
Journal of Data-centric Machine Learning Research (2024) Submitted 2/24; Revised 4/24; Published 5/24

Autoregressive activity prediction for low-data drug
discovery

Johannes Schimunek1, Lukas Friedrich2, Daniel Kuhn2, and Günter Klambauer1

schimunek@ml.jku.at
1 ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning, Johannes Kepler University

Linz, Austria
2 Merck Healthcare KGaA, Medicinal Chemistry and Drug Design, 64293 Darmstadt, Germany

Reviewed on OpenReview: https: // openreview. net/ forum? id= eLg88qUVFT

Abstract

Autoregressive modeling is the main learning paradigm behind the currently so success-
ful large language models (LLM). For sequential tasks, such as generating natural lan-
guage, autoregressive modeling is a natural choice: the sequence is generated by con-
tinuously appending the next sequence token. In this work, we investigate whether the
autoregressive modeling paradigm could also be successfully used for molecular activity
and property prediction models, which are equivalent to LLMs in molecular sciences.
To this end, we formulate autoregressive activity prediction modeling (AR-APM), draw
relations to transductive and active learning, and assess the predictive quality of AR-
APM models in few-shot learning scenarios. Our experiments show that using an ex-
isting few-shot learning system without any other changes, except switching to autore-
gressive mode for inference, improves ∆AUC-PR up to ∼40%. Code is available here:
https://github.com/ml-jku/autoregressive_activity_prediction.
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1 Introduction

Autoregressive modeling and large language models. Autoregressive modeling
(Yule, 1927; Whittle, 1951; Box et al., 2015; Radford et al., 2018) is a fundamental ap-
proach within the domain of sequence and generative modeling, exemplified prominently
by the recent success of large language models (LLMs) (Vaswani et al., 2017; Brown et al.,
2020b). LLMs have shown remarkable capabilities at text generation, translation, text sum-
marization, and as conversational agents (Zhao et al., 2023). These LLMs are deep neural
networks, usually based on the Transformer architecture (Vaswani et al., 2017), and are
trained to solve autoregressive tasks, concretely predicting the correct next tokens given a
sequence of previous tokens. Overall, autoregressive modeling has emerged as a cornerstone
technique for natural language processing and other areas. However, in other areas, such as
the molecular sciences, where the data is not naturally sequential, it is still unclear whether
the success of autoregressive modeling can be carried over and how these areas will be im-
pacted. In this work, we investigate whether molecular activity and property prediction
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Figure 1: Overview of autoregressive activity prediction (AAP) models. Left column:
Initially, only 1 active and 1 inactive molecules are known. Based on these two
molecules, an embedding-based few-shot learning model predicts the labels of the
query set. Second column: The top predictions of the query set are added to
the support set. Again, the few-shot model predicts the labels of the query set.
Thus, the model is conditioned on its own prediction from the step before.

models (Mayr et al., 2018; Yang et al., 2019; Deng et al., 2023), which are the equivalent of
language models for molecular sciences, can be improved with the autoregressive modeling
paradigm. Concretely, we will propose autoregressive modeling of few-shot learning data in
drug discovery.

Low-data drug discovery, few- and zero-shot learning on molecules. Molecular
activity and property prediction models play a crucial role in numerous drug discovery
projects (Green, 2019; Brown et al., 2020a; Tyrchan et al., 2022; Volkamer et al., 2023).
Since seeking suitable drug candidates often faces the low-data obstacle, Deep Learning
methods have been designed for, applied to, and evaluated for these low-data scenarios
(Stanley et al., 2021; The COVID Moonshot Consortium et al.; Schimunek et al., 2024).
While already optimized for these low-data scenarios, recently used few-shot models (Altae-
Tran et al., 2017; Guo et al., 2021; Wang et al., 2021; Schimunek et al., 2023; Chen et al.,
2022) stick to the initially available measurements provided as a support set.

