a denoiser. arXiv preprint arXiv:2007.13640, 2020.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models.
arXiv preprint arXiv:2006.09011, 2020.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. In Advances in Neural
Information Processing Systems, pages 6626—6637, 2017.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 27, pages 2672-2680. Curran Associates, Inc.,2014. URL http://papers.
nips.cc/paper/5423-generative-adversarial-nets.pdf.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.


http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

	Introduction
	Background
	Denoising Score Matching
	Annealed Langevin Sampling
	Expected denoised sample (EDS)

	Consistent scaling of the noise
	Inconsistencies in ALS
	Algorithm

	Benefits of the EDS on synthetic data and image generation 
	Adversarial formulation
	Experiments
	Ablation Study
	Non-adversarial and Adversarial score networks have equally high diversity

	Conclusion