Contributions. In contrast to the existing few-shot learning modeling, we suggest an
autoregressive inference scheme for few-shot drug-discovery models which enables support
set augmentation in an iterative fashion by including new pseudo-labeled samples to the
support set. We show that this autoregressive inference scheme applied to the SOTA few-
shot model MHNfs boosts the model performance in terms of AUC and ∆AUC-PR for very
low-data scenarios, i.e. scenarios in which just one active and one inactive molecule is known.
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2 Background and related work

Few-shot learning refers to methods that are geared to learning accurate predictive models
with in scenarios T∗ where only little data is available. Usually, a few-shot model g(·;w) with
learnable parameters w is provided with a set of training tasks Dtrain = {Tt}Tt=1 during train-
ing, and, during test/inference time, a set of unseen tasks Deval = {T∗}: Deval ∩Dtrain = ∅.
Each task T comprises a set of data points, i.e. pairs of molecular inputs x and associated
labels y: T = {(x1, y1) , . . . , (xK , yK)}. The labels are assumed to be either binary or un-
known: y ∈ {0, 1,□}, where □ indicates the unknown class. For test/inference tasks T∗ ,
typically the amount of labeled data S ⊂ T∗ is assumed to be limited which could be used
to tune model parameters and help to predict molecules {q1, . . . , qL} from the query set
Q ⊂ T∗ , Q ∩ S = ∅. S is called the support set. Notably, molecules assigned to the label
0 (1) are considered active (inactive).

Inductive inference. In standard few-shot drug-discovery settings, e.g., as provided in the
FS-Mol benchmark (Stanley et al., 2021), query molecules {q1, . . . , qL} usually are treated
independently. This is called inductive inference:

ŷl = g (ql;A(w,S,Dtrain)) ∀ 1 ⩽ l ⩽ L, (1)

where A is a possibly complex learning algorithm which maps the parameters, the training
data and the support set onto new parameters.

Semi-supervised learning and transductive inference. Semi-supervised learning
methods extend the support set S = {(x1, y1) , . . . , (xN , yN )} with unlabeled data
U = {(xN+1,□) , . . . , (xN+M ,□)}, which frames few-shot learning as the task of learning
from labeled and unlabeled data:

ŷl = g (ql;A(w,S ∪ U ,Dtrain)) ∀ 1 ⩽ l ⩽ L. (2)

In transductive inference the samples included in this additional unlabeled data set U are
the query molecules {q1, . . . , qL}.

Pseudo labeling and label propagation. Recent methods (Iscen et al., 2019; Liu et al.,
2018; Lazarou et al., 2021; Zhu and Koniusz, 2023) leverage this unlabeled dataset U by
augmenting the support set (iteratively) with pseudo-labeled samples given in U . Label
propagation (Zhu and Ghahramani, 2002; Zhou et al., 2003; Liu et al., 2018) is the pro-
cess of creating pseudo-labels for unlabeled samples by propagating given label information
through an nearest-neighbor based graph which includes both labeled and unlabeled sam-
ples.

Feature space adaption and embedding propagation. Rodŕıguez et al. (2020) propose
embedding propagation, which is an unsupervised non-parametric regularizer for manifold
smoothing in few-shot classification. Embedding propagation leverages interpolations be-
tween the extracted features of a neural network based on a similarity graph. Similarly, Hu
et al. (2021a) use feature interpolations based on a similarity graph in few-shot settings. Hu
et al. (2021b) introduce class-wise feature preprocessing and feature distribution leveraging
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Figure 2: Results of autoregressive inference experiment. The model performance for au-
toregressive inference mode (yellow) and naive baseline (blue) are shown across
inference iterations. The shaded area indicates the standard deviation across ex-
periment reruns.

in few-shot learning.

Few-shot drug discovery. Different types of few-shot approaches have been suggested to
few-shot learning in drug-discovery. Some of them build up on meta-learning frameworks
(Finn et al., 2017) and use the support set to adapt to the new task within a few up-
date steps (Guo et al., 2021; Wang et al., 2021; Chen et al., 2022). Other models, known as
embedding-based methods, compute similarities between query and support set samples and
eventually build predictions from a weighted sum over the support set labels (Altae-Tran
et al., 2017; Schimunek et al., 2023). Since for embedding-based methods no re-training
or fine-tuning (in the sense of a backward pass to adjust parameters) is necessary, these
methods are intuitively well suited for an iterative autoregressive inference procedure.

3 Autoregressive activity prediction

We employ autoregressive inference as a strategy to surmount the challenge of the pro-
nounced scarcity of available data. In autoregressive inference mode, a given few-shot
model iteratively augments the support set with additional pseudo-labeled samples. For-
mally, given a set of unlabeled data U = {(u1,□) , . . . , (uM ,□)} and a selection policy π,
which selects samples to be added to the support set based on the model predictions:

π
(
{(u1, ŷ1), . . . , (uM , ŷM )}

)
= (ui, ŷi),
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Table 1: Autoregressive inference results on FS-Mol. The first column gives the inference
mode, either inductive (”Ind.”) or autoregressive (”AR-”) of the APM. The
backbone of the APM is given in column two. The columns ”n+/n−” show
the model performance with n active pseudo-labeled and n inactive pseudo-
labeled samples added to the support set. Error bars represent the standard
deviation across ten experiment reruns. The metrics are averaged across tasks.

Inf. Mode Backbone ∆AUC-PR AUC
1+/1− 2+/2− 8+/8− 1+/1− 2+/2− 8+/8−

Ind. APM MHNfs .138±.010 .138±.010 .138±.010 .623±.010 .623±.010 .623±.010

AR-APM MHNfs .156±.009 .177±.008 .189±.006 .646±.009 .657±.008 .679±.007

Performance Gain .019±.003 .028±.004 .051±.008 .020±.003 .030±.005 .053±.007

the autoregressive inference procedure is performed in iterations to augment the support
set and eventually improve the model performance:

(u1, ŷ1) = π
({

(u, ŷ) | ŷ = g
(
U1;S

)
,u ∈ U1

})
(u2, ŷ2) = π

({
(u, ŷ) | ŷ = g

(
U2;S ∪ {(u1, ŷ1)}

)
,u ∈ U2

})
. . .

(un, ŷn) = π
({

(u, ŷ) | ŷ = g
(
Un−1;S ∪ {(ui, ŷi)}n−1

i=1

)
,u ∈ Un−1

})
,

where Ui = (ui,ui+1, . . .uM ). Here, we used g(·;S) as a shorthand for
g (·;A(w,S ∪ U ,Dtrain)). Also, for simplicity, we assumed the selection policy selects the
unlabeled elements sequentially. Note that active learning is similar, but instead of adding
the datapoint with the pseudo-label (ui, ŷi), the datapoint with the correct label (ui, yi) is
added to the training or support set.

We choose MHNfs (Schimunek et al., 2023) as the backbone few-shot model since a) MH-
Nfs has already proven to be SOTA on the FS-Mol benchmark experiment, b) MHNfs is an
embedding-based method and thus does not require any backward passes to adapt to chang-
ing support sets, and c) already includes the idea of feature manifold smoothing (Rodŕıguez
et al., 2020; Hu et al., 2021a). As a selection policy, we choose the candidate with the highest
(lowest) few-shot model prediction to be added to the support for the active (inactive) class.

4 Experiments

Data. Recently Stanley et al. (2021) proposed the FS-Mol dataset to benchmark few-shot
models. Extracted from ChEMBL27 (Mendez et al., 2019), it consists 5,125 separate as-
says, 233,786 compounds and 489,133 measurements. The tasks are well-balanced by design
which means that the mean ratio of active and inactive molecules per task is 1. The authors
provide a training (4,938 tasks), validation (40 tasks), and test split (157 tasks), whereas
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Figure 3: Results of autoregressive inference experiment. Left: The model performance
within the autoregressive inference loop (mean over experiment reruns) is shown.
The shaded area reports the standard deviation across tasks. Right: For the back-
bone few-shot model, task-wise the performance value evaluated on the FS-Mol
benchmark experiment (Schimunek et al., 2023) is associated with the perfor-
mance gain in the autoregressive inference procedure.

training, validation, and test tasks build disjoint sets (Stanley et al., 2021). We use the FS-
Mol test set data for benchmarking performance gains of autoregressive activity prediction.

Methods compared. We compare MHNfs run in autoregressive inference mode
”AR-APM (MHNfs)” with a naive baseline ”Inductive APM (MHNfs)”. The naive baseline
is the MHNfs model which predicts the evaluation set only once just being aware of the
initial support set, consisting of one active and one inactive sample. Notably, the naive
baseline is the model proposed by Schimunek et al. (2023). Therefore, it already was com-
pared to other competitors in the FS-Mol benchmark experiment.

We run experiments in two slightly different experimental setups, which are a) semi-supervised
learning with fixed evaluation set, and b) a transductive learning setting (see Appendix A.3).

Semi-supervised learning setting with fixed evaluation set

This experiment evaluates whether the predictive power of the few-shot classifier increases
in autoregressive inference mode. For undistorted performance evaluation we fix the eval-
uation set which means that samples for performance evaluation and potential support set
candidates come from different sets. The evaluation set samples are predicted in inductive
inference mode, support set candidates are processed in transductive inference mode.
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Experimental setup. For each FS-Mol test task, the available data points are split into
three sets a) an initial support set, b) a candidate set, and c) an evaluation set. The initial
support set consists of 1 active and 1 inactive molecule. It functions as the initial, first
support set the model is provided with during the autoregressive inference procedure. The
candidate set consists of 32 active, and 32 inactive data points. Candidate set samples
are processed in transductive inference mode which means that for all available candidates
activity is predicted jointly and eventually a selection policy π decides for the candidates to
augment the support set with. The evaluation set includes all other datapoints the FS-Mol
test task provides. It is fixed in terms of it does not change during the autoregressive infer-
ence iterations. Evaluation set samples are treated independently which means the few-shot
model runs in inductive inference mode for these samples. All available datapoints for a
task are distributed randomly. For experiment reruns the samples for initial support set
and candidate set are drawn with different seeds, the evaluation set is not changed.

Results. The results in terms of ∆AUC-PR and AUC are presented in Table 1 and Figure
2. The standard deviation is reported across ten experiment reruns, i.e. the comparison
of autoregressive inference with naive baseline. In the table, the support set augmenta-
tion realized with the autoregressive inference procedure causes performance gains up to
0.051 ± 0.008 for the ∆AUC-PR and 0.053 ± 0.007 for the AUC metric. This means the
model performance increases from 0.138 ± 0.010 to 0.189 ± 0.006 for the ∆AUC-PR and
from 0.623 ± 0.010 to 0.679 ± 0.007 for the AUC metric without neither having changed
any model parameter nor having included any new measurements. Despite this generally
found performance boost, Figure 3 shows that, in fact, performance gains are highly task
dependent and vary a lot. While some correlation between model performance on a specific
task and potential gains using the autoregressive inference scheme seems present, detailed
analysis is up to future work. Notably, the FS-Mol main benchmark experiment was per-
formed with support set size 16, while the size of the initial support set for this experiment
is 2.

5 Discussion

Our work has introduced the idea of autoregressive activity prediction modeling, while con-
necting it to the fields of active learning and transductive learning. Our experiments showed
that applying this autoregressive inference mode to MHNfs improved both the AUC and
the ∆AUC-PR metric. Generalization to another embedding-based few-shot method failed
and requires further exploration A.2. Another evaluation in relation to the selection policy
A.1 shows that even randomly selecting candidates for the support set helps to improve the
model performance. Still, AR-APM (MHNfs), i.e. MHNfs in autoregressive inference mode
with suggested selection policy, excels.
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Broader Impact Statement

Impact on machine learning and related scientific fields. We believe that with the increas-
ing availability of drug discovery and further improved biotechnologies, the drug discovery
process will be made more efficient. Our approach might bridge the gap for scenarios in
which data is very scarse.
Impact on society. Should this method prove effective, it could contribute to a faster and
more cost-efficient drug discovery process. The COVID-19 pandemic underscored the im-
portance of accelerating the drug discovery timeline to few years or even months. We hope
that this work contributes to this effort and eventually leads to safer drugs developed faster.
Consequences of failures of the method. As is usually the case with machine learning tech-
niques, there is a risk that users rely to much on our new approach without reflecting on the
outcomes. Human beings would not directly be affected by failure modes since wrong model
predictions would rather lead to failed wet-lab and in-vitro experiments than to harmful
therapies.
Leveraging of biases in the data and potential discrimination. As for almost all machine
learning methods, confounding factors, lab or batch effects, could be used for classification.
This might lead to biases in predictions or uneven predictive performance across different
drug targets or bioassays.
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Wenlin Chen, Austin Tripp, and José Miguel Hernández-Lobato. Meta-learning adaptive
deep kernel gaussian processes for molecular property prediction. In The Eleventh Inter-
national Conference on Learning Representations, 2022.

Florin Cuconasu, Giovanni Trappolini, Federico Siciliano, Simone Filice, Cesare Campag-
nano, Yoelle Maarek, Nicola Tonellotto, and Fabrizio Silvestri. The power of noise:
Redefining retrieval for rag systems. arXiv preprint arXiv:2401.14887, 2024.

Jianyuan Deng, Zhibo Yang, Hehe Wang, Iwao Ojima, Dimitris Samaras, and Fusheng
Wang. A systematic study of key elements underlying molecular property prediction.
Nature Communications, 14(1):6395, 2023.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International conference on machine learning, pages
1126–1135. PMLR, 2017.

Darren VS Green. Using machine learning to inform decisions in drug discovery: an industry
perspective. In Machine learning in chemistry: data-driven algorithms, learning systems,
and predictions, pages 81–101. ACS Publications, 2019.

Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang, and Nitesh V
Chawla. Few-shot graph learning for molecular property prediction. In Proceedings of
the web conference 2021, pages 2559–2567, 2021.
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Appendix A.

A.1 Details on semi-supervised learning experiment with fixed evaluation set

Random sampling baseline for the semi-supervised learning setting

As a additional baseline we define a ”random selection policy” which ignores the MHNfs
predictions. In every iteration, randomly one candidate is chosen to be added to the support
set with an active pseudo label and one candidate is chosen to be added with an inactive
pseudo label neglecting both the true labels and the few-shot model predictions. Since the
candidate set is balanced, this leads to adding candidates with wrong pseudo-label in 50 %
of the cases.

Figure A1 shows that running MHNfs in autoregressive inference mode with this random
selection policy already improves the model performance in comparison to the naive base-
line. We speculate this is due to three reasons a) the data points the experiment is based
on were curated by chemists and therefore already include some sort of inductive bias, b)
MHNfs, which originally was trained to behalf well for support set sizes around 16, might
generally perform better for larger support set sizes, and c) adding noisy data could even
help, similar to retrieval-augmented generation systems for which including irrelevant doc-
uments can unexpectedly enhance performance (Cuconasu et al., 2024).
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Figure A1: Results of the autoregressive inference experiment with the ”random selection
policy”. The model performance for autoregressive inference mode (yellow)
and naive baseline (blue) are shown across inference iterations. The shaded
area indicates the standard deviation across experiment reruns.
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Table A2: Extended autoregressive inference results on FS-Mol. The columns ”n+/n−”
show the model performance with n active pseudo-labeled and n inactive
pseudo-labeled samples added to the support set. Error bars represent the
standard deviation across ten experiment reruns. The metrics are averaged
across tasks.

Inf. Mode Backbone ∆AUC-PR AUC
1+/1− 2+/2− 8+/8− 1+/1− 2+/2− 8+/8−

Ind. APM ProtoNet .138±.008 .138±.008 .138±.008 .617±.011 .617±.011 .617±.011

Ind. APM MHNfs .138±.010 .138±.010 .138±.010 .623±.010 .623±.010 .623±.010

AR-APM ProtoNet .138±.010 .138±.011 .135±.013 .614±.011 .615±.014 .609±.016

AR-APM MHNfs .156±.009 .177±.008 .189±.006 .646±.009 .657±.008 .679±.007

AR-APM MHNfs .143±.038 .144±.035 .146±.047 .633±.042 .633±.040 .636±.052

(random π)

A.2 Generalization to different backbone few-shot model

For this evaluation, we replace the MHNfs backbone model with a Prototypical-Network
based few-shot model (Snell et al., 2017). As a similarity measure dot-product distance is
used. The model was trained on the FS-Mol training set. Table A1 reports the performance
on the FS-Mol main benchmark experiment.

Table A1: Model performance comparison on the FS-Mol benchmark
experiment. Standard deviation is reported across tasks.

Model ∆AUC-PR AUC

Prototypical Networks 0.218 ± 0.135 0.719 ± 0.131
MHNfs 0.241 ± 0.119 0.739 ± 0.114

Surprisingly, this ProtoNet implementation in autoregressive mode performs worse than its
naive baseline (see Figure A2, and A2), which needs further exploration.
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Figure A2: Prototypical Network results of the autoregressive inference experiment. The
model performance for autoregressive inference mode (yellow) and naive baseline
(blue) are shown across inference iterations. The shaded area indicates the
standard deviation across experiment reruns.

A.3 Transductive learning experiment

This setting mimics virtual screenings in which pseudo labels for some of the queried
molecules might boost the prediction for others.

Experimental setup. For each FS-Mol test task, the available data points are split into
two sets which are an initial support set (analogous to 4) and a query set. The query set
takes over both the role of the candidate set and the evaluation set. Notably this setting
might be closer to real-world applications but reported performance values are based on
test sets in which samples are not i.i.d..

Results. The results in terms of ∆AUC-PR and AUC are presented in Table A3. The
standard deviation is reported across ten experiment reruns. The table shows that the
support set augmentation realized with the autoregressive inference procedure causes per-
formance gains up to 0.040±0.005 for the ∆AUC-PR and 0.041±0.006 for the AUC metric.
This means the model performance increases from 0.130 ± 0.010 to 0.169 ± 0.010 for the
∆AUC-PR and from 0.624 ± 0.011 to 0.665 ± 0.011 for the AUC metric without neither
having changed any model parameter nor having included any new measurements.
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Table A3: Transductive inference results on FS-Mol. The columns ”n+/n−” show
the model performance with n active pseudo-labeled and n inactive pseudo-
labeled samples added to the support set. Error bars represent the standard
deviation across ten experiment reruns. The metrics are averaged across
tasks.

Inf. Mode Backbone ∆AUC-PR AUC
1+/1− 2+/2− 8+/8− 1+/1− 2+/2− 8+/8−

Ind. APM MHNfs .130±.010 .130±.010 .130±.010 .624±.011 .624±.011 .624±.011

AR-APM MHNfs .146±.010 .154±.010 .169±.010 .641±.011 .650±.011 .665±.011

Performance Gain .016±.002 .024±.003 .040±.005 .018±.002 .026±.004 .041±.006

A.4 Used performance metrics

In this manuscript results are presented in terms of AUC and ∆AUC-PR.

The AUC metric computes the area under the receiver operating characteristic curve (ROC
AUC). AUC values are between 0 and 1 and indicate how well active and inactive test
molecule predictions are separable. Random classifier achieve AUC scores around 0.5.

The ∆AUC-PR metric computes the area under the precision recall curve and reports the
model performance as the difference from a random classifier. It was used by Stanley et al.
(2021) in the FSMol few-shot drug-discovery benchmark experiment.
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